[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1377801A2 - Device for the emission of high frequency signals - Google Patents

Device for the emission of high frequency signals

Info

Publication number
EP1377801A2
EP1377801A2 EP01271983A EP01271983A EP1377801A2 EP 1377801 A2 EP1377801 A2 EP 1377801A2 EP 01271983 A EP01271983 A EP 01271983A EP 01271983 A EP01271983 A EP 01271983A EP 1377801 A2 EP1377801 A2 EP 1377801A2
Authority
EP
European Patent Office
Prior art keywords
waveguide
radiating element
rear wall
signal
dielectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01271983A
Other languages
German (de)
French (fr)
Inventor
Peter Kloefer
Bogdan Cherek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Publication of EP1377801A2 publication Critical patent/EP1377801A2/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q1/00Details of selecting apparatus or arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/103Hollow-waveguide/coaxial-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/08Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for modifying the radiation pattern of a radiating horn in which it is located

Definitions

  • the invention relates to a device for transmitting high-frequency signals with a signal generation unit, a signal line, a radiating element and a waveguide, which is closed in an end region by a rear wall, the signal generating unit generating the high-frequency signals, the signal line transmitting the high-frequency signals to the radiating end Guide element of the waveguide, and wherein the radiating element protrudes into the waveguide.
  • a device of the type described above is used, for example, in measuring devices which determine the filling level of a filling material in a container over the running time of high-frequency measuring signals.
  • Runtime procedures take advantage of the physical law, according to which the running distance is equal to the product of the running time and the speed of propagation.
  • the running distance corresponds to twice the distance between the antenna and the surface of the product.
  • the useful echo signal i.e. the signal reflected on the surface of the filling material, and its transit time are determined on the basis of the so-called echo function or on the basis of the digitized envelope curve, the envelope curve representing the amplitudes of the echo signals as a function of the distance 'antenna - surface of the filling material'.
  • the level itself then results from the difference between the known distance of the antenna from the bottom of the container and the distance of the surface of the medium to the antenna determined by the measurement.
  • Usual methods for determining the distance over the transit time of electromagnetic signals are the pulse radar method and the frequency modulation continuous wave radar method (FMCW method).
  • pulse radar method short microwave pulses are sent periodically.
  • FMCW method a continuous microwave is transmitted, which is periodically linearly frequency-modulated, for example according to a sawtooth function.
  • the frequency of the received echo signal has a frequency difference compared to the frequency that the transmission signal has at the time of reception, which depends on the transit time of the echo signal.
  • the frequency difference between the transmitted signal and the received signal which can be obtained by mixing both signals and evaluating the Fourier spectrum of the mixed signal, thus corresponds to the distance of the reflector, for example the surface of the filling material, from the antenna.
  • the amplitudes of the spectral lines of the frequency spectrum obtained by Fourier transformation correspond to the echo amplitudes, so that the Fourier spectrum represents the echo function.
  • the propagation of the high-frequency measurement signals follows the physical laws of the propagation of electromagnetic waves in the signal line and in the waveguide.
  • the signal line is usually a coax line.
  • the high-frequency measurement signals are conducted from the inner conductor of the coaxial cable to the radiating element of the waveguide via a coupling.
  • the waveguide is designed either as a rectangular waveguide or as a round waveguide, antennas with a circular cross section preferably being used in the area of the fill level measurement, since they are used for installation in e.g. B. the neck of a container (tank, silo, etc.) are more suitable than waveguides with a rectangular cross-section.
  • the transverse electromagnetic mode In a coaxial line, the transverse electromagnetic mode (TEM mode) ideally spreads without dispersion. This TEM mode is therefore particularly well suited for the transport of wave packets or electromagnetic waves that have a certain bandwidth. Wave packets that spread in TEM mode are therefore not widened; a linearity deviation is largely avoided in the case of linear frequency-modulated microwaves.
  • a mode is preferably used for the directed transmission of electromagnetic waves by means of an antenna, the radiation characteristics of which have a pronounced forward lobe.
  • This is the characteristic of the transverse-electrical basic mode, TE U - mode, which can be propagated in circular waveguides.
  • the corresponding basic mode is the JE ] () mode.
  • the range of ambiguity for a rectangular waveguide that is, the range in which only the basic mode can propagate
  • the range of ambiguity for a circular waveguide is relatively narrow.
  • the probability that undesired higher modes are excited in addition to the basic mode when broadband signals are coupled in is therefore much greater in the case of a round waveguide than in the case of a rectangular waveguide.
  • An undesirable consequence of the formation of different modes is the so-called ringing.
  • the ringing is caused by the fact that the individual modes that can propagate in a waveguide have different propagation speeds. This is shown by the fact that the transmit pulse does not drop abruptly, but slowly loses amplitude. This ringing edge can cover the echo signal in the measuring range or overlap with the echo signal in such a way that relatively large errors can occur when determining the measured value.
  • the invention is based on the object of proposing a device for emitting high-frequency measurement signals, which is characterized by an optimized radiation characteristic.
  • the radiating element is arranged at an angle to the rear wall of the waveguide or to a plane of the waveguide parallel to the rear wall.
  • the radiating element that is to say the excitation pin, must be arranged parallel to the rear wall of the waveguide.
  • the radiating element is guided through the rear wall of the waveguide.
  • An alternative embodiment of the device according to the invention provides that the radiating element is guided through the side wall of the waveguide.
  • the amount of the angle between the radiating element and the rear wall of the waveguide or a plane parallel to the rear wall is greater than 4 °.
  • the radiating element can be, for example, a transmission wire.
  • a transmission mushroom is preferably arranged in the region of the free end of the transmission wire.
  • a conductor structure which is arranged on a circuit board can be used as the radiating element, the radiating structure being arranged on the circuit board at an angle to the rear wall of the waveguide or to a plane parallel to the rear wall of the waveguide.
  • the waveguide leads to a horn, rod or parabolic antenna.
  • the radiation characteristic of the device can be further optimized.
  • an advantageous embodiment of the device according to the invention provides that a dielectric material at least fills the interior of the waveguide in the area of the transmission wire.
  • a recess be provided in the dielectric material into which the transmission wire protrudes.
  • the dielectric material is, for example, polytetrafluoroethylene (PTFE) or aluminum trioxide (Al 2 0 3 ).
  • the device according to the invention is preferably part of a fill level measuring device.
  • the use of the device according to the invention is by no means restricted to this use.
  • the device can be used in any devices that work with high-frequency measurement signals.
  • the device 1 shows a schematic representation of the device 1 according to the invention, which is integrated in a rod antenna 15.
  • the device 1 according to the invention consists of the signal generating unit 2, the signal line 3 and the radiating element 4, which is arranged in the waveguide 5, here a circular waveguide.
  • the radiating element 4 is a transmission wire.
  • the radiating element 4 does not run parallel to the rear wall 6 of the waveguide 5 or to a plane parallel to the rear wall 6 of the waveguide 5, but is arranged at a certain angle to the rear wall 6 or to the plane parallel to the rear wall 6.
  • High-frequency measurement signals are generated in the signal generation unit 2 and coupled to the radiating element 4 via the signal line 3, which is usually a coaxial cable.
  • the rod antenna 15, via which the high-frequency measurement signals are emitted or via which the reflected echo signals are received, consists of a circular waveguide 5 in the case shown.
  • An end region of the rod-shaped dielectric material 18 is positioned in the interior of the circular waveguide 5.
  • an opening 7 is provided, in which the bushing 9 is locked. via which the measurement signals are routed from the signal line 3 to the radiating element 4.
  • the radiating element 4 is arranged in a corresponding recess 14 in the rod-shaped dielectric material 18.
  • FIG. 2 shows a schematic representation of the device 1 according to the invention, which is integrated in a horn antenna 16. While the radiation characteristic in the rod antenna 15 shown in FIG. 1 is optimized by the rod-shaped dielectric material 18, the optimization in the horn antenna 15 is supported by the horn-shaped element 11, which adjoins the free end of the waveguide 5 in the radiation direction. The dielectric material 10 placed in the waveguide 5 is also used to improve the directional characteristic of the horn antenna 16 and is also taped in the radiation direction.
  • FIG. 3 shows a schematic illustration of a fill level measuring device 29 according to the invention, which is fastened in an opening 24 of the cover 22 of a container 21.
  • the fill level measuring device 29 is a horn antenna 16, in which the device 1 according to the invention is used.
  • high-frequency measurement signals generated by the transmission unit 25 are emitted in the direction of the surface of the filling material 23 via the horn antenna 16.
  • the echo signals reflected on the surface of the filling material 23 are detected by the receiving unit 26.
  • the control / evaluation unit determines the filling level of the filling material 23 in the container 21 on the basis of the difference in transit time between the measurement signals and the echo signals.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Engineering & Computer Science (AREA)
  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Nuclear Medicine (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Luminescent Compositions (AREA)
  • Transmitters (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

The invention relates to a device for the emission of high frequency signals, comprising a signal generation unit (2), a signal guide (3), an emitting element (4) and a hollow guide (5), an end region of which is defined by a back wall (6). The signal generation unit (2) generates the high frequency signal, the signal guide (3) guides the signal to the emitting element (4) and the emitting element (4) extends into the hollow guide (5). The aim of the invention is to describe a device for the emission of high frequency measuring signals, characterised by an optimised emission character. Said aim is achieved whereby the emitting element (4) is arranged at an angle to the back wall (6) of the hollow guide (5), or to a plane of the hollow guide (5), parallel to said back wall (6).

Description

Vorrichtung zum Aussenden hochfrequenter Signale Device for transmitting high-frequency signals
Die Erfindung betrifft eine Vorrichtung zum Aussenden hochfrequenter Signale mit einer Signalerzeugungseinheit, einer Signalleitung, einem abstrahlenden Element und einem Hohlleiter, der in einem Endbereich durch eine Rückwand abgeschlossen ist, wobei die Signalerzeugungseinheit die hochfrequenten Signale erzeugt, wobei die Signalleitung die hochfrequenten Signale auf das abstrahlende Element des Hohlleiters führt, und wobei das abstrahlende Element in den Hohlleiter hineinragt.The invention relates to a device for transmitting high-frequency signals with a signal generation unit, a signal line, a radiating element and a waveguide, which is closed in an end region by a rear wall, the signal generating unit generating the high-frequency signals, the signal line transmitting the high-frequency signals to the radiating end Guide element of the waveguide, and wherein the radiating element protrudes into the waveguide.
Eine Vorrichtung der zuvor beschriebenen Art kommt beispielsweise in Meßgeräten zum Einsatz, die den Füllstand eines Füllguts in einem Behälter über die Laufzeit von hochfrequenten Meßsignalen bestimmen. Laufzeit-verfahren nutzen die physikalische Gesetzmäßigkeit aus, wonach die Laufstrecke gleich dem Produkt aus Laufzeit und Ausbreitungsgeschwindig-keit ist. Im Falle der Füllstandsmessung entspricht die Laufstrecke dem doppelten Abstand zwischen Antenne und Oberfläche des Füllguts. Das Nutzechosignal, also das an der Oberfläche des Füllguts reflektierte Signal, und dessen Laufzeit werden anhand der sog. Echofunktion bzw. anhand der digitalisierten Hüllkurve bestimmt, wobei die Hüllkurve die Amplituden der Echosignale als Funkton des Abstandes 'Antenne - Oberfläche des Füllguts' wiedergibt. Der Füllstand selbst ergibt sich dann aus der Differenz zwischen dem bekannten Abstand der Antenne vom Boden des Behälters und dem durch die Messung bestimmten Abstand der Oberfläche des Füllguts zur Antenne.A device of the type described above is used, for example, in measuring devices which determine the filling level of a filling material in a container over the running time of high-frequency measuring signals. Runtime procedures take advantage of the physical law, according to which the running distance is equal to the product of the running time and the speed of propagation. In the case of level measurement, the running distance corresponds to twice the distance between the antenna and the surface of the product. The useful echo signal, i.e. the signal reflected on the surface of the filling material, and its transit time are determined on the basis of the so-called echo function or on the basis of the digitized envelope curve, the envelope curve representing the amplitudes of the echo signals as a function of the distance 'antenna - surface of the filling material'. The level itself then results from the difference between the known distance of the antenna from the bottom of the container and the distance of the surface of the medium to the antenna determined by the measurement.
Übliche Verfahren zur Entfernungsbestimmung über die Laufzeit von elektromagnetischen Signalen sind das Pulsradar-Verfahren und das Frequenz- modulations-Dauerstrichradar-Verfahren (FMCW-Verfahren). Beim Pulsradar- Verfahren werden periodisch kurze Mikrowellenpulse gesendet. Beim FMCW- Verfahren wird eine kontinuierliche Mikrowelle gesendet, die periodisch linear, beispielsweise nach einer Sägezahnfunktion, frequenzmoduliert ist. Die Frequenz des empfangenen Echosignals weist gegenüber der Frequenz, die das Sendesignal zum Zeitpunkt des Empfangs hat, eine Frequenzdifferenz auf, die von der Laufzeit des Echosignals abhängt. Die Frequenzdifferenz zwischen Sendesignal und Empfangssignal, die durch Mischung beider Signale und Auswertung des Fourierspektrums des Mischsignals gewonnen werden kann, entspricht somit dem Abstand des Reflektors, z.B. der Oberfläche des Füllguts, von der Antenne. Ferner entsprechen die Amplituden der Spektrallinien des durch Fouriertransformation gewonnenen Frequenz-spektrums den Echoamplituden, so daß das Fourierspektrum die Echo-funktion darstellt.Usual methods for determining the distance over the transit time of electromagnetic signals are the pulse radar method and the frequency modulation continuous wave radar method (FMCW method). In the pulse radar method, short microwave pulses are sent periodically. In the FMCW method, a continuous microwave is transmitted, which is periodically linearly frequency-modulated, for example according to a sawtooth function. The frequency of the received echo signal has a frequency difference compared to the frequency that the transmission signal has at the time of reception, which depends on the transit time of the echo signal. The frequency difference between the transmitted signal and the received signal, which can be obtained by mixing both signals and evaluating the Fourier spectrum of the mixed signal, thus corresponds to the distance of the reflector, for example the surface of the filling material, from the antenna. Furthermore, the amplitudes of the spectral lines of the frequency spectrum obtained by Fourier transformation correspond to the echo amplitudes, so that the Fourier spectrum represents the echo function.
Die Ausbreitung der hochfrequenten Meßsignale folgt in der Signalleitung und in dem Hohlleiter den physikalischen Gesetzen der Ausbreitung elektromagnetischer Wellen. Üblicherweise handelt es sich bei der Signalleitung um eine Koaxleitung. Über eine Einkopplung werden die hochfrequenten Meßsignale von dem Innenleiter des Koaxialkabels auf das abstrahlende Element des Hohlleiters geführt. Der Hohlleiter ist entweder als Rechteck-hohlleiter oder als Rundhohlleiter ausgebildet, wobei im Bereich der Füllstandsmessung bevorzugt Antennen mit kreisförmigem Querschnitt eingesetzt werden, da sie für den Einbau in z. B. den Stutzen eines Behälters (Tank, Silo, usw. ) besser geeignet sind als Hohlleiter mit rechteckförmigem Querschnitt.The propagation of the high-frequency measurement signals follows the physical laws of the propagation of electromagnetic waves in the signal line and in the waveguide. The signal line is usually a coax line. The high-frequency measurement signals are conducted from the inner conductor of the coaxial cable to the radiating element of the waveguide via a coupling. The waveguide is designed either as a rectangular waveguide or as a round waveguide, antennas with a circular cross section preferably being used in the area of the fill level measurement, since they are used for installation in e.g. B. the neck of a container (tank, silo, etc.) are more suitable than waveguides with a rectangular cross-section.
In einer Koaxleitung breitet sich der transversal-elektromagnetische Mode (TEM- Mode) im Idealfall dispersionsfrei aus. Dieser TEM-Mode eignet sich daher besonders gut zum Transport von Wellenpaketen oder elektromagnetischen Wellen, die eine gewisse Bandbreite aufweisen. Wellenpakete, die sich im TEM- Mode ausbreiten, erfahren also keine Verbreiterung; ebenso wird bei linear frequenzmodulierten Mikrowellen eine Linearitätsabweichung weitgehend vermieden.In a coaxial line, the transverse electromagnetic mode (TEM mode) ideally spreads without dispersion. This TEM mode is therefore particularly well suited for the transport of wave packets or electromagnetic waves that have a certain bandwidth. Wave packets that spread in TEM mode are therefore not widened; a linearity deviation is largely avoided in the case of linear frequency-modulated microwaves.
Zum gerichteten Aussenden von elektromagnetischen Wellen mittels einer Antenne wird bevorzugt ein Mode eingesetzt, dessen Abstrahlcharakteristik eine ausgeprägte Vorwärtskeule aufweist. Diese Eigenschaft weist der in Rundhohlleitern ausbreitungsfähige transversal-elektrische Grundmode, der TEU - Mode, auf. In einem Rechteckhohlleiter ist der entsprechende Grundmode der JE]()-Mode. In Abhängigkeit von den Abmessungen der als Hohlleiter ausgebildeten Antenne gibt es jeweils einen definierten Frequenz-bereich, in dem ausschließlich dieser Grundmode ausbreitungsfähig ist. Ober-halb dieses Frequenzbereichs breiten sich auch höhere, für das gerichtete Senden von Mikrowellen weniger gut geeignete Moden aus, beispielsweise der T 01-Mode beim Rundhohlleiter bzw. der 7E20-Mode beim Rechteckhohl-Ieiter. Während bei einem Rechteckhohlleiter der Εindeutigkeitsbereich, also der Bereich, in dem jeweils nur der Grundmode ausbreitungsfähig ist, relativ groß ist, ist der Εindeutigkeitsbereich bei einem Rundhohlleiters relativ eng bemessen. Die Wahrscheinlichkeit, daß bei der Einkopplung breitbandiger Signale neben dem Grundmode auch unerwünschte höhere Moden angeregt werden, ist daher bei einem Rundhohlleiter wesentlich größer als bei einem Rechteckhohlleiter. Eine unerwünschte Folge der Ausbildung von unter-schiedlichen Moden ist das sog. Klingeln. Verursacht wird das Klingeln dadurch, daß die einzelnen, in einem Hohlleiter ausbreitungsfähigen Moden unterschiedliche Ausbreitungsgeschwindigkeiten aufweisen. Dies zeigt sich darin, daß der Sendepuls nicht abrupt abfällt, sondern langsam an Amplitude verliert. Diese Klingelflanke kann das Echosignal im Meßbereich überdecken oder sich mit dem Echosignal so überlagern, daß es zu relativ großen Fehlern bei der Bestimmung des Meßwertes kommen kann.A mode is preferably used for the directed transmission of electromagnetic waves by means of an antenna, the radiation characteristics of which have a pronounced forward lobe. This is the characteristic of the transverse-electrical basic mode, TE U - mode, which can be propagated in circular waveguides. In a rectangular waveguide, the corresponding basic mode is the JE ] () mode. Depending on the dimensions of the antenna designed as a waveguide, there is a defined frequency range in which only this basic mode can be propagated. Above this frequency range, there are also higher modes that are less suitable for the directional transmission of microwaves, for example the T 01 mode for the round waveguide or the 7E 20 mode for the rectangular waveguide. While the range of ambiguity for a rectangular waveguide, that is, the range in which only the basic mode can propagate, is relatively large, the range of ambiguity for a circular waveguide is relatively narrow. The The probability that undesired higher modes are excited in addition to the basic mode when broadband signals are coupled in is therefore much greater in the case of a round waveguide than in the case of a rectangular waveguide. An undesirable consequence of the formation of different modes is the so-called ringing. The ringing is caused by the fact that the individual modes that can propagate in a waveguide have different propagation speeds. This is shown by the fact that the transmit pulse does not drop abruptly, but slowly loses amplitude. This ringing edge can cover the echo signal in the measuring range or overlap with the echo signal in such a way that relatively large errors can occur when determining the measured value.
Beispiele für bislang bekannt gewordene Füllstandsmeßgeräte sind übrigens in der EP 0 821 431 A2 und in der DE-GM 93 12 251.9 beschrieben. Während in der EP 0821 431 A2 eine Ausführungsform beschrieben wird, bei der das abstrahlende Element, der sog. Sendedraht, durch die Rückwand in den Innenraum des Hohlleiters geführt ist, erfolgt in der DE-GM 93 12 251.9 die Einkopplung der hochfrequenten Meßsignale auf den Hohlleiter durch die Seitenwand.Incidentally, examples of fill level measuring devices which have become known are described in EP 0 821 431 A2 and in DE-GM 93 12 251.9. While in EP 0821 431 A2 an embodiment is described in which the radiating element, the so-called transmission wire, is guided through the rear wall into the interior of the waveguide, DE-GM 93 12 251.9 is used to couple the high-frequency measurement signals to the Waveguide through the side wall.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zum Aussenden von hochfrequenten Meßsignalen vorzuschlagen, die sich durch eine optimierte Abstrahlcharakteristik auszeichnet.The invention is based on the object of proposing a device for emitting high-frequency measurement signals, which is characterized by an optimized radiation characteristic.
Die Aufgabe wird dadurch gelöst, daß das abstrahlende Element in einem Winkel zur Rückwand des Hohlleiters bzw. zu einer zur Rückwand parallelen Ebene des Hohlleiters angeordnet ist.The object is achieved in that the radiating element is arranged at an angle to the rear wall of the waveguide or to a plane of the waveguide parallel to the rear wall.
Bekannte Lösungen gingen immer davon aus, daß für eine optimale E-Feld- Einkopplung das abstrahlende Element, sprich der Erregerstift, parallel zur Rückwand des Hohlleiters angeordnet sein muß.Known solutions have always assumed that for optimum E field coupling, the radiating element, that is to say the excitation pin, must be arranged parallel to the rear wall of the waveguide.
Überraschenderweise hat es sich jedoch gezeigt, daß wesentlich bessere Ergebnisse erzielt werden können, wenn der Erregerstift nicht parallel zur Rückwand, sondern unter einem gewissen Winkel zur Rückwand bzw. zu einer zur Rückwand parallelen Ebene verläuft. Dieser Winkel hängt ab von der sonstigen Einkopplungs-Geometrie und kann nicht allgemein definiert werden. Es hat sich - wie bereits gesagt - herausgestellt, daß durch den schräg stehenden Erregerstift die Anregung sehr viel monomodiger erfolgt, d.h. im wesentlichen wird nur der gewünschte Mode, sprich der Grundmode, angeregt. Diese monomodige Einkopplung läßt sich selbst dann noch erreichen, wenn sehr breitbandige Meßsignale auf den Hohlleiter eingekoppelt werden. Darüber hinaus wird durch die erfindungsgemäße Vorrichtung eine sehr gute Anpassung zwischen der Signalleitung und der Einkopplung erzielt. Als Ergebnis beider Effekte wird das bereits zuvor beschriebene Klingeln insbesondere bei der Einkopplung von breitbandigen Meßsignalen drastisch reduziert. Weiterhin erreicht man durch die Unterdrückung der unerwünschten höheren Moden das gewünschte Abstrahlverhalten mit einer ausgeprägten Richtcharakteristik in Abstrahlrichtung.Surprisingly, however, it has been shown that significantly better results can be achieved if the excitation pin does not run parallel to the rear wall, but rather at a certain angle to the rear wall or to a plane parallel to the rear wall. This angle depends on the other coupling geometry and cannot be generally defined. As has already been said, it has been found that through the oblique Excitation pin the excitation takes place much more monomodally, ie essentially only the desired mode, that is to say the basic mode, is excited. This monomode coupling can still be achieved even when very broadband measurement signals are coupled onto the waveguide. In addition, a very good adaptation between the signal line and the coupling is achieved by the device according to the invention. As a result of both effects, the ringing described above is drastically reduced, particularly when broadband measurement signals are being coupled in. Furthermore, by suppressing the undesired higher modes, the desired radiation behavior is achieved with a pronounced directional characteristic in the radiation direction.
Gemäß einer ersten Ausgestaltung der erfindungsgemäßen Vorrichtung ist das abstrahlende Element durch die Rückwand des Hohlleiters geführt ist. Eine alternative Ausführungsform der erfindungsgemäßen Vorrichtung sieht vor, daß das abstrahlende Element durch die Seitenwand des Hohlleiters geführt ist.According to a first embodiment of the device according to the invention, the radiating element is guided through the rear wall of the waveguide. An alternative embodiment of the device according to the invention provides that the radiating element is guided through the side wall of the waveguide.
Gemäß einer vorteilhaften Weiterbildung der erfindungsgemäßen Vorrichtung ist der Betrag des Winkels zwischen dem abstrahlenden Element und der Rückwand des Hohlleiters bzw. einer zur Rückwand parallelen Ebene größer als 4°.According to an advantageous development of the device according to the invention, the amount of the angle between the radiating element and the rear wall of the waveguide or a plane parallel to the rear wall is greater than 4 °.
Bei dem abstrahlenden Element kann es sich beispielsweise um einen Sendedraht handeln. Bevorzugt ist in diesem Fall im Bereich des freien Endes des Sendedrahtes ein Sendepilz angeordnet. Alternativ kann als abstrahlendes Element eine Leiterstruktur zum Einsatz kommen, die auf einer Leiterplatte angeordnet ist, wobei die abstrahlende Struktur auf der Leiterplatte in einem Winkel zur Rückwand des Hohlleiters bzw. zu einer zur Rückwand des Hohlleiters parallelen Ebene angeordnet ist.The radiating element can be, for example, a transmission wire. In this case, a transmission mushroom is preferably arranged in the region of the free end of the transmission wire. Alternatively, a conductor structure which is arranged on a circuit board can be used as the radiating element, the radiating structure being arranged on the circuit board at an angle to the rear wall of the waveguide or to a plane parallel to the rear wall of the waveguide.
Gemäß einer vorteilhaften Ausgestaltung der erfindungsgemäßen Vorrichtung führt der Hohlleiter auf eine Hörn-, Stab-, oder Parabolantenne. Hierdurch läßt sich die Abstrahlcharakteristik der Vorrichtung weiterhin optimieren.According to an advantageous embodiment of the device according to the invention, the waveguide leads to a horn, rod or parabolic antenna. In this way, the radiation characteristic of the device can be further optimized.
Um das abstrahlende Element gegen Ablagerungen zu schützen, sieht eine vorteilhafte Ausführungsform der erfindungsgemäßen Vorrichtung vor, daß ein dielektrisches Material zumindest den Innenraum des Hohlleiters im Bereich des Sendedrahtes ausfüllt. Insbesondere wird in diesem Zusammenhang vorgeschlagen, daß in dem dielektrischen Material eine Ausnehmung vorgesehen ist, in die der Sendedraht hineinragt. Bei dem dielektrischen Material handelt es sich beispielsweise um Polytetrafluorethylen (PTFE) oder um Aluminiumtrioxid (Al2 03 ).In order to protect the radiating element against deposits, an advantageous embodiment of the device according to the invention provides that a dielectric material at least fills the interior of the waveguide in the area of the transmission wire. In this context, it is proposed in particular that a recess be provided in the dielectric material into which the transmission wire protrudes. The dielectric material is, for example, polytetrafluoroethylene (PTFE) or aluminum trioxide (Al 2 0 3 ).
Wie bereits an vorhergehender Stelle erwähnt, ist die erfindungsgemäße Vorrichtung bevorzugt ein Teil eines Füllstandsmeßgeräts. Allerdings ist der Einsatz der erfindungsgemäßen Vorrichtung keineswegs auf diese Verwendung beschränkt. Die Vorrichtung kann prinzipiell in beliebigen Vorrichtungen eingesetzt werden, die mit hochfrequente Meßsignalen arbeiten.As already mentioned above, the device according to the invention is preferably part of a fill level measuring device. However, the use of the device according to the invention is by no means restricted to this use. In principle, the device can be used in any devices that work with high-frequency measurement signals.
Die Erfindung wird anhand der nachfolgenden Zeichnungen näher erläutert. Es zeigt:The invention is illustrated by the following drawings. It shows:
Fig. 1 : eine schematische Darstellung einer ersten Anwendung der erfindungsgemäßen Vorrichtung,1: a schematic representation of a first application of the device according to the invention,
Fig. 2: eine schematische Darstellung einer zweiten Anwendung der erfindungsgemäßen Vorrichtung und2: a schematic representation of a second application of the device according to the invention and
Fig. 3: eine schematische Darstellung eines erfindungsgemäßen Füllstandsmeßgeräts.3: a schematic representation of a fill level measuring device according to the invention.
Fig. 1 zeigt eine schematische Darstellung der erfindungsgemäßen Vorrichtung 1 , die in eine Stabantenne 15 integriert ist. Die erfindungsgemäße Vorrichtung 1 besteht aus der Signalerzeugungseinheit 2, der Signalleitung 3 und dem abstrahlenden Element 4, das in dem Hohlleiter 5, hier einem Rundhohlleiter, angeordnet ist. Im gezeigten Fall handelt es sich bei dem abstrahlenden Element 4 um einen Sendedraht. Erfindungsgemäß verläuft das abstrahlende Element 4 nicht parallel zur Rückwand 6 des Hohlleiters 5 bzw. zu einer zur Rückwand 6 des Hohlleiters 5 parallelen Ebene, sondern ist in einem gewissen Winkel zur Rückwand 6 bzw. zu der zur Rückwand 6 parallelen Ebene angeordnet.1 shows a schematic representation of the device 1 according to the invention, which is integrated in a rod antenna 15. The device 1 according to the invention consists of the signal generating unit 2, the signal line 3 and the radiating element 4, which is arranged in the waveguide 5, here a circular waveguide. In the case shown, the radiating element 4 is a transmission wire. According to the invention, the radiating element 4 does not run parallel to the rear wall 6 of the waveguide 5 or to a plane parallel to the rear wall 6 of the waveguide 5, but is arranged at a certain angle to the rear wall 6 or to the plane parallel to the rear wall 6.
In der Signalerzeugungseinheit 2 werden hochfrequente Meßsignale erzeugt und über die Signalleitung 3, bei der es sich üblicherweise um ein Koaxialkabel handelt, auf das abstrahlende Element 4 eingekoppelt. Die Stabantenne 15, über die die hochfrequenten Meßsignale abgestrahlt bzw. über die die reflektierten Echosignale empfangen werden, besteht im gezeigten Fall aus einem Rundhohlleiter 5. Im Innenraum des Rundhohlleiters 5 ist ein Endbereich des stabförmigen dielektrischen Materials 18 positioniert. In der Seitenwand 8 des Rundhohlleiters 5 ist eine Öffnung 7 vorgesehen, in der die Durchführung 9 arretiert ist. über die die Meßsignale von der Signalleitung 3 auf das abstrahlende Element 4 geführt werden. Das abstrahlende Element 4 ist in einer entsprechenden Ausnehmung 14 des stabförmig ausgebildeten dielektrischen Materials 18 angeordnet.High-frequency measurement signals are generated in the signal generation unit 2 and coupled to the radiating element 4 via the signal line 3, which is usually a coaxial cable. The rod antenna 15, via which the high-frequency measurement signals are emitted or via which the reflected echo signals are received, consists of a circular waveguide 5 in the case shown. An end region of the rod-shaped dielectric material 18 is positioned in the interior of the circular waveguide 5. In the side wall 8 of the circular waveguide 5, an opening 7 is provided, in which the bushing 9 is locked. via which the measurement signals are routed from the signal line 3 to the radiating element 4. The radiating element 4 is arranged in a corresponding recess 14 in the rod-shaped dielectric material 18.
Das Übergangselement 17, das gleichfalls aus einem dielektrischen Material gefertigt ist, ist über einen Flansch 19 und Befestigungsstifte 20 an dem Flansch 16 befestigt und dient gleichzeitig der Anpassung als auch der Fixierung des stabförmigen dielektrischen Materials 18 in dem Rundhohlleiter 5.The transition element 17, which is also made of a dielectric material, is fastened to the flange 16 via a flange 19 and fastening pins 20 and at the same time serves to adapt and fix the rod-shaped dielectric material 18 in the circular waveguide 5.
Fig. 2 zeigt eine schematische Darstellung der erfindungsgemäßen Vorrichtung 1 , die in eine Hornantenne 16 integriert ist. Während bei der in Fig. 1 gezeigten Stabantenne 15 die Abstrahlcharakteristik durch das stabförmige dielektrische Material 18 optimiert wird, wird die Optimierung bei der Hornantenne 15 durch das hornförmige Element 11 unterstützt, das sich in Abstrahlrichtung an das freie Ende des Hohlleiters 5 anschließt. Zur Verbesserung der Richtcharakteristik der Hornantenne 16 dient auch das in dem Hohlleiter 5 plazierte dielektrische Material 10, das darüber hinaus in Abstrahlrichtung getapert ist.FIG. 2 shows a schematic representation of the device 1 according to the invention, which is integrated in a horn antenna 16. While the radiation characteristic in the rod antenna 15 shown in FIG. 1 is optimized by the rod-shaped dielectric material 18, the optimization in the horn antenna 15 is supported by the horn-shaped element 11, which adjoins the free end of the waveguide 5 in the radiation direction. The dielectric material 10 placed in the waveguide 5 is also used to improve the directional characteristic of the horn antenna 16 and is also taped in the radiation direction.
Fig. 3 zeigt eine schematische Darstellung eines erfindungsgemäßen Füllstandsmeßgeräts 29, das in einer Öffnung 24 der Abdeckung 22 eines Behälters 21 befestigt ist. Bei dem Füllstandsmeßgerät 29 handelt es sich um eine Hornantenne 16, bei der die erfindungsgemäße Vorrichtung 1 Verwendung findet. Um den Füllstand des Füllguts 23 in dem Behälter 21 zu bestimmen, werden über die Hornantenne 16 hochfrequente von der Sendeeinheit 25 erzeugte Meßsignale in Richtung der Oberfläche des Füllguts 23 ausgesendet. Die an der Oberfläche des Füllguts 23 reflektierten Echosignale werden von der Empfangseinheit 26 detektiert. Anhand des Laufzeitunterschieds zwischen den Meßsignalen und den Echosignalen bestimmt die Regel-/Auswerteeinheit den Füllstand des Füllguts 23 in dem Behälter 21. Bezugszeichenliste3 shows a schematic illustration of a fill level measuring device 29 according to the invention, which is fastened in an opening 24 of the cover 22 of a container 21. The fill level measuring device 29 is a horn antenna 16, in which the device 1 according to the invention is used. In order to determine the filling level of the filling material 23 in the container 21, high-frequency measurement signals generated by the transmission unit 25 are emitted in the direction of the surface of the filling material 23 via the horn antenna 16. The echo signals reflected on the surface of the filling material 23 are detected by the receiving unit 26. The control / evaluation unit determines the filling level of the filling material 23 in the container 21 on the basis of the difference in transit time between the measurement signals and the echo signals. LIST OF REFERENCE NUMBERS
1 erfindungsgemäße Vorrichtung1 device according to the invention
2 Signalerzeugungseinheit2 signal generation unit
3 Signalleitung3 signal line
Abstrahlendes ElementRadiating element
Hohlleiterwaveguide
Rückwandrear wall
Öffnungopening
SeitenwandSide wall
Durchführungexecution
10 Dielektrisches Material10 dielectric material
11 Hornförmiges Element 2 Flansch 3 Seitenwand 4 Ausnehmung 5 . Stabantenne 6 Hornantenne 7 Übergangselement 8 Stabformiges dielektrisches Material 9 Flansch 0 Befestigungsstift 1 Behälter 2 Abdeckung 3 Füllgut 4 Öffnung 5 Sendeeinheit 6 Empfangseinheit 7 Regel-/Auswerteeinheit 8 Sendepilz 9 Füllstandsmeßgerät 11 Horn-shaped element 2 flange 3 side wall 4 recess 5. Rod antenna 6 Horn antenna 7 Transition element 8 Rod-shaped dielectric material 9 Flange 0 Fastening pin 1 Container 2 Cover 3 Product 4 Opening 5 Transmitting unit 6 Receiving unit 7 Control / evaluation unit 8 Transmitting mushroom 9 Level measuring device

Claims

Patentansprüche claims
1. Vorrichtung zum Aussenden hochfrequenter Signale mit einer Signalerzeugungseinheit, einer Signalleitung, einem abstrahlenden Element und einem Hohlleiter, der in einem Endbereich durch eine Rückwand abgeschlossen ist, wobei die Signalerzeugungseinheit die hochfrequenten Signale erzeugt, wobei die Signalleitung die hochfrequenten Signale auf das abstrahlende Element des Hohlleiters führt, und wobei das abstrahlende Element in den Hohlleiter hineinragt, dadurch gekennzeichnet, daß das abstrahlende Element (4) in einem Winkel zur Rückwand (6) des Hohlleiters (5) bzw. zu einer zur Rückwand (6) parallelen Ebene des Hohlleiters (5) angeordnet ist.1. Device for transmitting high-frequency signals with a signal generating unit, a signal line, a radiating element and a waveguide, which is closed in an end region by a rear wall, the signal generating unit generating the high-frequency signals, the signal line transmitting the high-frequency signals to the radiating element of the Waveguide leads, and wherein the radiating element protrudes into the waveguide, characterized in that the radiating element (4) at an angle to the rear wall (6) of the waveguide (5) or to a plane of the waveguide (parallel to the rear wall (6) 5) is arranged.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, daß das abstrahlende Element (4) durch die Rückwand (6) des Hohlleiters (5) geführt ist.2. Device according to claim 1, characterized in that the radiating element (4) through the rear wall (6) of the waveguide (5) is guided.
3. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, daß das abstrahlende Element (4) durch die Seitenwand (8) des Hohlleiters (5) geführt ist.3. Apparatus according to claim 1, characterized in that the radiating element (4) through the side wall (8) of the waveguide (5) is guided.
4. Vorrichtung nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, daß der Betrag des Winkels zwischen dem abstrahlenden Element (4) und der Rückwand (6) des Hohlleiters (5) bzw. einer zur Rückwand (6) des Hohlleiters (5) parallelen Ebene größer als 4° ist.4. Apparatus according to claim 1, 2 or 3, characterized in that the amount of the angle between the radiating element (4) and the rear wall (6) of the waveguide (5) or one to the rear wall (6) of the waveguide (5) parallel plane is greater than 4 °.
5. Vorrichtung nach Anspruch 1 oder 4, dadurch gekennzeichnet, daß es sich bei dem abstrahlenden Element (4) um einen Sendedraht handelt.5. Apparatus according to claim 1 or 4, characterized in that it is in the radiating element (4) is a transmission wire.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß in dem Bereich des freien Endes des Sendedrahtes (4) ein Sendepilz (28) angeordnet ist. 6. The device according to claim 5, characterized in that in the region of the free end of the transmission wire (4) a transmission mushroom (28) is arranged.
7. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß es sich bei dem abstrahlenden Element (4) um eine Leiterstruktur handelt, die auf einer Leiterplatte angeordnet ist und daß die abstrahlende Struktur auf der Leiterplatte in einem Winkel zur Rückwand (6) des Hohlleiters (5) bzw. zu einer zur Rückwand (6) des Hohlleiters (5) parallelen Ebene angeordnet ist.7. The device according to claim 1 or 2, characterized in that it is in the radiating element (4) is a conductor structure which is arranged on a circuit board and that the radiating structure on the circuit board at an angle to the rear wall (6) of Waveguide (5) or to a plane parallel to the rear wall (6) of the waveguide (5) is arranged.
8. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, daß der Hohlleiter (5) auf eine Hornantenne (16), eine Stabantenne (15) oder eine Parabolantenne führt.8. The device according to claim 1, characterized in that the waveguide (5) leads to a horn antenna (16), a rod antenna (15) or a parabolic antenna.
9. Vorrichtung nach Anspruch 1 oder 8, dadurch gekennzeichnet, daß ein dielektrisches Material (10; 18) vorgesehen ist, das zumindest den Innenraum des Hohlleiters (5) im Bereich des abstrahlenden Elements (4) ausfüllt.9. The device according to claim 1 or 8, characterized in that a dielectric material (10; 18) is provided which fills at least the interior of the waveguide (5) in the region of the radiating element (4).
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß in dem dielektrischen Material (10; 18) eine Ausnehmung (14) vorgesehen ist, in die das abstrahlende Element (4) hineinragt.10. The device according to claim 9, characterized in that in the dielectric material (10; 18) a recess (14) is provided, into which the radiating element (4) protrudes.
11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß es sich bei dem dielektrischen Material (10; 18) um Polytetrafluorethylen (PTFE) oder um Aluminiumtrioxid (Al2 03) handelt.11. The device according to claim 9 or 10, characterized in that it is in the dielectric material (10; 18) to polytetrafluoroethylene (PTFE) or aluminum trioxide (Al 2 0 3 ).
12. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 11 , dadurch gekennzeichnet, daß die Vorrichtung Teil eines Füllstandsmeßgeräts (29) ist. 12. The device according to one or more of claims 1 to 11, characterized in that the device is part of a fill level measuring device (29).
EP01271983A 2000-12-22 2001-11-17 Device for the emission of high frequency signals Ceased EP1377801A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10064812A DE10064812A1 (en) 2000-12-22 2000-12-22 Device for emitting high frequency signals used in radar systems has a radiating element arranged at an angle to the rear wall of a wave guide
DE10064812 2000-12-22
PCT/EP2001/013301 WO2002052888A2 (en) 2000-12-22 2001-11-17 Device for the emission of high frequency signals

Publications (1)

Publication Number Publication Date
EP1377801A2 true EP1377801A2 (en) 2004-01-07

Family

ID=7668832

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01271983A Ceased EP1377801A2 (en) 2000-12-22 2001-11-17 Device for the emission of high frequency signals

Country Status (10)

Country Link
US (1) US6549174B2 (en)
EP (1) EP1377801A2 (en)
JP (1) JP2004535693A (en)
KR (1) KR100584058B1 (en)
CN (1) CN100432637C (en)
AU (1) AU2002218303A1 (en)
CA (1) CA2432692A1 (en)
DE (1) DE10064812A1 (en)
EA (1) EA005259B1 (en)
WO (1) WO2002052888A2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2405645A1 (en) * 2002-09-27 2004-03-27 Siemens Milltronics Process Instruments Inc. Dielectric rod antenna
DE112004000368T5 (en) * 2003-03-04 2006-03-16 Saab Rosemount Tank Radar Ab Method and device for a radar level measuring system
WO2004104629A1 (en) * 2003-05-23 2004-12-02 Siemens Milltronics Process Instruments Inc. Cable mechanism for a remote mounted radar-based level measurement system
US7109940B1 (en) * 2004-08-04 2006-09-19 Lockheed Martin Corporation Antenna element with curved dielectric member and array of such elements
US7259712B1 (en) * 2004-09-30 2007-08-21 Siemens Milltronics Process Instruments Inc. Antenna with integral sealing member for a radar-based level measurement system
JP4542913B2 (en) * 2005-02-03 2010-09-15 Okiセミコンダクタ株式会社 Mobile terminal device
DE602005020434D1 (en) * 2005-06-13 2010-05-20 Siemens Milltronics Proc Instr Horn antenna with composite radiator
WO2007125020A1 (en) * 2006-04-26 2007-11-08 Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg Sensor for a measuring point and method for inspecting a sensor for a measuring point
JP4606381B2 (en) * 2006-05-25 2011-01-05 株式会社神戸製鋼所 In-pipe wireless communication structure
DE102006046696A1 (en) * 2006-09-29 2008-04-17 Siemens Ag Device for determining the distance between at least one moving blade and a wall of a turbomachine surrounding the at least one moving blade
DE102009028620A1 (en) 2009-08-18 2011-02-24 Endress + Hauser Gmbh + Co. Kg Process automation technology measuring device for determining and monitoring a chemical or physical process variable in a high-temperature process in a container
US8800363B2 (en) 2010-12-02 2014-08-12 Rosemount Tank Radar Ab Radar level gauge with dielectric rod connection
US9310479B2 (en) * 2012-01-20 2016-04-12 Enterprise Electronics Corporation Transportable X-band radar having antenna mounted electronics
DE102012104090A1 (en) * 2012-05-10 2013-11-14 Endress + Hauser Gmbh + Co. Kg Horn antenna element for antenna array for radar measuring device, has upper cover that is formed by base plate of another horn antenna element
US8933835B2 (en) * 2012-09-25 2015-01-13 Rosemount Tank Radar Ab Two-channel directional antenna and a radar level gauge with such an antenna
JP6097119B2 (en) 2013-03-29 2017-03-15 東京計器株式会社 Radio wave level meter
DE102013108434B4 (en) * 2013-08-05 2020-06-25 Finetek Co., Ltd. Horn antenna device and step-shaped signal feed device therefor
US9273989B2 (en) * 2014-03-28 2016-03-01 Honeywell International Inc. Foam filled dielectric rod antenna
US9882285B2 (en) * 2014-04-24 2018-01-30 Honeywell International Inc. Dielectric hollow antenna
EP3208579B1 (en) 2016-02-22 2020-01-29 VEGA Grieshaber KG Reduction of power spikes in the average power range of fill level measuring devices
US20180219288A1 (en) * 2017-01-30 2018-08-02 Michael Benjamin Griesi Wideband Dielectrically Loaded Rectangular Waveguide to Air-filled Rectangular Waveguide Adapter
US11876295B2 (en) * 2017-05-02 2024-01-16 Rogers Corporation Electromagnetic reflector for use in a dielectric resonator antenna system
EP3450931B1 (en) * 2017-08-28 2022-10-05 VEGA Grieshaber KG Hollow line coupling for a fill level radar
DE102018117166A1 (en) * 2018-07-16 2020-01-16 Endress+Hauser SE+Co. KG Radio-frequency module
JP7387071B2 (en) * 2021-09-27 2023-11-27 三菱電機株式会社 Waveguide planar circuit converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1076380A1 (en) * 1999-08-10 2001-02-14 Endress + Hauser GmbH + Co. Antenna

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT335569B (en) * 1974-03-21 1977-03-25 Siemens Ag Oesterreich CIRCUIT ARRANGEMENT FOR WIRELESS TRANSMISSION OF IGNITION SIGNALS TO CONTROLLABLE SEMI-CONDUCTIVE VALVES, IN PARTICULAR THYRISTORS
JPS59196483A (en) 1983-04-21 1984-11-07 Kobe Steel Ltd Method for measuring distance by electromagnetic wave
US5255003B1 (en) * 1987-10-02 1995-05-16 Antenna Downlink Inc Multiple-frequency microwave feed assembly
US5066958A (en) * 1989-08-02 1991-11-19 Antenna Down Link, Inc. Dual frequency coaxial feed assembly
US5245353A (en) * 1991-09-27 1993-09-14 Gould Harry J Dual waveguide probes extending through back wall
US5216432A (en) * 1992-02-06 1993-06-01 California Amplifier Dual mode/dual band feed structure
JP3277590B2 (en) * 1993-02-18 2002-04-22 株式会社村田製作所 Dielectric rod antenna
DE9312251U1 (en) * 1993-08-17 1993-12-09 Vega Grieshaber Gmbh & Co, 77709 Wolfach Measuring device for level or distance measurement by means of electromagnetic waves in the microwave range
US5463358A (en) * 1993-09-21 1995-10-31 Dunn; Daniel S. Multiple channel microwave rotary polarizer
DE19629593A1 (en) * 1996-07-23 1998-01-29 Endress Hauser Gmbh Co Arrangement for generating and transmitting microwaves, especially for a level measuring device
DE19723880A1 (en) * 1997-06-06 1998-12-10 Endress Hauser Gmbh Co Device for fastening an excitation element in a metallic waveguide of an antenna and for electrically connecting the same to a coaxial line arranged outside the waveguide
EP0922942A1 (en) 1997-12-10 1999-06-16 Endress + Hauser GmbH + Co. Microwave level gauge with a dielectric insert and method for the manufacture of the dielectric
DE19800306B4 (en) 1998-01-07 2008-05-15 Vega Grieshaber Kg Antenna device for a level-measuring radar device
EP0947812A1 (en) * 1998-03-28 1999-10-06 Endress + Hauser GmbH + Co. Microwave operated level gauge
JP2001053537A (en) * 1999-08-13 2001-02-23 Alps Electric Co Ltd Primary radiator
DE19944103A1 (en) 1999-09-15 2001-03-22 Endress Hauser Gmbh Co Device for determining the level of a product in a container
CN1111273C (en) * 1999-09-30 2003-06-11 石油大学(华东) Automatic supersonic oil tank level measurement technology based on half-wave transmission principle
DE10023497A1 (en) 2000-05-13 2001-11-15 Endress Hauser Gmbh Co Microwave-type level gauge for industrial applications, is equipped with a plate for positioning the microwave generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1076380A1 (en) * 1999-08-10 2001-02-14 Endress + Hauser GmbH + Co. Antenna

Also Published As

Publication number Publication date
WO2002052888A3 (en) 2003-10-16
WO2002052888A2 (en) 2002-07-04
KR20030070908A (en) 2003-09-02
EA005259B1 (en) 2004-12-30
JP2004535693A (en) 2004-11-25
US20020080080A1 (en) 2002-06-27
EA200300721A1 (en) 2004-04-29
AU2002218303A1 (en) 2002-07-08
CA2432692A1 (en) 2002-07-04
CN100432637C (en) 2008-11-12
KR100584058B1 (en) 2006-05-29
US6549174B2 (en) 2003-04-15
DE10064812A1 (en) 2002-06-27
CN1545614A (en) 2004-11-10

Similar Documents

Publication Publication Date Title
EP1377801A2 (en) Device for the emission of high frequency signals
DE19641036C2 (en) Level measuring device working with microwaves
EP1076380B1 (en) Antenna
EP1285239B1 (en) Level meter
EP0821431B1 (en) Device for generating and emitting microwaves, especially for a filling level measuring device
DE60214755T2 (en) Horn antenna for a level measuring device
DE19944103A1 (en) Device for determining the level of a product in a container
EP0947812A1 (en) Microwave operated level gauge
DE4345242A1 (en) Frequency conversion circuit for a radar distance measuring device
DE10051297A1 (en) Microwave level measurement device has microwave generator, transmit and receive antennas, reception and evaluation circuit that determines level from transition time of microwaves
DE102013106978A1 (en) Antenna arrangement for a level gauge
DE202005008528U1 (en) Process measuring instrument with a parabolic antenna
EP1402234A2 (en) Device for determining and/or monitoring the level of a filled substance in a container
WO2002033439A1 (en) Device for measuring the filling level of a material in a container
DE4331353C2 (en) Radar distance measuring device
EP1274973A2 (en) Device for determining the level of contents in a container
DE10010713B4 (en) Level measuring device for transmitting and receiving broadband high-frequency signals
EP1126251A2 (en) Device for level measurement
DE10043838A1 (en) The level measurement
DE10117642B4 (en) Device for determining the filling level of a product in a container
DE19820839A1 (en) Liquid container filling level measuring device e.g. for fuel tank at refueling station
DE10118009B4 (en) Device for determining and / or monitoring the fill level of a product in a container
DE102004022516B4 (en) horn antenna
DE10393855T5 (en) Antenna device for radar level measurement
DE102023112582A1 (en) Radar level measuring device for detecting the level of a medium of low permittivity in a container

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030506

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20080409

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20130927