EP1318026A2 - Ink jet recording element and printing method - Google Patents
Ink jet recording element and printing method Download PDFInfo
- Publication number
- EP1318026A2 EP1318026A2 EP02079884A EP02079884A EP1318026A2 EP 1318026 A2 EP1318026 A2 EP 1318026A2 EP 02079884 A EP02079884 A EP 02079884A EP 02079884 A EP02079884 A EP 02079884A EP 1318026 A2 EP1318026 A2 EP 1318026A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- recording element
- borate
- ink jet
- polymeric binder
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/502—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
- B41M5/506—Intermediate layers
Definitions
- This invention relates to an ink jet recording element and a printing method using the element. More particularly, this invention relates to a subbing layer for an ink jet recording element.
- ink droplets are ejected from a nozzle at high speed towards a recording element or medium to produce an image on the medium.
- the ink droplets, or recording liquid generally comprise a recording agent, such as a dye or pigment, and a large amount of solvent.
- the solvent, or carrier liquid typically is made up of water, an organic material such as a monohydric alcohol, a polyhydric alcohol or mixtures thereof.
- An ink jet recording element typically comprises a support having on at least one surface thereof an ink-receiving or image-forming layer, and includes those intended for reflection viewing, which have an opaque support, and those intended for viewing by transmitted light, which have a transparent support.
- an ink jet recording element must:
- ink jet recording element that simultaneously provides an almost instantaneous ink dry time and good image quality is desirable.
- these requirements of ink jet recording media are difficult to achieve simultaneously.
- Ink jet recording elements are known that employ porous or non-porous single layer or multilayer coatings that act as suitable image receiving layers on one or both sides of a porous or non-porous support. Recording elements that use non-porous coatings typically have good image quality but exhibit poor ink dry time. Recording elements that use porous coatings typically contain colloidal particulates and have poorer image quality but exhibit superior dry times.
- porous image-recording elements for use with ink jet printing are known, there are many unsolved problems in the art and many deficiencies in the known products which have severely limited their commercial usefulness.
- a major challenge in the design of a porous image-recording layer is to be able to obtain good quality, crack-free coatings with as little non-particulate matter as possible. If too much non-particulate matter is present, the image-recording layer will not be porous and will exhibit poor ink dry times.
- U.S. Patent 4,877,686 relates to a recording sheet for ink jet printing wherein boric acid or its derivative is used to cause gelling in a polymeric binder containing hydroxyl groups and a filler comprising particles.
- boric acid or its derivative is used to cause gelling in a polymeric binder containing hydroxyl groups and a filler comprising particles.
- the amount of boric acid used does not provide an element which, when printed with an ink jet printer, will have a fast dry time without cracking.
- an ink jet recording element comprising a substrate having thereon:
- the ink jet recording element of the invention has good coating and image quality and a fast dry time when printed in an ink jet printer.
- Another embodiment of the invention relates to an ink jet printing method comprising the steps of:
- the polymeric binder in the subbing layer employed in the invention is preferably a water soluble or water dispersible polymer such as poly(vinyl alcohol), poly(vinyl pyrrolidone), gelatin, a cellulose ether, a poly(oxazoline), a poly(vinylacetamide), partially hydrolyzed poly(vinyl acetate/vinyl alcohol), poly(acrylic acid), poly(acrylamide), poly(alkylene oxide), a sulfonated or phosphated polyester or polystyrene, casein, zein, albumin, chitin, chitosan, dextran, pectin, a collagen derivative, collodian, agar-agar, arrowroot, guar, carrageenan, tragacanth, xanthan, rhamsan and the like; a latex such as poly(styrene-co-butadiene), a polyurethane latex, a polyester latex, or
- the polymeric binder for the subbing layer is preferably used in an amount of from 1 to 50 g/m 2 , preferably from 1 to 20 g/m 2 .
- the borate or borate derivative employed in the subbing layer of the ink jet recording element of the invention may be, for example, borax, sodium tetraborate, boric acid, phenyl boronic acid, or butyl boronic acid.
- the borate or borate derivative is used in an amount of from 3 to 50 g/m 2 , preferably from 3 to 10 g/m 2 . It is believed that upon coating, the borate or borate derivative in the subbing layer diffuses into the image-receiving layer to crosslink the cross-linkable binder in the image-receiving layer.
- the particles employed in the image-receiving layer of the invention may be either inorganic or organic.
- Inorganic particles which may be used include, for example, comprise metal oxides, hydrated metal oxides, boehmite, clay, calcined clay, calcium carbonate, aluminosilicates, zeolites or barium sulfate.
- the metal oxide is silica, alumina, zirconia or titania.
- Organic particles which may be used in the invention include polymeric particles such as, for example, particles made from acrylic resins, styrenic resins, or cellulose derivatives, such as cellulose acetate, cellulose acetate butyrate, cellulose propionate, cellulose acetate propionate, and ethyl cellulose; polyvinyl resins such as polyvinyl chloride, copolymers of vinyl chloride and vinyl acetate and polyvinyl butyral, polyvinyl acetal, ethylene-vinyl acetate copolymers, ethylene-vinyl alcohol copolymers, and ethylene-allyl copolymers such as ethylene-allyl alcohol copolymers, ethylene-allyl acetone copolymers, ethylene-allyl benzene copolymers, ethylene-allyl ether copolymers, ethylene acrylic copolymers and polyoxy-methylene; polycondensation polymers, such as, polyesters, including polyethylene terephthalate, polybut
- organic particles useful in the invention are disclosed and claimed in U.S. Patent Application Serial Numbers: 09/458,401, filed Dec. 10, 1999; 09/608,969, filed June 30, 2000; 09/607,417, filed June 30, 2000; 09/608,466 filed June 30, 2000; 09/607,419, filed June 30, 2000; and 09/822,731, filed March 30, 2001.
- the mean particle size of the particles is up to 5 ⁇ m.
- the particles are present in said image-receiving layer in an amount of from 50 to 350 g/m 2 .
- the cross-linkable polymer containing hydroxyl groups employed in the image-receiving layer may be, for example, poly(vinyl alcohol), partially hydrolyzed poly(vinyl acetate/vinyl alcohol), copolymers containing hydroxyethylmethacrylate, copolymers containing hydroxyethylacrylate, copolymers containing hydroxypropylmethacrylate, hydroxy cellulose ethers such as hydroxyethylcellulose, etc.
- the cross-linkable polymer containing hydroxyl groups is poly(vinyl alcohol) or partially hydrolyzed poly(vinyl acetate/vinyl alcohol).
- An additional polymeric binder such as any of the polymeric binders listed above for the subbing layer, may also be added to the image-receiving layer along with the cross-linkable polymer, if desired.
- the amount of binder used in the image-receiving layer should be sufficient to impart cohesive strength to the ink jet recording element, but should also be minimized so that the interconnected pore structure formed by the particles is not filled in by the binder.
- the recording element of the invention may also contain a layer on top of the image-receiving layer, the function of which is to provide gloss.
- Materials useful for this layer include submicron inorganic particles and/or polymeric binder.
- the support for the ink jet recording element used in the invention can be any of those usually used for ink jet receivers, such as resin-coated paper, paper, polyesters, or microporous materials such as polyethylene polymer-containing material sold by PPG Industries, Inc., Pittsburgh, Pennsylvania under the trade name of Teslin®, Tyvek® synthetic paper (DuPont Corp.), impregnated paper such as Duraform®, and OPPalyte® films (Mobil Chemical Co.) and other composite films listed in U.S. Patent 5,244,861.
- Opaque supports include plain paper, coated paper, synthetic paper, photographic paper support, melt-extrusion-coated paper, and laminated paper, such as biaxially oriented support laminates.
- Biaxially oriented support laminates are described in U.S. Patents 5,853,965; 5,866,282; 5,874,205; 5,888,643; 5,888,681; 5,888,683; and 5,888,714.
- These biaxially oriented supports include a paper base and a biaxially oriented polyolefin sheet, typically polypropylene, laminated to one or both sides of the paper base.
- Transparent supports include glass, cellulose derivatives, e.g., a cellulose ester, cellulose triacetate, cellulose diacetate, cellulose acetate propionate, cellulose acetate butyrate; polyesters, such as poly(ethylene terephthalate), poly(ethylene naphthalate), poly(1,4-cyclohexanedimethylene terephthalate), poly(butylene terephthalate), and copolymers thereof; polyimides; polyamides; polycarbonates; polystyrene; polyolefins, such as polyethylene or polypropylene; polysulfones; polyacrylates; polyetherimides; and mixtures thereof.
- the papers listed above include a broad range of papers, from high end papers, such as photographic paper to low end papers, such as newsprint.
- the support used in the invention may have a thickness of from 50 to 500 ⁇ m, preferably from 75 to 300 ⁇ m.
- Antioxidants, antistatic agents, plasticizers and other known additives may be incorporated into the support, if desired.
- the surface of the support may be subjected to a corona-discharge treatment prior to applying the subbing layer.
- Coating compositions employed in the invention may be applied by any number of well known techniques, including dip-coating, wound-wire rod coating, doctor blade coating, gravure and reverse-roll coating, slide coating, bead coating, extrusion coating, curtain coating and the like.
- Known coating and drying methods are described in further detail in Research Disclosure no. 308119, published Dec. 1989, pages 1007 to 1008.
- Slide coating is preferred, in which the base layers and overcoat may be simultaneously applied. After coating, the layers are generally dried by simple evaporation, which may be accelerated by known techniques such as convection heating.
- the coating composition may be applied to one or both substrate surfaces through conventional pre-metered or post-metered coating methods such as blade, air knife, rod, roll coating, etc.
- pre-metered or post-metered coating methods such as blade, air knife, rod, roll coating, etc.
- the choice of coating process would be determined from the economics of the operation and in turn, would determine the formulation specifications such as coating solids, coating viscosity, and coating speed.
- the image-receiving layer thickness may range from 1 to 60 ⁇ m, preferably from 5 to 40 ⁇ m.
- the ink jet recording element may be subject to calendering or supercalendering to enhance surface smoothness.
- the ink jet recording element is subject to hot soft-nip calendering at a temperature of 65 ° C and a pressure of 14000 kg/m at a speed of from 0.15 m/s to 0.3 m/s.
- crosslinkers which further act upon the cross-linkable binder discussed above may be added in small quantities. Such an additive improves the cohesive strength of the layer.
- Crosslinkers such as carbodiimides, polyfunctional aziridines, aldehydes, isocyanates, epoxides, polyvalent metal cations, and the like may all be used.
- UV absorbers may also be added to the image-receiving layer as is well known in the art.
- Other additives include pH modifiers, adhesion promoters, rheology modifiers, surfactants, biocides, lubricants, dyes, optical brighteners, matte agents, antistatic agents, etc.
- additives known to those familiar with such art such as surfactants, defoamers, alcohol and the like may be used.
- a common level for coating aids is 0.01 to 0.30 wt. % active coating aid based on the total solution weight.
- These coating aids can be nonionic, anionic, cationic or amphoteric. Specific examples are described in MCCUTCHEON's Volume 1: Emulsifiers and Detergents, 1995, North American Edition.
- the ink jet inks used to image the recording elements of the present invention are well-known in the art.
- the ink compositions used in ink jet printing typically are liquid compositions comprising a solvent or carrier liquid, dyes or pigments, humectants, organic solvents, detergents, thickeners, preservatives, and the like.
- the solvent or carrier liquid can be solely water or can be water mixed with other water-miscible solvents such as polyhydric alcohols.
- Inks in which organic materials such as polyhydric alcohols are the predominant carrier or solvent liquid may also be used. Particularly useful are mixed solvents of water and polyhydric alcohols.
- the dyes used in such compositions are typically water-soluble direct or acid type dyes.
- Such liquid compositions have been described extensively in the prior art including, for example, U.S. Patents 4,381,946; 4,239,543 and 4,781,758.
- Control Element C-1 Low amount of borax
- Control Element C-2 Low amount of borax and binder
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 1.0 g/m 2 and the dry lay-down of the polyester binder was 0.5 g/m 2 .
- Control Element C-3 Low amount of borax and binder
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 1.0 g/m 2 and the dry lay-down of the polyester binder was 1.0 g/m 2 .
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 12.0 g/m 2 and the dry lay-down of the polyester binder was 12.0 g/m 2 .
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 10.0 g/m 2 and the dry lay-down of the polyester binder was 25.0 g/m 2 .
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 5.0 g/m 2 and the dry lay-down of the polyester binder was 1.0 g/m 2 .
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 5.0 g/m 2 and the dry lay-down of the polyester binder was 5.0 g/m 2 .
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 7.0 g/m 2 and the dry lay-down of the polyester binder was 7.0 g/m 2 .
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 10.0 g/m 2 and the dry lay-down of the polyester binder was 10.0 g/m 2 .
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 10.0 g/m 2 and the dry lay-down of the polyester binder was 20.0 g/m 2 .
- the above elements with the subbing layers described were then overcoated with an image-receiving layer using a blade coater and an 18% by weight solution of porous polymeric particles, poly(ethylene glycol dimethacrylate), 0.18 ⁇ m and a poly(vinyl alcohol) binder, AH22 from Nippon Gohsei, with the ratio of particles to poly(vinyl alcohol) being 80:20, at a dry lay-down of about 43 g/m 2 .
- a coating surfactant Olin 10G® was also used at about 0.1% of the total solution weight. The coatings were dried in a oven at 40°C for 20 min.
- the dry time test is a smudge test where immediately after printing, a color patch of cyan, magenta, yellow, red, green, blue, and black are rubbed with a latex glove and the amount of smudge recorded according to the scale in Table 1. Rating Dry Time Observations 1 Instant dry, no smudging 2 Very slight smudging in red, green or blue, none in cyan, magenta, yellow, black 3 Some smudging in red, green or blue, only slight smudging in cyan, magenta, yellow, black. No puddling of ink 4 Smudging in all colors and slight puddling 5 Heavy smudging in all colors and heavy puddling
Landscapes
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
- Ink Jet (AREA)
Abstract
Description
- This invention relates to an ink jet recording element and a printing method using the element. More particularly, this invention relates to a subbing layer for an ink jet recording element.
- In a typical ink jet recording or printing system, ink droplets are ejected from a nozzle at high speed towards a recording element or medium to produce an image on the medium. The ink droplets, or recording liquid, generally comprise a recording agent, such as a dye or pigment, and a large amount of solvent. The solvent, or carrier liquid, typically is made up of water, an organic material such as a monohydric alcohol, a polyhydric alcohol or mixtures thereof.
- An ink jet recording element typically comprises a support having on at least one surface thereof an ink-receiving or image-forming layer, and includes those intended for reflection viewing, which have an opaque support, and those intended for viewing by transmitted light, which have a transparent support.
- It is well known that in order to achieve and maintain photographic-quality images on such an image-recording element, an ink jet recording element must:
- Be readily wetted so there is no puddling, i.e., coalescence of adjacent ink dots, which leads to non-uniform density
- Exhibit no image bleeding
- Exhibit the ability to absorb high concentrations of ink and dry quickly to avoid elements blocking together when stacked against subsequent prints or other surfaces
- Exhibit no discontinuities or defects due to interactions between the support and/or layer(s), such as cracking, repellencies, comb lines and the like
- Not allow unabsorbed dyes to aggregate at the free surface causing dye crystallization, which results in bloom or bronzing effects in the imaged areas
- Have an optimized image fastness to avoid fade from contact with water or radiation by daylight, tungsten light, or fluorescent light
- An ink jet recording element that simultaneously provides an almost instantaneous ink dry time and good image quality is desirable. However, given the wide range of ink compositions and ink volumes that a recording element needs to accommodate, these requirements of ink jet recording media are difficult to achieve simultaneously.
- Ink jet recording elements are known that employ porous or non-porous single layer or multilayer coatings that act as suitable image receiving layers on one or both sides of a porous or non-porous support. Recording elements that use non-porous coatings typically have good image quality but exhibit poor ink dry time. Recording elements that use porous coatings typically contain colloidal particulates and have poorer image quality but exhibit superior dry times.
- While a wide variety of different types of porous image-recording elements for use with ink jet printing are known, there are many unsolved problems in the art and many deficiencies in the known products which have severely limited their commercial usefulness. A major challenge in the design of a porous image-recording layer is to be able to obtain good quality, crack-free coatings with as little non-particulate matter as possible. If too much non-particulate matter is present, the image-recording layer will not be porous and will exhibit poor ink dry times.
- U.S. Patent 4,877,686 relates to a recording sheet for ink jet printing wherein boric acid or its derivative is used to cause gelling in a polymeric binder containing hydroxyl groups and a filler comprising particles. However, there is a problem with this element in that the amount of boric acid used does not provide an element which, when printed with an ink jet printer, will have a fast dry time without cracking.
- It is an object of this invention to provide an inkjet recording element that has a fast dry time when used in ink jet printing. It is another object of this invention to provide a porous recording element that has good coating quality, especially reduced cracking. It is still another object of this invention to provide an ink jet recording element that exhibits good image quality after printing. Still another object of the invention is to provide a printing method using the above described element.
- These and other objects are achieved in accordance with the invention which comprises an ink jet recording element comprising a substrate having thereon:
- a) a subbing layer comprising a polymeric binder and a borate or a borate derivative, the borate or borate derivative being present in an amount of from 3 to 50 g/m2, and the weight ratio of the polymeric binder to the borate or borate derivative is from 0.2:1 to 2:1; and
- b) an image-receiving layer comprising particles and a cross-linkable polymer containing hydroxyl groups, the cross-linkable polymer being present in an amount of from 20 to 150 g/m2, and the weight ratio of the cross-linkable polymer to the particles is from 10:90 to 30:70.
-
- The ink jet recording element of the invention has good coating and image quality and a fast dry time when printed in an ink jet printer.
- Another embodiment of the invention relates to an ink jet printing method comprising the steps of:
- A) providing an ink jet printer that is responsive to digital data signals;
- B) loading the printer with an ink jet recording element described above;
- C) loading the printer with an ink jet ink composition; and
- D) printing on the ink jet recording element using the ink jet ink composition in response to the digital data signals.
-
- The polymeric binder in the subbing layer employed in the invention is preferably a water soluble or water dispersible polymer such as poly(vinyl alcohol), poly(vinyl pyrrolidone), gelatin, a cellulose ether, a poly(oxazoline), a poly(vinylacetamide), partially hydrolyzed poly(vinyl acetate/vinyl alcohol), poly(acrylic acid), poly(acrylamide), poly(alkylene oxide), a sulfonated or phosphated polyester or polystyrene, casein, zein, albumin, chitin, chitosan, dextran, pectin, a collagen derivative, collodian, agar-agar, arrowroot, guar, carrageenan, tragacanth, xanthan, rhamsan and the like; a latex such as poly(styrene-co-butadiene), a polyurethane latex, a polyester latex, or a poly(acrylate), poly(methacrylate), poly(acrylamide) or copolymers thereof. In a preferred embodiment, the polymeric binder is a sulfonated polyester dispersion, such as AQ29 ® (Eastman Chemical Co.), gelatin, a polyurethane or poly(vinyl pyrrolidone).
- The polymeric binder for the subbing layer is preferably used in an amount of from 1 to 50 g/m2, preferably from 1 to 20 g/m2.
- The borate or borate derivative employed in the subbing layer of the ink jet recording element of the invention may be, for example, borax, sodium tetraborate, boric acid, phenyl boronic acid, or butyl boronic acid. As noted above, the borate or borate derivative is used in an amount of from 3 to 50 g/m2, preferably from 3 to 10 g/m2. It is believed that upon coating, the borate or borate derivative in the subbing layer diffuses into the image-receiving layer to crosslink the cross-linkable binder in the image-receiving layer.
- The particles employed in the image-receiving layer of the invention may be either inorganic or organic. Inorganic particles which may be used include, for example, comprise metal oxides, hydrated metal oxides, boehmite, clay, calcined clay, calcium carbonate, aluminosilicates, zeolites or barium sulfate. In a preferred embodiment, the metal oxide is silica, alumina, zirconia or titania.
- Organic particles which may be used in the invention include polymeric particles such as, for example, particles made from acrylic resins, styrenic resins, or cellulose derivatives, such as cellulose acetate, cellulose acetate butyrate, cellulose propionate, cellulose acetate propionate, and ethyl cellulose; polyvinyl resins such as polyvinyl chloride, copolymers of vinyl chloride and vinyl acetate and polyvinyl butyral, polyvinyl acetal, ethylene-vinyl acetate copolymers, ethylene-vinyl alcohol copolymers, and ethylene-allyl copolymers such as ethylene-allyl alcohol copolymers, ethylene-allyl acetone copolymers, ethylene-allyl benzene copolymers, ethylene-allyl ether copolymers, ethylene acrylic copolymers and polyoxy-methylene; polycondensation polymers, such as, polyesters, including polyethylene terephthalate, polybutylene terephthalate, polyurethanes and polycarbonates. Examples of organic particles useful in the invention are disclosed and claimed in U.S. Patent Application Serial Numbers: 09/458,401, filed Dec. 10, 1999; 09/608,969, filed June 30, 2000; 09/607,417, filed June 30, 2000; 09/608,466 filed June 30, 2000; 09/607,419, filed June 30, 2000; and 09/822,731, filed March 30, 2001. In a preferred embodiment of the invention, the mean particle size of the particles is up to 5 µm. In another preferred embodiment, the particles are present in said image-receiving layer in an amount of from 50 to 350 g/m2.
- The cross-linkable polymer containing hydroxyl groups employed in the image-receiving layer may be, for example, poly(vinyl alcohol), partially hydrolyzed poly(vinyl acetate/vinyl alcohol), copolymers containing hydroxyethylmethacrylate, copolymers containing hydroxyethylacrylate, copolymers containing hydroxypropylmethacrylate, hydroxy cellulose ethers such as hydroxyethylcellulose, etc. In a preferred embodiment, the cross-linkable polymer containing hydroxyl groups is poly(vinyl alcohol) or partially hydrolyzed poly(vinyl acetate/vinyl alcohol).
- An additional polymeric binder, such as any of the polymeric binders listed above for the subbing layer, may also be added to the image-receiving layer along with the cross-linkable polymer, if desired.
- The amount of binder used in the image-receiving layer should be sufficient to impart cohesive strength to the ink jet recording element, but should also be minimized so that the interconnected pore structure formed by the particles is not filled in by the binder.
- In addition to the image-receiving layer, the recording element of the invention may also contain a layer on top of the image-receiving layer, the function of which is to provide gloss. Materials useful for this layer include submicron inorganic particles and/or polymeric binder.
- The support for the ink jet recording element used in the invention can be any of those usually used for ink jet receivers, such as resin-coated paper, paper, polyesters, or microporous materials such as polyethylene polymer-containing material sold by PPG Industries, Inc., Pittsburgh, Pennsylvania under the trade name of Teslin®, Tyvek® synthetic paper (DuPont Corp.), impregnated paper such as Duraform®, and OPPalyte® films (Mobil Chemical Co.) and other composite films listed in U.S. Patent 5,244,861. Opaque supports include plain paper, coated paper, synthetic paper, photographic paper support, melt-extrusion-coated paper, and laminated paper, such as biaxially oriented support laminates. Biaxially oriented support laminates are described in U.S. Patents 5,853,965; 5,866,282; 5,874,205; 5,888,643; 5,888,681; 5,888,683; and 5,888,714. These biaxially oriented supports include a paper base and a biaxially oriented polyolefin sheet, typically polypropylene, laminated to one or both sides of the paper base. Transparent supports include glass, cellulose derivatives, e.g., a cellulose ester, cellulose triacetate, cellulose diacetate, cellulose acetate propionate, cellulose acetate butyrate; polyesters, such as poly(ethylene terephthalate), poly(ethylene naphthalate), poly(1,4-cyclohexanedimethylene terephthalate), poly(butylene terephthalate), and copolymers thereof; polyimides; polyamides; polycarbonates; polystyrene; polyolefins, such as polyethylene or polypropylene; polysulfones; polyacrylates; polyetherimides; and mixtures thereof. The papers listed above include a broad range of papers, from high end papers, such as photographic paper to low end papers, such as newsprint.
- The support used in the invention may have a thickness of from 50 to 500 µm, preferably from 75 to 300 µm. Antioxidants, antistatic agents, plasticizers and other known additives may be incorporated into the support, if desired.
- In order to improve the adhesion of the image-receiving layer to the support, the surface of the support may be subjected to a corona-discharge treatment prior to applying the subbing layer.
- The above coating composition can be coated either from water or organic solvents, however water is preferred. The total solids content should be selected to yield a useful coating thickness in the most economical way, and for particulate coating formulations, solids contents from 10-40 wt. % are typical.
- Coating compositions employed in the invention may be applied by any number of well known techniques, including dip-coating, wound-wire rod coating, doctor blade coating, gravure and reverse-roll coating, slide coating, bead coating, extrusion coating, curtain coating and the like. Known coating and drying methods are described in further detail in Research Disclosure no. 308119, published Dec. 1989, pages 1007 to 1008. Slide coating is preferred, in which the base layers and overcoat may be simultaneously applied. After coating, the layers are generally dried by simple evaporation, which may be accelerated by known techniques such as convection heating.
- The coating composition may be applied to one or both substrate surfaces through conventional pre-metered or post-metered coating methods such as blade, air knife, rod, roll coating, etc. The choice of coating process would be determined from the economics of the operation and in turn, would determine the formulation specifications such as coating solids, coating viscosity, and coating speed.
- The image-receiving layer thickness may range from 1 to 60 µm, preferably from 5 to 40 µm.
- After coating, the ink jet recording element may be subject to calendering or supercalendering to enhance surface smoothness. In a preferred embodiment of the invention, the ink jet recording element is subject to hot soft-nip calendering at a temperature of 65 ° C and a pressure of 14000 kg/m at a speed of from 0.15 m/s to 0.3 m/s.
- In order to impart mechanical durability to an ink jet recording element, additional crosslinkers which further act upon the cross-linkable binder discussed above may be added in small quantities. Such an additive improves the cohesive strength of the layer. Crosslinkers such as carbodiimides, polyfunctional aziridines, aldehydes, isocyanates, epoxides, polyvalent metal cations, and the like may all be used.
- To improve colorant fade, UV absorbers, radical quenchers or antioxidants may also be added to the image-receiving layer as is well known in the art. Other additives include pH modifiers, adhesion promoters, rheology modifiers, surfactants, biocides, lubricants, dyes, optical brighteners, matte agents, antistatic agents, etc. In order to obtain adequate coatability, additives known to those familiar with such art such as surfactants, defoamers, alcohol and the like may be used. A common level for coating aids is 0.01 to 0.30 wt. % active coating aid based on the total solution weight. These coating aids can be nonionic, anionic, cationic or amphoteric. Specific examples are described in MCCUTCHEON's Volume 1: Emulsifiers and Detergents, 1995, North American Edition.
- Ink jet inks used to image the recording elements of the present invention are well-known in the art. The ink compositions used in ink jet printing typically are liquid compositions comprising a solvent or carrier liquid, dyes or pigments, humectants, organic solvents, detergents, thickeners, preservatives, and the like. The solvent or carrier liquid can be solely water or can be water mixed with other water-miscible solvents such as polyhydric alcohols. Inks in which organic materials such as polyhydric alcohols are the predominant carrier or solvent liquid may also be used. Particularly useful are mixed solvents of water and polyhydric alcohols. The dyes used in such compositions are typically water-soluble direct or acid type dyes. Such liquid compositions have been described extensively in the prior art including, for example, U.S. Patents 4,381,946; 4,239,543 and 4,781,758.
- The following example is provided to illustrate the invention.
- The following elements were prepared with the subbing layers listed:
- A 10% by weight solution of water, borax (sodium tetraborate decahydrate) and a sulfonated polyester dispersion AQ29® (Eastman Chemical Co.) with a coating surfactant Olin 10G®, with the borax to polyester binder ratio being 33:67, was rod coated on a corona-discharge treated resin coated paper for a total dry lay-down of 1.5 g/m2, giving a dry lay-down of borax of 0.5 g/m2 and a polyester binder dry lay-down of 1.0 g/m2. The coating was dried in a oven at 40° C for 20 minutes.
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 1.0 g/m2 and the dry lay-down of the polyester binder was 0.5 g/m2.
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 1.0 g/m2 and the dry lay-down of the polyester binder was 1.0 g/m2.
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 12.0 g/m2 and the dry lay-down of the polyester binder was 12.0 g/m2.
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 10.0 g/m2 and the dry lay-down of the polyester binder was 25.0 g/m2.
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 5.0 g/m2 and the dry lay-down of the polyester binder was 1.0 g/m2.
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 5.0 g/m2 and the dry lay-down of the polyester binder was 5.0 g/m2.
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 7.0 g/m2 and the dry lay-down of the polyester binder was 7.0 g/m2.
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 10.0 g/m2 and the dry lay-down of the polyester binder was 10.0 g/m2.
- This element was prepared the same as C-1 except that the dry lay-down of the borax was 10.0 g/m2 and the dry lay-down of the polyester binder was 20.0 g/m2.
- The above elements with the subbing layers described were then overcoated with an image-receiving layer using a blade coater and an 18% by weight solution of porous polymeric particles, poly(ethylene glycol dimethacrylate), 0.18 µm and a poly(vinyl alcohol) binder, AH22 from Nippon Gohsei, with the ratio of particles to poly(vinyl alcohol) being 80:20, at a dry lay-down of about 43 g/m2. A coating surfactant Olin 10G® was also used at about 0.1% of the total solution weight. The coatings were dried in a oven at 40°C for 20 min.
- Each element was imaged using an Epson 870 ink jet printer and ink jet inks, Cartridge No.T007 (black) and T008 (color), and tested for dry time. The dry time test is a smudge test where immediately after printing, a color patch of cyan, magenta, yellow, red, green, blue, and black are rubbed with a latex glove and the amount of smudge recorded according to the scale in Table 1.
Rating Dry Time Observations 1 Instant dry, no smudging 2 Very slight smudging in red, green or blue, none in cyan, magenta, yellow, black 3 Some smudging in red, green or blue, only slight smudging in cyan, magenta, yellow, black. No puddling of ink 4 Smudging in all colors and slight puddling 5 Heavy smudging in all colors and heavy puddling - Each element, after printing, was then rated for cracking and rated according to Table 2.
Rating Cracking Observations 1 No visible cracks under magnification 2 Slight micro-cracks under 10X magnification 3 Very slight visible cracks under no magnification 4 Heavy cracking, some flaking 5 Heavy cracking, coating flaking off - The following results were obtained:
Element Borax (g/m2) Binder (g/m2) Cracking Rating Dry time Rating C-1 0.5 1 5 4 C-2 1 0.5 No coating -- C-3 1 1 3 3 C-4 12 12 4 2 C-5 10 25 4 4 1 5 1 2 2 2 5 5 2 1 3 7 7 2 1 4 10 10 2 1 5 10 20 3 1 - The above results show that use of the subbing layer in accordance with the invention provided elements which had better dry time and less cracking than the control elements.
Claims (10)
- An ink jet recording element comprising a substrate having thereon:a) a subbing layer comprising a polymeric binder and a borate or a borate derivative, said borate or borate derivative being present in an amount of from 3 to 50 g/m2, and the weight ratio of said polymeric binder to said borate or borate derivative is from 0.2:1 to 2:1; andb) an image-receiving layer comprising particles and a cross-linkable polymer containing hydroxyl groups, said cross-linkable polymer being present in an amount of from 20 to 150 g/m2, and the weight ratio of said cross-linkable polymer to said particles is from 10:90 to 30:70.
- The recording element of Claim 1 wherein said polymeric binder in said subbing layer comprises a water-soluble or water-dispersible polymer.
- The recording element of Claim 1 wherein said polymeric binder in said subbing layer comprises a sulfonated polyester dispersion, gelatin, a polyurethane or poly(vinyl pyrrolidone).
- The recording element of Claim 1 wherein said polymeric binder in said subbing layer comprises a sulfonated polyester dispersion.
- The recording element of Claim 1 wherein said polymeric binder is present in said subbing layer in an amount of from 1 to 50 g/m2.
- The recording element of Claim 1 wherein said polymeric binder is present in said subbing layer in an amount of from 1 to 20 g/m2.
- The recording element of Claim 1 wherein said borate or borate derivative is borax, sodium tetraborate, boric acid, phenyl boronic acid, or butyl boronic acid.
- The recording element of Claim 1 wherein said borate or borate derivative is present in an amount of from 3 to 50 g/m2.
- The recording element of Claim 1 wherein said borate or borate derivative is present in an amount of from 3 to g/m2.
- An ink jet printing method comprising the steps of:A) providing an ink jet printer that is responsive to digital data signals;B) loading said printer with the ink jet recording element of Claim 1;C) loading said printer with an ink jet ink composition; andD) printing on said ink jet recording element using said ink jet ink composition in response to said digital data signals.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/011,656 US6623819B2 (en) | 2001-12-04 | 2001-12-04 | Ink jet recording element |
US11802 | 2001-12-04 | ||
US10/011,802 US6623831B2 (en) | 2001-12-04 | 2001-12-04 | Ink jet printing method |
US11656 | 2001-12-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1318026A2 true EP1318026A2 (en) | 2003-06-11 |
EP1318026A3 EP1318026A3 (en) | 2004-10-20 |
Family
ID=26682638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02079884A Withdrawn EP1318026A3 (en) | 2001-12-04 | 2002-11-22 | Ink jet recording element and printing method |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1318026A3 (en) |
JP (1) | JP2003205679A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7807256B2 (en) * | 2007-01-30 | 2010-10-05 | Hewlett-Packard Development Company, L.P. | Toner receiving composition |
US8974878B2 (en) * | 2010-09-10 | 2015-03-10 | Carestream Health, Inc. | Transparent ink-jet recording films, compositions, and methods |
US20120301640A1 (en) * | 2011-05-27 | 2012-11-29 | Simpson Sharon M | Transparent ink-jet recording films, compositions, and methods |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4877686A (en) | 1986-05-20 | 1989-10-31 | Societe Anonyme: Aussedat-Rey | Recording sheet for ink-jet printing and process for its preparation |
US5244861A (en) | 1992-01-17 | 1993-09-14 | Eastman Kodak Company | Receiving element for use in thermal dye transfer |
US5853965A (en) | 1997-05-23 | 1998-12-29 | Eastman Kodak Company | Photographic element with bonding layer on oriented sheet |
US5866282A (en) | 1997-05-23 | 1999-02-02 | Eastman Kodak Company | Composite photographic material with laminated biaxially oriented polyolefin sheets |
US5874205A (en) | 1997-05-23 | 1999-02-23 | Eastman Kodak Company | Photographic element with indicia on oriented polymer back sheet |
US5888683A (en) | 1997-05-23 | 1999-03-30 | Eastman Kodak Company | Roughness elimination by control of strength of polymer sheet in relation to base paper |
US5888643A (en) | 1997-05-23 | 1999-03-30 | Eastman Kodak Company | Controlling bending stiffness in photographic paper |
US5888681A (en) | 1997-05-23 | 1999-03-30 | Eastman Kodak Company | Photographic element with microvoided sheet of opalescent appearance |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0737175B2 (en) * | 1990-12-26 | 1995-04-26 | 日本製紙株式会社 | Ink jet recording paper and label using the same |
JP3839162B2 (en) * | 1998-04-03 | 2006-11-01 | 特種製紙株式会社 | Recording sheet |
US6419987B1 (en) * | 1999-12-17 | 2002-07-16 | Eastman Kodak Company | Method for providing a high viscosity coating on a moving web and articles made thereby |
-
2002
- 2002-11-22 EP EP02079884A patent/EP1318026A3/en not_active Withdrawn
- 2002-12-03 JP JP2002351027A patent/JP2003205679A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4877686A (en) | 1986-05-20 | 1989-10-31 | Societe Anonyme: Aussedat-Rey | Recording sheet for ink-jet printing and process for its preparation |
US5244861A (en) | 1992-01-17 | 1993-09-14 | Eastman Kodak Company | Receiving element for use in thermal dye transfer |
US5853965A (en) | 1997-05-23 | 1998-12-29 | Eastman Kodak Company | Photographic element with bonding layer on oriented sheet |
US5866282A (en) | 1997-05-23 | 1999-02-02 | Eastman Kodak Company | Composite photographic material with laminated biaxially oriented polyolefin sheets |
US5874205A (en) | 1997-05-23 | 1999-02-23 | Eastman Kodak Company | Photographic element with indicia on oriented polymer back sheet |
US5888683A (en) | 1997-05-23 | 1999-03-30 | Eastman Kodak Company | Roughness elimination by control of strength of polymer sheet in relation to base paper |
US5888643A (en) | 1997-05-23 | 1999-03-30 | Eastman Kodak Company | Controlling bending stiffness in photographic paper |
US5888681A (en) | 1997-05-23 | 1999-03-30 | Eastman Kodak Company | Photographic element with microvoided sheet of opalescent appearance |
Also Published As
Publication number | Publication date |
---|---|
JP2003205679A (en) | 2003-07-22 |
EP1318026A3 (en) | 2004-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6945647B2 (en) | Method for increasing the diameter of an ink jet ink dot | |
JP4991793B2 (en) | Inkjet recording element and printing method | |
US20040022968A1 (en) | Ink jet recording element | |
US6623819B2 (en) | Ink jet recording element | |
US6908191B2 (en) | Ink jet printing method | |
US6641875B2 (en) | Ink jet recording element | |
US20030049416A1 (en) | Ink jet recording element | |
US6770336B2 (en) | Ink jet recording element | |
EP1403089B1 (en) | Ink jet recording element and printing method | |
US6623831B2 (en) | Ink jet printing method | |
US6443570B1 (en) | Ink jet printing method | |
US6821586B2 (en) | Ink jet recording element | |
EP1319516B1 (en) | Ink jet recording element and printing method | |
EP1318026A2 (en) | Ink jet recording element and printing method | |
US20040121091A1 (en) | Ink jet recording element | |
EP1288011B1 (en) | Ink jet recording element and printing method | |
US6565205B2 (en) | Ink jet printing method | |
US20030108691A1 (en) | Ink jet printing method | |
EP1426195B1 (en) | Ink jet recording element | |
EP1319518B1 (en) | Ink jet recording element and printing method | |
US7008676B2 (en) | Ink jet recording element | |
EP1388425B1 (en) | Ink jet recording element and printing method | |
US6815020B2 (en) | Ink jet recording element | |
EP1288009A2 (en) | Ink jet recording element and printing method | |
US20020168502A1 (en) | Ink jet recording element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20050223 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B41M 5/50 20060101AFI20071217BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20080507 |