[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1381020A2 - Method for displaying images on a display device, as well as a display device used therefor - Google Patents

Method for displaying images on a display device, as well as a display device used therefor Download PDF

Info

Publication number
EP1381020A2
EP1381020A2 EP03077322A EP03077322A EP1381020A2 EP 1381020 A2 EP1381020 A2 EP 1381020A2 EP 03077322 A EP03077322 A EP 03077322A EP 03077322 A EP03077322 A EP 03077322A EP 1381020 A2 EP1381020 A2 EP 1381020A2
Authority
EP
European Patent Office
Prior art keywords
image
display
stabilisation
display device
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03077322A
Other languages
German (de)
French (fr)
Other versions
EP1381020A3 (en
Inventor
Robbie Thielemans
Peter Gerets
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Barco NV
Original Assignee
Barco NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barco NV filed Critical Barco NV
Publication of EP1381020A2 publication Critical patent/EP1381020A2/en
Publication of EP1381020A3 publication Critical patent/EP1381020A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • G06F3/1446Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display display composed of modules, e.g. video walls
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/147Digital output to display device ; Cooperation and interconnection of the display device with other functional units using display panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • G09F9/3026Video wall, i.e. stackable semiconductor matrix display modules
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/026Video wall, i.e. juxtaposition of a plurality of screens to create a display screen of bigger dimensions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/066Adjustment of display parameters for control of contrast
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/02Graphics controller able to handle multiple formats, e.g. input or output formats
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/18Timing circuits for raster scan displays

Definitions

  • the present invention concerns a method for displaying images on a display device, as well as a display device for realising this method.
  • the invention concerns display devices comprising a display which consists of several display units, whereby these display units are driven by means of a general processing unit, as well as by means of individual processing units per display unit.
  • the invention is particularly meant for display devices comprising display units whereby the image is reproduced by means of what are called LED's (Light Emitting Diodes).
  • a LED wall can so to say be built in this manner. It is also known that, by building the LED wall from groups of LED's of different colours, in particular red, blue and green, by appropriately adjusting the intensity of the different LED's, it is possible to obtain various global colour effects. Also, by means of an appropriate control of the LED's, it is possible to reproduce moving images in colour, for example video images, on the LED wall.
  • Such display devices can be used for different purposes, for example for displaying images in stadiums, information and/or publicity in public buildings, such as for example airports, stations, etc.
  • Display devices using LEDs are known from US 5.523.769, US 5.396.257 and FR 2.640.761.
  • the invention aims a method for representing images on a display device, whereby this method allows to improve the quality of the image.
  • the method of the invention is designed for LED screens, but it can also be applied in a more general way in other display devices, such as CRT/LCD/DLP projectors and the like.
  • the invention concerns a method for displaying images on a display device, whereby the data for forming the successive images are transformed in signals for a display, characterized in that the image display is improved by evaluating the above-mentioned data and by applying a dynamic image stabilisation on the basis of this evaluation, whereby one or several of the following techniques are used for the dynamic image stabilisation:
  • a display device comprising at least a general processing unit, a display consisting of several display units and an individual processing unit per display unit, whereby, in order to display the images, data concerning the image to be displayed are transmitted from the general processing unit to the individual processing units in the form of a data stream, in that there is a control communication between the general processing unit and each of the individual processing units in the form of control signals, and in that data from the data stream are collected at every individual processing unit as a function of the control signals transmitted to the individual processing units.
  • every display unit can work independently of the other ones, requiring no communication with a central individual processing unit.
  • no mutual data exchange is required between the individual processing units, there will be less data transmission, making more calculation time and calculation capacity available for processing the signals in the individual processing units.
  • a distributed signal processing will be provided for according to the invention between the general processing unit on the one hand and the individual processing units on the other hand.
  • the invention also concerns a display device for realising the above-mentioned method, characterised in that it consists at least of a general processing unit; a display consisting of several display units; an individual processing unit per display unit; means which transmit at least data concerning the image to be displayed transmitted from the general processing unit to the individual processing units in the form of a data stream; means providing for a control communication between the general processing unit and each of the individual processing units in the form of control signals; and, per individual processing unit, means which collect data from the data stream as a function of the transmitted control signals for further processing and display.
  • a display device for realising the above-mentioned method, characterised in that it consists at least of a general processing unit; a display consisting of several display units; an individual processing unit per display unit; means which transmit at least data concerning the image to be displayed transmitted from the general processing unit to the individual processing units in the form of a data stream; means providing for a control communication between the general processing unit and each of the individual processing units in the form of control signals; and,
  • the display device 1 mainly consists of a general processing unit 2 and a display 3 consisting of a screen which is composed of several display units 4, whereby every display unit 4 is equipped with an individual processing unit 5.
  • the general processing unit 2 also called digitizer or video engine, consists of an appliance which transforms image signals, either coming from an external source or from an internal source, such as a built-in video player, into digitised signals which are suitable for the reproduction of the image on the display 3.
  • the display units 4 consist of tile-shaped modules which, as represented in figure 1, can be assembled by attaching them on an appropriate supporting structure, for example a frame 6.
  • the modules are preferably fastened in the frame 6 in a detachable manner, for example by making use of fastening elements 7, as represented in figure 4, with which the modules can be snapped in the frame 6.
  • the image side 8 as shown in figure 2 and 3 of the display units 4 is equipped with luminous elements, in particular LED's (Light Emitting Diodes), which are indicated hereafter in a general manner with the reference 9, but which are indicated with the references 9A to 9E when represented in detail.
  • LED's Light Emitting Diodes
  • the LED's 9A and 9E are red for example, whereas the LED's 9B and 9D are green and the LED's 9C are blue.
  • Every set of LED's 9 hereby forms a pixel of the images to be formed. It should be noted that such a pixel can be composed in different ways, of three colours or of a combination of different groups of LED's 9.
  • the LED's 9A-9B-9C form a group of basic colours with which all colours can be formed. The same goes for the LED's 9B-9C-9E as well as for 9D-9C-9E and 9A-9C-9D.
  • the display device 1 is equipped with means 10 which at least transmit data concerning the image to be displayed transmitted from the general processing unit 2 to the individual processing units 5 in the form of a data stream 11; means 12 providing for a control communication between the general processing unit 2 and each of the individual processing units 5 in the form of control signals 13; and, per individual processing unit 5, means 14 which collect data from the data stream 11 as a function of the transmitted control signals 13 for further processing and display on the image surface, in this case the LED panel, of the display unit 4 concerned.
  • the data stream 11 and the control signals 13 are only represented schematically in the diagram of figure 5 and that, in reality, the data stream 11 and the control signals 13 are not necessarily carried via two different data lines.
  • the data stream 11 and the control signals 13 may consist of a single pulse train in which certain intervals are reserved for the data stream 11 and other intervals are reserved for the control signals 13.
  • a distributed signal processing is provided for between the general processing unit 2 on the one hand and the individual processing units 5 on the other hand. This implies that a number of data are processed and calculated in the general processing unit 2, whereas a number of other data are processed and calculated in each of the individual processing units 5.
  • This distributed signal processing can be carried out at different levels.
  • a distributed signal processing of the signals related to the colour rendering is provided for, in other words a distributed colour processing. Also a distributed signal processing related to the brightness and/or contrast can hereby be provided for.
  • Luminance tracking implies determining for example a fixed relation between the different colours beneath a certain luminance before the signals concerned are transmitted to the individual processing units 5.
  • histogram equalisation is meant that a histogram of the entire image content is made and that an evaluation is subsequently made and, if necessary, corrections will be made as a function thereof before the data stream 11 is transmitted to the processing units 5.
  • figure 6 represents different curves which can be found in a histogram.
  • H hereby represents the luminance value and I the number of times such values occur in this image.
  • the curves represent all the pixels of the image.
  • the adjustments resulting from the evaluation of the histogram can also be linked to time. This implies that also alterations in the histogram for each of the successive images are detected and taken into account. In case of slow alterations, alterations in the output signal will be made less quickly, as a result of which is obtained a stabilisation effect.
  • cue flash is a sudden alteration of the entire image content, in other words a sudden change in the displayed image. It is clear that, at such a moment, the alteration should not be ignored. A detection of the cue flash allows for appropriate action at that moment.
  • colour co-ordinates are meant the co-ordinates in the chromaticity diagram. These co-ordinates determine what colour is visually observed, and they depend on several factors. Thus, for example they are linked to the age of the display unit 4, such that the adjustment must be made individually. However, the adjustment contributes to the general smoothness and uniformity of the colour reproduction in the image.
  • a dynamic sample weight distribution is applied above, whereby the individual processing units 5 are informed via the control signals 13 of what curve should be followed during the transformation of the linear course into the non-linear course, depending on the aimed effect.
  • This technique allows for a refined contrast rendering without requiring a large number of contrast level differences in the signal of the general processing unit 2 towards the individual processing units 5.
  • the temperature correction offers the advantage that mutual deviations resulting from temperature differences, irrespective of the cause of these temperature differences, are excluded. Said temperature differences may occur for example when, for a longer length of time, only a part of the display 3 is driven so as to form an image, whereas from a certain moment on, the entire display 3 is used. Consequently, the display units 4 which have not been in use until then will not function at operating temperature, and an adjustment because of the temperature differences is advisable.
  • a distributed signal processing of the signals related to the image display in other words a distributed image processing, is provided for.
  • An example of such distributed image processing consists in that a distributed signal processing is provided for which makes sure that, both at the general processing unit 2 and at the individual processing units 5, measures are taken to minimise image flickering.
  • the line frequency is raised to this end in the general processing unit 2 in order to eliminate what is called the interline flicker. It will be raised for example from 15 kHz to 32 kHz.
  • each display unit 4 operates frequency-independent vertically and horizontally.
  • This adjustment consists for example in realising an automatic pulse width adjustment and/or in carrying out a frequency raise to eliminate what is called surface flicker.
  • the pulse width adjustment offers the advantage that one can for example automatically switch from a 50 Hz system to a 60 Hz system without any discontinuities being perceived in the displayed image.
  • the automatic pulse width adjustment is preferably carried out by creating free spaces in between the pulses, whose interval is adjusted such that the entire signal becomes totally continuous.
  • the frequency is raised from for example 50/60 Hz to at least 100 Hz and better still to 400 Hz.
  • a distributed signal processing of the signals determining the image geometry is provided for.
  • control signals 13 are hereby transmitted to the individual processing units 5 which indicate which part of the image should be displayed at the display unit 4 concerned, whereby the individual processing units 5 then collect data from the data stream 11, process them and display them, as a function of said control signals 13.
  • FIG. 7 An example thereof of represented in figure 7, whereby the entire image which is normally displayed in the rectangle defined by the entire surface of the display 3, is compressed into a triangle 18.
  • the image B1 of the picture line 19 must hereby no longer be displayed over the distance X, but over the short distance Y.
  • the display units 4A and 4B will not be ordered to collect data from the data stream 11 via the communication protocol which is contained in the control signals 13, whereas the display unit 4C will be ordered to collect all the image information of the image B1 from the data stream 11, and to display this image B1, of the picture line 19, over the distance Y.
  • the general processing unit 2 hereby only gives a command, whereas the recalculation for the display of the image B1 over the distance Y is carried out in the processing unit 5 of the display unit 4C.
  • a dynamic image stabilisation is provided for.
  • Such an image stabilisation can be realised either exclusively at the general processing unit 2 or exclusively at the individual processing units 5, but also distributed over both.
  • the improvement of the image display by means of such a dynamic image stabilisation can also be applied in other display units 1 than those described above, namely also in display units which are not assembled from different display units 4 and which do not necessarily have to be of the LED type.
  • the dynamic image stabilisation is concerned, the invention is not restricted to the above-described display device 1, and it also extends to othere display devices, including CRT projectors, picture tubes, etc.
  • both the signals of the data stream 11 and the control signals 13 are successively displayed from one display unit 4 to the next, and a number of, preferably each of the individual processing units 5 is provided with a master clock correction. This implies that all the signals, at each transition to a subsequent display unit 4, are again optimally adjusted to one another, so that possible transmission errors are excluded, if not minimised.
  • RGB signals red/green/blue
  • jitter a cumulation of shifts and errors resulting from what is called jitter is counteracted at the master clock.
  • Such a master clock correction is preferably carried out by means of a proprietary crystal clock in each of the individual processing units 5.
  • the LED's 9 are driven by means of an uninterrupted current during normal operation, whereby the length of time for which the current is switched on is used as a control parameter. Moreover, in order to adjust the brightness and contrast, the value of the above-mentioned current can be altered.
  • the display device 1 preferably also contains means to automatically recognise the position of a display unit 4 in the total image surface. These means consist for example in that, when the processing unit 2 is switched on, it assigns the address '1' to the first display unit 4 coupled in series, the address '2' to the second one, and so on. In case of a systematic 'through' coupling as represented in figure 1, and when the number of display units 4 are put in per row, as well as the number of rows of display units 4 among themselves, the processing unit 2 will automatically determine the position of each display unit 4 in the total display 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Digital Computer Display Output (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

Method for displaying images on a display device, whereby the data (11) for forming the successive images are transformed in signals for a display (3), characterized in that the image display is improved by evaluating the above-mentioned data and by applying a dynamic image stabilisation on the basis of this evaluation, whereby one or several of the following techniques are used for the dynamic image stabilisation:
  • a time-dependant image stabilisation;
  • a frequency-dependant image stabilisation;
  • an amplitude-dependant image stabilisation;
  • an image stabilisation as a function of the entire image content.

Description

  • The present invention concerns a method for displaying images on a display device, as well as a display device for realising this method.
  • In particular, the invention concerns display devices comprising a display which consists of several display units, whereby these display units are driven by means of a general processing unit, as well as by means of individual processing units per display unit.
  • In particular, it concerns display devices which make it possible to display images on a large image surface.
  • The invention is particularly meant for display devices comprising display units whereby the image is reproduced by means of what are called LED's (Light Emitting Diodes).
  • It is known that a LED wall can so to say be built in this manner. It is also known that, by building the LED wall from groups of LED's of different colours, in particular red, blue and green, by appropriately adjusting the intensity of the different LED's, it is possible to obtain various global colour effects. Also, by means of an appropriate control of the LED's, it is possible to reproduce moving images in colour, for example video images, on the LED wall.
  • Such display devices can be used for different purposes, for example for displaying images in stadiums, information and/or publicity in public buildings, such as for example airports, stations, etc. Display devices using LEDs are known from US 5.523.769, US 5.396.257 and FR 2.640.761.
  • The invention aims a method for representing images on a display device, whereby this method allows to improve the quality of the image.
  • In the first place, the method of the invention is designed for LED screens, but it can also be applied in a more general way in other display devices, such as CRT/LCD/DLP projectors and the like.
  • To this aim, the invention concerns a method for displaying images on a display device, whereby the data for forming the successive images are transformed in signals for a display, characterized in that the image display is improved by evaluating the above-mentioned data and by applying a dynamic image stabilisation on the basis of this evaluation, whereby one or several of the following techniques are used for the dynamic image stabilisation:
    • a time-dependant image stabilisation, whereby it is verified for pixels of the image how alterations in time occur between successive images, and whereby an image stabilisation effect is provided for before the images are displayed;
    • a frequency-dependant image stabilisation, whereby it is verified how alterations occur in pixels of the image situated next to one another, and whereby an image stabilisation effect is provided for before the images are displayed;
    • an amplitude-dependant image stabilisation;
    • an image stabilisation as a function of the entire image content.
  • According to a preferred embodiment use is made of a display device comprising at least a general processing unit, a display consisting of several display units and an individual processing unit per display unit, whereby, in order to display the images, data concerning the image to be displayed are transmitted from the general processing unit to the individual processing units in the form of a data stream, in that there is a control communication between the general processing unit and each of the individual processing units in the form of control signals, and in that data from the data stream are collected at every individual processing unit as a function of the control signals transmitted to the individual processing units.
  • As the data stream is offered to each of the individual processing units on the one hand, and there is a control communication on the basis of which the individual processing units are driven on the other hand, one obtains that every display unit can work independently of the other ones, requiring no communication with a central individual processing unit. As no mutual data exchange is required between the individual processing units, there will be less data transmission, making more calculation time and calculation capacity available for processing the signals in the individual processing units.
  • Use is preferably made of display units which are serially coupled. As a result of this, the total display can be easily composed in any size whatsoever, without a large number of electric connections being required on the back side of the display.
  • As already mentioned, use is preferably made here of display units consisting of LED panels.
  • According to the most preferred embodiment, a distributed signal processing will be provided for according to the invention between the general processing unit on the one hand and the individual processing units on the other hand. This implies that a number of calculations are made in the general processing unit, whereas a number of other calculations are made in each of the individual processing units. This requires less data exchange between the general processing unit and the individual processing units for the drive, making calculation time available in the general processing unit, as well as transmission time for data via the data line between the general processing unit and the individual processing units which can then be used for a refined transmission of data for displaying the image.
  • The invention also concerns a display device for realising the above-mentioned method, characterised in that it consists at least of a general processing unit; a display consisting of several display units; an individual processing unit per display unit; means which transmit at least data concerning the image to be displayed transmitted from the general processing unit to the individual processing units in the form of a data stream; means providing for a control communication between the general processing unit and each of the individual processing units in the form of control signals; and, per individual processing unit, means which collect data from the data stream as a function of the transmitted control signals for further processing and display.
  • In order to better explain the characteristics of the invention, the following preferred embodiment according to the invention is described as an example only without being limitative in any way, with reference to the accompanying drawings, in which:
  • figure 1 schematically represents a display device according to the invention;
  • figure 2 represents a model of the display device in figure 1 in perspective;
  • figure 3 represents the part which is indicated by F3 in figure 2 to a larger scale;
  • figure 4 represents the back side of the module from figure 2 in perspective;
  • figure 5 represents the display device in the form of a block diagram;
  • figure 6 represents a number of histograms with reference to images to be displayed;
  • figure 7 schematically represents a special image geometry.
  • As represented in figure 1, the display device 1 according to the invention mainly consists of a general processing unit 2 and a display 3 consisting of a screen which is composed of several display units 4, whereby every display unit 4 is equipped with an individual processing unit 5.
  • The general processing unit 2, also called digitizer or video engine, consists of an appliance which transforms image signals, either coming from an external source or from an internal source, such as a built-in video player, into digitised signals which are suitable for the reproduction of the image on the display 3.
  • As represented in figures 2 to 4, the display units 4 consist of tile-shaped modules which, as represented in figure 1, can be assembled by attaching them on an appropriate supporting structure, for example a frame 6.
  • The modules are preferably fastened in the frame 6 in a detachable manner, for example by making use of fastening elements 7, as represented in figure 4, with which the modules can be snapped in the frame 6.
  • The image side 8 as shown in figure 2 and 3 of the display units 4 is equipped with luminous elements, in particular LED's (Light Emitting Diodes), which are indicated hereafter in a general manner with the reference 9, but which are indicated with the references 9A to 9E when represented in detail.
  • Refering to figure 3, the LED's 9A and 9E are red for example, whereas the LED's 9B and 9D are green and the LED's 9C are blue. By controlling the respective LED's 9A-9E and by thus making the different colours illuminate with different intensities, it is possible to realise any colour whatsoever when seen from a distance. Every set of LED's 9 hereby forms a pixel of the images to be formed. It should be noted that such a pixel can be composed in different ways, of three colours or of a combination of different groups of LED's 9. Thus, for example, the LED's 9A-9B-9C form a group of basic colours with which all colours can be formed. The same goes for the LED's 9B-9C-9E as well as for 9D-9C-9E and 9A-9C-9D.
  • In the preferred embodiment of figure 5 the display device 1 is equipped with means 10 which at least transmit data concerning the image to be displayed transmitted from the general processing unit 2 to the individual processing units 5 in the form of a data stream 11; means 12 providing for a control communication between the general processing unit 2 and each of the individual processing units 5 in the form of control signals 13; and, per individual processing unit 5, means 14 which collect data from the data stream 11 as a function of the transmitted control signals 13 for further processing and display on the image surface, in this case the LED panel, of the display unit 4 concerned.
  • It should be noted that the data stream 11 and the control signals 13 are only represented schematically in the diagram of figure 5 and that, in reality, the data stream 11 and the control signals 13 are not necessarily carried via two different data lines. The data stream 11 and the control signals 13 may consist of a single pulse train in which certain intervals are reserved for the data stream 11 and other intervals are reserved for the control signals 13.
  • For practical reasons, however, it may be necessary to make different connections between the individual processing units 5, for example in the case where a separate data processing is provided for the different colours, for the control of the red, green and blue LED's 9 respectively, whereby it is transmitted separately per colour to the processing units 5.
  • Thanks to the design according to figure 5, however, it is possible to use a restricted number of electric connections between the successive display units 4, and they can be coupled serially by means of a number of electric cables 15-16 as shown in figure 4, in particular twisted pairs, which are provided with multipolar connectors 17 which can be plugged in the back side of the processing units 5.
  • According to a special aspect of the invention, a distributed signal processing is provided for between the general processing unit 2 on the one hand and the individual processing units 5 on the other hand. This implies that a number of data are processed and calculated in the general processing unit 2, whereas a number of other data are processed and calculated in each of the individual processing units 5.
  • This distributed signal processing can be carried out at different levels.
  • According to a first aspect, a distributed signal processing of the signals related to the colour rendering is provided for, in other words a distributed colour processing. Also a distributed signal processing related to the brightness and/or contrast can hereby be provided for.
  • In particular, one or several adjustments are made at the general processing unit 2 related to one or several of the following possibilities:
    • image stabilisation and/or noise suppression;
    • tracking of the illumination of the image, in other words 'luminance tracking', whereby certain values of the luminance are included;
    • histogram equalisation as a function of the entire image to be displayed;
    • observing of what is called cue flash and acting appropriately in case of such a cue flash;
    • scaling of the image in relation to the original input image in the horizontal and/or vertical direction.
  • This implies that the noise suppression is done in a general manner for the entire image display.
  • Luminance tracking implies determining for example a fixed relation between the different colours beneath a certain luminance before the signals concerned are transmitted to the individual processing units 5.
  • By histogram equalisation is meant that a histogram of the entire image content is made and that an evaluation is subsequently made and, if necessary, corrections will be made as a function thereof before the data stream 11 is transmitted to the processing units 5.
  • By way of illustration, figure 6 represents different curves which can be found in a histogram. H hereby represents the luminance value and I the number of times such values occur in this image. The curves represent all the pixels of the image.
  • In the case of an image which is generally rather grey, a curve A is obtained, a bright image produces the curve B and a dark image the curve C.
  • As a function of the nature of the curve, either curve A, B or C, a correction can thus be made. One possibility is that, when signals are observed indicating that the image is dark (curve C), the data stream 11 is adjusted such that the darkness is stressed, whereas when signals are observed indicating that the image is bright (curve B), the data stream 11 is adjusted such that the brightness is stressed. In case of curve A, for example, no correction is made.
  • The adjustments resulting from the evaluation of the histogram can also be linked to time. This implies that also alterations in the histogram for each of the successive images are detected and taken into account. In case of slow alterations, alterations in the output signal will be made less quickly, as a result of which is obtained a stabilisation effect.
  • What is called a cue flash is a sudden alteration of the entire image content, in other words a sudden change in the displayed image. It is clear that, at such a moment, the alteration should not be ignored. A detection of the cue flash allows for appropriate action at that moment.
  • In order to obtain a distributed signal processing, one or several individual adjustments are made at the individual processing units 5 as well. In particular, these adjustments concern one or several of the following possibilities:
    • adjustment of the colour co-ordinates;
    • adjustment of the brightness;
    • adjustment of the contrast;
    • corrective adjustment as a function of the temperature and/or age of the display unit 4;
    • adjustment of the transfer functions RGB (red, yellow, blue);
    • enlargement of the incoming video signal in the horizontal and/or vertical direction.
  • A number of these items will be illustrated in greater detail hereafter.
  • By colour co-ordinates are meant the co-ordinates in the chromaticity diagram. These co-ordinates determine what colour is visually observed, and they depend on several factors. Thus, for example they are linked to the age of the display unit 4, such that the adjustment must be made individually. However, the adjustment contributes to the general smoothness and uniformity of the colour reproduction in the image.
  • In order to adjust and improve the contrast, different modes are applied in the individual processing units 5, whereby the linear relation between the input signal and the output signal is adjusted towards a non-linear relation, whereby for example dark signals are further reduced in order to make sure that the LED's 9 remain switched off in case of signals indicating that there is a very dark image part, whereas for example signals indicating that there is a bright image, are reinforced.
  • Thus can be obtained among others that when the viewer is situated close to the display 3, the dark passages will indeed be perceived as being dark, and any annoying flashing of the LED's 9 which can be perceived from nearby is excluded.
  • In particular, a dynamic sample weight distribution is applied above, whereby the individual processing units 5 are informed via the control signals 13 of what curve should be followed during the transformation of the linear course into the non-linear course, depending on the aimed effect.
  • This technique allows for a refined contrast rendering without requiring a large number of contrast level differences in the signal of the general processing unit 2 towards the individual processing units 5. By using different curves, it is possible to create different results, and transmitting a restricted signal from the general processing unit 2 to the individual processing units 5 will suffice to indicate to the latter what curve should be followed.
  • By providing for a corrective adjustment as a function of temperature and/or age per display unit 4, and thus also per individual processing unit 5, also other influences of temperature and/or age known as such are separately dealt with, and on condition that there is an appropriate control, differences between the displayed image in each of the display units 4 are excluded. Thus, it is possible to remove display units 4 from the display 3 and to replace them at any time, without any disadvantages. It is also possible to build a display 3 of any size whatsoever, even when it contains display units 4 which have been in use for a shorter time than a number of the other display units 4. By age should in this case mainly be understood the total time during which a display unit 4 has been switched on.
  • The temperature correction offers the advantage that mutual deviations resulting from temperature differences, irrespective of the cause of these temperature differences, are excluded. Said temperature differences may occur for example when, for a longer length of time, only a part of the display 3 is driven so as to form an image, whereas from a certain moment on, the entire display 3 is used. Consequently, the display units 4 which have not been in use until then will not function at operating temperature, and an adjustment because of the temperature differences is advisable.
  • According to another aspect of the invention, also a distributed signal processing of the signals related to the image display, in other words a distributed image processing, is provided for.
  • An example of such distributed image processing consists in that a distributed signal processing is provided for which makes sure that, both at the general processing unit 2 and at the individual processing units 5, measures are taken to minimise image flickering.
  • In a preferred embodiment, the line frequency is raised to this end in the general processing unit 2 in order to eliminate what is called the interline flicker. It will be raised for example from 15 kHz to 32 kHz.
  • However, in the individual processing units 5, one or several individual adjustments are made which make sure that every display unit 4 operates frequency-independent vertically and horizontally. This adjustment consists for example in realising an automatic pulse width adjustment and/or in carrying out a frequency raise to eliminate what is called surface flicker.
  • The pulse width adjustment offers the advantage that one can for example automatically switch from a 50 Hz system to a 60 Hz system without any discontinuities being perceived in the displayed image. The automatic pulse width adjustment is preferably carried out by creating free spaces in between the pulses, whose interval is adjusted such that the entire signal becomes totally continuous.
  • The frequency is raised from for example 50/60 Hz to at least 100 Hz and better still to 400 Hz.
  • According to yet another aspect of the invention, a distributed signal processing of the signals determining the image geometry is provided for.
  • In order to obtain a certain image geometry, control signals 13 are hereby transmitted to the individual processing units 5 which indicate which part of the image should be displayed at the display unit 4 concerned, whereby the individual processing units 5 then collect data from the data stream 11, process them and display them, as a function of said control signals 13.
  • An example thereof of represented in figure 7, whereby the entire image which is normally displayed in the rectangle defined by the entire surface of the display 3, is compressed into a triangle 18. The image B1 of the picture line 19 must hereby no longer be displayed over the distance X, but over the short distance Y. In this case, the display units 4A and 4B will not be ordered to collect data from the data stream 11 via the communication protocol which is contained in the control signals 13, whereas the display unit 4C will be ordered to collect all the image information of the image B1 from the data stream 11, and to display this image B1, of the picture line 19, over the distance Y. The general processing unit 2 hereby only gives a command, whereas the recalculation for the display of the image B1 over the distance Y is carried out in the processing unit 5 of the display unit 4C.
  • According to the presently claimed invention, a dynamic image stabilisation is provided for.
  • To this end, one or several of the following techniques are preferably used:
    • a time-dependant image stabilisation, whereby it is verified for pixels of the image how alterations in time occur between successive images, and whereby an image stabilisation effect is provided for before the images are displayed, for example by ignoring or attenuating brief alterations;
    • a frequency-dependant image stabilisation, whereby it is verified how alterations occur in pixels of the image situated next to one another, and whereby an image stabilisation effect is provided for before the images are displayed;
    • an amplitude-dependant image stabilisation;
    • an image stabilisation as a function of the entire image content.
  • Such an image stabilisation can be realised either exclusively at the general processing unit 2 or exclusively at the individual processing units 5, but also distributed over both.
  • It should be noted that the improvement of the image display by means of such a dynamic image stabilisation can also be applied in other display units 1 than those described above, namely also in display units which are not assembled from different display units 4 and which do not necessarily have to be of the LED type. Hence, as far as the dynamic image stabilisation is concerned, the invention is not restricted to the above-described display device 1, and it also extends to othere display devices, including CRT projectors, picture tubes, etc.
  • According to a special characteristic of the invention, both the signals of the data stream 11 and the control signals 13 are successively displayed from one display unit 4 to the next, and a number of, preferably each of the individual processing units 5 is provided with a master clock correction. This implies that all the signals, at each transition to a subsequent display unit 4, are again optimally adjusted to one another, so that possible transmission errors are excluded, if not minimised.
  • In practice, different signals are preferably used for the basic colours red/green/blue (RGB signals), and possible transmission errors in these RGB signals are minimised thanks to the above-mentioned master clock correction, in particular a cumulation of shifts and errors resulting from what is called jitter is counteracted at the master clock.
  • Such a master clock correction is preferably carried out by means of a proprietary crystal clock in each of the individual processing units 5.
  • Practically, the LED's 9 are driven by means of an uninterrupted current during normal operation, whereby the length of time for which the current is switched on is used as a control parameter. Moreover, in order to adjust the brightness and contrast, the value of the above-mentioned current can be altered.
  • It is clear that the general processing unit 2 and the individual processing units 5 are equipped with the necessary electronic circuits in order to process the data as described above, in other words to realise the above-mentioned means 10, 12 and 14. Any craftsman can derive from the above-described operations how these circuits should be built.
  • It should be noted that the display device 1 preferably also contains means to automatically recognise the position of a display unit 4 in the total image surface. These means consist for example in that, when the processing unit 2 is switched on, it assigns the address '1' to the first display unit 4 coupled in series, the address '2' to the second one, and so on. In case of a systematic 'through' coupling as represented in figure 1, and when the number of display units 4 are put in per row, as well as the number of rows of display units 4 among themselves, the processing unit 2 will automatically determine the position of each display unit 4 in the total display 3.
  • The invention is by no means limited to the above-described embodiment represented in the accompanying drawings; on the contrary, such a method for displaying images on a display device, as well as the device used to this end, can be made in all sorts of variants while still remaining within the scope of the invention.

Claims (5)

  1. Method for displaying images on a display device, whereby the data (11) for forming the successive images are transformed in signals for a display (3), characterized in that the image display is improved by evaluating the above-mentioned data and by applying a dynamic image stabilisation on the basis of this evaluation, whereby one or several of the following techniques are used for the dynamic image stabilisation:
    a time-dependant image stabilisation, whereby it is verified for pixels of the image how alterations in time occur between successive images, and whereby an image stabilisation effect is provided for before the images are displayed;
    a frequency-dependant image stabilisation, whereby it is verified how alterations occur in pixels of the image situated next to one another, and whereby an image stabilisation effect is provided for before the images are displayed;
    an amplitude-dependant image stabilisation;
    an image stabilisation as a function of the entire image content.
  2. Method according to claim 1, characterized in that it is applied with a display device comprising LEDs.
  3. Method according to claim 1 or 2, characterized in that a display device is applied which is composed of several display units (4).
  4. Method according to claim 3, characterized in that individual processing units (5) are used for the adjustment of the respective display units (4), whereby said image stabilisation takes place by means of distributed signal processing.
  5. Method according to claim 4, whereby in accordance with this method at least an adjustment of the colour co-ordinates is carried out.
EP03077322A 1999-04-28 2000-04-19 Method for displaying images on a display device, as well as a display device used therefor Withdrawn EP1381020A3 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BE9900306 1999-04-28
BE9900306A BE1012634A3 (en) 1999-04-28 1999-04-28 Method for displaying images on a display device, and display device used for this purpose.
EP00920290A EP1238328B8 (en) 1999-04-28 2000-04-19 Method of and device for displaying images on a display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP00920290A Division EP1238328B8 (en) 1999-04-28 2000-04-19 Method of and device for displaying images on a display device

Publications (2)

Publication Number Publication Date
EP1381020A2 true EP1381020A2 (en) 2004-01-14
EP1381020A3 EP1381020A3 (en) 2006-08-02

Family

ID=3891893

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00920290A Expired - Lifetime EP1238328B8 (en) 1999-04-28 2000-04-19 Method of and device for displaying images on a display device
EP03077322A Withdrawn EP1381020A3 (en) 1999-04-28 2000-04-19 Method for displaying images on a display device, as well as a display device used therefor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP00920290A Expired - Lifetime EP1238328B8 (en) 1999-04-28 2000-04-19 Method of and device for displaying images on a display device

Country Status (8)

Country Link
US (1) US7071894B1 (en)
EP (2) EP1238328B8 (en)
JP (1) JP2002543457A (en)
AT (1) ATE363683T1 (en)
BE (1) BE1012634A3 (en)
DE (1) DE60035063T2 (en)
ES (1) ES2287008T3 (en)
WO (1) WO2000065432A2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7646430B2 (en) 2003-10-28 2010-01-12 Samsung Electronics Co., Ltd. Display system having improved multiple modes for displaying image data from multiple input source formats
US7646398B2 (en) 2000-07-28 2010-01-12 Samsung Electronics Co., Ltd. Arrangement of color pixels for full color imaging devices with simplified addressing
US7675479B2 (en) * 2005-01-14 2010-03-09 Lg Electronics Inc. Multi-screen system and multi-screen implementation method
US7728802B2 (en) 2000-07-28 2010-06-01 Samsung Electronics Co., Ltd. Arrangements of color pixels for full color imaging devices with simplified addressing
US7755648B2 (en) 2001-05-09 2010-07-13 Samsung Electronics Co., Ltd. Color flat panel display sub-pixel arrangements and layouts
US7755649B2 (en) 2001-05-09 2010-07-13 Samsung Electronics Co., Ltd. Methods and systems for sub-pixel rendering with gamma adjustment
US7864194B2 (en) 2003-03-04 2011-01-04 Samsung Electronics Co., Ltd. Systems and methods for motion adaptive filtering
US8035599B2 (en) 2003-06-06 2011-10-11 Samsung Electronics Co., Ltd. Display panel having crossover connections effecting dot inversion
US8144094B2 (en) 2003-06-06 2012-03-27 Samsung Electronics Co., Ltd. Liquid crystal display backplane layouts and addressing for non-standard subpixel arrangements
US8378947B2 (en) 2003-03-04 2013-02-19 Samsung Display Co., Ltd. Systems and methods for temporal subpixel rendering of image data
US8405692B2 (en) 2001-12-14 2013-03-26 Samsung Display Co., Ltd. Color flat panel display arrangements and layouts with reduced blue luminance well visibility
US8436799B2 (en) 2003-06-06 2013-05-07 Samsung Display Co., Ltd. Image degradation correction in novel liquid crystal displays with split blue subpixels
CN106710565A (en) * 2017-03-30 2017-05-24 国网福建省电力有限公司 Correction method for liquid crystal display screen array

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358861B2 (en) * 1999-05-04 2008-04-15 Intellimats Electronic floor display with alerting
US7009523B2 (en) * 1999-05-04 2006-03-07 Intellimats, Llc Modular protective structure for floor display
FR2845812B1 (en) * 2002-10-10 2005-09-23 Inanov VISUALIZING SCREEN ADDRESSING SYSTEM
GB0225699D0 (en) * 2002-11-05 2002-12-11 Techspan Systems Ltd Display unit
US20040165015A1 (en) * 2003-02-20 2004-08-26 Blum Ronald D. Electronic display device for floor advertising/messaging
EP1471494A1 (en) 2003-04-24 2004-10-27 Barco N.V. Organic light-emitting diode drive circuit for a display application
EP1814100A3 (en) * 2003-05-23 2008-03-05 Barco, naamloze vennootschap. Method for displaying images on a large-screen organic light-emitting diode display, and display used therefore
EP1550947A3 (en) * 2003-12-23 2009-06-17 Barco N.V. Configurable tiled emissive display
EP1580709B1 (en) * 2004-03-23 2006-09-27 Dambach-Werke GmbH Modular display device and a tool for removing the display modules
US20050253777A1 (en) * 2004-05-12 2005-11-17 E Ink Corporation Tiled displays and methods for driving same
US7450085B2 (en) * 2004-10-07 2008-11-11 Barco, Naamloze Vennootschap Intelligent lighting module and method of operation of such an intelligent lighting module
US20090016806A1 (en) * 2005-09-02 2009-01-15 G-Lec Europe Gmbh Display system
US7948450B2 (en) * 2006-11-09 2011-05-24 D3 Led, Llc Apparatus and method for allowing display modules to communicate information about themselves to other display modules in the same display panel
CN101329841A (en) * 2007-06-20 2008-12-24 上海仙视电子有限公司 Splicing circuit module of LCD large-screen and control method thereof
US7598683B1 (en) 2007-07-31 2009-10-06 Lsi Industries, Inc. Control of light intensity using pulses of a fixed duration and frequency
US8604709B2 (en) 2007-07-31 2013-12-10 Lsi Industries, Inc. Methods and systems for controlling electrical power to DC loads
US8903577B2 (en) 2009-10-30 2014-12-02 Lsi Industries, Inc. Traction system for electrically powered vehicles
DE202008015254U1 (en) * 2008-11-18 2010-04-01 Weidmüller Interface GmbH & Co. KG Bayable housing with connections
GB2469819B (en) * 2009-04-28 2011-05-04 Bhupinder Seran Intelligent display
JP2013225035A (en) * 2012-04-23 2013-10-31 Mitsubishi Electric Corp Image display device and control method therefor
US8974077B2 (en) 2012-07-30 2015-03-10 Ultravision Technologies, Llc Heat sink for LED light source
US9361059B2 (en) * 2012-12-14 2016-06-07 Intel Corporation Architecture for seamless integrated display system
US9240135B2 (en) * 2013-06-12 2016-01-19 Lighthouse Technologies, Ltd. Chromaticity adjustment for LED video screens
GB2515845A (en) * 2013-10-04 2015-01-07 Lightgeist Ltd Pixel unit
US9195281B2 (en) 2013-12-31 2015-11-24 Ultravision Technologies, Llc System and method for a modular multi-panel display
JP2015200710A (en) * 2014-04-04 2015-11-12 パナソニック株式会社 Display device mounting metal fitting and display device mounting fixture
WO2015173369A1 (en) 2014-05-14 2015-11-19 Barco Nv Energy efficient power sequencer control circuit
WO2018142159A1 (en) 2017-02-03 2018-08-09 Tv One Limited Method of video transmission and display
WO2019185935A1 (en) 2018-03-29 2019-10-03 Barco N.V. Driver for led display
DE202018103584U1 (en) * 2018-06-25 2019-09-26 Thomas Hierl An electric display device for a shooting track and target arrangement comprising such a display device
GB201914186D0 (en) 2019-10-01 2019-11-13 Barco Nv Driver for LED or OLED display
CN112652278B (en) * 2019-10-09 2022-08-30 群创光电股份有限公司 Electronic device and driving method thereof
US11302267B2 (en) 2020-05-20 2022-04-12 Novatek Microelectronics Corp. LED display panel having a driver device for equalizing data lines and operation method thereof
LU500363B1 (en) 2021-06-30 2023-01-02 Barco Nv Optical data transmission in light emitting modules
LU500367B1 (en) 2021-06-30 2023-01-06 Barco Nv Improvements in light emitting modules
LU500365B1 (en) 2021-06-30 2023-01-02 Barco Nv Improvements in light emitting modules
LU500366B1 (en) 2021-06-30 2023-01-06 Barco Nv Driver circuit for light emitting modules with combined active and passive matrix functionalities
LU500364B1 (en) 2021-06-30 2023-01-02 Barco Nv Pixel configuration in light emitting modules
US12080224B2 (en) 2022-12-19 2024-09-03 Stereyo Bv Configurations, methods, and devices for improved visual performance of a light-emitting element display and/or a camera recording an image from the display
US12100363B2 (en) 2022-12-19 2024-09-24 Stereyo Bv Configurations, methods, and devices for improved visual performance of a light-emitting element display and/or a camera recording an image from the display
US12112695B2 (en) 2022-12-19 2024-10-08 Stereyo Bv Display systems and methods with multiple and/or adaptive primary colors
US12119330B2 (en) 2022-12-19 2024-10-15 Stereyo Bv Configurations, methods, and devices for improved visual performance of a light-emitting element display and/or a camera recording an image from the display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640791A2 (en) * 1987-11-05 1990-06-22 Cheng Eric Dot-matrix, light-emitting-diode display for construction of a large dot-matrix, light-emitting-diode display assembly
US5396257A (en) * 1991-05-24 1995-03-07 Hitachi, Ltd. Mutiscreen display apparatus
US5523769A (en) * 1993-06-16 1996-06-04 Mitsubishi Electric Research Laboratories, Inc. Active modules for large screen displays

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100220042B1 (en) * 1990-06-07 1999-09-01 가부시키가이샤 히타치 세이사쿠쇼 Presentation supporting method and apparatus therefor
JP3334211B2 (en) * 1993-02-10 2002-10-15 株式会社日立製作所 display
JP2788401B2 (en) * 1993-11-09 1998-08-20 小糸工業株式会社 Display device
JPH07199861A (en) * 1993-12-30 1995-08-04 Takiron Co Ltd Emission luminous intensity adjusting device for dot matrix light emitting diode display unit
JP2917816B2 (en) * 1994-05-17 1999-07-12 日亜化学工業株式会社 Multi-color LED display unit
JPH0888820A (en) * 1994-09-20 1996-04-02 Fujitsu General Ltd Multi-panel display system
EP0731436A4 (en) * 1994-09-27 1998-05-13 Shinsuke Nishida Display
JPH096284A (en) * 1995-06-23 1997-01-10 Matsushita Electric Ind Co Ltd Led display device
JPH0916126A (en) * 1995-06-29 1997-01-17 Matsushita Electric Ind Co Ltd Full-color led panel
JP3283733B2 (en) * 1995-09-26 2002-05-20 シャープ株式会社 Display drive circuit
US6005557A (en) * 1996-06-07 1999-12-21 Proxima Corporation Image display stabilization apparatus and method
US5758135A (en) * 1996-09-24 1998-05-26 Seiko Epson Corporation System and method for fast clocking a digital display in a multiple concurrent display system
JPH10171406A (en) * 1996-12-10 1998-06-26 Toshiba Lighting & Technol Corp Information display device
JPH10187109A (en) * 1996-12-20 1998-07-14 Fujitsu General Ltd Multi-display system
JP3125711B2 (en) * 1997-04-22 2001-01-22 日亜化学工業株式会社 LED display unit and LED constant current driver circuit
JPH10333631A (en) * 1997-06-02 1998-12-18 Daichiyuu Denshi:Kk Expanded display device, and display system using expanded display device
US6909419B2 (en) * 1997-10-31 2005-06-21 Kopin Corporation Portable microdisplay system
US6897855B1 (en) * 1998-02-17 2005-05-24 Sarnoff Corporation Tiled electronic display structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640791A2 (en) * 1987-11-05 1990-06-22 Cheng Eric Dot-matrix, light-emitting-diode display for construction of a large dot-matrix, light-emitting-diode display assembly
US5396257A (en) * 1991-05-24 1995-03-07 Hitachi, Ltd. Mutiscreen display apparatus
US5523769A (en) * 1993-06-16 1996-06-04 Mitsubishi Electric Research Laboratories, Inc. Active modules for large screen displays

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7646398B2 (en) 2000-07-28 2010-01-12 Samsung Electronics Co., Ltd. Arrangement of color pixels for full color imaging devices with simplified addressing
US7728802B2 (en) 2000-07-28 2010-06-01 Samsung Electronics Co., Ltd. Arrangements of color pixels for full color imaging devices with simplified addressing
US7911487B2 (en) 2001-05-09 2011-03-22 Samsung Electronics Co., Ltd. Methods and systems for sub-pixel rendering with gamma adjustment
US8830275B2 (en) 2001-05-09 2014-09-09 Samsung Display Co., Ltd. Methods and systems for sub-pixel rendering with gamma adjustment
US7755648B2 (en) 2001-05-09 2010-07-13 Samsung Electronics Co., Ltd. Color flat panel display sub-pixel arrangements and layouts
US7755649B2 (en) 2001-05-09 2010-07-13 Samsung Electronics Co., Ltd. Methods and systems for sub-pixel rendering with gamma adjustment
US8159511B2 (en) 2001-05-09 2012-04-17 Samsung Electronics Co., Ltd. Methods and systems for sub-pixel rendering with gamma adjustment
US8405692B2 (en) 2001-12-14 2013-03-26 Samsung Display Co., Ltd. Color flat panel display arrangements and layouts with reduced blue luminance well visibility
US7864194B2 (en) 2003-03-04 2011-01-04 Samsung Electronics Co., Ltd. Systems and methods for motion adaptive filtering
US8378947B2 (en) 2003-03-04 2013-02-19 Samsung Display Co., Ltd. Systems and methods for temporal subpixel rendering of image data
US8704744B2 (en) 2003-03-04 2014-04-22 Samsung Display Co., Ltd. Systems and methods for temporal subpixel rendering of image data
US8035599B2 (en) 2003-06-06 2011-10-11 Samsung Electronics Co., Ltd. Display panel having crossover connections effecting dot inversion
US8144094B2 (en) 2003-06-06 2012-03-27 Samsung Electronics Co., Ltd. Liquid crystal display backplane layouts and addressing for non-standard subpixel arrangements
US8436799B2 (en) 2003-06-06 2013-05-07 Samsung Display Co., Ltd. Image degradation correction in novel liquid crystal displays with split blue subpixels
US8633886B2 (en) 2003-06-06 2014-01-21 Samsung Display Co., Ltd. Display panel having crossover connections effecting dot inversion
US9001167B2 (en) 2003-06-06 2015-04-07 Samsung Display Co., Ltd. Display panel having crossover connections effecting dot inversion
US7646430B2 (en) 2003-10-28 2010-01-12 Samsung Electronics Co., Ltd. Display system having improved multiple modes for displaying image data from multiple input source formats
US7675479B2 (en) * 2005-01-14 2010-03-09 Lg Electronics Inc. Multi-screen system and multi-screen implementation method
CN106710565A (en) * 2017-03-30 2017-05-24 国网福建省电力有限公司 Correction method for liquid crystal display screen array

Also Published As

Publication number Publication date
EP1381020A3 (en) 2006-08-02
ES2287008T3 (en) 2007-12-16
WO2000065432A2 (en) 2000-11-02
DE60035063T2 (en) 2008-01-24
EP1238328B1 (en) 2007-05-30
US7071894B1 (en) 2006-07-04
WO2000065432A3 (en) 2001-04-19
DE60035063D1 (en) 2007-07-12
BE1012634A3 (en) 2001-01-09
ATE363683T1 (en) 2007-06-15
EP1238328B8 (en) 2007-08-29
EP1238328A2 (en) 2002-09-11
JP2002543457A (en) 2002-12-17

Similar Documents

Publication Publication Date Title
US7071894B1 (en) Method of and device for displaying images on a display device
CN102055989B (en) Tiled display system and improvement therein
US8222837B2 (en) Ambience lighting system for a display device and a method of operating such ambience lighting system
CN104900188B (en) LED display uniformity correcting method
US20090167670A1 (en) Method of determining luminance values for a backlight of an lcd panel displaying an image
US20090153461A1 (en) Light Valve Display Using Low Resolution Programmable Color Backlighting
JP2004191490A (en) Liquid crystal display device
CN201868072U (en) System for correcting brightness and chroma dot by dot on site for whole LED (Light-Emitting Diode) display screen
EP1733372A1 (en) Display device comprising an adjustable light source
CN101111882A (en) Wide color gamut displays
IL145590A (en) Fullcolour led display system
US20110134158A1 (en) Backlight apparatus and image display apparatus using this back light apparatus
WO2019020725A1 (en) Calibration method and system for tiled displays
CN112150965B (en) Spliced bright and dark line correction method and spliced bright and dark line correction system
EP4270371A2 (en) Methods for improved camera view in studio applications
CN101790270A (en) LED backlight brightness dynamic control method and system adopting same
KR20190069030A (en) Display apparatus and controlling method thereof
CN101499240A (en) Image display device and electronic apparatus
RU2739250C1 (en) Led display system and led display device
CN102573216A (en) Backlight device, display apparatus having backlight device and lighting device
JP2001296820A (en) Led display device
WO2017190797A1 (en) System and method for correcting white luminescence in video wall display systems
JP3294597B2 (en) Full color LED display system
WO2009089686A1 (en) Method of determining luminance values for a backlight of an lcd panel displaying an image
CN104835455A (en) Method for controlling display

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1238328

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RIC1 Information provided on ipc code assigned before grant

Ipc: G06F 3/147 20060101AFI20060628BHEP

Ipc: G09G 3/32 20060101ALI20060628BHEP

17P Request for examination filed

Effective date: 20061228

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20100624

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101105