[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1320670A1 - Exhaust gas turbocharger, supercharged internal combustion engine and corresponding method - Google Patents

Exhaust gas turbocharger, supercharged internal combustion engine and corresponding method

Info

Publication number
EP1320670A1
EP1320670A1 EP01978360A EP01978360A EP1320670A1 EP 1320670 A1 EP1320670 A1 EP 1320670A1 EP 01978360 A EP01978360 A EP 01978360A EP 01978360 A EP01978360 A EP 01978360A EP 1320670 A1 EP1320670 A1 EP 1320670A1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
turbine
internal combustion
combustion engine
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01978360A
Other languages
German (de)
French (fr)
Inventor
Werner Bender
Helmut Daudel
Helmut Finger
Peter Fledersbacher
Siegfried Sumser
Freidrich Wirbeleit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3K Warner Turbosystems GmbH
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
3K Warner Turbosystems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG, 3K Warner Turbosystems GmbH filed Critical DaimlerChrysler AG
Publication of EP1320670A1 publication Critical patent/EP1320670A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/43Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which exhaust from only one cylinder or only a group of cylinders is directed to the intake of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • F02D9/06Exhaust brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an exhaust gas turbocharger, a supercharged internal combustion engine and a method therefor according to the preamble of claims 1, 7 and 14 respectively.
  • a supercharged internal combustion engine is known from the publication DE 197 34 494 Cl, the exhaust gas turbocharger of which has an exhaust gas turbine with a variable turbine geometry.
  • the variable turbine geometry By adjusting the variable turbine geometry, the effective flow inlet cross-section in the turbine to the turbine wheel can be changed, whereby the exhaust gas back pressure in the line between the cylinder outlet of the internal combustion engine and the inlet of the turbine is influenced in a targeted manner, thereby adjusting the power consumption of the turbine and, accordingly, the compressor output of the compressor can.
  • an exhaust gas recirculation device is provided for returning exhaust gas from the exhaust system into the intake tract.
  • the amount of the recirculated exhaust gas mass flow is set depending on the state variables and operating parameters of the internal combustion engine. If single-flow turbines with variable turbine geometry are used in such supercharged internal combustion engines with exhaust gas recirculation, the pressure drop to the fresh air side required for returning the desired amount of exhaust gas is achieved by accumulating the entire exhaust gas mass flow. However, as the mass flow returned increases, the charge change in the cylinders is negatively influenced and fuel consumption increases.
  • the invention is based on the problem of reducing pollutant emissions and fuel consumption in supercharged internal combustion engines with exhaust gas recirculation.
  • the exhaust gas turbine of the novel exhaust gas turbocharger is designed with two passages and has two inflow ducts, each with a flow inlet cross section to the turbine wheel, the two inflow ducts being formed separately and being shielded from one another in a pressure-tight manner, in particular also being pressure-tightly shielded from the environment.
  • each inflow channel has its own inflow connection for the separate supply of exhaust gas.
  • This design of the exhaust gas turbocharger makes it possible to provide two independent exhaust gas lines between the cylinder outlets of the internal combustion engine and the exhaust gas turbine and to supply each inflow channel with exhaust gas separately.
  • a new type of internal combustion engine can be are formed such that each exhaust line only receives the exhaust gas of a part of the cylinders of the engine and exactly one of the two exhaust lines is connected to the intake tract via a return line of the exhaust gas recirculation device.
  • the exhaust gas line from which the return line of the exhaust gas recirculation branches off is supplied with the exhaust gas from a certain number of cylinders of the internal combustion engine, in particular a smaller number of cylinders and possibly only one cylinder than the parallel exhaust gas line, which is not involved in the exhaust gas recirculation.
  • the exhaust gas back pressure in that exhaust line or that inflow duct of the turbine which or which does not communicate with the exhaust gas recirculation device, can expediently be manipulated via the variable turbine geometry arranged in the flow inlet cross section of this inflow duct.
  • the variable turbine geometry By adjusting the variable turbine geometry, the turbine output and thus also the work to be given off by the compressor or the amount of air conveyed can be influenced in such a way that a pressure drop that enables the exhaust gas recirculation occurs between the exhaust gas line involved in the exhaust gas recirculation and the intake tract.
  • the desired turbine speed is coordinated via the channel, which corresponds to the variable turbine geometry.
  • the increased exhaust gas back pressure in the first exhaust gas line communicating with the exhaust gas recirculation can be supported by arranging a variable or unchangeable flow obstacle in the form of a guide vane or a similar design in the flow inlet cross section which is assigned to the inflow channel assigned to the first exhaust gas line. It may be expedient here to additionally or alternatively also provide a variable turbine geometry in this flow inlet cross section.
  • a combination turbine with a semi-axial and a radial flow inlet cross section is selected as the preferred turbine type, the variable turbine geometry being expediently arranged in the radial flow inlet cross section and the exhaust gas recirculation being assigned to the semi-axial inflow channel or flow inlet cross section.
  • Such combination turbines with a semi-axial and a radial flow inlet cross section only have to be modified compared to combination turbines known from the prior art in such a way that the inflow channels assigned to the two flow inlet cross sections are mutually pressure-tight to prevent undesired pressure compensation between these inflow channels.
  • This is achieved, for example, by connecting a flow ring, which is arranged between the semi-axial and radial flow inlet cross section, in a pressure-tight manner to a partition between the inflow channels.
  • a bypass line connecting the two exhaust gas lines outside the exhaust gas turbine is provided, which is equipped with an adjustable bypass valve.
  • pressure equalization between the two exhaust gas lines can be permitted, in order to create the same pressure conditions in both turbine inflow channels, particularly in engine operation without exhaust gas recirculation.
  • the bypass valve can advantageously also be switched to a position in which exhaust gas is discharged from one of the two exhaust gas lines or from both exhaust gas lines bypassing the exhaust gas turbine from the exhaust gas line.
  • FIG. 1 is a schematic representation of a supercharged internal combustion engine with a double-flow combination turbine with semi-axial and radial flow inlet cross section
  • Fig. 5 is a graph showing the course of the exhaust gas mass flow through a turbine as a function of the pressure gradient across the turbine, shown for each of the two inflow channels of the combination turbine.
  • the internal combustion engine 1 shown in FIG. 1 - an Otto engine or a diesel engine - comprises an exhaust gas turbocharger 2 with a turbine 3 in the exhaust line 4 and with a compressor 5 in the intake tract ⁇ , the movement of the turbine wheel via a shaft 7 on the compressor wheel of the Compressor 5 is transmitted.
  • the turbine 3 of the exhaust gas turbocharger 2 is equipped with a variable Bine geometry 8 equipped, via which the effective flow inlet cross-section to the turbine wheel 9 can be adjusted depending on the state of the internal combustion engine.
  • the turbine 3 is designed as a dual-flow combination turbine with two floods or inflow channels 10 and 11, of which a first inflow channel 10 has a semi-axial flow inlet cross section 12 to the turbine wheel 9 and the second inflow channel 11 has a radial flow inlet cross section 13 to the turbine wheel 9.
  • the two inflow channels 10 and 11 are separated by a partition 14 fixed to the housing and are shielded from one another in a pressure-tight manner.
  • variable turbine geometry 8 is expediently located in the radial flow inlet cross section 13 of the inflow duct 11 and is designed in particular as a guide grille with adjustable guide vanes or as a guide grid that can be displaced axially into the radial flow inlet cross section 13, a variable adjustable flow inlet cross section to the turbine wheel 9 being released depending on the position of the guide grid becomes.
  • Each flood or inflow channel 10 or 11 is provided with an inflow connection 15 or 16.
  • Exhaust gas can be supplied separately to the associated inflow channel 10 or 11 via each inflow connection 15 or 16.
  • the exhaust gas is supplied via two independently configured exhaust pipes 17 and 18, which are part of the exhaust line 4.
  • Each exhaust pipe 17 or 18 is assigned to a defined number of cylinder outlets of the internal combustion engine.
  • the internal combustion engine is V-shaped and has two cylinder banks 19 and 20, each with the same Number of cylinders.
  • the first exhaust line 17 leads from the cylinder bank 19 assigned to it to the first inflow duct 10, the second exhaust line 18 accordingly leads from the second cylinder bank 20 to the second inflow duct 11.
  • bypass line 21 with an upstream of the turbine 3 adjustable blow-off or Blow valve 22 arranged.
  • the bypass valve 22- can be placed in a blocking position, in which the bypass line 21 is shut off and pressure exchange between the exhaust gas lines 17 and 18 is prevented, in a through position in which the bypass line is open and pressure exchange is possible, and in a blow-off position are displaced, in which exhaust gas is discharged from one of the two exhaust gas lines or from both exhaust gas lines bypassing the turbine from the exhaust gas line.
  • an exhaust gas recirculation device 23 which comprises a return line 24 between the first exhaust line 17 and the intake tract 6 directly upstream of the cylinder inlet of the internal combustion engine 1, as well as a check valve 25 or check valve or flap valve, that between a blocking position blocking the return line 24 and a releasing opening position is adjustable or adjusts itself.
  • An exhaust gas cooler 26 is also advantageously arranged in the return line 24.
  • All the control elements of the various adjustable components in particular the variable turbine geometry 8, the blow-off valve 22 and the check valve 25, are moved into their desired position via control signals which can be generated in a regulating and control device 27. poses.
  • the turbine power is transferred to the compressor 5, which draws in ambient air at the pressure pi and compresses it to an increased pressure p 2 .
  • a charge air cooler 28, through which the compressed air flows, is arranged downstream of the compressor 5 in the intake tract 6. After leaving the charge air cooler 28, the air is compressed to the charge pressure p 2s , with which it is introduced into the cylinder inlet of the internal combustion engine.
  • the exhaust gas back pressure p 3 Zylinder prevails in the first exhaust line 17, which is assigned to the first cylinder bank 19; Exhaust gas back pressure p 32 is present in second exhaust line 18, which is assigned to second cylinder bank 20.
  • the exhaust gas is expanded to the low pressure 4 and then initially subjected to a catalytic cleaning and finally blown off into the environment.
  • variable turbine geometry 8 is set in the radial flow inlet cross section 13 of second flow channel 11 into a position in which a pressure gradient that enables exhaust gas recirculation between first exhaust pipe 17 and intake tract 6.
  • a pressure drop arises taking into account the required fuel-air ratio in particular in the case of a position of the variable turbine geometry 8 which is offset in the direction of its open position.
  • first flow inlet cross section 12 in the first inflow duct 10 is designed to be relatively small and assumes a value that may advantageously be slightly larger than the second flow inlet cross section 13 in the stowed position of the variable turbine geometry, but is smaller than this cross section in the open position of the variable turbine geometry.
  • the exhaust gas back pressure p 3 ⁇ in the first exhaust gas line 17 is higher than the exhaust gas back pressure p 32 in the second exhaust gas line 18, which has no connection to the exhaust gas recirculation device 23.
  • variable turbine geometry In engine braking operation, the variable turbine geometry is transferred to its stowed position, in which the radial flow inlet cross section 13 is reduced to a minimum value, as a result of which the exhaust gas back pressure p 32 in the second exhaust gas line 18 increases to a high value, which is in particular greater than the exhaust gas back pressure p 3i in of the first exhaust pipe 17 communicating with the exhaust gas recirculation device 23.
  • This makes it possible to achieve very high engine braking powers by greatly increasing the exhaust gas back pressure p 32 without exceeding the critical speed limit of the exhaust gas turbocharger by actuating the valves 22 and 25 in an advantageous manner , 2, an exhaust gas turbocharger 2 with an exhaust gas turbine 3 with variable turbine geometry 8 is shown.
  • the turbine 3 comprises a first inflow duct 10 with a semi-axial flow entry cross section 12 and a second inflow duct 11 with a radial flow entry cross section 13. Exhaust gas from the inflow ducts 10 and 11 can be fed to the turbine wheel 9 via the flow entry cross sections 12 and 13.
  • a fixed grid 29 is located in the semi-axial flow inlet cross section 12, whereas a die 33 is arranged in the radial flow inlet cross section 13 in addition to a guide grid 30.
  • the two inflow channels 10 and 11 are separated by a partition 14 fixed to the housing.
  • a flow ring 31 Arranged in the region of the flow inlet cross sections 12 and 13 is a flow ring 31 which divides the two flow inlet cross sections and has a streamlined contour, the radial outside of which faces the radially inward end region of the partition wall 14.
  • annular sealing element 32 is arranged between the end face of the partition wall 14 and the radially outer side of the flow ring 31.
  • the axially displaceable die 33 in the radial flow inlet cross section 13 is fastened to an axial slide 34, which surrounds the turbine wheel 9 in a ring.
  • the rigid guide grid, which dips into the movable die, is attached to the flow ring 31 in the example shown.
  • the first inflow channel 10, which in the semi-axial Flow inlet cross section 12 opens out, has a considerably smaller volume than the second inflow channel 11 with a radial flow inlet cross section 13.
  • the turbine 3 of the exhaust gas turbocharger 2 according to FIG. 3 also has a first inflow duct 10 with a semi-axial flow inlet cross section 12 and a second inflow duct 11 with a radial flow inlet cross section 13, which are divided by a partition 14, the two flow inlet cross sections 12 and 13 being directly from the flow ring 31 are limited and a sealing element 32 is arranged between the flow ring 31 and the partition 14.
  • the grating element in the semi-axial flow inlet cross section 12 is designed as a fixed grille 29, while an adjustable guide grille 30 with adjustable guide blades is arranged in the radial flow entry cross section 13.
  • the volumes of inflow channels 10 and 11 are approximately the same size.
  • the sectional view according to FIG. 4 shows a radial turbine with two radial inflow channels 10 and 11.
  • the inflow ducts 10 and 11 of the turbine 3 which is also referred to as a two-segment turbine, take the form of partial spirals and open out on radially opposite sides via their flow inlet cross sections 12 and 13, respectively, into the turbine space accommodating the turbine wheel 9. It can be expedient to provide an angle of the mouth cross sections of the inflow channels to the turbine wheel 9 that is different from 180 °.
  • the guide vane 30, which surrounds the turbine wheel 9 radially, has adjustable guide vanes.
  • FIG 5 shows a graph with the course of the turbine throughput parameters ⁇ as a function of the pressure gradient p 3 / p 4 above the exhaust gas turbine, p 3 denoting the exhaust gas back pressure upstream of the turbine and p 4 the relaxed pressure downstream of the turbine.
  • the throughput parameter ⁇ i for the first flow channel is shown;
  • Throughput parameter ⁇ i is shown as a line due to the fixed geometry in the flow inlet cross section assigned to the first inflow channel.
  • the throughput parameter ⁇ 2 that can be represented in the second inflow channel is characterized by a hatched area due to the variably adjustable turbine geometry with a variable flow inlet cross-section, the lower limit ⁇ 2 , u of which corresponds to the closed position of the variable turbine geometry and the upper limit of ⁇ 2 , o to the open position of the turbine geometry.
  • a dashed line in the adjustment area of the variable turbine geometry exemplifies a current guide vane position in which, due to the comparatively small flow inlet cross-section in the first flow duct with fixed grille and the resulting high level of accumulation in this inflow duct, a high exhaust gas back pressure p 3 ⁇ occurs in the first inflow duct, which one Exhaust gas recirculation favors.
  • there is a lower exhaust gas back pressure p 32 which means that the turbine can be operated in more favorable efficiency ranges.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

The invention relates to an internal combustion engine, which is provided with an exhaust gas recirculation system (23) and which has an exhaust gas turbocharger (2) having a variable turbine geometry (8). In order to improve the behavior of the exhaust gas, the exhaust gas turbine (3) is provided with two inflow channels (10, 11), which are separated from one another in a pressure-tight manner, whereby an inflow channel (10) communicates with an exhaust gas line (17), from which a recirculation line (24) of the exhaust gas recirculation system (23) branches.

Description

Abgasturbolader, aufgeladene Brennkraftmaschine und Verfahren hierzuExhaust gas turbocharger, supercharged internal combustion engine and method therefor
Die Erfindung bezieht sich auf einen Abgasturbolader, eine aufgeladene Brennkraftmaschine und ein Verfahren hierzu nach dem Oberbegriff des Anspruches 1, 7 bzw. 14.14. The invention relates to an exhaust gas turbocharger, a supercharged internal combustion engine and a method therefor according to the preamble of claims 1, 7 and 14 respectively.
Aus der Druckschrift DE 197 34 494 Cl ist eine aufgeladene Brennkraftmaschine bekannt, deren Abgasturbolader eine Abgasturbine mit variabler Turbinengeometrie aufweist. Durch die Verstellung der variablen Turbinengeometrie kann der wirksame Strömungseintrittsquerschnitt in der Turbine zum Turbinenrad verändert werden, wodurch der Abgasgegendruck in dem Leitungsstrang zwischen dem Zylinderauslass der Brennkraftmaschine und dem Einlass der Turbine gezielt beeinflusst und dadurch die Leistungsaufnahme der Turbine und entsprechend die Verdichterleistung des Verdichters eingestellt werden können. Zur Verbesserung des Abgasverhaltens der Brennkraftmaschine, insbesondere zur NOx-Reduktion, ist eine Abgasrückführungsvorrichtung zur Rückführung von Abgas aus dem Abgasstrang in den Ansaugtrakt vorgesehen. In Abhängigkeit von Zustandsgrößen und Betriebsparametern der Brennkraftmaschine wird die Höhe des rückgeführten Abgasmassenstromes eingestellt. Werden in derartigen aufgeladenen Brennkraftmaschinen mit Abgasrückführung einflutige Turbinen mit variabler Turbinengeometrie eingesetzt, so wird das zum Rückführen der gewünschten Abgasmenge nötige Druckgefälle zur Frischluftseite durch das Aufstauen des gesamten Abgasmassenstromes erzielt. Mit zunehmendem rückgeführtem Massenstrom wird jedoch der Ladungswechsel in den Zylindern negativ beeinflusst und der Kraftstoffverbrauch erhöht.A supercharged internal combustion engine is known from the publication DE 197 34 494 Cl, the exhaust gas turbocharger of which has an exhaust gas turbine with a variable turbine geometry. By adjusting the variable turbine geometry, the effective flow inlet cross-section in the turbine to the turbine wheel can be changed, whereby the exhaust gas back pressure in the line between the cylinder outlet of the internal combustion engine and the inlet of the turbine is influenced in a targeted manner, thereby adjusting the power consumption of the turbine and, accordingly, the compressor output of the compressor can. To improve the exhaust gas behavior of the internal combustion engine, in particular for NO x reduction, an exhaust gas recirculation device is provided for returning exhaust gas from the exhaust system into the intake tract. The amount of the recirculated exhaust gas mass flow is set depending on the state variables and operating parameters of the internal combustion engine. If single-flow turbines with variable turbine geometry are used in such supercharged internal combustion engines with exhaust gas recirculation, the pressure drop to the fresh air side required for returning the desired amount of exhaust gas is achieved by accumulating the entire exhaust gas mass flow. However, as the mass flow returned increases, the charge change in the cylinders is negatively influenced and fuel consumption increases.
Der Erfindung liegt das Problem zugrunde, den Schadstoffausstoß und den Kraftstoffverbrauch in aufgeladenen Brennkraftmaschinen mit Abgasrückführung zu reduzieren.The invention is based on the problem of reducing pollutant emissions and fuel consumption in supercharged internal combustion engines with exhaust gas recirculation.
Dieses Problem wird erfindungsgemäß mit den Merkmalen des Anspruches 1, 7 bzw. 14 gelöst. Die Unteransprüche geben bevorzugte Weiterbildungen an.This problem is solved according to the invention with the features of claims 1, 7 and 14, respectively. The subclaims indicate preferred further developments.
Die Abgasturbine des neuartigen Abgasturboladers ist zweiflutig ausgebildet und weist zwei Einströmkanäle mit jeweils einem Strömungseintrittsquerschnitt zum Turbinenrad auf, wobei die beiden Einströmkanäle separat ausgebildet und gegeneinander druckdicht abgeschirmt sind, insbesondere auch zur Umgebung hin druckdicht abgeschirmt sind. Zudem weist jeder Einströmkanal einen eigenen Zuströmanschluss für die separate Zuführung von Abgas auf.The exhaust gas turbine of the novel exhaust gas turbocharger is designed with two passages and has two inflow ducts, each with a flow inlet cross section to the turbine wheel, the two inflow ducts being formed separately and being shielded from one another in a pressure-tight manner, in particular also being pressure-tightly shielded from the environment. In addition, each inflow channel has its own inflow connection for the separate supply of exhaust gas.
Durch diese Ausführung des Abgasturboladers ist es möglich, zwei unabhängige Abgasleitungen zwischen den Zylinderauslässen der Brennkraftmaschine und der Abgasturbine vorzusehen und jeden Einströmkanal separat mit Abgas zu versorgen. Mit einem derartigen Abgasturbolader kann eine neuartige Brennkraftmaschine in der Weise aus- gebildet werden, dass jede Abgasleitung nur das Abgas eines Teils der Zylinder des Motors aufnimmt und genau eine der beiden Abgasleitungen über eine Rückführleitung der Abgasrückführungsvorrichtung mit dem Ansaugtrakt verbunden wird. Es wird nur der Teil des Motorabgases dieser Abgasleitung entsprechend der erforderlichen Ab- gasrückführmenge hoch aufgestaut, wodurch deutlich geringere Ladungswechselnachteile während der Abgasrück- führungs-Betriebsweise und ein entsprechend geringerer Kraftstoffverbrauch zu erwarten sind und dennoch das Abgasverhalten positiv beeinflusst werden kann. Vorteilhaft wird der Abgasleitung, von der die Rückführleitung der Abgasrückführung abzweigt, das Abgas von einer bestimmten Zylinderanzahl der Brennkraftmaschine, insbesondere einer kleineren Zylinderanzahl und gegebenenfalls nur eines Zylinders als der parallelen Abgasleitung zugeführt, die nicht an der Abgasrückführung beteiligt ist.This design of the exhaust gas turbocharger makes it possible to provide two independent exhaust gas lines between the cylinder outlets of the internal combustion engine and the exhaust gas turbine and to supply each inflow channel with exhaust gas separately. With such an exhaust gas turbocharger, a new type of internal combustion engine can be are formed such that each exhaust line only receives the exhaust gas of a part of the cylinders of the engine and exactly one of the two exhaust lines is connected to the intake tract via a return line of the exhaust gas recirculation device. Only the part of the engine exhaust gas of this exhaust gas line is accumulated in a high amount in accordance with the required exhaust gas recirculation quantity, as a result of which significantly fewer charge exchange disadvantages are to be expected during the exhaust gas recirculation mode of operation and a correspondingly lower fuel consumption and nevertheless the exhaust gas behavior can be positively influenced. Advantageously, the exhaust gas line from which the return line of the exhaust gas recirculation branches off is supplied with the exhaust gas from a certain number of cylinders of the internal combustion engine, in particular a smaller number of cylinders and possibly only one cylinder than the parallel exhaust gas line, which is not involved in the exhaust gas recirculation.
Aufgrund der zwei separaten und druckdicht gegeneinander abgeschirmten Einströmkanäle in der Abgasturbine kann zweckmäßig der Abgasgegendruck in derjenigen Abgasleitung bzw. demjenigen Einströmkanal der Turbine, welche bzw. welcher nicht mit der Abgasrückführungsvorrichtung kommuniziert, über die vorteilhaft im Strömungseintrittsquerschnitt dieses Einströmkanals angeordnete variable Turbinengeometrie manipuliert werden. Durch Verstellung der variablen Turbinengeometrie kann die Turbinenleistung und damit auch die vom Verdichter abzugebende Arbeit bzw. geförderte Luftmenge in der Weise beeinflusst werden, dass zwischen der an der Abgasrückführung beteiligten Abgasleitung und dem Ansaugtrakt ein die Abgasrückführung ermöglichendes Druckgefälle entsteht. Es ist insbesondere möglich, in der befeuerten Antriebsbe- triebsweise der Brennkraftmaschine die variable Turbinengeometrie dem zweiten, nicht an der Abgasrückführung beteiligten Einströmkanal der Turbine in Richtung ihrer Offenstellung zu versetzen, in der die Turbinengeometrie einen nur geringen Strömungswiderstand im Strömungseintrittsquerschnitt bildet, so dass der Abgasgegendruck in diesem Einströmkanal reduziert ist und weniger Verdichterarbeit abgegeben und dementsprechend ein geringerer Ladedruck erzeugt wird, der mit dem optimalen Luftverhältnis korrespondiert. Unabhängig von dem Abgasgegendruck in derjenigen Abgasleitung, die mit dem nicht an der Abgasrückführung beteiligten Einströmkanal kommuniziert, kann in der parallelen Abgasleitung, von der die Rückführleitung der Abgasrückführung abzweigt, ein höherer, den Ladedruck auf der Ansaugseite übersteigender Abgasgegendruck zur Rückführung von Abgas in den Ansaugtrakt erzeugt werden.Due to the two separate and pressure-tightly shielded inflow ducts in the exhaust gas turbine, the exhaust gas back pressure in that exhaust line or that inflow duct of the turbine, which or which does not communicate with the exhaust gas recirculation device, can expediently be manipulated via the variable turbine geometry arranged in the flow inlet cross section of this inflow duct. By adjusting the variable turbine geometry, the turbine output and thus also the work to be given off by the compressor or the amount of air conveyed can be influenced in such a way that a pressure drop that enables the exhaust gas recirculation occurs between the exhaust gas line involved in the exhaust gas recirculation and the intake tract. In particular, it is possible to to drive the internal combustion engine to move the variable turbine geometry to the second inflow channel of the turbine, which is not involved in the exhaust gas recirculation, in the direction of its open position, in which the turbine geometry forms only a small flow resistance in the flow inlet cross section, so that the exhaust gas back pressure in this inflow channel is reduced and less compression work is given off and accordingly, a lower boost pressure is generated, which corresponds to the optimal air ratio. Regardless of the exhaust gas back pressure in the exhaust gas line that communicates with the inflow duct not involved in the exhaust gas recirculation, a higher exhaust gas back pressure for returning exhaust gas into the intake tract, which exceeds the charge pressure on the intake side, can be located in the parallel exhaust gas line be generated.
Während mit der einen der Turbine zugeführten Leitung der Aufstau für die Abgasrückführung erfolgt, wird über den Kanal, der mit der variablen Turbinengeometrie korrespondiert, die gewünschte Turbinendrehzahl abgestimmt.While the line for the exhaust gas recirculation is backed up with one line supplied to the turbine, the desired turbine speed is coordinated via the channel, which corresponds to the variable turbine geometry.
Der erhöhte Abgasgegendruck in der ersten, mit der Abgasrückführung kommunizierenden Abgasleitung kann dadurch unterstützt werden, dass in dem Strömungseintrittsquerschnitt, welcher dem der ersten Abgasleitung zugeordneten Einströmkanal zugeordnet ist, ein veränderliches oder unveränderliches Strömungshindernis in Form eines Leitgitters oder einer ähnlichen Ausführung angeordnet ist. Es kann hierbei zweckmäßig sein, zusätzlich oder alternativ auch in diesem Strömungseintrittsquerschnitt eine variable Turbinengeometrie vorzusehen. Als bevorzugter Turbinentyp wird eine Kombinationsturbine mit einem halbaxialen und einem radialen Strömungseintrittsquerschnitt gewählt, wobei die variable Turbinengeometrie zweckmäßig im radialen Strömungseintrittsquerschnitt angeordnet ist und die Abgasrückführung dem halbaxialen Einströmkanal bzw. Strömungseintrittsquerschnitt zugeordnet ist. Derartige Kombinationsturbinen mit einem halbaxialen und einem radialen Strömungseintrittsquerschnitt müssen gegenüber aus dem Stand der Technik bekannten Kombinationsturbinen lediglich in der Weise modifiziert werden, dass die den beiden Strömungseintrittsquerschnitten zugeordneten Einströmkanäle gegenseitig druckdicht abgeschlossen werden, um einen unerwünschten Druckausgleich zwischen diesen Einströmkanälen zu verhindern. Dies wird beispielsweise dadurch erreicht, dass ein Strömungsring, welcher zwischen halbaxialem und radialem Strömungseintrittsquerschnitt angeordnet ist, druckdicht mit einer Trennwand zwischen den Einströmkanälen verbunden wird.The increased exhaust gas back pressure in the first exhaust gas line communicating with the exhaust gas recirculation can be supported by arranging a variable or unchangeable flow obstacle in the form of a guide vane or a similar design in the flow inlet cross section which is assigned to the inflow channel assigned to the first exhaust gas line. It may be expedient here to additionally or alternatively also provide a variable turbine geometry in this flow inlet cross section. A combination turbine with a semi-axial and a radial flow inlet cross section is selected as the preferred turbine type, the variable turbine geometry being expediently arranged in the radial flow inlet cross section and the exhaust gas recirculation being assigned to the semi-axial inflow channel or flow inlet cross section. Such combination turbines with a semi-axial and a radial flow inlet cross section only have to be modified compared to combination turbines known from the prior art in such a way that the inflow channels assigned to the two flow inlet cross sections are mutually pressure-tight to prevent undesired pressure compensation between these inflow channels. This is achieved, for example, by connecting a flow ring, which is arranged between the semi-axial and radial flow inlet cross section, in a pressure-tight manner to a partition between the inflow channels.
In bevorzugter Weiterbildung der Brennkraftmaschine ist eine die beiden Abgasleitungen außerhalb der Abgasturbi- ne verbindende Überbrückungsleitung vorgesehen, die mit einem einstellbaren Umblaseventil ausgestattet ist. Je nach Stellung des Umblaseventils kann ein Druckausgleich zwischen den beiden Abgasleitungen zugelassen werden, um insbesondere in einem Motorbetrieb ohne Abgasrückführung in beiden Einströmkanälen der Turbine gleiche Druckverhältnisse zu schaffen. Das Umblaseventil kann vorteilhaft aber auch in eine Position geschaltet werden, in welcher Abgas aus einer der beiden Abgasleitungen oder aus beiden Abgasleitungen unter Umgehung der Abgasturbi- ne aus dem Abgasstrang ausgeleitet wird. Weitere Vorteile und zweckmäßige Ausführungsformen sind den weiteren Ansprüchen, der Figurenbeschreibung und den Zeichnungen zu entnehmen. Es zeigen:In a preferred development of the internal combustion engine, a bypass line connecting the two exhaust gas lines outside the exhaust gas turbine is provided, which is equipped with an adjustable bypass valve. Depending on the position of the bypass valve, pressure equalization between the two exhaust gas lines can be permitted, in order to create the same pressure conditions in both turbine inflow channels, particularly in engine operation without exhaust gas recirculation. The bypass valve can advantageously also be switched to a position in which exhaust gas is discharged from one of the two exhaust gas lines or from both exhaust gas lines bypassing the exhaust gas turbine from the exhaust gas line. Further advantages and expedient embodiments can be found in the further claims, the description of the figures and the drawings. Show it:
Fig. 1 eine schematische Darstellung einer aufgeladenen Brennkraftmaschine mit einer zweiflutigen Kombinationsturbine mit halbaxialem und radialem Strömungseintrittsquerschnitt,1 is a schematic representation of a supercharged internal combustion engine with a double-flow combination turbine with semi-axial and radial flow inlet cross section,
Fig. 2 einen Schnitt durch eine Kombinationsturbine mit zwei separat und gegeneinander druckdicht ausgebildete Einströmkanälen,2 shows a section through a combination turbine with two inflow channels which are formed separately and are pressure-tight against one another,
Fig. 3 einen Schnitt durch eine Kombinationsturbine in einer weiteren Ausführung,3 shows a section through a combination turbine in a further embodiment,
Fig. 4 einen Schnitt durch eine zweiflutige Radialturbine,4 shows a section through a double-flow radial turbine,
Fig. 5 ein Schaubild mit dem Verlauf des Abgas- Massendurchsatzes durch eine Turbine in Abhängigkeit des Druckgefälles über der Turbine, dargestellt für jede der beiden Einströmkanäle der Kombinationsturbine .Fig. 5 is a graph showing the course of the exhaust gas mass flow through a turbine as a function of the pressure gradient across the turbine, shown for each of the two inflow channels of the combination turbine.
In den folgenden Figuren sind gleiche Bauteile mit gleichen Bezugszeichen versehen.In the following figures, the same components are provided with the same reference symbols.
Die in Fig. 1 dargestellte Brennkraftmaschine 1 - ein Otto-Motor oder ein Dieselmotor - umfasst einen Abgasturbolader 2 mit einer Turbine 3 im Abgasstrang 4 und mit einem Verdichter 5 im Ansaugtrakt β, wobei die Bewegung des Turbinenrades über eine Welle 7 auf das Verdichterrad des Verdichters 5 übertragen wird. Die Turbine 3 des Abgasturboladers 2 ist mit einer variablen Tur- binengeometrie 8 ausgestattet, über die in Abhängigkeit des Zustands der Brennkraftmaschine der wirksame Strömungseintrittsquerschnitt zum Turbinenrad 9 veränderlich eingestellt werden kann. Die Turbine 3 ist als zweiflu- tige Kombinationsturbine mit zwei Fluten bzw. Einströmkanälen 10 und 11 ausgebildet, von denen ein erster Einströmkanal 10 einen halbaxialen Strömungseintrittsquerschnitt 12 zum Turbinenrad 9 und der zweite Einströmkanal 11 einen radialen Strömungseintrittsquerschnitt 13 zum Turbinenrad 9 aufweist. Die beiden Einströmkanäle 10 und 11 sind durch eine gehäusefeste Trennwand 14 separiert und gegenseitig druckdicht abgeschirmt.The internal combustion engine 1 shown in FIG. 1 - an Otto engine or a diesel engine - comprises an exhaust gas turbocharger 2 with a turbine 3 in the exhaust line 4 and with a compressor 5 in the intake tract β, the movement of the turbine wheel via a shaft 7 on the compressor wheel of the Compressor 5 is transmitted. The turbine 3 of the exhaust gas turbocharger 2 is equipped with a variable Bine geometry 8 equipped, via which the effective flow inlet cross-section to the turbine wheel 9 can be adjusted depending on the state of the internal combustion engine. The turbine 3 is designed as a dual-flow combination turbine with two floods or inflow channels 10 and 11, of which a first inflow channel 10 has a semi-axial flow inlet cross section 12 to the turbine wheel 9 and the second inflow channel 11 has a radial flow inlet cross section 13 to the turbine wheel 9. The two inflow channels 10 and 11 are separated by a partition 14 fixed to the housing and are shielded from one another in a pressure-tight manner.
Die variable Turbinengeometrie 8 befindet sich zweckmäßig im radialen Strömungseintrittsquerschnitt 13 des Einströmkanals 11 und ist insbesondere als Leitgitter mit verstellbaren Leitschaufeln oder als ein axial in den radialen Strömungseintrittsquerschnitt 13 verschiebbares Leitgitter ausgebildet, wobei in Abhängigkeit der Stellung des Leitgitters ein veränderlich einstellbarer Strömungseintrittsquerschnitt zum Turbinenrad 9 freigegeben wird.The variable turbine geometry 8 is expediently located in the radial flow inlet cross section 13 of the inflow duct 11 and is designed in particular as a guide grille with adjustable guide vanes or as a guide grid that can be displaced axially into the radial flow inlet cross section 13, a variable adjustable flow inlet cross section to the turbine wheel 9 being released depending on the position of the guide grid becomes.
Jede Flut bzw. jeder Einströmkanal 10 bzw. 11 ist mit einem Zuströmanschluss 15 bzw. 16 versehen. Über jeden Zuströmanschluss 15 bzw. 16 ist dem zugeordneten Einströmkanal 10 bzw. 11 separat Abgas zuführbar. Die Abgaszuführung erfolgt über zwei unabhängig voneinander ausgebildete Abgasleitungen 17 und 18, welche Bestandteil des Abgasstranges 4 sind. Jede Abgasleitung 17 bzw. 18 ist einer definierten Anzahl an Zylinderauslässen der Brennkraftmaschine zugeordnet. Im Ausführungsbeispiel ist die Brennkraftmaschine V-förmig ausgebildet und weist zwei Zylinderbänke 19 und 20 mit jeweils gleicher Zylinderanzahl auf. Die erste Abgasleitung 17 führt von der ihr zugeordneten Zylinderbank 19 zum ersten Einströmkanal 10, die zweite Abgasleitung 18 führt dementsprechend von der zweiten Zylinderbank 20 zum zweiten Einströmkanal 11. Zwischen den beiden Abgasleitungen 17 und 18 ist stromauf der Turbine 3 eine verbindende Überbrückungsleitung 21 mit einem einstellbaren Abblasebzw. Umblaseventil 22 angeordnet. Das Umblaseventil 22- kann in eine Sperrstellung versetzt werden, in der die Überbrückungsleitung 21 abgesperrt ist und ein Druckaustausch zwischen den Abgasleitungen 17 und 18 unterbunden wird, in eine Durchgangsstellung, in der die Überbrückungsleitung geöffnet ist und ein Druckaustausch ermöglicht ist, und in eine Abblasestellung versetzt werden, in der Abgas aus einer der beiden Abgasleitungen oder aus beiden Abgasleitungen unter Umgehung der Turbine aus dem Abgasstrang ausgeleitet wird.Each flood or inflow channel 10 or 11 is provided with an inflow connection 15 or 16. Exhaust gas can be supplied separately to the associated inflow channel 10 or 11 via each inflow connection 15 or 16. The exhaust gas is supplied via two independently configured exhaust pipes 17 and 18, which are part of the exhaust line 4. Each exhaust pipe 17 or 18 is assigned to a defined number of cylinder outlets of the internal combustion engine. In the exemplary embodiment, the internal combustion engine is V-shaped and has two cylinder banks 19 and 20, each with the same Number of cylinders. The first exhaust line 17 leads from the cylinder bank 19 assigned to it to the first inflow duct 10, the second exhaust line 18 accordingly leads from the second cylinder bank 20 to the second inflow duct 11. Between the two exhaust lines 17 and 18 there is a connecting bypass line 21 with an upstream of the turbine 3 adjustable blow-off or Blow valve 22 arranged. The bypass valve 22- can be placed in a blocking position, in which the bypass line 21 is shut off and pressure exchange between the exhaust gas lines 17 and 18 is prevented, in a through position in which the bypass line is open and pressure exchange is possible, and in a blow-off position are displaced, in which exhaust gas is discharged from one of the two exhaust gas lines or from both exhaust gas lines bypassing the turbine from the exhaust gas line.
Weiterhin ist eine Abgasrückführungsvorrichtung 23 vorgesehen, die eine Rückführleitung 24 zwischen der ersten Abgasleitung 17 und dem Ansaugtrakt 6 unmittelbar stromauf des Zylindereinlasses der Brennkraftmaschine 1 sowie ein Sperrventil 25 oder Rückschlagventil bzw. Flatterventil umfasst, dass zwischen einer die Rückführleitung 24 blockierenden Sperrstellung und einer freigebenden Öffnungsstellung verstellbar ist bzw. sich einstellt. Vorteilhaft ist in der Rückführleitung 24 auch ein Abgaskühler 26 angeordnet.Furthermore, an exhaust gas recirculation device 23 is provided, which comprises a return line 24 between the first exhaust line 17 and the intake tract 6 directly upstream of the cylinder inlet of the internal combustion engine 1, as well as a check valve 25 or check valve or flap valve, that between a blocking position blocking the return line 24 and a releasing opening position is adjustable or adjusts itself. An exhaust gas cooler 26 is also advantageously arranged in the return line 24.
Sämtliche Stellelemente der diversen verstellbaren Bauteile, insbesondere die variable Turbinengeometrie 8, das Umblaseventil 22 und das Sperrventil 25, werden über Stellsignale, die in einer Regel- und Steuerungseinrichtung 27 erzeugbar sind, in ihre gewünschte Position ver- stellt .All the control elements of the various adjustable components, in particular the variable turbine geometry 8, the blow-off valve 22 and the check valve 25, are moved into their desired position via control signals which can be generated in a regulating and control device 27. poses.
Im Betrieb der Brennkraftmaschine wird die Turbinenleistung auf den Verdichter 5 übertragen, der Umgebungsluft mit dem Druck pi ansaugt und auf einen erhöhten Druck p2 verdichtet. Stromab des Verdichters 5 ist im Ansaugtrakt 6 ein Ladeluftkühler 28 angeordnet, der von der verdichteten Luft durchströmt wird. Nach dem Verlassen des Ladeluftkühlers 28 ist die Luft auf den Ladedruck p2s verdichtet, mit dem sie in den Zylindereinlass der Brennkraftmaschine eingeleitet wird. Am Zylinderauslass herrscht in der ersten Abgasleitung 17, die der ersten Zylinderbank 19 zugeordnet ist, der Abgasgegendruck p3χ; in der zweiten Abgasleitung 18, die der zweiten Zylinderbank 20 zugeordnet ist, liegt der Abgasgegendruck p32 an. In der Turbine 3 wird das Abgas auf den niedrigen Druck 4 entspannt und im weiteren Verlauf zunächst einer katalytischen Reinigung unterzogen und schließlich in die Umgebung abgeblasen.During operation of the internal combustion engine, the turbine power is transferred to the compressor 5, which draws in ambient air at the pressure pi and compresses it to an increased pressure p 2 . A charge air cooler 28, through which the compressed air flows, is arranged downstream of the compressor 5 in the intake tract 6. After leaving the charge air cooler 28, the air is compressed to the charge pressure p 2s , with which it is introduced into the cylinder inlet of the internal combustion engine. At the cylinder outlet, the exhaust gas back pressure p 3 Zylinder prevails in the first exhaust line 17, which is assigned to the first cylinder bank 19; Exhaust gas back pressure p 32 is present in second exhaust line 18, which is assigned to second cylinder bank 20. In the turbine 3, the exhaust gas is expanded to the low pressure 4 and then initially subjected to a catalytic cleaning and finally blown off into the environment.
Im Abgasrückführungsbetrieb in der befeuerten Antriebsbetriebsweise wird das Sperrventil 25 der Abgasrückführungsvorrichtung 23 in Öffnungsstellung versetzt, damit Abgas aus der ersten Abgasleitung 17 in den Ansaugtrakt 6 überströmen kann. Um ein die Abgasrückführung ermöglichendes Druckgefälle mit einem den Ladedruck p2s übersteigenden Abgasgegendruck p3i in der Abgasleitung 17 zu gewährleisten, wird die variable Turbinengeometrie 8 im radialen Strömungseintrittsquerschnitt 13 des zweiten Strömungskanals 11 in eine Stellung versetzt, in der sich ein die Abgasrückführung ermöglichendes Druckgefälle zwischen erster Abgasleitung 17 und Ansaugtrakt 6 einstellt. Ein derartiges Druckgefälle stellt sich unter Beachtung des geforderten Kraftstoff-Luft-Verhältnisses insbesondere bei einer in Richtung ihrer Öffnungsstellung versetzten Position der variablen Turbinengeometrie 8 ein.In the exhaust gas recirculation mode in the fired drive mode of operation, the check valve 25 of the exhaust gas recirculation device 23 is set in the open position so that exhaust gas can flow from the first exhaust line 17 into the intake tract 6. In order to ensure a pressure gradient that enables exhaust gas recirculation with an exhaust gas back pressure p 3i in exhaust gas line 17 that exceeds charging pressure p 2 s, variable turbine geometry 8 is set in the radial flow inlet cross section 13 of second flow channel 11 into a position in which a pressure gradient that enables exhaust gas recirculation between first exhaust pipe 17 and intake tract 6. Such a pressure drop arises taking into account the required fuel-air ratio in particular in the case of a position of the variable turbine geometry 8 which is offset in the direction of its open position.
Ein derartiges Druckgefälle kann dadurch unterstützt werden, dass der erste Strömungseintrittsquerschnitt 12 im ersten Einströmkanal 10 verhältnismäßig klein ausgebildet ist und einen Wert annimmt, der vorteilhaft zwar geringfügig größer sein kann als der zweite Strömungseintrittsquerschnitt 13 in Staustellung der variablen Turbinengeometrie, jedoch kleiner ist als dieser Querschnitt in Offenstellung der variablen Turbinengeometrie. Aufgrund des relativ geringen ersten Strömungseintrittsquerschnitts 12 kann ein verhältnismäßig hoher Abgasgegendruck p3ι in der ersten Abgasleitung 17 erzielt werden. Bei aktiver Abgasrückführung ist insbesondere der Abgasgegendruck p3ι in der ersten Abgasleitung 17 höher als der Abgasgegendruck p32 in der zweiten Abgasleitung 18, die keine Verbindung zur Abgasrückführungsvorrichtung 23 aufweist.Such a pressure drop can be supported in that the first flow inlet cross section 12 in the first inflow duct 10 is designed to be relatively small and assumes a value that may advantageously be slightly larger than the second flow inlet cross section 13 in the stowed position of the variable turbine geometry, but is smaller than this cross section in the open position of the variable turbine geometry. Due to the relatively small first flow inlet cross section 12, a relatively high exhaust gas back pressure p 3 ι can be achieved in the first exhaust line 17. With active exhaust gas recirculation, in particular the exhaust gas back pressure p 3 ι in the first exhaust gas line 17 is higher than the exhaust gas back pressure p 32 in the second exhaust gas line 18, which has no connection to the exhaust gas recirculation device 23.
Im Motorbremsbetrieb wird die variable Turbinengeometrie in ihre Staustellung überführt, in der der radiale Strömungseintrittsquerschnitt 13 auf einen minimalen Wert reduziert wird, wodurch der Abgasgegendruck p32 in der zweiten Abgasleitung 18 auf einen hohen Wert ansteigt, der insbesondere größer ist als der Abgasgegendruck p3i in der ersten, mit der Abgasrückführungsvorrichtung 23 kommunizierenden Abgasleitung 17. Hierdurch ist es möglich, sehr hohe Motorbremsleistungen durch eine starke Anhebung des Abgasgegendrucks p32 zu erzielen, ohne die kritische Drehzahlgrenze des Abgasturboladers zu überschreiten, indem die Ventile 22 und 25 in vorteilhafter Weise betätigt werden. In der Schnittdarstellung nach Fig. 2 ist ein Abgasturbolader 2 mit einer Abgasturbine 3 mit variabler Turbinengeometrie 8 gezeigt. Die Turbine 3 umfasst einen ersten Einströmkanal 10 mit halbaxialem Strömungseintrittsquerschnitt 12 und einen zweiten Einströmkanal 11 mit radialem Strömungseintrittsquerschnitt 13. Über die Strömungseintrittsquerschnitte 12 und 13 ist Abgas aus den Einströmkanälen 10 und 11 dem Turbinenrad 9 zuführbar. Im halbaxialen Strömungseintrittsquerschnitt 12 befindet sich ein Festgitter 29, wohingegen im radialen Strömungseintrittsquerschnitt 13 neben einem Leitgitter 30 eine axial in den Strömungseintrittsquerschnitt 13 verschiebliche Matrize 33 angeordnet ist. Die beiden Einströmkanäle 10 und 11 sind über eine gehäusefest Trennwand 14 separiert. Im Bereich der Strömungseintrittsquerschnitte 12 und 13 ist ein die beiden Strömungseintrittsquerschnitte abteilender, strömungsgünstig konturierter Strömungsring 31 angeordnet, dessen radiale Außenseite dem radial nach innen gewandten Stirnbereich der Trennungswand 14 zugewandt ist. Für eine druckdichte Abschirmung zwischen den Einströmkanälen 10 und 11 ist zwischen Stirnseite der Trennwand 14 und radial außen liegender Seite des Strömungsrings 31 ein ringförmiges Dichtelement 32 angeordnet.In engine braking operation, the variable turbine geometry is transferred to its stowed position, in which the radial flow inlet cross section 13 is reduced to a minimum value, as a result of which the exhaust gas back pressure p 32 in the second exhaust gas line 18 increases to a high value, which is in particular greater than the exhaust gas back pressure p 3i in of the first exhaust pipe 17 communicating with the exhaust gas recirculation device 23. This makes it possible to achieve very high engine braking powers by greatly increasing the exhaust gas back pressure p 32 without exceeding the critical speed limit of the exhaust gas turbocharger by actuating the valves 22 and 25 in an advantageous manner , 2, an exhaust gas turbocharger 2 with an exhaust gas turbine 3 with variable turbine geometry 8 is shown. The turbine 3 comprises a first inflow duct 10 with a semi-axial flow entry cross section 12 and a second inflow duct 11 with a radial flow entry cross section 13. Exhaust gas from the inflow ducts 10 and 11 can be fed to the turbine wheel 9 via the flow entry cross sections 12 and 13. A fixed grid 29 is located in the semi-axial flow inlet cross section 12, whereas a die 33 is arranged in the radial flow inlet cross section 13 in addition to a guide grid 30. The two inflow channels 10 and 11 are separated by a partition 14 fixed to the housing. Arranged in the region of the flow inlet cross sections 12 and 13 is a flow ring 31 which divides the two flow inlet cross sections and has a streamlined contour, the radial outside of which faces the radially inward end region of the partition wall 14. For a pressure-tight shielding between the inflow channels 10 and 11, an annular sealing element 32 is arranged between the end face of the partition wall 14 and the radially outer side of the flow ring 31.
Die axial verschiebliche Matrize 33 im radialen Strömungseintrittsquerschnitt 13 ist an einem Axialschieber 34 befestigt, welcher das Turbinenrad 9 ringförmig umgibt. Das starre Leitgitter, das in die bewegliche Matrize eintaucht, ist im gezeigten Beispiel am Strömungsring 31 befestigt.The axially displaceable die 33 in the radial flow inlet cross section 13 is fastened to an axial slide 34, which surrounds the turbine wheel 9 in a ring. The rigid guide grid, which dips into the movable die, is attached to the flow ring 31 in the example shown.
Der erste Einströmkanal 10, welcher in den halbaxialen Strömungseintrittsquerschnitt 12 mündet, weist ein erheblich kleineres Volumen auf als der zweite Einströmkanal 11 mit radialem Strömungseintrittsquerschnitt 13.The first inflow channel 10, which in the semi-axial Flow inlet cross section 12 opens out, has a considerably smaller volume than the second inflow channel 11 with a radial flow inlet cross section 13.
Auch die Turbine 3 des Abgasturboladers 2 gemäß Fig. 3 weist einen ersten Einströmkanal 10 mit halbaxialem Strömungseintrittsquerschnitt 12 und einen zweiten Einströmkanal 11 mit radialem Strömungseintrittsquerschnitt 13 auf, die über eine Trennwand 14 abgeteilt sind, wobei die beiden Strömungseintrittsquerschnitte 12 und 13 unmittelbar von dem Strömungsring 31 begrenzt werden und zwischen Strömungsring 31 und Trennwand 14 ein Dichtelement 32 angeordnet ist. Das Gitterelement im halbaxialen Strömungseintrittsquerschnitt 12 ist als Festgitter 29 ausgebildet, in radialen Strömungseintrittsquerschnitt 13 ist dagegen ein verstellbares Leitgitter 30 mit verstellbaren Leitschaufeln angeordnet. Im Ausführungsbeispiel gemäß Fig. 3 sind die Volumina von Einströmkanal 10 und 11 etwa gleich groß.The turbine 3 of the exhaust gas turbocharger 2 according to FIG. 3 also has a first inflow duct 10 with a semi-axial flow inlet cross section 12 and a second inflow duct 11 with a radial flow inlet cross section 13, which are divided by a partition 14, the two flow inlet cross sections 12 and 13 being directly from the flow ring 31 are limited and a sealing element 32 is arranged between the flow ring 31 and the partition 14. The grating element in the semi-axial flow inlet cross section 12 is designed as a fixed grille 29, while an adjustable guide grille 30 with adjustable guide blades is arranged in the radial flow entry cross section 13. In the exemplary embodiment according to FIG. 3, the volumes of inflow channels 10 and 11 are approximately the same size.
Der Schnittdarstellung nach Fig. 4 ist eine Radialturbine mit zwei radialen Einströmkanälen 10 und 11 zu entnehmen. Die Einströmkanäle 10 und 11 der Turbine 3, welche auch als Zweisegmentturbine bezeichnet wird, nehmen die Form von Teilspiralen ein und münden auf radial gegenüber liegenden Seiten über ihre Strömungseintrittsquerschnitte 12 bzw. 13 in den das Turbinenrad 9 aufnehmenden Turbinenraum. Es kann zweckmäßig sein, einen von 180° verschiedenen Winkel der Mündungsquerschnitte der Einströmkanäle zum Turbinenrad 9 vorzusehen. Das radial das Turbinenrad 9 umgreifende Leitgitter 30 weist verstellbare Leitschaufeln auf.The sectional view according to FIG. 4 shows a radial turbine with two radial inflow channels 10 and 11. The inflow ducts 10 and 11 of the turbine 3, which is also referred to as a two-segment turbine, take the form of partial spirals and open out on radially opposite sides via their flow inlet cross sections 12 and 13, respectively, into the turbine space accommodating the turbine wheel 9. It can be expedient to provide an angle of the mouth cross sections of the inflow channels to the turbine wheel 9 that is different from 180 °. The guide vane 30, which surrounds the turbine wheel 9 radially, has adjustable guide vanes.
Fig. 5 zeigt ein Schaubild mit dem Verlauf des Turbinen- durchsatzparameters φ in Abhängigkeit des Druckgefälles p3/p4 über der Abgasturbine, wobei mit p3 der Abgasgegendruck stromauf der Turbine und mit p4 der entspannte Druck stromab der Turbine bezeichnet ist. Dargestellt ist zum Einen der Durchsatzparameter φi für den ersten Strömungskanal; Durchsatzparameter φi ist aufgrund der Festgeometrie in dem dem ersten Einströmkanal zugeordneten Strömungseintrittsquerschnitt als Linie dargestellt. Der im zweiten Einströmkanal darstellbare Durchsatzparameter φ2 ist aufgrund der variabel einstellbaren Turbinengeometrie mit veränderlichem Strömungseintrittsquerschnitt als schraffierte Fläche gekennzeichnet, deren Untergrenze φ2,u der Schließstellung der variablen Turbinengeometrie und deren Obergrenze φ2,o der Öffnungsstellung der Turbinengeometrie entspricht. Mit gestrichelter Linie ist im Verstellbereich der variablen Turbinengeometrie beispielhaft eine aktuelle Leitgitterposition herausgegriffen, bei der aufgrund des vergleichsweise kleinen Strömungseintrittsquerschnitts im ersten Strömungskanal mit Festgitter und der dadurch bedingten hohen Aufstaufähigkeit in diesem Einströmkanal sich ein hoher Abgasgegendruck p3ι im ersten Einströmkanal einstellt, der eine Abgasrückführung begünstigt. Im zweiten Einströmkanal mit variabler Turbinengeometrie liegt dagegen ein geringerer Abgasgegendruck p32 an, wodurch die Turbine in günstigeren Wirkungsgradbereichen betrieben werden kann. 5 shows a graph with the course of the turbine throughput parameters φ as a function of the pressure gradient p 3 / p 4 above the exhaust gas turbine, p 3 denoting the exhaust gas back pressure upstream of the turbine and p 4 the relaxed pressure downstream of the turbine. On the one hand, the throughput parameter φi for the first flow channel is shown; Throughput parameter φi is shown as a line due to the fixed geometry in the flow inlet cross section assigned to the first inflow channel. The throughput parameter φ 2 that can be represented in the second inflow channel is characterized by a hatched area due to the variably adjustable turbine geometry with a variable flow inlet cross-section, the lower limit φ 2 , u of which corresponds to the closed position of the variable turbine geometry and the upper limit of φ 2 , o to the open position of the turbine geometry. A dashed line in the adjustment area of the variable turbine geometry exemplifies a current guide vane position in which, due to the comparatively small flow inlet cross-section in the first flow duct with fixed grille and the resulting high level of accumulation in this inflow duct, a high exhaust gas back pressure p 3 ι occurs in the first inflow duct, which one Exhaust gas recirculation favors. In the second inflow duct with variable turbine geometry, on the other hand, there is a lower exhaust gas back pressure p 32 , which means that the turbine can be operated in more favorable efficiency ranges.

Claims

Patentansprüche claims
1. Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführungsvorrichtung, wobei der Abgasturbolader (2) eine mit variabler Turbinengeometrie (8) ausgestattete Abgasturbine (3) im Abgasstrang (4) und einen Verdichter (5) im Ansaugtrakt (6) der Brennkraftmaschine (1) und die Abgasrückführungsvorrichtung (23) eine Rückführleitung (24) zwischen Abgasstrang (4) und Ansaugtrakt (6) und ein einstellbares Sperrventil (25) umfasst, mit einer Regel- und Steuerungseinrichtung (27) , in der in Abhängigkeit des Zustandes der Brennkraftmaschine (1) Stellsignale zur Einstellung der variablen Turbinengeometrie (8) und des Sperrventils (25) erzeugbar sind, d a d u r c h g e k e n n z e i c h n e t , dass die Abgasturbine (3) zweiflutig mit zwei separaten Einströmkanälen (10, 11) mit jeweils einem Strömungseintrittsquerschnitt (12, 13) zum Turbinenrad (9) ausgebildet ist, wobei die beiden Einströmkanäle (10, 11) druckdicht gegeneinander abgeschirmt sind, dass zumindest ein Strömungseintrittsquerschnitt (12, 13) eines Einströmkanals (10, 11) zum Turbinenrad (9) über die variable Turbinengeometrie (8) veränderlich einstellbar ist, dass im Abgasstrang (4) zwei separate Abgasleitungen (17, 18) vorgesehen sind, mit denen jeweils ein Teil der Zylinderauslässe der Brennkraftmaschine (1) mit jeweils einem Einströmkanal (10, 11) verbunden ist, dass die Rückführleitung (24) der Abgasrückführungsvorrichtung (23) genau eine der beiden Abgasleitungen1. Internal combustion engine with an exhaust gas turbocharger and an exhaust gas recirculation device, the exhaust gas turbocharger (2) having a variable turbine geometry (8) equipped exhaust gas turbine (3) in the exhaust line (4) and a compressor (5) in the intake tract (6) of the internal combustion engine (1) and the exhaust gas recirculation device (23) comprises a return line (24) between the exhaust line (4) and the intake tract (6) and an adjustable shut-off valve (25), with a regulating and control device (27), in which, depending on the state of the internal combustion engine (1) Control signals for setting the variable turbine geometry (8) and the check valve (25) can be generated, characterized in that the exhaust gas turbine (3) has two channels with two separate inflow channels (10, 11) each with a flow inlet cross section (12, 13) to the turbine wheel (9) is formed, the two inflow ducts (10, 11) being shielded from one another in a pressure-tight manner that at least one flow inlet cross Section (12, 13) of an inflow duct (10, 11) to the turbine wheel (9) can be variably adjusted via the variable turbine geometry (8) that two separate exhaust gas lines in the exhaust line (4) (17, 18) are provided, with each of which a part of the cylinder outlets of the internal combustion engine (1) is connected to an inflow channel (10, 11) such that the return line (24) of the exhaust gas recirculation device (23) is exactly one of the two exhaust lines
(17) mit dem Ansaugtrakt (6) verbindet.(17) connects to the intake tract (6).
2. Brennkraftmaschine nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass der ersten, mit der Rückführleitung (24) kommunizierenden Abgasleitung (17) eine kleinere Anzahl an Zylinderauslässen zugeordnet ist als der zweiten Abgasleitung (18) .2. Internal combustion engine according to claim 1, so that the first exhaust gas line (17) communicating with the return line (24) is associated with a smaller number of cylinder outlets than the second exhaust line (18) is associated with the return line (24).
3. Brennkraftmaschine nach Anspruch 1 der 2, d a d u r c h g e k e n n z e i c h n e t , dass der erste Einströmkanal (10) in der Abgasturbine (3), der mit der Rückführleitung (24) der Abgasrückführungsvorrichtung kommuniziert, kleiner ausgebildet ist als der zweite Strömungskanal (11) .3. Internal combustion engine according to claim 1 of FIG. 2, so that the first inflow channel (10) in the exhaust gas turbine (3), which communicates with the return line (24) of the exhaust gas recirculation device, is designed to be smaller than the second flow channel (11).
4. Brennkraftmaschine nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , dass der dem ersten Einströmkanal (10) zugeordnete Strömungseintrittsquerschnitt (12) klein ist gegenüber dem dem zweiten Einströmkanal (11) zugeordnete Strömungseintrittsquerschnitt (13) und gegebenenfalls bis auf Null reduzierbar ist. 4. Internal combustion engine according to one of claims 1 to 3, characterized in that the flow inlet cross section (12) assigned to the first inflow channel (10) is small compared to the flow inlet cross section (13) assigned to the second inflow channel (11) and can optionally be reduced to zero.
5. Brennkraftmaschine nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , dass die variable Turbinengeometrie (8) im Strömungseintrittsquerschnitt (13) des zweiten, nicht mit der Rückführleitung (24) kommunizierenden Strömungskanals (11) angeordnet ist.5. Internal combustion engine according to one of claims 1 to 4, so that the variable turbine geometry (8) is arranged in the flow inlet cross section (13) of the second flow channel (11) that does not communicate with the return line (24).
6. Brennkraftmaschine nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , dass eine die beiden Abgasleitungen (17, 18) verbindende Überbrückungsleitung (21) mit einem einstellbaren Umblaseventil (22) vorgesehen ist.6. Internal combustion engine according to one of claims 1 to 5, d a d u r c h g e k e n n z e i c h n e t that a bridging line (21) connecting the two exhaust pipes (17, 18) is provided with an adjustable bypass valve (22).
7. Abgasturbolader für eine Brennkraftmaschine, insbesondere für eine Brennkraftmaschine nach einem der Ansprüche 1 bis 6, mit einer Abgasturbine (3) und einem Verdichter (5), der über eine Welle (7) mit der Abgasturbine (3) verbunden ist, wobei die Abgasturbine (3) zweiflutig mit zwei Einströmkanälen (10, 11) mit jeweils einem Strömungseintrittsquerschnitt (12, 13) zum Turbinenrad (9) ausgebildet und in mindestens einem der Strömungseintrittsquerschnitte (12, 13) eine variable Turbinengeometrie (8) zur veränderlichen Querschnittseinstellung vorgesehen ist, d a d u r c h g e k e n n z e i c h n e t , dass die beiden Einströmkanäle (10, 11) separat ausgebildet und druckdicht gegeneinander abgeschirmt sind und jeweils einen Zuströmanschluss (15, 16) für die getrennte Zuführung von Abgas aufweisen. 7. Exhaust gas turbocharger for an internal combustion engine, in particular for an internal combustion engine according to one of claims 1 to 6, with an exhaust gas turbine (3) and a compressor (5) which is connected via a shaft (7) to the exhaust gas turbine (3), the Exhaust gas turbine (3) with two inflow channels (10, 11) each with a flow inlet cross-section (12, 13) to the turbine wheel (9) and in at least one of the flow inlet cross-sections (12, 13) a variable turbine geometry (8) is provided for variable cross-sectional adjustment , characterized in that the two inflow channels (10, 11) are formed separately and are shielded from one another in a pressure-tight manner and each have an inflow connection (15, 16) for the separate supply of exhaust gas.
8. Abgasturbolader nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , dass die Abgasturbine (3) als Kombinationsturbine ausgebildet ist und der erste Einströmkanal (10) einen halbaxialen Strömungseintrittsquerschnitt (12) zum Turbinenrad (9) und der zweite Einströmkanal (11) einen radialen Strömungseintrittsquerschnitt (13) aufweist.8. Exhaust gas turbocharger according to claim 7, characterized in that the exhaust gas turbine (3) is designed as a combination turbine and the first inflow channel (10) has a semi-axial flow inlet cross section (12) to the turbine wheel (9) and the second inflow channel (11) has a radial flow inlet cross section (13) having.
9. Abgasturbolader nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , dass die variable Turbinengeometrie (8) im radialen Strömungseintrittsquerschnitt (13) angeordnet ist.9. Exhaust gas turbocharger according to claim 8, so that the variable turbine geometry (8) is arranged in the radial flow inlet cross section (13).
10. Abgasturbolader nach Anspruch 8 oder 9, d a d u r c h g e k e n n z e i c h n e t , dass die beiden Einströmkanäle (10, 11) durch eine Trennwand (14) im Gehäuse des Laders (2) getrennt sind.10. Exhaust gas turbocharger according to claim 8 or 9, so that the two inlet channels (10, 11) are separated by a partition (14) in the housing of the charger (2).
11. Abgasturbolader nach einem der Ansprüche 8 bis 10, d a d u r c h g e k e n n z e i c h n e t , dass zwischen den Strömungseintrittsquerschnitten (12, 13) der beiden Einströmkanäle (10, 11) ein Strömungsring (31) vorgesehen ist, wobei zwischen Strömungsring (31) und Trennwand (14) ein Dichtelement (32) vorgesehen ist.11. Exhaust gas turbocharger according to one of claims 8 to 10, characterized in that a flow ring (31) is provided between the flow inlet cross-sections (12, 13) of the two inflow channels (10, 11), wherein between the flow ring (31) and partition (14) Sealing element (32) is provided.
12. Abgasturbolader nach einem der Ansprüche 7 bis 11, d a d u r c h g e k e n n z e i c h n e t , dass die variable Turbinengeometrie (8) als Leitgitter (30) mit verstellbaren Leitschaufeln ausgebildet ist.12. Exhaust gas turbocharger according to one of claims 7 to 11, characterized in that the variable turbine geometry (8) is designed as a guide grille (30) with adjustable guide vanes.
13. Abgasturbolader nach einem der Ansprüche 7 bis 12, d a d u r c h g e k e n n z e i c h n e t , dass die variable Turbinengeometrie (8) als axial in den Strömungseintrittsquerschnitt verstellbares Leitgitter (30) ausgebildet ist.13. Exhaust gas turbocharger according to one of claims 7 to 12, that the variable turbine geometry (8) is designed as a guide vane (30) which is adjustable axially into the flow inlet cross section.
14. Verfahren zum Betrieb einer Brennkraftmaschine nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , dass in der befeuerten Antriebsbetriebsweise das Abgas aus der Abgasleitung (17), die mit dem ersten Einströmkanal (10) in Verbindung steht, in den Ansaugtrakt (6) rückgeführt wird, dass im Motorbremsbetrieb die Abgasrückführung unterbunden wird und die variable Turbinengeometrie (8) im zweiten Strömungskanal (11) in eine den Abgasgegendruck erhöhende Stausstellung überführt wird.14. A method for operating an internal combustion engine according to one of claims 1 to 6, characterized in that in the fired drive mode of operation, the exhaust gas from the exhaust pipe (17), which is connected to the first inflow channel (10), is returned to the intake tract (6) becomes that the exhaust gas recirculation is prevented during engine braking and the variable turbine geometry (8) in the second flow channel (11) is transferred to a congestion position increasing the exhaust gas back pressure.
15. Verfahren nach Anspruch 14, d a d u r c h g e k e n n z e i c h n e t , dass im Motorbremsbetrieb die Abgasleitungen (17 und 18) durch Öffnung des Umblaseventils (22) verbunden werden und die Bremsleistung und Turbinendrehzahl durch Abblasen im Umblaseventil (22) geregelt werden. 15. The method according to claim 14, so that the exhaust pipes (17 and 18) are connected by opening the blow-off valve (22) and the braking power and turbine speed are regulated by blowing in the blow-off valve (22) in engine braking operation.
EP01978360A 2000-09-29 2001-09-12 Exhaust gas turbocharger, supercharged internal combustion engine and corresponding method Withdrawn EP1320670A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10048237A DE10048237A1 (en) 2000-09-29 2000-09-29 Exhaust gas turbocharger, supercharged internal combustion engine and method therefor
DE10048237 2000-09-29
PCT/EP2001/010525 WO2002027164A1 (en) 2000-09-29 2001-09-12 Exhaust gas turbocharger, supercharged internal combustion engine and corresponding method

Publications (1)

Publication Number Publication Date
EP1320670A1 true EP1320670A1 (en) 2003-06-25

Family

ID=7658055

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01978360A Withdrawn EP1320670A1 (en) 2000-09-29 2001-09-12 Exhaust gas turbocharger, supercharged internal combustion engine and corresponding method

Country Status (5)

Country Link
US (1) US20030230085A1 (en)
EP (1) EP1320670A1 (en)
JP (1) JP2004510094A (en)
DE (1) DE10048237A1 (en)
WO (1) WO2002027164A1 (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10245388A1 (en) 2002-09-28 2004-04-08 Daimlerchrysler Ag Internal combustion engine with an exhaust gas turbocharger and an exhaust gas recirculation device
US7010918B2 (en) * 2003-06-17 2006-03-14 Daimlerchrysler Ag Internal combustion engine with motor brake
AT413736B (en) * 2003-06-27 2006-05-15 Avl List Gmbh INTERNAL COMBUSTION ENGINE WITH AT LEAST TWO GROUPS OF CYLINDERS
DE10335261A1 (en) 2003-08-01 2005-02-17 Daimlerchrysler Ag Compressor and / or turbine wheel for a secondary air conveyor
DE10335260A1 (en) * 2003-08-01 2005-02-17 Daimlerchrysler Ag Secondary air conveyor for an internal combustion engine
DE10357925A1 (en) * 2003-12-11 2005-07-28 Daimlerchrysler Ag Internal combustion engine with exhaust gas turbocharger and exhaust gas recirculation
DE102004039927A1 (en) * 2004-08-18 2006-02-23 Daimlerchrysler Ag Internal combustion engine with an exhaust gas turbocharger and an exhaust gas recirculation device
AT501234B1 (en) * 2006-03-30 2008-02-15 Avl List Gmbh GAS TURBINE FOR AN INTERNAL COMBUSTION ENGINE
DE102005046507A1 (en) * 2005-09-29 2007-04-05 Daimlerchrysler Ag Internal combustion engine comprises exhaust gas turbochargers each having a turbine with a bypass having an outflow valve integrated in the turbine housing
DE102005054524A1 (en) * 2005-11-14 2007-05-16 Porsche Ag Method and control unit for controlling a turbocharger with controllable turbine flow cross section
JP2007192124A (en) * 2006-01-19 2007-08-02 Toyota Motor Corp Turbocharger
DE102006033976A1 (en) * 2006-07-22 2008-01-31 Dr.Ing.H.C. F. Porsche Ag Exhaust gas turbocharger for an internal combustion engine
WO2008028666A1 (en) * 2006-09-08 2008-03-13 Borgwarner Inc. Method and device for operating an internal combustion engine
WO2008157109A2 (en) * 2007-06-12 2008-12-24 Borgwarner Inc. Turbocharger bypass valving
DE112008002358A5 (en) * 2007-09-13 2010-10-14 Avl List Gmbh Method for controlling the cooling capacity of a cooling system of an internal combustion engine
DE102008020406A1 (en) * 2008-04-24 2009-10-29 Daimler Ag Exhaust gas turbocharger for an internal combustion engine of a motor vehicle and internal combustion engine
JP2009281197A (en) 2008-05-20 2009-12-03 Mitsubishi Heavy Ind Ltd Mixed flow turbine
GB2461720B (en) * 2008-07-10 2012-09-05 Cummins Turbo Tech Ltd A variable geometry turbine
DE102008035270B4 (en) 2008-07-29 2023-08-03 Mykhaylo Koltun Process and device for processing exhaust gases (gasoline engine)
DE102008035271B4 (en) 2008-07-29 2023-06-29 Genady Maslov Method and device for processing exhaust gases (diesel engine)
DE102008039085A1 (en) 2008-08-21 2010-02-25 Daimler Ag Internal combustion engine with an exhaust gas turbocharger
DE102008049782A1 (en) * 2008-09-30 2010-04-08 Daimler Ag Exhaust gas turbocharger for an internal combustion engine
US8266906B2 (en) * 2009-03-11 2012-09-18 GM Global Technology Operations LLC Asymmetric split-inlet turbine housing
DE102009018583A1 (en) * 2009-04-23 2010-10-28 Daimler Ag Internal combustion engine and method for operating an internal combustion engine
FR2945579B1 (en) * 2009-05-15 2013-03-22 Inst Francais Du Petrole METHOD AND APPARATUS FOR CONTROLLING THE EXHAUST GAS QUANTITY RECIRCULATED AT THE ADMISSION OF A SUPERIOR INTERNAL COMBUSTION ENGINE
WO2011002565A1 (en) * 2009-06-29 2011-01-06 International Engine Intellectual Property Company, Llc Engine brake using brake valve and partial admission flow turbine turbocharger
DE112010003626T5 (en) * 2009-09-10 2012-07-26 Borgwarner Inc. Exhaust gas supply device of a turbine wheel of an exhaust gas turbocharger
US9759228B2 (en) 2009-10-16 2017-09-12 GM Global Technology Operations LLC Turbocharger and air induction system incorporating the same and method of using the same
US20120023936A1 (en) * 2010-07-30 2012-02-02 Caterpillar Inc. Nozzled turbocharger turbine
CN102069338A (en) * 2010-11-16 2011-05-25 无锡明珠增压器制造有限公司 Welding tool for middle shell variable section shifting fork
DE102010051777A1 (en) 2010-11-18 2012-05-24 Daimler Ag Turbine for an exhaust gas turbocharger of an internal combustion engine
DE102010055101A1 (en) 2010-12-18 2012-06-21 Daimler Ag Compressor for use in supercharger utilized for charging e.g. diesel engine of passenger car, has adjusting device variably adjusting flow cross-section of air-duct, where compressed-air is discharged from compressor wheel through air-duct
DE102010056238A1 (en) * 2010-12-24 2012-06-28 Audi Ag Drive with an internal combustion engine and an expansion machine with gas recirculation
CN102080578B (en) * 2011-01-12 2014-07-30 康跃科技股份有限公司 Compound turbo supercharging device having variable cross-section axial radial flows
DE102011118112A1 (en) 2011-11-09 2012-05-31 Daimler Ag Turbine for supercharger of internal combustion engine, has intermediate wall fluidically disconnecting exhaust gas flows, where wall regions run diagonally to radial direction of turbine and include angle different from zero degree
JP5427900B2 (en) * 2012-01-23 2014-02-26 三菱重工業株式会社 Mixed flow turbine
EP2853715B1 (en) * 2012-08-31 2017-06-07 Mitsubishi Heavy Industries, Ltd. Axial flow turbine for a turbocharger
CN103906895B (en) * 2012-09-06 2015-11-25 三菱重工业株式会社 Oblique-flow turbine
US9068474B2 (en) * 2013-01-25 2015-06-30 GM Global Technology Operations LLC Turbine housing
US9631625B2 (en) * 2013-02-01 2017-04-25 Honeywell International Inc. Axial turbine with statorless inlet formed by meridionally divided turbine housing and heat shroud
CN104956045A (en) * 2013-02-19 2015-09-30 博格华纳公司 A turbocharger internal turbine heat shield having axial flow turning vanes
EP2778349A1 (en) * 2013-03-15 2014-09-17 Continental Automotive GmbH Exhaust gas turbocharger with a machined turbine housing
US9157396B2 (en) * 2013-05-17 2015-10-13 Caterpillar Inc. Nozzled turbine
US9982591B2 (en) * 2013-10-25 2018-05-29 Yanmar Co., Ltd. Engine
US10227889B2 (en) * 2015-02-05 2019-03-12 Garrett Transportation I Inc. Variable geometry nozzle for partitioned volute
DE102017007636A1 (en) 2017-08-12 2019-02-14 Daimler Ag Halbaxialturbine for an exhaust gas turbocharger
JP6908472B2 (en) * 2017-08-31 2021-07-28 三菱重工コンプレッサ株式会社 Centrifugal compressor
US10655534B2 (en) 2018-02-06 2020-05-19 Garrett Transportation I Inc. Rotary axial valve

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE755769A (en) * 1969-09-04 1971-02-15 Cummins Engine Co Inc TURBINE BODY, ESPECIALLY FOR EXHAUST GAS TURBO-COMPRESSOR
US4179892A (en) * 1977-12-27 1979-12-25 Cummins Engine Company, Inc. Internal combustion engine with exhaust gas recirculation
US4776168A (en) * 1987-05-21 1988-10-11 Woollenweber William E Variable geometry turbocharger turbine
JPH0192531A (en) * 1987-10-05 1989-04-11 Hitachi Ltd Variable volume exhaust turbine supercharger
DE3734386A1 (en) * 1987-10-10 1989-04-20 Daimler Benz Ag EXHAUST TURBOCHARGER FOR AN INTERNAL COMBUSTION ENGINE
JPH01227803A (en) * 1988-03-08 1989-09-12 Honda Motor Co Ltd Variable capacity turbine
SE506125C2 (en) * 1994-12-08 1997-11-10 Scania Cv Ab Arrangements for redirecting exhaust gases in supercharged engines with parallel turbines
JPH0953456A (en) * 1995-08-11 1997-02-25 Mitsubishi Motors Corp Engine with turbosupercharger for vehicle
DE19615237C2 (en) * 1996-04-18 1999-10-28 Daimler Chrysler Ag Exhaust gas turbocharger for an internal combustion engine
DE19734494C1 (en) 1997-08-08 1998-10-08 Daimler Benz Ag Management of combustion engines to give minimal emissions
DE19744936A1 (en) * 1997-10-10 1999-04-15 Deutz Ag Turbocharged internal combustion engine with exhaust gas recycling
DE19857234C2 (en) * 1998-12-11 2000-09-28 Daimler Chrysler Ag Exhaust gas recirculation device
DE10152804B4 (en) * 2001-10-25 2016-05-12 Daimler Ag Internal combustion engine with an exhaust gas turbocharger and an exhaust gas recirculation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0227164A1 *

Also Published As

Publication number Publication date
JP2004510094A (en) 2004-04-02
WO2002027164A1 (en) 2002-04-04
US20030230085A1 (en) 2003-12-18
DE10048237A1 (en) 2002-04-11

Similar Documents

Publication Publication Date Title
EP1320670A1 (en) Exhaust gas turbocharger, supercharged internal combustion engine and corresponding method
DE10152804B4 (en) Internal combustion engine with an exhaust gas turbocharger and an exhaust gas recirculation device
EP1778966B1 (en) Internal combustion engine having an exhaust gas turbocharger and an exhaust gas recirculation system
DE10152803A1 (en) Internal combustion engine with an exhaust gas turbocharger and an exhaust gas recirculation device
EP1375868A1 (en) Engine brake apparatus for a turbocharged IC engine
DE102004009794A1 (en) Internal combustion engine with two exhaust gas turbochargers
DE102006058102A1 (en) Internal combustion engine for commercial/utility vehicles has an exhaust gas turboblower/turbocharger with two flows and a valve device for altering exhaust gas direction
DE10303777A1 (en) Internal combustion engine with exhaust gas turbocharger has valve body with 2 separate different openings for communicating with exhaust gas line blow-out opening in first and second open positions
EP2025896A2 (en) Centrifugal compressor for a turbocharger
DE10212675A1 (en) Exhaust gas turbocharger in an internal combustion engine
DE102004035044A1 (en) Compressor in an exhaust gas turbocharger for an internal combustion engine and method for operating a compressor
DE102007034235A1 (en) Flow housing of a turbocharger
EP1570161B1 (en) Internal combustion engine comprising an exhaust gas turbocharger
WO2006119866A1 (en) Internal combustion engine with exhaust gas turbocharger and exhaust gas recirculation
WO2005061870A1 (en) Combustion engine having an exhaust gas turbocharger and exhaust gas recirculation
EP1530671B1 (en) Exhaust gas turbocharger for an internal combustion engine
DE10132672A1 (en) Exhaust gas turbocharger for internal combustion engine enables different flow rates through exhaust gas openings to be set by altering valve body position
EP2501913A1 (en) Multi-stage charging group, charging system and internal combustion engine, each comprising the multi-stage charging group
WO2004111406A2 (en) Internal combustion engine with exhaust gas recycling device and corresponding method
DE102007025437A1 (en) Process for internal combustion engine with exhaust turbocharger involves turning blocking flap to first or second angular position or any intermediate position between first/second angular positions, whereby second channel is fully open
DE102017009452B4 (en) Internal combustion engine for a motor vehicle and motor vehicle with such an internal combustion engine
WO2007093195A1 (en) Method for exhaust gas recirculation for an internal combustion engine having an exhaust gas turbocharger
WO2008125550A1 (en) Multi-stage turbocharger and internal combustion engine
DE102018005460B3 (en) Internal combustion engine for a motor vehicle, in particular for a motor vehicle, method for operating such an internal combustion engine and motor vehicle with such an internal combustion engine
DE102022000150B4 (en) Turbine for an exhaust gas turbocharger, in particular of a motor vehicle, and internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030326

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

17Q First examination report despatched

Effective date: 20050413

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050401