EP1394612B1 - Lithographischer Projektionsapparat und Reflektoranordnung für die Verwendung in diesem Apparat - Google Patents
Lithographischer Projektionsapparat und Reflektoranordnung für die Verwendung in diesem Apparat Download PDFInfo
- Publication number
- EP1394612B1 EP1394612B1 EP03077675A EP03077675A EP1394612B1 EP 1394612 B1 EP1394612 B1 EP 1394612B1 EP 03077675 A EP03077675 A EP 03077675A EP 03077675 A EP03077675 A EP 03077675A EP 1394612 B1 EP1394612 B1 EP 1394612B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reflector
- radiation
- source
- projection apparatus
- lithographic projection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 claims description 78
- 239000000758 substrate Substances 0.000 claims description 36
- 230000003287 optical effect Effects 0.000 claims description 21
- 238000000059 patterning Methods 0.000 claims description 15
- 238000005286 illumination Methods 0.000 claims description 11
- 239000010931 gold Substances 0.000 claims description 6
- 238000002310 reflectometry Methods 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910000510 noble metal Inorganic materials 0.000 claims description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 37
- 238000009304 pastoral farming Methods 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000011888 foil Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 241000234282 Allium Species 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001900 extreme ultraviolet lithography Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/7015—Details of optical elements
- G03F7/70166—Capillary or channel elements, e.g. nested extreme ultraviolet [EUV] mirrors or shells, optical fibers or light guides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7095—Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
- G03F7/70958—Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
Definitions
- the invention relates to a lithographic projection apparatus comprising:
- patterning means as here employed should be broadly interpreted as referring to means that can be used to endow an incoming radiation beam with a patterned cross-section, corresponding to a pattern that is to be created in a target portion of the substrate; the term “light valve” can also be used in this context.
- the said pattern will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit or other device (see below). Examples of such patterning means include:
- Lithographic projection apparatus can be used, for example, in the manufacture of integrated circuits (ICs).
- the patterning means may generate a circuit pattern corresponding to an individual layer of the IC, and this pattern can be imaged onto a target portion (e.g. comprising one or more dies) on a substrate (silicon wafer) that has been coated with a layer of radiation-sensitive material (resist).
- a target portion e.g. comprising one or more dies
- a substrate silicon wafer
- a layer of radiation-sensitive material resist
- a single wafer will contain a whole network of adjacent target portions that are successively irradiated via the projection system, one at a time.
- employing patterning by a mask on a mask table a distinction can be made between two different types of machine.
- each target portion is irradiated by exposing the entire mask pattern onto the target portion in one go; such an apparatus is commonly referred to as a wafer stepper or step-and-repeat apparatus.
- a wafer stepper or step-and-repeat apparatus In an alternative apparatus ⁇ commonly referred to as a step-and-scan apparatus ⁇ each target portion is irradiated by progressively scanning the mask pattern under the projection beam in a given reference direction (the "scanning" direction) while synchronously scanning the substrate table parallel or anti-parallel to this direction; since, in general, the projection system will have a magnification factor M (generally ⁇ 1), the speed V at which the substrate table is scanned will be a factor M times that at which the mask table is scanned. More information with regard to lithographic devices as here described can be gleaned, for example, from US 6,046,792 .
- a pattern (e.g. in a mask) is imaged onto a substrate that is at least partially covered by a layer of radiation-sensitive material (resist).
- the substrate Prior to this imaging step, the substrate may undergo various procedures, such as priming, resist coating and a soft bake. After exposure, the substrate may be subjected to other procedures, such as a post-exposure bake (PEB), development, a hard bake and measurement/inspection of the imaged features.
- PEB post-exposure bake
- This array of procedures is used as a basis to pattern an individual layer of a device, e.g. an IC.
- Such a patterned layer may then undergo various processes such as etching, ion-implantation (doping), metallization, oxidation, chemo-mechanical polishing, etc., all intended to finish off an individual layer. If several layers are required, then the whole procedure, or a variant thereof, will have to be repeated for each new layer. Eventually, an array of devices will be present on the substrate (wafer). These devices are then separated from one another by a technique such as dicing or sawing, whence the individual devices can be mounted on a carrier, connected to pins, etc. Further information regarding such processes can be obtained, for example, from the book “Microchip Fabrication: A Practical Guide to Semiconductor Processing", Third Edition, by Peter van Zant, McGraw Hill Publishing Co., 1997, ISBN 0-07-067250-4.
- the projection system may hereinafter be referred to as the "lens"; however, this term should be broadly interpreted as encompassing various types of projection system, including refractive optics, reflective optics, and catadioptric systems, for example.
- the radiation system may also include components operating according to any of these design types for directing, shaping or controlling the projection beam of radiation, and such components may also be referred to below, collectively or singularly, as a "lens".
- the lithographic apparatus may be of a type having two or more substrate tables (and/or two or more mask tables). In such "multiple stage” devices the additional tables may be used in parallel, or preparatory steps may be carried out on one or more tables while one or more other tables are being used for exposures. Dual stage lithographic apparatus are described, for example, in US 5,969,441 and WO 98/40791 .
- lithographic projection apparatus In a lithographic apparatus the size of features that can be imagined onto the substrate is limited by the wavelength of the projection radiation. To produce integrated circuits with a higher density of devices, and hence higher operating speeds, it is desirable to be able to image smaller features. Whilst most current lithographic projection apparatus employ ultraviolet light generated by mercury lamps or excimer lasers, it has been proposed to use shorter wavelength radiation in the range 5 to 20 nm, especially around 13 nm. Such radiation is termed extreme ultraviolet (EUV) or soft x-ray and possible sources include, for instance, laser-produced plasma sources, discharge plasma sources, or synchrotron radiation from electron storage rings. Apparatus using discharge plasma sources are described in: W. Partlo, I. Fomenkov, R. Oliver, D.
- EUV extreme ultraviolet
- EUV radiation sources may require the use of a rather high partial pressure of a gas or vapor to emit EUV radiation, such as discharge plasma radiation sources referred to above.
- a discharge plasma source for instance, a discharge is created in between electrodes, and a resulting partially ionized plasma may subsequently be caused to collapse to yield a very hot plasma that emits radiation in the EUV range.
- the very hot plasma is quite often created in Xe, since a Xe plasma radiates in the Extreme UV (EUV) range around 13.5 nm.
- EUV Extreme UV
- a typical pressure of 0.1 mbar is required near the electrodes to the radiation source.
- a drawback of having such a rather high Xe pressure is that Xe gas absorbs EUV radiation.
- 0.1 mbar Xe transmits over 1 m only 0.3 % EUV radiation having a wavelength of 13.5 nm. It is therefore required to confine the rather high Xe pressure to a limited region around the source. To reach this the source can be contained in its own vacuum chamber that is separated by a chamber wall from a subsequent vacuum chamber in which the collector mirror and illumination optics may be obtained.
- European patent application 1 037 510 describes a high energy photon source that can be used with a lithographic projection apparatus.
- the radiation produced is captured with collection optics, i.e. a collector, that captures the radiation and directs it towards the lithographic apparatus.
- the condenser system comprises quasi grazing-incidence collector mirrors that are coated with a suitable reflective metal.
- European patent application 0 955 565 describes a mirror for use in a soft x-ray exposure apparatus.
- the mirror includes a metal substrate and a thin film of an amorphous material thereon, the latter being polished to optical smoothness.
- WO 02/065482 discloses a reflector assembly comprising a cooling device located on the back surface of the reflectors.
- Thermal radiation emanating from, among others, the EUV source and the foil trap in a lithographic projection apparatus results in heating of the objects on which it impinges.
- these objects will generally be the optical components which make up the apparatus.
- An example of an optical component placed in the vicinity of the source may be formed by a set of reflectors which function as a collector for light emanating from the source. Heating up of the collector due to this thermal radiation leads to expansion of parts in the collector causing geometrical aberrations of the collector and, ultimately, leads to its destruction. It is therefore an object of the invention to provide a lithographic projection apparatus with a reflective element, in particular a collector, for which the radiative heat load is reduced.
- the backing layer of the inner reflector is covered with a reflective layer having a reflectivity of between 0,7 and 0,99 preferably between 0,8 and 0,99 for wavelengths between 0,1 and 100 ⁇ m, preferably between 1 and 10 ⁇ m.
- the reflector assembly will reflect a substantial amount of the infrared radiation that impinges upon the back of the reflector, which will reduce the heat load on the reflector assembly.
- a reflector assembly is placed in the vicinity of the source or an image of said source, the reflector assembly comprising at least an inner and an outer reflector extending in the direction of an optical axis on which the source or an image of said source is located, the inner reflector being closer to the optical axis than the outer reflector, the reflectors each having an inner reflective surface and an outer backing layer, the backing layer of the outer reflector being covered with a radiative layer having an emissivity of typically 0,8 for wavelengths between 1 and 10 ⁇ m.
- a reflector assembly is placed in the vicinity of the source or an image of said source, the reflector assembly comprising at least an inner and an outer reflector extending in the direction of an optical axis on which the source or an image of said source is located, the inner reflector being closer to the optical axis than the outer reflector, the reflectors each having an inner reflective surface and an outer backing layer, the backing layer of the outer reflector being covered with a radiative layer having an emissivity of typically 0,8 for wavelengthsbetween 1 and 10 ⁇ m and the backing layer of the inner reflector is covered with a reflective layer having a reflectivity of typically 0,9 or more for wavelengths between 1 and 10 ⁇ m.
- the reflector assembly has both a reflective coating on the backing layer of the inner reflectors and a radiative coating on the backing of the outermost reflector, for both reducing the absorbed heat radiation and increasing the emitted heat radiation.
- the reflective layer may be made of a noble metal such as for instance gold or ruthenium.
- the radiative layer may be made of carbon for optimal heat load reductive properties.
- Each reflector may comprise at least two adjacent reflecting surfaces, the reflecting surfaces further from the source being placed at smaller angles to the optical axis than the reflecting surface that is closer to the source.
- a grazing incidence collector is constructed for generating a beam of UV radiation propagating along the optical axis.
- at least two reflectors are placed substantially coaxially and extend substantially rotationally symmetric around the optical axis.
- a grazing incidence collector of this (Wolter-) type is, for instance, described in German patent application no. DE 101 38 284.7 . The collector which results can be used as an (E)UV radiation focusing device in a lithographic projection apparatus.
- EUV extreme ultra-violet
- Fig. 1 schematically depicts a lithographic projection apparatus 1 according to a particular embodiment of the invention.
- the apparatus comprises:
- the source LA (e.g. a laser-produced plasma or a discharge plasma EUV radiation source) produces a beam of radiation.
- This beam is fed into an illumination system (illuminator) IL, either directly or after having traversed conditioning means, such as a beam expander Ex, for example.
- the illuminator IL may comprise adjusting means AM for setting the outer and/or inner radial extent (commonly referred to as ⁇ -outer and ⁇ -inner, respectively) of the intensity distribution in the beam.
- ⁇ -outer and ⁇ -inner commonly referred to as ⁇ -outer and ⁇ -inner, respectively
- it will generally comprise various other components, such as an integrator IN and a condenser CO.
- the beam PB impinging on the mask MA has a desired uniformity and intensity distribution in its cross-section.
- the source LA may be within the housing of the lithographic projection apparatus (as is often the case when the source LA is a mercury lamp, for example), but that it may also be remote from the lithographic projection apparatus, the radiation beam which it produces being led into the apparatus (e.g. with the aid of suitable directing mirrors); this latter scenario is often the case when the source LA is an excimer laser.
- the current invention and claims encompass both of these scenarios.
- the beam PB subsequently intercepts the mask MA, which is held on a mask table MT. Having traversed the mask MA, the beam PB passes through the lens PL, which focuses the beam PB onto a target portion C of the substrate W. With the aid of the second positioning means PW (and interferometric measuring means IF), the substrate table WT can be moved accurately, e.g. so as to position different target portions C in the path of the beam PB. Similarly, the first positioning means PM can be used to accurately position the mask MA with respect to the path of the beam PB, e.g. after mechanical retrieval of the mask MA from a mask library, or during a scan.
- the mask table MT may just be connected to a short stroke actuator, or may be fixed.
- Mask MA and substrate W may be aligned using mask alignment marks M1, M2 and substrate alignment marks P1, P2.
- the depicted apparatus can be used in two different modes:
- Fig. 2 shows the projection apparatus 1 comprising an illumination system IL with radiation unit 3, illumination optics unit 4, and projection optics system PL.
- the radiation system 2 comprises a source-collector module or radiation unit 3 and an illumination optics unit 4.
- Radiation unit 3 is provided with a radiation source LA which may be formed by a discharge plasma.
- EUV radiation source 6 may employ a gas or vapor, such as Xe gas or Li vapor in which a very hot plasma may be created to emit radiation in the EUV range of the electromagnetic spectrum.
- the very hot plasma is created by causing a partially ionized plasma of an electrical discharge to collapse onto the optical axis O. Partial pressures of 0.1 mbar of Xe, Li vapor or any other suitable gas or vapor may be required for efficient generation of the radiation.
- the radiation emitted by radiation source LA is passed from the source chamber 7 into collector chamber 8 via a gas barrier structure or "foil trap" 9.
- the gas barrier structure comprises a channel structure such as, for instance, described in detail in European patent applications EP-A-1 223 468 and EP-A-1 057 079 .
- the collector chamber 8 comprises a radiation collector 10 which according to the present invention is formed by a grazing incidence collector. Radiation passed by collector 10 is reflected off a grating spectral filter 11 to be focused in a virtual source point 12 at an aperture in the collector chamber 8. From chamber 8, the projection beam 16 is reflected in illumination optics unit 4 via normal incidence reflectors 13, 14 onto a reticle or mask positioned on reticle or mask table MT. A patterned beam 17 is formed which is imaged in projection optics system PL via reflective elements 18, 19 onto wafer stage or substrate table WT. More elements than shown may generally be present in illumination optics unit 4 and projection system PL.
- the grazing incidence collector 10 comprises a number of nested reflector elements 21, 22, 23.
- a grazing incidence collector of this type is, for instance, shown in German patent application DE 101 38 284.7 .
- the infrared radiation 40 impinges on a collector 50 which is aligned along an optical axis 47.
- the collector 50 may comprise several reflectors 42, 43, 46.
- An example of such a collector is shown in Fig 3 with reference numeral 10.
- the inner reflector is indicated by reference numeral 42
- the outer reflector is indicated by reference numeral 46.
- several other reflectors 43 may be located, the outlines of which are shown in Fig 4 with dashed lines. All the reflectors 42 and 43 are coated on their backing layer 52 with a heat/infrared radiation reflecting layer 56, such that infrared radiation 40 on these reflectors is reflected as indicated by the arrows 44.
- the outer reflector 46 has on its backing layer 52 a radiative coating 62.
- the arrows 48 in Fig 4 indicate heat/infrared radiation.
- the reflector 42 comprises a backing layer 52 made of material that gives the reflector 24 its mechanical strength e.g. nickel (Ni) of thickness 0,5 to 1 mm.
- the reflectors 42 ,43 and 46 comprise a (E)UV reflecting side, in fig 4 , as an example, shown comprising of two parts 58 and 59.
- a coating 54 is added of a material that will give the reflector its requested (E)UV reflecting properties, such as gold for instance (Au) or ruthenium (Ru) of thicknesses in the range of approximately 50 nanometers to several microns.
- the manufacturing process of depositing a noble metal layer 54 as an (E)UV reflective layer is extended in that on the side 60 of the backing layer 52 a further coating 56 such as for instance gold of thickness such that in can be considered as infinitely thick for the infrared radiation, i.e. approximately several microns, or another infrared radiation reflecting material, is added, by known techniques such as for instance chemical vapor or electrochemical deposition.
- Coating 56 is substantially reflecting for heat/infrared radiation, which results in less heat/infrared absorption of the backing layer 52.
- Fig 4 also the detailed composition of the outer reflector 46 is illustrated.
- the backing layer 52 of the outer reflector 46 is covered on the outside 60 with a heat/infrared radiative layer 62 made of for instance carbon (C) several microns thick or any other heat/infrared radiative material known to the skilled person.
- the carbon coating will enhance the "black body" emissivity of the outermost reflector 46 and hence of the entire collector 50.
- the mirroring side 58 of the reflectors 42, 43 and 46 in fig. 4 in reality can be curved. It may be comprise two joining segments one of which is shaped as the segment of a hyperbola and one of which is shaped as a ellipsoid.
- a collector 50 which has on its outer reflector 46 several radiation fins 72-75 attached. These radiation fins 72-75 may be arbitrarily distributed on the outer reflector 46. The radiation fins 72-75 may increase the heat/infrared "black body" reflecting properties of the collector 50 even further.
- An improved vacuum separation between the EUV source and the optical components further along the optical axis may be achieved by using a collector that is part of a vacuum separation. This is realized by pumping the space that separates the collector from the other components in the lithographic projection apparatus.
- a collector that is part of a vacuum separation. This is realized by pumping the space that separates the collector from the other components in the lithographic projection apparatus.
- a reflector as described in German patent application no. DE 101 38 284.7 , use is made of the relatively high flow resistance of the "onion-shell" type collector.
- the outside of the collector may form a vacuum barrier, while a pump may be employed immediately downstream of the reflector for pumping off residual gas passing through the collector at relatively low pumping rates such as 1mbar*1/s. This will be described with reference to Fig. 6 .
- Reference numeral 61 indicates a channel array or foil trap. Due to the limited flow conductance of the channel array or foil trap 61, the pressure behind this array can be at least a 100 times lower than at the side of the EUV source 72, when a pump speed of several 1000 l/s can be reached behind the channel array 61. In view of the close distance of collector 63, this pump speed cannot be achieved by pump 67.
- a channel array 61 suitable for use in the present invention has been described in EP-A-1 223 468 and EP-A-1 057 079 .
- Reference numeral 63 indicates a multi-shell grazing incidence EUV collector of the type as described in DE 101 38 284.7 .
- the vacuum chamber 65 is evacuated by a pump 67. Due to the small separation 93 between the foil trap 61 and the grazing incidence EUV collector 63 of a few centimeters, which is kept as small as possible to limit the size of the EUV illuminator, the pump 67 will not be able to create a sufficient vacuum in the chamber 65 as the effective pump speed of pump 67 may be only a few 100 l/s. Therefore, a second pump 69 is arranged behind the grazing incidence EUV collector 63. The grazing incidence EUV collector 63 has a limited flow conductance such as 200 l/s. The pumps 67 and 69 together create the desired vacuum in the vacuum chamber 65, at a pump speed of several 100 l/s for pump 67 and several 1000 l/s for pump 69.
- Fig. 7 the detailed structure 81 of a part of the foil trap 61 is shown.
- the structure 81 consists of narrowly spaced slits or narrow elongated channels 83 which together form an open laminar structure.
- the grazing incidence EUV collector 63 comprises, due to its onion like shell structure, open laminar channels.
- Fig. 6 specifically relates to:
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Claims (12)
- Reflektoranordnung (10), die zumindest einen inneren Reflektor (42) und einen äußeren Reflektor (46) aufweist, wobei die Reflektoren (42, 46) jeweils eine innere Reflexionsoberfläche (54) und eine äußere Trägerschicht (52) aufweisen,
wobei die innere Reflexionsoberfläche (54) des äußeren Reflektors (46) der Trägerschicht (52) des inneren Reflektors (42) gegenüberliegt,
dadurch gekennzeichnet,
daß die Trägerschicht (52) des inneren Reflektors (42) mit einer Reflexionsschicht (56) überzogen ist, die ein Reflexionsvermögen zwischen 0,7 und 0,99, vorzugsweise zwischen 0,8 und 0,99 für Wellenlängen besitzt, die zwischen 1 µm und 10 µm liegen. - Reflektoranordnung (10), die zumindest einen inneren Reflektor (42) und einen äußeren Reflektor (46) aufweist, wobei die Reflektoren (42, 46) jeweils eine innere Reflexionsoberfläche (54) und eine äußere Trägerschicht (52) aufweisen,
wobei die innere Reflexionsoberfläche (54) des äußeren Reflektors (46) der Trägerschicht (52) des inneren Reflektors (42) gegenüberliegt,
dadurch gekennzeichnet,
daß die Trägerschicht (52) des äußeren Reflektors (46) mit einer Strahlungsschicht (62) überzogen ist, die ein Emissionsvermögen zwischen 0,7 und 0,99, vorzugsweise zwischen 0,8 und 0,99 für Wellenlängen besitzt, die zwischen 1 µm und 10 µm liegen. - Reflektoranordnung (10) nach Anspruch 2,
wobei die Trägerschicht (52) des inneren Reflektors (42) mit einer Reflexionsschicht (56) überzogen ist, die ein Reflexionsvermögen zwischen 0,7 und 0,99, vorzugsweise zwischen 0,8 und 0,99 für Wellenlängen besitzt, die zwischen 1 µm und 10 µm liegen. - Reflektoranordnung (10) nach einem der Ansprüche 1,2 oder 3,
wobei zumindest der äußere Reflektor (46) Strahlungsrippen (72 - 74) aufweist. - Lithografische Projektionsvorrichtung,
die folgendes aufweist:- ein Beleuchtungssystem (3, 4) mit einer Strahlungsquelle (6), um einen Projektionsstrahl der Strahlung zu bilden,- eine Tragkonstruktion (15), die dazu ausgebildet ist, eine Strukturierungseinrichtung zu halten, die mit dem Projektionsstrahl zu bestrahlen ist, um den Projektionsstrahl zu strukturieren,- einen Substrattisch (20), der dazu ausgebildet ist, ein Substrat zu halten, und- ein Projektionssystem (5), das dazu ausgebildet und angeordnet ist, einen bestrahlten Bereich der Strukturierungseinrichtung auf einen Zielbereich des Substrats abzubilden,wobei die lithografische Projektionsvorrichtung (1) ferner folgendes aufweist:- eine Reflektoranordnung (10) gemäß Anspruch 1, die in der Nähe der Quelle (6) oder eines Bildes der Quelle angeordnet ist. - Lithografische Projektionsvorrichtung (1), die folgendes aufweist:- ein Beleuchtungssystem (3, 4) mit einer Strahlungsquelle (6), um einen Projektionsstrahl der Strahlung zu bilden,- eine Tragkonstruktion (15), die dazu ausgebildet ist, eine Strukturierungseinrichtung zu halten, die mit dem Projektionsstrahl zu bestrahlen ist, um den Projektionsstrahl zu strukturieren,- einen Substrattisch (20), der dazu ausgebildet ist, ein Substrat zu halten, und- ein Projektionssystem (5), das dazu ausgebildet und angeordnet ist, einen bestrahlten Bereich der Strukturierungseinrichtung auf einen Zielbereich des Substrats abzubilden,wobei die lithografische Projetionsvorrichtung (1) ferner folgendes aufweist:- eine Reflektoranordnung (10) gemäß Anspruch 2, die in der Nähe der Quelle (6) oder eines Bildes der Quelle angeordnet ist.
- Lithografische Projektionsvorrichtung (1) nach Anspruch 6,
wobei die Strahlungsschicht Kohlenstoff (C) aufweist. - Lithografische Projektionsvorrichtung (1) nach Anspruch 6 oder 7,
wobei die Trägerschicht (52) des inneren Reflektors (42) mit einer Reflexionsschicht (56) überzogen ist, die ein Reflexionsvermögen zwischen 0,7 und 0,99, vorzugsweise zwischen 0,8 und 0,99 für Wellenlängen besitzt, die zwischen 1 µm und 10 µm liegen. - Lithografische Projektionsvorrichtung (1) nach Anspruch 5 oder 8,
wobei die Reflexionsschicht ein Edelmetall aufweist. - Lithografische Projektionsvorrichtung (1) nach Anspruch 9,
wobei das Edelmetall Gold (Au) oder Ruthenium (Ru) aufweist. - Lithografische Projektionsvorrichtung (1) nach einem der Ansprüche 5 bis 10,
wobei die mindestens zwei Reflektoren (42, 43, 46) im wesentlichen koaxial angeordnet sind und sich im wesentlichen rotationssymmetrisch um die optische Achse (47) erstrecken. - Lithografische Projetionsvorrichtung (1) nach einem der Ansprüche 5 bis 11,
wobei zumindest der äußere Reflektor (46) der Reflektoren (42, 43, 46) der Reflektoranordnung (10) Strahlungsrippen aufweist.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03077675A EP1394612B1 (de) | 2002-08-27 | 2003-08-25 | Lithographischer Projektionsapparat und Reflektoranordnung für die Verwendung in diesem Apparat |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02078528 | 2002-08-27 | ||
EP02078528 | 2002-08-27 | ||
EP03077675A EP1394612B1 (de) | 2002-08-27 | 2003-08-25 | Lithographischer Projektionsapparat und Reflektoranordnung für die Verwendung in diesem Apparat |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1394612A2 EP1394612A2 (de) | 2004-03-03 |
EP1394612A3 EP1394612A3 (de) | 2004-12-29 |
EP1394612B1 true EP1394612B1 (de) | 2008-10-08 |
Family
ID=31497092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03077675A Expired - Lifetime EP1394612B1 (de) | 2002-08-27 | 2003-08-25 | Lithographischer Projektionsapparat und Reflektoranordnung für die Verwendung in diesem Apparat |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1394612B1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8373846B2 (en) | 2008-09-04 | 2013-02-12 | Asml Netherlands B.V. | Radiation source, lithographic apparatus and device manufacturing method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7483223B2 (en) | 2004-05-06 | 2009-01-27 | Carl Zeiss Smt Ag | Optical component having an improved transient thermal behavior and method for improving the transient thermal behavior of an optical component |
WO2005109104A2 (en) * | 2004-05-06 | 2005-11-17 | Carl Zeiss Laser Optics Gmbh | Optical component having an improved thermal behavior |
US8405051B2 (en) | 2008-06-30 | 2013-03-26 | Asml Netherlands B.V. | Method for removing a deposition on an uncapped multilayer mirror of a lithographic apparatus, lithographic apparatus and device manufacturing method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002065482A2 (de) * | 2001-01-23 | 2002-08-22 | Carl Zeiss Smt Ag | KOLLEKTOR MIT UNGENUTZTEM BEREICH FÜR BELEUCHTUNGSSYSTEME MIT EINER WELLENLÄNGE ≤ 193 nm |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4206494A (en) * | 1978-09-05 | 1980-06-03 | Gca Corporation | High throughput illuminator |
US5682415A (en) * | 1995-10-13 | 1997-10-28 | O'hara; David B. | Collimator for x-ray spectroscopy |
US6452199B1 (en) * | 1997-05-12 | 2002-09-17 | Cymer, Inc. | Plasma focus high energy photon source with blast shield |
US6377655B1 (en) * | 1998-05-08 | 2002-04-23 | Nikon Corporation | Reflective mirror for soft x-ray exposure apparatus |
US6285737B1 (en) * | 2000-01-21 | 2001-09-04 | Euv Llc | Condenser for extreme-UV lithography with discharge source |
-
2003
- 2003-08-25 EP EP03077675A patent/EP1394612B1/de not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002065482A2 (de) * | 2001-01-23 | 2002-08-22 | Carl Zeiss Smt Ag | KOLLEKTOR MIT UNGENUTZTEM BEREICH FÜR BELEUCHTUNGSSYSTEME MIT EINER WELLENLÄNGE ≤ 193 nm |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8373846B2 (en) | 2008-09-04 | 2013-02-12 | Asml Netherlands B.V. | Radiation source, lithographic apparatus and device manufacturing method |
US8946661B2 (en) | 2008-09-04 | 2015-02-03 | Asml Netherlands B.V. | Radiation source, lithographic apparatus and device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
EP1394612A3 (de) | 2004-12-29 |
EP1394612A2 (de) | 2004-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8129702B2 (en) | Radiation system with contamination barrier | |
US7852460B2 (en) | Lithographic projection apparatus, reflector assembly for use therein, and device manufacturing method | |
US6838684B2 (en) | Lithographic projection apparatus and particle barrier for use therein | |
US6576912B2 (en) | Lithographic projection apparatus equipped with extreme ultraviolet window serving simultaneously as vacuum window | |
US7256407B2 (en) | Lithographic projection apparatus and reflector assembly for use therein | |
US20110223543A1 (en) | Radiation system, radiation collector, radiation beam conditioning system, spectral purity filter for radiation system and method for forming a spectral purity filter | |
EP1434098B1 (de) | Kontaminationsschutz mit ausdehnbaren Lamellen | |
EP1389747B1 (de) | Lithographischer Projektionsapparat und Reflektoranordnung für die Verwendung in diesem Apparat | |
EP1394612B1 (de) | Lithographischer Projektionsapparat und Reflektoranordnung für die Verwendung in diesem Apparat | |
EP1469349A1 (de) | Lithographische Projektionsvorrichtung mit einem einen Konkavspiegel und einen Konvexspiegel aufweisenden Kollektor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ASML NETHERLANDS B.V. |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20050627 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT NL |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60323911 Country of ref document: DE Date of ref document: 20081120 Kind code of ref document: P |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 |
|
26N | No opposition filed |
Effective date: 20090709 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090825 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180827 Year of fee payment: 16 Ref country code: DE Payment date: 20180823 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60323911 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200303 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |