[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1394376B1 - Spray nozzle with multiple jets for cooling an internal combustion engine and engine with such nozzle - Google Patents

Spray nozzle with multiple jets for cooling an internal combustion engine and engine with such nozzle Download PDF

Info

Publication number
EP1394376B1
EP1394376B1 EP03356125A EP03356125A EP1394376B1 EP 1394376 B1 EP1394376 B1 EP 1394376B1 EP 03356125 A EP03356125 A EP 03356125A EP 03356125 A EP03356125 A EP 03356125A EP 1394376 B1 EP1394376 B1 EP 1394376B1
Authority
EP
European Patent Office
Prior art keywords
outlet
cooling
nozzle
outlet tube
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP03356125A
Other languages
German (de)
French (fr)
Other versions
EP1394376A1 (en
Inventor
Christophe Bontaz
Denis Clement
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bontaz Centre R&D SAS
Original Assignee
Bontaz Centre SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31497218&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1394376(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from FR0211081A external-priority patent/FR2844002B1/en
Application filed by Bontaz Centre SA filed Critical Bontaz Centre SA
Publication of EP1394376A1 publication Critical patent/EP1394376A1/en
Application granted granted Critical
Publication of EP1394376B1 publication Critical patent/EP1394376B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/08Cooling of piston exterior only, e.g. by jets

Definitions

  • the present invention relates to the cooling nozzles of the pistons of an internal combustion engine, for projecting a cooling fluid such as oil on a suitable area of the piston, and the engines equipped with such nozzles.
  • the pistons cooling jets usually used are inserts attached to the crankcase and communicating with a coolant supply port.
  • the position of the nozzle is accurately determined to provide a jet of cooling fluid directed to a specific area of the piston bottom or to a piston gallery entrance.
  • Documents FR 2,745,329 and JP 07 317519 disclose a nozzle having a nozzle body with a penetrating portion shaped to engage axially in a bore of the housing engine and to receive the cooling fluid arriving through said bore.
  • the nozzle has an outlet structure having a radial fluid passage in the nozzle body and having an outlet conduit adapted to direct an outlet fluid jet to the piston bottom region to be cooled.
  • the jet must have a very high precision of the jet, because the entry of the gallery is generally about 150 millimeters from the nozzle which is fixed on the casing, and the entry of the gallery is only 5 or 6 millimeters in diameter. . In this small hole, the maximum amount of coolant must be entered. Furthermore, the nozzle must have a structure easy to manufacture, so as to be of reduced cost suitable for mass production in the automotive industry.
  • the document JP 07 243313 A discloses a one-piece molded structure with two parallel ducts each connected by a radial passage to a nozzle body.
  • the document JP 03 089908 U discloses a structure with two bent tubes each reported and fixed on a nozzle body by a respective radial passage. Such structures are complex, expensive to manufacture and not very compatible with the very small space available in an engine to place a cooling nozzle.
  • the problem proposed by the present invention is to design a new cooling jet structure, which can further improve the cooling capacity of the piston, for a given flow rate of cooling fluid, while remaining compatible with the very small space available in the engine to place such a cooling nozzle.
  • the invention also aims to design such a nozzle whose structure is particularly simple to be manufactured simply and inexpensively in large series.
  • the present invention results from the observation that it is certainly very good for cooling to put the maximum oil in a gallery entrance of a piston, but failures can still result from unequal distribution of the oil in the piston body.
  • the invention provides a cooling nozzle as defined by claim 1.
  • the outlet tube connects to the nozzle body according to the single radial passage in which the proximal end of the outlet tube is fitted and brazed.
  • the first outlet tube having the first orifice may comprise a larger-diameter intermediate portion to which the second outlet tube having the second orifice connects.
  • the first outlet tube may comprise an upstream section and a downstream section connected to each other by an intermediate sleeve of larger diameter than the upstream and downstream sections, the upstream section being engaged by its respective ends in the radial passage of the nozzle body and in a first end of the sleeve, the downstream section being engaged in the second end of the sleeve, the sleeve being pierced with a lateral hole in which is engaged the upstream end of the second outlet tube.
  • an outlet tube receives at its downstream end an outlet nozzle having two outlet orifices, the end piece having an axial inlet hole engaging on the downstream end of the outlet tube. and communicating with two divergent exit holes to be oriented toward the respective cooling zones of the piston.
  • the invention provides an internal combustion engine comprising at least one nozzle as defined above, the nozzle being shaped and positioned so as to create and direct at least two jets of cooling fluid to two inlets. respective gallery dug in the mass of a piston.
  • a cooling nozzle 1 provided for cooling a piston 8 of an internal combustion engine, comprises a nozzle body 2 having a penetrating portion 3 shaped to engage axially in an axial direction of penetration II in a bore of the motor for receiving a cooling fluid arriving through said bore as illustrated by the arrow 4.
  • the cooling nozzle 1 further comprises a protruding outlet structure 5, communicating with the penetrating portion 3, having an axial passage of fluid from the penetrating part 3, and comprising at least one radial passage 5a (and possibly 5b) of fluid in the nozzle body 2.
  • the cooling nozzle 1 comprises at least two outlet tubes 6 and 7.
  • Each outlet tube 6 or 7 is suitably bent to position and orient their respective outlets 16 and 17 so as to create two respective separate coolant jets 6a and 7a which are distinguished on the figures 1 , 2 and 8 and to direct the two jets 6a and 7a to two respective respective cooling zones 6b and 7b of the engine piston 8.
  • Each outlet tube 6 and 7 is an insert by brazing and brazing, cut and formed from a drawn metal tube. This avoids having to mold and machine complex monobloc parts. And we take advantage of the very smooth and even internal surface of the drawn metal tubes, favoring a laminar flow of the fluid.
  • the first outlet tube 6 comprises a first radial connecting section 6c, generally perpendicular to the axial direction of penetration II of the nozzle in the motor body, and being connected in particular by a bend 6d to a first axial projection section 6e to first orifice 16 which thus projects the jet of cooling fluid 6a in a generally axial direction relative to the piston 8.
  • the second outlet tube 7 comprises a second radial connecting portion 7c substantially perpendicular or substantially angular with respect to the first radial section of connection 6c, and connected by a bend 7d to a second axial projection section 7e to second orifice 17 which thus projects a jet of cooling fluid 7a in a generally axial direction, that is to say parallel to the axis of displacement of the piston 8 in the engine cylinder, the two jets of cooling fluid 6a, 7a being substantially spaced from one of ther.
  • two outlet tubes 6 and 7 are connected to the nozzle body according to two separate radial passages 5a and 5b respectively of the output structure 5 by two radial connecting sections 6c and 7c. Simultaneously, the connecting radial sections 6c and 7c are substantially perpendicular to each other and both perpendicular to the axial direction II penetration.
  • first outlet tube 6 comprises a connecting section 6f developing in a direction generally parallel or convergent with respect to the second radial connecting portion 7c of the second outlet tube 7, and being connected angularly on the one hand to the first radial connection portion 6c by a bend 6d and on the other hand to a first axial projection section 6e by a second bend 6g, as can be seen on the figure 3 .
  • This form of nozzle is adapted to project two jets of cooling fluid to two zones of the same piston located on either side of the median plane of the piston.
  • the cooling nozzle 1 in position in a motor facing a piston 8 biased by a rod 9 itself oscillating along the median plane MM of the piston 8 about an oscillation axis II-II.
  • the median plane MM contains the translation axis AA of the piston 8, and is perpendicular to the axis of oscillation II-II of the connecting rod 9.
  • the second radial connecting section 7c penetrates radially under the piston 8 towards its axis AA.
  • the first radial connecting portion 6c bypasses the piston 8 along a portion of its circumference, then the connecting portion 6f penetrates radially under the piston 8 in the direction of its axis AA.
  • the skirt of the piston comprises two respective notches 8c and 8d for the passage of sections 7c and 6f.
  • the two jets of cooling fluid 6a and 7a produced by the cooling nozzle 1 are respectively directed towards two cooling zones 6b and 7b which are disposed on either side of the median plane MM of the piston 8.
  • the two cooling zones 6b and 7b are two inlet openings of one or two galleries provided in the mass of the piston 8, so that the cooling fluid enters the gallery or galleries of the piston to propagate closer to the upper thrust surface 8e ( figure 15 ) of the piston, which surface receives the heat energy of the combustion gases.
  • the cooling nozzles are arranged in a motor in the first half-space P containing the engine intake system, for issues of size of the cooling oil supply pipes.
  • the hottest parts of the engine, and therefore the piston 8 are in the second half space S containing the engine exhaust system.
  • a cooling nozzle 1 which produces two jets of cooling fluid 6a and 7a on either side of the median plane MM, it is possible to feed two gallery entrances which communicate, by a circular ring-shaped gallery, or by two respective galleries in angle ring sector less than 180 °, with two respective piston zones 8a and 8b in the half-space S. The cooling of the hottest zones 8a and 8b is thus balanced.
  • the outlet structure comprises a first outlet tube 6 which connects to the nozzle body in a single radial passage 5a.
  • the first outlet tube 6 has the first orifice 16 and has an intermediate portion 6h of larger diameter to which is connected the second outlet tube 7 which has the second orifice 17.
  • the first outlet tube 6 comprises an upstream section 6c1, a downstream section 6c2, a bend 6d and an axial projection section 6e, and an intermediate sleeve 6c3 forming the intermediate section 6h of larger diameter than the upstream sections 6c1 and downstream 6c2.
  • the upstream section 6c1 is engaged by its respective ends in the radial passage 5a of the nozzle body and in a first end of the sleeve 6c3.
  • the downstream section 6c2 is engaged in the second end of the sleeve 6c3.
  • the sleeve 6c3 is pierced with a lateral hole 6j in which is engaged the upstream end of the second outlet tube 7.
  • the upstream section 6c1 and the sleeve 6c3 are in one piece.
  • the spacing between the two jets of cooling fluid 6a and 7a is important, but the offset of the tubes to the outside is insufficient to place the orifices 16 and 17 on either side of the median plane MM . Then place the cooling nozzle 1 with its two outlet tubes 6 and 7 on the same side of the median plane MM.
  • nozzles having more than two outlet tubes can be designed to generate more than two jets of cooling fluid.
  • FIGS. 9 to 14 illustrate a cooling nozzle having an outlet tube receiving an outlet tip for dividing the jet of cooling fluid into two jets 6a and 7a.
  • a nozzle 1 having a nozzle body 2 with a penetrating portion 3 and an outlet structure 5 radial passage 5a.
  • the outlet tip 10 has an axial inlet hole 10a shaped to engage on the downstream end of the outlet tube 6, and communicating with two divergent exit holes 10b and 10c intended to be oriented towards the zones of respective cooling of the piston.
  • the two outlet holes 10b and 10c define the respective outlet orifices 16 and 17 of the cooling nozzle.
  • the axial inlet hole 10a may advantageously have a circular-section cylindrical shape adapted to receive the cylindrical downstream end of the outlet tube 6.
  • the two exit holes 10b and 10c may have different diameters, for example the outlet hole 16 may have a diameter greater than the diameter of the outlet hole 17.
  • the diameters are chosen so as to achieve a better distribution of the outflow rates by each orifice, increasing the flow rate to water the priority areas to be cooled, and reducing the flow rate to water the lower priority areas to cool.
  • the orientation angles of the exit holes 10b and 10c are chosen to correspond to the locations of the respective cooling zones of the piston. At their upstream end, the outlet holes 10b and 10c are closer to one another so as to communicate directly with the inside of the outlet tube 6.
  • the outlet tip 10 comprises, on its outer peripheral face, at least one plate 11 or 12 as illustrated in FIGS. Figures 9, 11 and 12 , the plate 11 or 12 for identifying and fixing the angular position of the outlet nozzle 10 around the outlet tube 6, for rotating the two outlet holes 16 and 17 during the mounting of the nozzle 10 on the outlet tube 6.
  • the outlet tip 10 may be used regardless of the presence of the other number and shape characteristics of the outlet tubes 6 and 7.
  • the proximal ends of the outlet tubes 6 and 7 are fitted and brazed.
  • the figure 16 illustrates in section the fitting of the outlet tube 7 in the radial passage 5b of the nozzle body 2, for the jet of the figure 3 .
  • the figure 5 illustrates in section the fitting of the two tubes 6 and 7.
  • figure 14 also illustrates the fitting of the outlet tube 6 in the nozzle body 2.
  • the cooling nozzle 1 may be shaped and positioned so as to create and direct at least two jets of cooling fluid 6a and 7a to two inlet ducts. respective galleries 6b and 7b hollowed out in the mass of a piston 8, as illustrated in FIGS. figures 1 and 2 .
  • a nozzle according to Figures 4 to 7 can project two jets of cooling fluid to two zones 6b and 7b located on the same side of the median plane MM, or to two zones 6b and 7b on either side of the plane MM. In the latter case the efficiency is reduced because the connecting rod 9 momentarily cuts the jet 7a during a portion of its travel cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Nozzles (AREA)

Description

DOMAINE TECHNIQUE DE L'INVENTIONTECHNICAL FIELD OF THE INVENTION

La présente invention concerne les gicleurs de refroidissement des pistons d'un moteur à combustion interne, permettant de projeter un fluide de refroidissement tel que de l'huile sur une zone appropriée du piston, et les moteurs équipés de tels gicleurs.The present invention relates to the cooling nozzles of the pistons of an internal combustion engine, for projecting a cooling fluid such as oil on a suitable area of the piston, and the engines equipped with such nozzles.

Les gicleurs de refroidissement de pistons habituellement utilisés sont des pièces rapportées, fixées sur le carter moteur et communiquant avec un orifice d'amenée de fluide de refroidissement. La position du gicleur est déterminée avec précision pour réaliser un jet de fluide de refroidissement dirigé vers une zone précise du fond de piston ou vers une entrée de galerie de piston.The pistons cooling jets usually used are inserts attached to the crankcase and communicating with a coolant supply port. The position of the nozzle is accurately determined to provide a jet of cooling fluid directed to a specific area of the piston bottom or to a piston gallery entrance.

Dans les moteurs à combustion interne actuellement développés, on associe à chaque piston du moteur, pour son refroidissement, un gicleur de refroidissement qui projette un ou plusieurs jets de fluide de refroidissement vers une seule zone de fond de piston. Par exemple, les documents FR 2 745 329 , US 4,206,726 , EP 0 423 830 , JP 07 317519 projettent un seul jet de fluide de refroidissement vers le fond de piston. Les documents DE 196 34742 et US 5,649,505 projettent plusieurs jets parallèles vers une seule zone de fond de piston. La fixation du gicleur dans le cylindre moteur peut s'effectuer soit de l'extérieur, soit de l'intérieur. Ainsi, les documents US 5,649,505 et EP 0 423 830 décrivent des structures de gicleurs de refroidissement que l'on engage depuis l'extérieur dans le moteur. Ces gicleurs manquent de précision, à cause de la faible longueur du tronçon de sortie de gicleur qui est limitée par la taille du passage d'introduction du gicleur.In internal combustion engines currently developed, is associated with each piston of the engine, for cooling, a cooling nozzle which projects one or more jets of cooling fluid to a single piston bottom area. For example, documents FR 2,745,329 , US 4,206,726 , EP 0 423 830 , JP 07 317519 project a single jet of coolant to the bottom of the piston. The documents DE 196 34742 and US 5,649,505 project several parallel jets to a single piston bottom area. The attachment of the nozzle in the engine cylinder can be carried out either from the outside or the inside. Thus, the documents US 5,649,505 and EP 0 423 830 describe cooling jet structures that are engaged from the outside in the engine. These nozzles lack precision because of the short length of the nozzle outlet section which is limited by the size of the nozzle introduction passage.

Le document US 4,206,726 décrit un gicleur dont la fixation dans un passage nécessite l'accès simultané à l'intérieur et à l'extérieur du cylindre moteur.The document US 4,206,726 describes a nozzle whose attachment in a passage requires simultaneous access to the inside and outside of the engine cylinder.

Des documents FR 2 745 329 et JP 07 317519 décrivent un gicleur comportant un corps de gicleur à partie pénétrante conformée pour s'engager axialement dans un alésage du carter moteur et pour recevoir le fluide de refroidissement arrivant par ledit alésage. Le gicleur comporte une structure de sortie ayant un passage radial de fluide dans le corps de gicleur et ayant un conduit de sortie adapté pour diriger un jet de fluide de sortie vers la zone de fond de piston à refroidir.Documents FR 2,745,329 and JP 07 317519 disclose a nozzle having a nozzle body with a penetrating portion shaped to engage axially in a bore of the housing engine and to receive the cooling fluid arriving through said bore. The nozzle has an outlet structure having a radial fluid passage in the nozzle body and having an outlet conduit adapted to direct an outlet fluid jet to the piston bottom region to be cooled.

Pour obtenir un bon refroidissement, on choisit de façon appropriée le débit du jet de fluide de refroidissement projeté vers le fond de piston. Cependant, dans les moteurs à combustion interne modernes, dont les performances vont en croissant, il y a un besoin pour augmenter encore la capacité de refroidissement de la partie de piston qui est la plus proche de la zone de combustion des gaz. Il apparaît que les gicleurs actuellement utilisés limitent la capacité de refroidissement du piston.In order to obtain good cooling, the flow rate of the jet of cooling fluid projected towards the piston bottom is appropriately selected. However, in modern internal combustion engines, whose performance is increasing, there is a need to further increase the cooling capacity of the piston portion which is closest to the gas combustion zone. It appears that the currently used nozzles limit the cooling capacity of the piston.

L'évolution de la thermique des moteurs nécessite des gicleurs plus performants, car les pistons sont de plus en plus chauds. On a tenté d'améliorer le refroidissement en prévoyant, dans le piston, des galeries internes dont le but est d'assurer le refroidissement au plus près de la zone de combustion qui est la zone la plus chaude du moteur. Des pistons à galeries internes sont décrits par exemple dans les documents FR 2 745 329 ou US 4,206,726 . Une galerie est une cavité généralement annulaire dans le piston, et elle communique avec l'espace inférieur sous le piston par au moins une entrée. Le gicleur projette le fluide de refroidissement dans cette entrée. Le piston reste ainsi relativement épais, pour supporter les contraintes mécaniques, et la galerie permet d'amener le fluide de refroidissement dans la zone qui est la plus proche du volume de combustion.The evolution of engine heat requires more efficient sprinklers because the pistons are getting hotter and heavier. An attempt has been made to improve the cooling by providing, in the piston, internal galleries whose purpose is to ensure cooling closer to the combustion zone which is the hottest zone of the engine. Pistons with internal galleries are described for example in the documents FR 2,745,329 or US 4,206,726 . A gallery is a generally annular cavity in the piston, and communicates with the lower space under the piston by at least one inlet. The nozzle projects the cooling fluid into this inlet. The piston thus remains relatively thick, to withstand the mechanical stresses, and the gallery allows to bring the cooling fluid in the area that is closest to the combustion volume.

Le gicleur doit avoir une très grande précision du jet, car l'entrée de la galerie se trouve généralement à environ 150 millimètres du gicleur qui est fixé sur le carter, et l'entrée de la galerie ne fait que 5 ou 6 millimètres de diamètre. Dans ce petit orifice, il faut entrer le maximum de fluide de refroidissement. Par ailleurs, le gicleur doit avoir une structure facile à fabriquer, de façon à être d'un coût réduit adapté à une production en grande série dans l'industrie automobile.The jet must have a very high precision of the jet, because the entry of the gallery is generally about 150 millimeters from the nozzle which is fixed on the casing, and the entry of the gallery is only 5 or 6 millimeters in diameter. . In this small hole, the maximum amount of coolant must be entered. Furthermore, the nozzle must have a structure easy to manufacture, so as to be of reduced cost suitable for mass production in the automotive industry.

Or les structures connues de gicleurs ne donnent pas satisfaction. Par exemple, le document JP 07 317519 décrit une structure monobloc moulée à deux conduits parallèles et une couronne de raccordement qui est complexe et onéreuse. Le document FR 2 745 329 décrit un conduit monobloc similaire moulé et réusiné avec une couronne de raccordement.However known sprinkler structures are not satisfactory. For example, the document JP 07 317519 describes a one-piece molded structure with two parallel ducts and a connecting ring which is complex and expensive. The document FR 2,745,329 describes a similar one-piece conduit molded and remanufactured with a connecting ring.

Le document JP 07 243313 A décrit une structure monobloc moulée à deux conduits parallèles reliés chacun par un passage radial à un corps de gicleur. Le document JP 03 089908 U décrit une structure à deux tubes cintrés chacun rapporté et fixé sur un corps de gicleur par un passage radial respectif. De telles structures sont complexes, onéreuses à fabriquer et peu compatibles avec la place très réduite dont on dispose dans un moteur pour placer un gicleur de refroidissement.The document JP 07 243313 A discloses a one-piece molded structure with two parallel ducts each connected by a radial passage to a nozzle body. The document JP 03 089908 U discloses a structure with two bent tubes each reported and fixed on a nozzle body by a respective radial passage. Such structures are complex, expensive to manufacture and not very compatible with the very small space available in an engine to place a cooling nozzle.

EXPOSE DE L'INVENTIONSUMMARY OF THE INVENTION

Le problème proposé par la présente invention est de concevoir une nouvelle structure de gicleur de refroidissement, qui puisse améliorer encore la capacité de refroidissement du piston, pour un débit donné de fluide de refroidissement, tout en restant compatible avec la place très réduite dont on dispose dans le moteur pour placer un tel gicleur de refroidissement.The problem proposed by the present invention is to design a new cooling jet structure, which can further improve the cooling capacity of the piston, for a given flow rate of cooling fluid, while remaining compatible with the very small space available in the engine to place such a cooling nozzle.

L'invention a également pour objet de concevoir un tel gicleur dont la structure soit particulièrement simple, pour être fabriquée de manière simple et peu onéreuse en grande série.The invention also aims to design such a nozzle whose structure is particularly simple to be manufactured simply and inexpensively in large series.

La présente invention résulte de l'observation selon laquelle il est certes très bon pour le refroidissement de mettre le maximum d'huile dans une entrée de galerie d'un piston, mais des défaillances peuvent encore résulter d'une répartition inégale de l'huile dans le corps de piston.The present invention results from the observation that it is certainly very good for cooling to put the maximum oil in a gallery entrance of a piston, but failures can still result from unequal distribution of the oil in the piston body.

Pour atteindre ces buts ainsi que d'autres, l'invention propose un gicleur de refroidissement tel que défini par la revendication 1.To achieve these and other objects, the invention provides a cooling nozzle as defined by claim 1.

Dans une première réalisation, le tube de sortie se raccorde au corps de gicleur selon le passage radial unique dans lequel l'extrémité proximale du tube de sortie est emmanchée et brasée.In a first embodiment, the outlet tube connects to the nozzle body according to the single radial passage in which the proximal end of the outlet tube is fitted and brazed.

Par exemple,on peut prévoir que :

  • le premier tronçon axial de projection se termine par un premier orifice,
  • le premier tube de sortie forme le premier conduit de sortie,
  • le second conduit de sortie comprend un second tube de sortie, comportant un second tronçon radial de raccordement décalé angulairement à l'écart du premier tronçon radial de raccordement, se raccordant par un coude à un second tronçon axial de projection se terminant par un second orifice.
For example, we can predict that:
  • the first axial projection portion ends with a first orifice,
  • the first outlet tube forms the first outlet duct,
  • the second outlet duct comprises a second outlet tube, comprising a second radial connection section angularly offset away from the first radial connection section, connected by an elbow to a second axial projection section ending in a second orifice .

Dans une seconde réalisation, le premier tube de sortie ayant le premier orifice peut comporter un tronçon intermédiaire à plus grand diamètre auquel se raccorde le second tube de sortie ayant le second orifice.In a second embodiment, the first outlet tube having the first orifice may comprise a larger-diameter intermediate portion to which the second outlet tube having the second orifice connects.

Par exemple, le premier tube de sortie peut comporter un tronçon amont et un tronçon aval reliés l'un à l'autre par un manchon intermédiaire de plus gros diamètre que les tronçons amont et aval, le tronçon amont étant engagé par ses extrémités respectives dans le passage radial du corps de gicleur et dans une première extrémité du manchon, le tronçon aval étant engagé dans la seconde extrémité du manchon, le manchon étant percé d'un trou latéral dans lequel est engagée l'extrémité amont du second tube de sortie.For example, the first outlet tube may comprise an upstream section and a downstream section connected to each other by an intermediate sleeve of larger diameter than the upstream and downstream sections, the upstream section being engaged by its respective ends in the radial passage of the nozzle body and in a first end of the sleeve, the downstream section being engaged in the second end of the sleeve, the sleeve being pierced with a lateral hole in which is engaged the upstream end of the second outlet tube.

Selon un autre aspect de l'invention, un tube de sortie reçoit à son extrémité aval un embout de sortie ayant deux orifices de sortie, l'embout ayant un trou axial d'entrée s'emmanchant sur l'extrémité aval du tube de sortie et communiquant avec deux trous de sortie divergents destinés à être orientés vers les zones de refroidissement respectives du piston.According to another aspect of the invention, an outlet tube receives at its downstream end an outlet nozzle having two outlet orifices, the end piece having an axial inlet hole engaging on the downstream end of the outlet tube. and communicating with two divergent exit holes to be oriented toward the respective cooling zones of the piston.

Selon un autre aspect, l'invention prévoit un moteur à combustion interne comprenant au moins un gicleur tel que défini ci-dessus, le gicleur étant conformé et positionné de façon à créer et diriger au moins deux jets de fluide de refroidissement vers deux entrées de galerie respectives creusées dans la masse d'un piston.According to another aspect, the invention provides an internal combustion engine comprising at least one nozzle as defined above, the nozzle being shaped and positioned so as to create and direct at least two jets of cooling fluid to two inlets. respective gallery dug in the mass of a piston.

DESCRIPTION SOMMAIRE DES DESSINSSUMMARY DESCRIPTION OF THE DRAWINGS

D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles:

  • la figure 1 est une vue en perspective illustrant schématiquement une structure de piston et un gicleur associé ;
  • la figure 2 est une autre vue en perspective du piston associé au gicleur selon la figure 1 ;
  • la figure 3 est une vue en perspective d'un gicleur des figures 1 et 2 ;
  • la figure 4 est une vue en perspective d'un gicleur selon un mode de réalisation de l'invention ;
  • la figure 5 est une coupe partielle longitudinale de la structure de sortie du gicleur de la figure 4 selon une première variante;
  • les figures 6 et 7 sont respectivement une coupe partielle longitudinale et une vue de dessus de la structure de sortie du gicleur de la figure 4 selon une seconde variante ;
  • la figure 8 illustre un moteur ayant un gicleur produisant un premier jet projeté vers une galerie de piston et un second jet projeté vers une zone à lubrifier ;
  • la figure 9 est une vue en perspective d'un gicleur selon un autre mode de réalisation de l'invention ;
  • la figure 10 est une vue de face en coupe longitudinale d'un embout de gicleur de la figure 9 ;
  • les figures 11 et 12 illustrent l'embout de gicleur de la figure 9, vu de dessus et de côté gauche ;
  • les figures 13 et 14 illustrent des coupes longitudinales, vues de côté et de face, du gicleur de la figure 9 ;
  • la figure 15 est une vue de côté d'un gicleur selon les figures 4 à 7 adapté face à un piston ; et
  • la figure 16 est une vue de côté en coupe du gicleur des figures 1 à 3.
Other objects, features and advantages of the present invention will become apparent from the following description of particular embodiments, with reference to the accompanying figures, in which:
  • the figure 1 is a perspective view schematically illustrating a piston structure and an associated nozzle;
  • the figure 2 is another perspective view of the piston associated with the nozzle according to the figure 1 ;
  • the figure 3 is a perspective view of a jet of figures 1 and 2 ;
  • the figure 4 is a perspective view of a nozzle according to one embodiment of the invention;
  • the figure 5 is a longitudinal partial section of the outlet structure of the jet of the figure 4 according to a first variant;
  • the Figures 6 and 7 are respectively a partial longitudinal section and a top view of the outlet structure of the nozzle of the figure 4 according to a second variant;
  • the figure 8 illustrates a motor having a nozzle producing a first jet projected towards a piston gallery and a second jet projected towards an area to be lubricated;
  • the figure 9 is a perspective view of a nozzle according to another embodiment of the invention;
  • the figure 10 is a front view in longitudinal section of a jet nozzle of the figure 9 ;
  • the Figures 11 and 12 illustrate the jet nozzle of the figure 9 seen from above and from the left side;
  • the Figures 13 and 14 illustrate longitudinal sections, seen from the side and from the front, of the jet of the figure 9 ;
  • the figure 15 is a side view of a nozzle according to the Figures 4 to 7 adapted to a piston; and
  • the figure 16 is a sectional side view of the jet of Figures 1 to 3 .

DESCRIPTION DES MODES DE REALISATION PREFERESDESCRIPTION OF THE PREFERRED EMBODIMENTS

Il est à noter que le gicleur de refroidissement des figures 1 à 3 ne correspond pas à l'objet défini par la revendication 1. Ces figures 1 à 3 contribuent toutefois à la compréhension générale de l'invention revendiquée.It should be noted that the cooling nozzle of Figures 1 to 3 does not correspond to the object defined by claim 1. These Figures 1 to 3 however, contribute to the general understanding of the claimed invention.

Dans les modes de réalisation illustrés sur les figures 4 et suivantes, un gicleur de refroidissement 1 selon l'invention, prévu pour refroidir un piston 8 de moteur à combustion interne, comporte un corps de gicleur 2 ayant une partie pénétrante 3 conformée pour s'engager axialement selon une direction axiale de pénétration I-I dans un alésage du moteur pour recevoir un fluide de refroidissement arrivant par ledit alésage comme illustré par la flèche 4. Le gicleur de refroidissement 1 comporte en outre une structure de sortie 5 dépassante, communiquant avec la partie pénétrante 3, comportant un passage axial de fluide depuis la partie pénétrante 3, et comportant au moins un passage radial 5a (et éventuellement 5b) de fluide dans le corps de gicleur 2.In the embodiments illustrated on the figures 4 and following, a cooling nozzle 1 according to the invention, provided for cooling a piston 8 of an internal combustion engine, comprises a nozzle body 2 having a penetrating portion 3 shaped to engage axially in an axial direction of penetration II in a bore of the motor for receiving a cooling fluid arriving through said bore as illustrated by the arrow 4. The cooling nozzle 1 further comprises a protruding outlet structure 5, communicating with the penetrating portion 3, having an axial passage of fluid from the penetrating part 3, and comprising at least one radial passage 5a (and possibly 5b) of fluid in the nozzle body 2.

Dans les modes de réalisation des figures 4 à 8, le gicleur de refroidissement 1 comporte au moins deux tubes de sortie 6 et 7. Chaque tube de sortie 6 ou 7 est cintré de façon appropriée pour positionner et orienter leurs orifices de sortie 16 et 17 respectifs de façon à créer deux jets de fluide de refroidissement distincts respectifs 6a et 7a que l'on distingue sur les figures 1, 2 et 8, et pour diriger les deux jets 6a et 7a vers deux zones de refroidissement respectives distinctes 6b et 7b du piston 8 de moteur. Chaque tube de sortie 6 et 7 est un élément rapporté par emmanchement et brasage, tronçonné et formé à partir d'un tube métallique étiré. On évite ainsi d'avoir à mouler et à usiner des pièces monobloc complexes. Et on met à profit la surface interne très lisse et régulière des tubes métalliques étirés, favorisant un écoulement laminaire du fluide.In the embodiments of Figures 4 to 8 , the cooling nozzle 1 comprises at least two outlet tubes 6 and 7. Each outlet tube 6 or 7 is suitably bent to position and orient their respective outlets 16 and 17 so as to create two respective separate coolant jets 6a and 7a which are distinguished on the figures 1 , 2 and 8 and to direct the two jets 6a and 7a to two respective respective cooling zones 6b and 7b of the engine piston 8. Each outlet tube 6 and 7 is an insert by brazing and brazing, cut and formed from a drawn metal tube. This avoids having to mold and machine complex monobloc parts. And we take advantage of the very smooth and even internal surface of the drawn metal tubes, favoring a laminar flow of the fluid.

Dans le mode de réalisation de la figure 4, le premier tube de sortie 6 comporte un premier tronçon radial de raccordement 6c, généralement perpendiculaire à la direction axiale de pénétration I-I du gicleur dans le corps de moteur, et se raccordant notamment par un coude 6d à un premier tronçon axial de projection 6e à premier orifice 16 qui projette ainsi le jet de fluide de refroidissement 6a selon une direction généralement axiale par rapport au piston 8. Le second tube de sortie 7 comporte un second tronçon radial de raccordement 7c sensiblement perpendiculaire ou fortement angulé par rapport au premier tronçon radial de raccordement 6c, et se raccordant par un coude 7d à un second tronçon axial de projection 7e à second orifice 17 qui projette ainsi un jet de fluide de refroidissement 7a selon une direction généralement axiale, c'est-à-dire parallèle à l'axe de déplacement du piston 8 dans le cylindre moteur, les deux jets de fluide de refroidissement 6a, 7a étant sensiblement écartés l'un de l'autre.In the embodiment of the figure 4 , the first outlet tube 6 comprises a first radial connecting section 6c, generally perpendicular to the axial direction of penetration II of the nozzle in the motor body, and being connected in particular by a bend 6d to a first axial projection section 6e to first orifice 16 which thus projects the jet of cooling fluid 6a in a generally axial direction relative to the piston 8. The second outlet tube 7 comprises a second radial connecting portion 7c substantially perpendicular or substantially angular with respect to the first radial section of connection 6c, and connected by a bend 7d to a second axial projection section 7e to second orifice 17 which thus projects a jet of cooling fluid 7a in a generally axial direction, that is to say parallel to the axis of displacement of the piston 8 in the engine cylinder, the two jets of cooling fluid 6a, 7a being substantially spaced from one of the ther.

Dans le gicleur des figures 1 à 3, deux tubes de sortie 6 et 7 se raccordent au corps de gicleur selon deux passages radiaux distincts 5a et 5b respectifs de la structure de sortie 5 par deux tronçons radiaux de raccordement 6c et 7c. Simultanément, les tronçons radiaux de raccordement 6c et 7c sont sensiblement perpendiculaires l'un par rapport à l'autre et tous deux perpendiculaires à la direction axiale I-I de pénétration. En outre, le premier tube de sortie 6 comporte un tronçon de liaison 6f se développant selon une direction généralement parallèle ou convergente par rapport au second tronçon radial de raccordement 7c du second tube de sortie 7, et se raccordant angulairement d'une part au premier tronçon radial de raccordement 6c par un coude 6d et d'autre part à un premier tronçon axial de projection 6e par un second coude 6g, comme on le voit bien sur la figure 3. Cette forme de gicleur est adaptée pour projeter deux jets de fluide de refroidissement vers deux zones d'un même piston situées de part et d'autre du plan médian du piston.In the jet of Figures 1 to 3 , two outlet tubes 6 and 7 are connected to the nozzle body according to two separate radial passages 5a and 5b respectively of the output structure 5 by two radial connecting sections 6c and 7c. Simultaneously, the connecting radial sections 6c and 7c are substantially perpendicular to each other and both perpendicular to the axial direction II penetration. In addition, the first outlet tube 6 comprises a connecting section 6f developing in a direction generally parallel or convergent with respect to the second radial connecting portion 7c of the second outlet tube 7, and being connected angularly on the one hand to the first radial connection portion 6c by a bend 6d and on the other hand to a first axial projection section 6e by a second bend 6g, as can be seen on the figure 3 . This form of nozzle is adapted to project two jets of cooling fluid to two zones of the same piston located on either side of the median plane of the piston.

C'est ainsi que l'on voit, sur les figures 1 et 2, le gicleur de refroidissement 1, en position dans un moteur face à un piston 8 sollicité par une bielle 9 elle-même oscillant selon le plan médian M-M du piston 8 autour d'un axe d'oscillation II-II. Le plan médian M-M contient l'axe de translation A-A du piston 8, et est perpendiculaire à l'axe d'oscillation II-II de la bielle 9. Le second tronçon radial de raccordement 7c pénètre radialement sous le piston 8 en direction de son axe A-A. Le premier tronçon radial de raccordement 6c contourne le piston 8 selon une portion de sa circonférence, puis le tronçon de liaison 6f pénètre radialement sous le piston 8 en direction de son axe A-A. Si nécessaire, la jupe du piston comprend deux échancrures respectives 8c et 8d pour le passage des tronçons 7c et 6f.This is how we see, on the figures 1 and 2 , the cooling nozzle 1, in position in a motor facing a piston 8 biased by a rod 9 itself oscillating along the median plane MM of the piston 8 about an oscillation axis II-II. The median plane MM contains the translation axis AA of the piston 8, and is perpendicular to the axis of oscillation II-II of the connecting rod 9. The second radial connecting section 7c penetrates radially under the piston 8 towards its axis AA. The first radial connecting portion 6c bypasses the piston 8 along a portion of its circumference, then the connecting portion 6f penetrates radially under the piston 8 in the direction of its axis AA. If necessary, the skirt of the piston comprises two respective notches 8c and 8d for the passage of sections 7c and 6f.

Les deux jets de fluide de refroidissement 6a et 7a produits par le gicleur de refroidissement 1 sont dirigés respectivement vers deux zones de refroidissement 6b et 7b qui sont disposées de part et d'autre du plan médian M-M du piston 8 . Dans ce cas, les deux zones de refroidissement 6b et 7b sont deux orifices d'entrée d'une ou de deux galeries prévues dans la masse du piston 8, de sorte que le fluide de refroidissement pénètre dans la ou les galeries du piston pour se propager au plus près de la surface supérieure de poussée 8e (figure 15) du piston, surface qui reçoit l'énergie calorifique des gaz de combustion.The two jets of cooling fluid 6a and 7a produced by the cooling nozzle 1 are respectively directed towards two cooling zones 6b and 7b which are disposed on either side of the median plane MM of the piston 8. In this case, the two cooling zones 6b and 7b are two inlet openings of one or two galleries provided in the mass of the piston 8, so that the cooling fluid enters the gallery or galleries of the piston to propagate closer to the upper thrust surface 8e ( figure 15 ) of the piston, which surface receives the heat energy of the combustion gases.

Habituellement, les gicleurs de refroidissement sont disposés dans un moteur dans le premier demi-espace P contenant le système d'admission du moteur, pour des questions d'encombrement des canalisations d'amenée d'huile de refroidissement. Cependant, les parties les plus chaudes du moteur, et donc du piston 8, sont dans le second demi-espace S contenant le système d'échappement du moteur. En prévoyant un gicleur de refroidissement 1 qui produit deux jets de fluide de refroidissement 6a et 7a de part et d'autre du plan médian M-M, on peut alimenter deux entrées de galerie qui communiquent, par une galerie en forme de couronne circulaire, ou par deux galeries respectives en secteur de couronne d'angle inférieur à 180°, avec deux zones de piston respectives 8a et 8b dans le demi-espace S. Le refroidissement des zones les plus chaudes 8a et 8b est ainsi équilibré.Usually, the cooling nozzles are arranged in a motor in the first half-space P containing the engine intake system, for issues of size of the cooling oil supply pipes. However, the hottest parts of the engine, and therefore the piston 8, are in the second half space S containing the engine exhaust system. By providing a cooling nozzle 1 which produces two jets of cooling fluid 6a and 7a on either side of the median plane MM, it is possible to feed two gallery entrances which communicate, by a circular ring-shaped gallery, or by two respective galleries in angle ring sector less than 180 °, with two respective piston zones 8a and 8b in the half-space S. The cooling of the hottest zones 8a and 8b is thus balanced.

Dans le mode de réalisation illustré sur les figures 4 et 5, la structure de sortie comprend un premier tube de sortie 6 qui se raccorde au corps de gicleur selon un passage radial unique 5a. Le premier tube de sortie 6 a le premier orifice 16 et comporte un tronçon intermédiaire 6h de plus grand diamètre auquel se raccorde le second tube de sortie 7 qui a le second orifice 17.In the embodiment illustrated on the Figures 4 and 5 the outlet structure comprises a first outlet tube 6 which connects to the nozzle body in a single radial passage 5a. The first outlet tube 6 has the first orifice 16 and has an intermediate portion 6h of larger diameter to which is connected the second outlet tube 7 which has the second orifice 17.

Dans la réalisation plus spécifiquement illustrée sur la figure 5, le premier tube de sortie 6 comporte un tronçon amont 6c1, un tronçon aval 6c2, un coude 6d et un tronçon axial de projection 6e, et un manchon intermédiaire 6c3 formant le tronçon intermédiaire 6h de plus grand diamètre que les tronçons amont 6c1 et aval 6c2. Le tronçon amont 6c1 est engagé par ses extrémités respectives dans le passage radial 5a de corps de gicleur et dans une première extrémité du manchon 6c3. Le tronçon aval 6c2 est engagé dans la seconde extrémité du manchon 6c3. Le manchon 6c3 est percé d'un trou latéral 6j dans lequel est engagée l'extrémité amont du second tube de sortie 7.In the realization more specifically illustrated on the figure 5 , the first outlet tube 6 comprises an upstream section 6c1, a downstream section 6c2, a bend 6d and an axial projection section 6e, and an intermediate sleeve 6c3 forming the intermediate section 6h of larger diameter than the upstream sections 6c1 and downstream 6c2. The upstream section 6c1 is engaged by its respective ends in the radial passage 5a of the nozzle body and in a first end of the sleeve 6c3. The downstream section 6c2 is engaged in the second end of the sleeve 6c3. The sleeve 6c3 is pierced with a lateral hole 6j in which is engaged the upstream end of the second outlet tube 7.

Selon une variante illustrée sur les figures 6 et 7, le tronçon amont 6c1 et le manchon 6c3 sont d'une seule pièce.According to an illustrated variant on the Figures 6 and 7 , the upstream section 6c1 and the sleeve 6c3 are in one piece.

Dans les deux cas, l'écartement entre les deux jets de fluide de refroidissement 6a et 7a est important, mais le déport des tubes vers l'extérieur est insuffisant pour placer les orifices 16 et 17 de part et d'autre du plan médian M-M. On place alors le gicleur de refroidissement 1 avec ses deux tubes de sortie 6 et 7 selon un même côté du plan médian M-M.In both cases, the spacing between the two jets of cooling fluid 6a and 7a is important, but the offset of the tubes to the outside is insufficient to place the orifices 16 and 17 on either side of the median plane MM . Then place the cooling nozzle 1 with its two outlet tubes 6 and 7 on the same side of the median plane MM.

On peut concevoir, selon l'invention, des gicleurs ayant plus de deux tubes de sortie, pour générer plus de deux jets de fluide de refroidissement.According to the invention, nozzles having more than two outlet tubes can be designed to generate more than two jets of cooling fluid.

Dans les réalisations illustrées sur les figures 1 à 4 et 6 à 8, l'un au moins des tubes de sortie 6 et 7 comporte un rétreint formant un tronçon d'extrémité 6i et 7i à diamètre réduit, dont l'effet technique est :

  • de garantir une grande précision du diamètre intérieur du tube, et donc de garantir une bonne précision du débit de fluide de refroidissement,
  • d'améliorer la qualité du jet, produisant un jet laminaire et non diffus,
  • d'augmenter la vitesse et la précision du jet en sortie du tube,
  • de définir aisément les débits identiques ou différents des tubes de sortie 6 et 7, en fonction des différentes zones de piston plus ou moins prioritaires à refroidir.
In the illustrated achievements on the Figures 1 to 4 and 6 to 8, at least one of the outlet tubes 6 and 7 comprises a narrowing forming an end section 6i and 7i with reduced diameter, the technical effect of which is:
  • to guarantee a high accuracy of the inside diameter of the tube, and thus to guarantee a good accuracy of the flow rate of cooling fluid,
  • to improve the quality of the jet, producing a laminar and non-diffuse jet,
  • to increase the speed and the precision of the jet at the outlet of the tube,
  • to easily define the same or different flow rates of the outlet tubes 6 and 7, depending on the different piston zones more or less priority to cool.

Pour maximiser le pourcentage de fluide de refroidissement qui pénètre dans la ou les galeries du piston 8, par rapport au débit total traversant le gicleur, on peut avantageusement conformer les tubes du gicleur de façon que les jets de fluide de refroidissement soient parallèles à l'axe A-A du piston 8.To maximize the percentage of cooling fluid that enters the gallery or galleries of the piston 8, relative to the total flow through the nozzle, it is advantageous to conform the tubes of the nozzle so that the jets of cooling fluid are parallel to the AA axis of the piston 8.

Toutefois, dans certaines configurations de moteurs, il faut écarter le gicleur radialement à l'écart de l'axe A-A du piston 8. On peut alors trouver avantage à prévoir que les jets de refroidissement 6a et 7a sont inclinés dans un plan radial selon un angle légèrement rentrant de quelques degrés par rapport à l'axe A-A du piston 8.However, in certain engine configurations, it is necessary to spread the nozzle radially away from the axis AA of the piston 8. It can then be found advantageous to provide that the cooling jets 6a and 7a are inclined in a radial plane according to a angle slightly falling a few degrees from the axis AA of the piston 8.

Les figures 9 à 14 illustrent un gicleur de refroidissement comportant un tube de sortie recevant un embout de sortie permettant de diviser le jet de fluide de refroidissement en deux jets 6a et 7a.The Figures 9 to 14 illustrate a cooling nozzle having an outlet tube receiving an outlet tip for dividing the jet of cooling fluid into two jets 6a and 7a.

Il est à noter que le gicleur de refroidissement des figures 9 à 14 ne correspond pas à l'objet de la revendication 1. Ces figures 9 à 14 permettent toutefois d'illustrer l'objet des revendications 7 et 8.It should be noted that the cooling nozzle of Figures 9 to 14 does not correspond to the subject-matter of claim 1. These Figures 9 to 14 However, it is possible to illustrate the subject-matter of claims 7 and 8.

Dans le mode de réalisation des figures 9 à 14, on retrouve un gicleur 1 ayant un corps de gicleur 2 avec une partie pénétrante 3 et une structure de sortie 5 à passage radial 5a.In the embodiment of Figures 9 to 14 , there is a nozzle 1 having a nozzle body 2 with a penetrating portion 3 and an outlet structure 5 radial passage 5a.

On retrouve également un tube de sortie 6 cintré, dont la première extrémité est emmanchée dans le trou radial 5a et dont la seconde extrémité s'emmanche dans un embout de sortie 10.There is also a curved outlet tube 6, the first end of which is fitted into the radial hole 5a and the second end of which engages in an outlet endpiece 10.

Comme on le voit sur la figure 10, l'embout de sortie 10 présente un trou axial d'entrée 10a conformé pour s'emmancher sur l'extrémité aval du tube de sortie 6, et communiquant avec deux trous de sortie 10b et 10c divergents destinés à être orientés vers les zones de refroidissement respectives du piston. Ainsi, les deux trous de sortie 10b et 10c définissent les orifices de sortie respectifs 16 et 17 du gicleur de refroidissement.As we see on the figure 10 , the outlet tip 10 has an axial inlet hole 10a shaped to engage on the downstream end of the outlet tube 6, and communicating with two divergent exit holes 10b and 10c intended to be oriented towards the zones of respective cooling of the piston. Thus, the two outlet holes 10b and 10c define the respective outlet orifices 16 and 17 of the cooling nozzle.

Le trou axial d'entrée 10a peut avantageusement avoir une forme cylindrique à section circulaire adaptée pour recevoir l'extrémité aval cylindrique du tube de sortie 6.The axial inlet hole 10a may advantageously have a circular-section cylindrical shape adapted to receive the cylindrical downstream end of the outlet tube 6.

Les deux trous de sortie 10b et 10c peuvent avoir des diamètres différents, par exemple le trou de sortie 16 peut avoir un diamètre supérieur au diamètre du trou de sortie 17. Les diamètres sont choisis de façon à réaliser une meilleure répartition des débits sortant par chaque orifice, en augmentant le débit pour arroser les zones prioritaires à refroidir, et en réduisant le débit pour arroser les zones moins prioritaires à refroidir. Les angles d'orientation des trous de sortie 10b et 10c sont choisis pour correspondre aux emplacements des zones de refroidissement respectives du piston. A leur extrémité amont, les trous de sortie 10b et 10c sont plus rapprochés l'un de l'autre, de façon à communiquer directement avec l'intérieur du tube de sortie 6.The two exit holes 10b and 10c may have different diameters, for example the outlet hole 16 may have a diameter greater than the diameter of the outlet hole 17. The diameters are chosen so as to achieve a better distribution of the outflow rates by each orifice, increasing the flow rate to water the priority areas to be cooled, and reducing the flow rate to water the lower priority areas to cool. The orientation angles of the exit holes 10b and 10c are chosen to correspond to the locations of the respective cooling zones of the piston. At their upstream end, the outlet holes 10b and 10c are closer to one another so as to communicate directly with the inside of the outlet tube 6.

L'embout de sortie 10 comprend, sur sa face périphérique externe, au moins un plat 11 ou 12 tels qu'illustrés sur les figures 9, 11 et 12, le plat 11 ou 12 permettant de repérer et de fixer la position angulaire de l'embout de sortie 10 autour du tube de sortie 6, permettant d'orienter en rotation les deux trous de sortie 16 et 17 lors du montage de l'embout 10 sur le tube de sortie 6.The outlet tip 10 comprises, on its outer peripheral face, at least one plate 11 or 12 as illustrated in FIGS. Figures 9, 11 and 12 , the plate 11 or 12 for identifying and fixing the angular position of the outlet nozzle 10 around the outlet tube 6, for rotating the two outlet holes 16 and 17 during the mounting of the nozzle 10 on the outlet tube 6.

L'embout de sortie 10 peut être utilisé indépendamment de la présence des autres caractéristiques de nombre et de forme des tubes de sortie 6 et 7.The outlet tip 10 may be used regardless of the presence of the other number and shape characteristics of the outlet tubes 6 and 7.

Dans tous les modes de réalisation, les extrémités proximales des tubes de sortie 6 et 7 sont emmanchées et brasées. Ainsi, la figure 16 illustre en coupe l'emmanchement du tube de sortie 7 dans le passage radial 5b du corps de gicleur 2, pour le gicleur de la figure 3. La figure 5 illustre en coupe l'emmanchement des deux tubes 6 et 7. La figure 14 illustre également l'emmanchement du tube de sortie 6 dans le corps de gicleur 2.In all embodiments, the proximal ends of the outlet tubes 6 and 7 are fitted and brazed. So, the figure 16 illustrates in section the fitting of the outlet tube 7 in the radial passage 5b of the nozzle body 2, for the jet of the figure 3 . The figure 5 illustrates in section the fitting of the two tubes 6 and 7. figure 14 also illustrates the fitting of the outlet tube 6 in the nozzle body 2.

Dans un moteur à combustion interne comprenant au moins un gicleur de refroidissement 1 tel que défini précédemment, le gicleur de refroidissement 1 peut être conformé et positionné de façon à créer et diriger au moins deux jets de fluide de refroidissement 6a et 7a vers deux entrées de galeries respectives 6b et 7b creusées dans la masse d'un piston 8, comme illustré sur les figures 1 et 2.In an internal combustion engine comprising at least one cooling nozzle 1 as defined above, the cooling nozzle 1 may be shaped and positioned so as to create and direct at least two jets of cooling fluid 6a and 7a to two inlet ducts. respective galleries 6b and 7b hollowed out in the mass of a piston 8, as illustrated in FIGS. figures 1 and 2 .

Un gicleur selon les figures 4 à 7 peut projeter deux jets de fluide de refroidissement vers deux zones 6b et 7b situés d'un même côté du plan médian M-M, ou vers deux zones 6b et 7b de part et d'autre du plan M-M. Dans ce dernier cas l'efficacité est réduite, car la bielle 9 coupe momentanément le jet 7a pendant une portion de son cycle de déplacement.A nozzle according to Figures 4 to 7 can project two jets of cooling fluid to two zones 6b and 7b located on the same side of the median plane MM, or to two zones 6b and 7b on either side of the plane MM. In the latter case the efficiency is reduced because the connecting rod 9 momentarily cuts the jet 7a during a portion of its travel cycle.

La présente invention n'est pas limitée aux modes de réalisation qui ont été explicitement décrits, mais elle en inclut les diverses variantes et généralisations contenues dans le domaine des revendications ci-après.The present invention is not limited to the embodiments which have been explicitly described, but it includes the various variants and generalizations thereof within the scope of the claims below.

Claims (13)

  1. Cooling nozzle (1) for cooling a piston (8) of an internal combustion engine, the nozzle including a nozzle body (2) having a penetrating portion (3) conformed to be engaged axially in a bore in the engine in an axial penetration direction (I-I) and to receive a cooling fluid arriving via said bore, and the nozzle including an outlet structure (5) having at least one first outlet passage and one second outlet passage adapted to direct toward the piston (8) to be cooled at least two separate jets (6a, 7a) of cooling fluid,
    characterized in that :
    - the outlet structure (5) comprises a single radial passage (5a) in the nozzle body (2),
    - a first outlet tube (6) is connected to the sprayer body (2) by a single radial passage (5a),
    - the first outlet tube (6) includes a first radial connecting section (6c) generally perpendicular to the axial penetration direction (I-I), connected by an elbow (6d) to a first axial spraying section (6e),
    - the first outlet tube (6) receives an attached element (7 ; 10) allowing to separate the cooling fluid jet into two jets (6a, 7a).
  2. Cooling nozzle according to claim 1, characterized in that the outlet tube (6) is connected to the nozzle body (2) by the single radial passage (5a) in which proximal end of the outlet tube (6) is force fitted and brazed.
  3. Cooling nozzle according to either of claims 1 and 2, characterized in that :
    - the first axial spraying section (6e) ends by a first orifice (16),
    - the first outlet tube (6) forms the first outlet passage,
    - the second outlet passage comprises a second outlet tube (7) including a second radial connecting section (7c) offset angularly away from the first radial connecting section (6c) and connected by an elbow (7d) to a second axial spraying section (7e) terminating at a second orifice (17).
  4. Cooling nozzle according to claim 3, characterized in that the first outlet tube (6) including the first orifice (16) has a larger diameter intermediate section (6h) to which the second outlet tube (7) including the second orifice (17) is connected.
  5. Cooling nozzle according to claim 4, characterized in that the first outlet tube (6) has an upstream section (6c1), a downstream section (6c2), and an intermediate sleeve (6c3) of larger diameter than the upstream section (6c1) and the downstream section (6c2), the upstream section (6c1) having its respective ends engaged in the radial passage (5a) in the sprayer body (2) and in a first end of the sleeve (6c3), the downstream section (6c2) being engaged in the second end of the sleeve (6c3), and the sleeve (6c3) including a lateral bore (6j) in which the upstream end of the second outlet tube (7) is engaged.
  6. Cooling nozzle according to any one of claims 1 to 5, characterized in that at least one of the outlet tubes (6, 7) includes a constriction forming a smaller diameter end section (6i, 7i).
  7. Cooling nozzle according to either of claims 1 and 2, characterized in that the outlet tube (6) is connected to an outlet end-piece (10) including the two outlet orifices (16, 17), the end-piece (10) having an axial inlet hole (10a) force fitted over the downstream end of the outlet tube (6) and communicating with two diverging outlet holes (10b, 10c) adapted to be oriented toward the respective cooling areas (6b, 7b) of the piston (8).
  8. Cooling nozzle according to claim 7, characterized in that the outlet end-piece (10) has on its external peripheral surface at least one flat (11, 12) for identifying and fixing the angular position of the outlet end-piece (10) around the outlet tube (6).
  9. Internal combustion engine, characterized in that it includes at least one nozzle (1) according to any one of claims 1 to 8, conformed and positioned so as to create and direct at least two jets (6a, 7a) of cooling fluid toward two respective tunnel inlets (6b, 7b) hollowed into the mass of a piston (8).
  10. Engine according to claim 9, characterized in that the jets (6a, 7a) of cooling fluid are parallel to the axis (A-A) of the piston (8).
  11. Engine according to claim 9, characterized in that the jets (6a, 7a) of cooling fluid are inclined in a radial plane at a slightly re-entrant angle of a few degrees with respect to the axis (A-A) of the piston (8).
  12. Engine according to any one of claims 9 to 11, characterized in that the two tunnel inlets (6b, 7b) each communicate with a respective tunnel in the shape of a sector of a ring subtending an angle of less than 180°.
  13. Engine according to any one of claims 9 to 11, characterized in that the two tunnel inlets (6b, 7b) communicate with the same ring-shaped tunnel.
EP03356125A 2002-09-02 2003-08-28 Spray nozzle with multiple jets for cooling an internal combustion engine and engine with such nozzle Revoked EP1394376B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0211081 2002-09-02
FR0211081A FR2844002B1 (en) 2002-09-02 2002-09-02 MULTI-PROJECTION SPRINKLER FOR ENGINE COOLING, AND ENGINES EQUIPPED WITH SUCH SPRAYERS
FR0214550 2002-11-15
FR0214550A FR2844003B1 (en) 2002-09-02 2002-11-15 MULTI-PROJECTION SPRINKLER FOR ENGINE COOLING, AND ENGINES EQUIPPED WITH SUCH SPRAYERS

Publications (2)

Publication Number Publication Date
EP1394376A1 EP1394376A1 (en) 2004-03-03
EP1394376B1 true EP1394376B1 (en) 2010-01-06

Family

ID=31497218

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03356125A Revoked EP1394376B1 (en) 2002-09-02 2003-08-28 Spray nozzle with multiple jets for cooling an internal combustion engine and engine with such nozzle

Country Status (12)

Country Link
US (1) US6895905B2 (en)
EP (1) EP1394376B1 (en)
JP (1) JP2004124938A (en)
CN (1) CN1306151C (en)
AR (1) AR041115A1 (en)
AT (1) ATE454542T1 (en)
BR (1) BR0313912A (en)
DE (1) DE60330831D1 (en)
FR (1) FR2844003B1 (en)
MX (1) MXPA05002358A (en)
PL (1) PL374559A1 (en)
WO (1) WO2004020800A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102120925B1 (en) 2013-04-11 2020-06-09 본타즈 센트레 알앤디 Compact cooling device for an internal combustion engine and method for manufacturing such a device

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2859756B1 (en) * 2003-09-16 2007-09-21 Bontaz Centre Sa COOLING DEVICE FOR MOTOR PISTONS.
US7086354B2 (en) 2003-10-29 2006-08-08 Deere & Company Cooling nozzle mounting arrangement
DE102004056769A1 (en) * 2004-11-24 2006-06-01 Federal-Mogul Nürnberg GmbH Piston for an internal combustion engine and combination of a piston with an oil injection assembly
JP4716775B2 (en) * 2005-04-13 2011-07-06 光精工株式会社 Oil jet for piston cooling
DE102005061059A1 (en) * 2005-12-21 2007-06-28 Mahle International Gmbh Piston for internal combustion engine has piston head side regions of gudgeon-pin hub reinforced radially inward, and oil outflow borings directed to these regions
KR100837948B1 (en) 2006-10-10 2008-06-13 현대자동차주식회사 Cooling jet structure for automobile
DE102006056012A1 (en) * 2006-11-28 2008-05-29 Ks Kolbenschmidt Gmbh Variable design cooling channel for one piston
DE102006056011A1 (en) * 2006-11-28 2008-05-29 Ks Kolbenschmidt Gmbh Liquid-cooled piston for e.g. diesel internal-combustion engine, has medium in free jet of nozzles entering into openings, where jet is directed parallel to longitudinal axis of piston, and lower side loaded with medium by jet
JP4379515B2 (en) * 2006-12-08 2009-12-09 トヨタ自動車株式会社 Internal combustion engine
CN101113730B (en) * 2007-08-03 2010-05-19 宝鸡石油机械有限责任公司 Drill pump cylinder sleeve inside and outside superficial cooling device
US8122859B2 (en) * 2008-10-22 2012-02-28 Cummins, Inc. Nylon body located piston cooling nozzle
CN101865015B (en) * 2010-06-02 2011-11-16 奇瑞汽车股份有限公司 Piston cooling nozzle
DE102012200279A1 (en) * 2012-01-11 2013-07-11 Ford Global Technologies, Llc Method and apparatus for operating a lubrication system of an internal combustion engine
US8875668B2 (en) * 2012-08-31 2014-11-04 Honda Motor Co., Ltd. Apparatus configured to shelter oil-jet device from inadvertent installation damage
WO2014077964A1 (en) * 2012-10-10 2014-05-22 Cummins Inc. Piston cooling arrangement
CN103184918A (en) * 2012-12-29 2013-07-03 中国兵器工业集团第七0研究所 Piston cooling device for opposed piston two-stroke internal combustion engine
JP6002657B2 (en) 2013-02-28 2016-10-05 本田技研工業株式会社 Piston cooling system
JP6148111B2 (en) * 2013-08-09 2017-06-14 トヨタ自動車株式会社 Oil jet
JP6288435B2 (en) * 2014-03-13 2018-03-07 三菱自動車工業株式会社 Engine piston cooling structure
DE102014005364A1 (en) 2014-04-11 2015-10-29 Mahle International Gmbh Assembly of a piston and an oil spray nozzle for an internal combustion engine
US9850801B2 (en) * 2015-08-28 2017-12-26 Kawasaki Jukogyo Kabushiki Kaisha Piston cooling structure in combustion engine
ITUB20153993A1 (en) 2015-09-29 2017-03-29 Fpt Motorenforschung Ag LUBRICATION OIL CIRCUIT AND COOLING OF AN INTERNAL COMBUSTION ENGINE
ITUB20154005A1 (en) 2015-09-29 2017-03-29 Fpt Motorenforschung Ag PISTON COOLING SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
GB201519640D0 (en) * 2015-11-06 2015-12-23 Gm Global Tech Operations Inc Piston cooling jet for an internal combustion engine
FR3043343B1 (en) * 2015-11-09 2019-08-02 Bontaz Centre R & D DEVICE FOR PROJECTING A FLUID AND COOLING SPRAY HAVING SUCH A DEVICE
CN105736112B (en) * 2016-02-05 2018-04-24 重庆科克发动机技术有限公司 A kind of engine cool Lubricating oil nozzle
CN106285895A (en) * 2016-08-29 2017-01-04 潍柴动力股份有限公司 A kind of electromotor and piston cooling nozzle assembly
DE102016221353A1 (en) * 2016-10-28 2018-05-03 Mahle International Gmbh Internal combustion engine
WO2018164878A1 (en) * 2017-03-07 2018-09-13 Illinois Tool Works Inc. Piston cooling jet assembly
FR3065025A1 (en) * 2017-04-11 2018-10-12 Peugeot Citroen Automobiles Sa HYDRAULIC FLOW LIMITER AND HYDRAULIC THERMAL ENGINE CYLINDER DEACTIVATION DEVICE
US10704450B2 (en) * 2017-06-16 2020-07-07 Illinois Tool Works Inc. Piston cooling jet assembly
JP2019052604A (en) * 2017-09-15 2019-04-04 スズキ株式会社 Internal combustion engine
US10895191B2 (en) * 2019-06-07 2021-01-19 Bendix Commercial Vehicle Systems Llc Fluid compressor and method of operating a fluid compressor to reduce oil carryover by a compressor piston assembly
US11333140B2 (en) * 2019-06-11 2022-05-17 Caterpillar Inc. Cooling block for multi-cylinder air compressor
US11248515B2 (en) * 2019-08-02 2022-02-15 Transportation Ip Holdings, Llc Piston cooling jet system
USD921044S1 (en) * 2019-08-02 2021-06-01 Transportation Ip Holdings, Llc Piston cooling apparatus
USD928201S1 (en) * 2019-08-02 2021-08-17 Transportation Ip Holdings, Llc Piston cooling apparatus
FR3109608B1 (en) * 2020-04-22 2023-01-13 Bontaz Centre R & D DOUBLE JET PISTON COOLING JET IN PLASTIC MATERIAL
USD965029S1 (en) * 2020-09-11 2022-09-27 Transportation Ip Holdings, Llc Piston cooling jet
CN113738513A (en) * 2021-09-07 2021-12-03 中国航空发动机研究院 Cooling device and ship power airflow cooler

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389908U (en) * 1989-12-29 1991-09-12
JPH07243313A (en) * 1994-02-28 1995-09-19 Unisia Jecs Corp Cylinder lubricating device in internal combustion engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206726A (en) * 1977-07-18 1980-06-10 Caterpillar Tractor Co. Double orifice piston cooling nozzle for reciprocating engines
US4408575A (en) * 1981-01-23 1983-10-11 Caterpillar Tractor Co. Nozzle assembly for controlled spray
EP0154939B1 (en) * 1984-03-13 1990-12-27 Ludwig Elsbett Oil-cooled, two-piece linked piston
US4979473A (en) 1989-10-20 1990-12-25 Cummins Engine Company, Inc. Piston cooling nozzle
WO1993005285A1 (en) * 1991-09-09 1993-03-18 Caterpillar Inc. A piston cooling nozzle
US5267534A (en) 1991-09-09 1993-12-07 Caterpillar Inc. Piston cooling nozzle
FR2719868B1 (en) * 1994-05-10 1996-06-21 Bontaz Centre Piston cooling nozzle for internal combustion engine.
JP3106058B2 (en) * 1994-05-20 2000-11-06 株式会社ユニシアジェックス Lubrication and cooling equipment for internal combustion engines
US5649505A (en) * 1996-01-18 1997-07-22 Cummins Engine Company, Inc. Multiple-hole, piston cooling nozzle and assembly arrangement therefore
FR2745329B1 (en) * 1996-02-23 1998-03-27 Renault LUBRICATION CIRCUIT FOR INTERNAL COMBUSTION ENGINE
DE19633167A1 (en) * 1996-08-17 1998-02-19 Porsche Ag Spray nozzle for the piston cooling of an internal combustion engine
DE19634742A1 (en) * 1996-08-28 1998-03-05 Deutz Ag Internal combustion engine with piston lubricating and cooling oil injector
KR100208752B1 (en) * 1996-10-16 1999-07-15 정몽규 Oil jet apparatus
FR2827009B1 (en) 2001-07-04 2003-12-12 Bontaz Centre Sa PISTON COOLING JET

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389908U (en) * 1989-12-29 1991-09-12
JPH07243313A (en) * 1994-02-28 1995-09-19 Unisia Jecs Corp Cylinder lubricating device in internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102120925B1 (en) 2013-04-11 2020-06-09 본타즈 센트레 알앤디 Compact cooling device for an internal combustion engine and method for manufacturing such a device

Also Published As

Publication number Publication date
FR2844003B1 (en) 2006-06-16
EP1394376A1 (en) 2004-03-03
WO2004020800A1 (en) 2004-03-11
JP2004124938A (en) 2004-04-22
BR0313912A (en) 2005-07-12
CN1487177A (en) 2004-04-07
US6895905B2 (en) 2005-05-24
CN1306151C (en) 2007-03-21
US20040040520A1 (en) 2004-03-04
PL374559A1 (en) 2005-10-31
AR041115A1 (en) 2005-05-04
ATE454542T1 (en) 2010-01-15
MXPA05002358A (en) 2005-09-30
DE60330831D1 (en) 2010-02-25
FR2844003A1 (en) 2004-03-05

Similar Documents

Publication Publication Date Title
EP1394376B1 (en) Spray nozzle with multiple jets for cooling an internal combustion engine and engine with such nozzle
CA2647145C (en) Device for guiding an element into an orifice of a gas turbine combustion chamber wall
EP0651207B1 (en) Diffuser comprising three groups of air supply channels wherein certain dividing walls are integral with guide blades of the compressor
EP2014988B1 (en) Optimisation of an anti-coke film in an injection system
EP1980729B1 (en) Cooling nozzle with valve
EP0842398B1 (en) Single jet liquide meter with improved motor torque
EP2789824A1 (en) Compact cooling device for internal combustion engine and method for manufacturing such a device
WO2018059793A1 (en) Cleaning device intended for spraying at least one fluid towards a surface to be cleaned of a motor vehicle
EP2683930B1 (en) Injector for mixing two propellants comprising at least one injection element with a tricoaxial structure
EP2856036A2 (en) Turbomachine combustion chamber shell ring
EP1941158B1 (en) Radial piston-type hydraulic motor with cylinder block cooling
EP3286500B1 (en) Turbomachine combustion chamber comprising an airflow guide device of specific shape
EP0095951B1 (en) Piston shaft and piston, especially for internal-combustion engines equipped with such a shaft
FR3043343B1 (en) DEVICE FOR PROJECTING A FLUID AND COOLING SPRAY HAVING SUCH A DEVICE
EP1529935B1 (en) Jet for piston cooling with reduced inter-axle
WO2019239033A1 (en) Rotary planet carrier for a mechanical reduction gear of a turbomachine
WO2019239032A1 (en) Device for oil distribution for a rotating planet carrier of a step-down gear of a turbomachine
FR2910065A1 (en) Cylinder cover for spark ignition internal combustion engine, has vertical vortex generating ring with intake gas deflector element that is extended from part of peripheral edge of opening and extended out of plane of opening
FR3066786A1 (en) INTERNAL COMBUSTION ENGINE HEAD
EP4042070A1 (en) Pre-vaporisation tube for a turbine engine combustion chamber
FR2464366A2 (en) Exhaust manifold for supercharged IC engine - has cylinder connection or ports with surface area determined in accordance with given formula
EP2354524B1 (en) Acoustic attenuation device for an intake line of a thermal engine, flexible tube and intake line comprising such a device
FR2868132A1 (en) Air supply installation for internal combustion engine, has air collector comprising air guide installation that extends until half of admission tube so that half of tube is covered by guide installation
FR2673705A1 (en) Combustion chamber of a turbine engine equipped with an anti-coking device for the bottom of said chamber
EP1944477A1 (en) Valve seat machined in several chamfers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040511

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070416

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60330831

Country of ref document: DE

Date of ref document: 20100225

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100417

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100506

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SCHMITTERGROUP AG

Effective date: 20101005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100406

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

BERE Be: lapsed

Owner name: BONTAZ CENTRE

Effective date: 20100831

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100828

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60330831

Country of ref document: DE

Representative=s name: VON BUELOW & TAMADA PATENTANWALTSGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Effective date: 20141016

Ref country code: FR

Ref legal event code: TP

Owner name: BONTAZ CENTRE R & D, FR

Effective date: 20141016

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20141023 AND 20141029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60330831

Country of ref document: DE

Representative=s name: VON BUELOW & TAMADA PATENTANWALTSGESELLSCHAFT, DE

Effective date: 20141029

Ref country code: DE

Ref legal event code: R081

Ref document number: 60330831

Country of ref document: DE

Owner name: BONTAZ CENTRE R&D, FR

Free format text: FORMER OWNER: BONTAZ CENTRE, MARNAZ, FR

Effective date: 20141029

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BONTAZ CENTRE R & D

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190812

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190830

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191021

Year of fee payment: 17

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 60330831

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 60330831

Country of ref document: DE

APAN Information on closure of appeal procedure modified

Free format text: ORIGINAL CODE: EPIDOSCNOA9O

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: FI

Ref legal event code: MGE

27W Patent revoked

Effective date: 20200515

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20200515