[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1357342B1 - Système de séparation d'air cryogénique à trois colonnes avec production d'argon - Google Patents

Système de séparation d'air cryogénique à trois colonnes avec production d'argon Download PDF

Info

Publication number
EP1357342B1
EP1357342B1 EP02011458A EP02011458A EP1357342B1 EP 1357342 B1 EP1357342 B1 EP 1357342B1 EP 02011458 A EP02011458 A EP 02011458A EP 02011458 A EP02011458 A EP 02011458A EP 1357342 B1 EP1357342 B1 EP 1357342B1
Authority
EP
European Patent Office
Prior art keywords
argon
column
pressure column
pressure
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02011458A
Other languages
German (de)
English (en)
Other versions
EP1357342A1 (fr
Inventor
Dietrich Rottmann
Christian Kunz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1357342A1 publication Critical patent/EP1357342A1/fr
Application granted granted Critical
Publication of EP1357342B1 publication Critical patent/EP1357342B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • F25J3/04212Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product and simultaneously condensing vapor from a column serving as reflux within the or another column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04327Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of argon or argon enriched stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04454Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Definitions

  • the invention relates to a method for the cryogenic separation of air according to the preamble of claim 1.
  • a medium-pressure column is used which is operated at a pressure which is between the operating pressures of the high-pressure column and the low-pressure column (see also Plank, Vol. Handbook of Refrigeration, Volume 8, 1957, page 194/195).
  • the feed fraction used for the medium-pressure column is either at least part of an oxygen-enriched liquid from the high-pressure column or a partial stream of the feed air or both.
  • the medium-pressure column can be equipped with a bottom evaporator and / or with a top condenser. Head and / or bottom products of the medium-pressure column are usually fed to the low-pressure column and / or withdrawn as a product under intermediate pressure.
  • FIG. 8 the crude argon column-analogous to a two-column system with high-pressure column and low-pressure column-is designed as a side column to the low-pressure column. This connection between low-pressure column and crude argon column is also in the three-column processes of not previously published applications DE 10113791 A1 and DE 10113790 A1 realized.
  • argon-enriched here a fraction is referred to, if their argon content is higher than that of the atmospheric air and, for example, 3 to 14 mol%, preferably 5 to 14 mol%.
  • the invention has for its object to provide such a 3-pillar system, which allows a particularly efficient argon production.
  • the first argon-enriched stream which serves as an insert for the crude argon column, is taken from the medium-pressure column.
  • argon belly a relatively high argon concentration (the "argon belly") forms at an intermediate point.
  • This argon enrichment is used in the invention for argon recovery by at least part of the use of the crude argon column is deducted from approximately this intermediate point of the medium-pressure column.
  • This argon-enriched fraction is under a higher pressure than the low-pressure column (about 5.5 bar when the low-pressure column is operated below about atmospheric pressure) and thus further contains a pressure potential which is available in the invention for improving the argon recovery.
  • the rectification system for nitrogen-oxygen separation can be formed in the invention by any type of three- or multi-column system, for example by a pure gas apparatus, an internal compression unit or a liquid system (optionally with two- or multi-turbine air). or nitrogen cycle).
  • the customary connection between low-pressure column and crude argon column can exist, via which a second argon-enriched stream is withdrawn from the low-pressure column and introduced into the crude argon column.
  • argon enrichment in the medium-pressure column and the low-pressure column further increases the economic efficiency of argon recovery.
  • the bottom liquid of the crude argon column is at least partially recycled to the medium-pressure column. Since the crude argon column in the invention is usually operated at a pressure lower than the medium-pressure column pressure (and approximately equal to the low-pressure column pressure, for example), a liquid pump is generally used for the recycling of the crude argon column bottoms liquid.
  • One way of utilizing the aforementioned pressure potential available in the invention is to at least partially condense at least a portion of the first argon-enriched stream upstream of introduction into the crude argon column in a condenser-evaporator.
  • the condenser-evaporator is preferably designed as an intermediate or bottom evaporator of the crude argon column by a part of a liquid from the crude argon column, in particular a part of the bottom liquid, is evaporated there.
  • the pressure gradient between medium-pressure column and crude argon column is thus utilized to operate the condenser-evaporator.
  • the first argon-enriched stream is expanded between condenser-evaporator and feed into the medium-pressure column and / or upstream of the condenser-evaporator.
  • the feed into the crude argon column is preferably carried out at an intermediate point, for example, 1 to 8 theoretical plates, preferably 2 to 6 theoretical plates above the bottom of the crude argon column, for a total of, for example, 45 to 200 theoretical plates, preferably 45 to 180 theoretical plates in the crude argon column. If, in addition, a second argon-enriched stream is introduced from the low-pressure column, its feed into the crude argon column takes place deeper, for example directly above the bottom.
  • the above-mentioned pressure potential can be exploited by at least part of the first argon-enriched stream upstream of the introduction into the crude argon column being expanded to perform work and thus used to produce process refrigeration.
  • Upstream of the work-performing expansion of the stream is heated to an intermediate temperature, preferably in indirect heat exchange against feed air, for example in the main heat exchanger.
  • the invention also relates to a device for the cryogenic separation of air according to claim 7.
  • a first feed air stream 1 in a first air compressor 2 with aftercooler 3 is compressed to approximately the operating pressure of the high-pressure column described below (plus line losses).
  • the first air stream 4 then branches into a direct air stream 5 and a turbine air stream 6.
  • the direct air 5 is fed directly to the warm end of a main heat exchanger 7 and cooled there to about dew point.
  • the cooled direct air 8 flows without further pressure-changing measures of the high-pressure column 9.
  • the high-pressure column 9 is part of a rectification system for nitrogen-oxygen separation, which also comprises a medium-pressure column 10 and a low-pressure column 11. Their operating pressures are (at the top of each head): High-pressure column 14.5 to 17 bar, for example about 15 bar Medium pressure column 5 to 6 bar, for example about 5.5 bar Low-pressure column 1.2 to 1.5 bar, for example about 1.3 bar
  • the columns are connected via a first main capacitor 12 between the high-pressure column and the medium-pressure column or a second main capacitor 13 between the medium-pressure column and low-pressure column in heat-exchanging connection.
  • head gas of the respective lower column is condensed in a known manner in indirect heat exchange with evaporating bottom liquid of the respective upper column.
  • the turbine air stream 6, 16 is post-compacted in a secondary compressor 14 with aftercooler 15, cooled in the main heat exchanger 7 to an intermediate temperature and fed via line 17 of the work-performing expansion in a relaxation machine (injection turbine) 18, which is mechanically coupled to the booster 14.
  • the relaxed turbine air 19 is finally injected directly into the low-pressure column 11.
  • the exemplary embodiment relates to an application in which air is already available to a limited extent under a superatmospheric pressure, for example the medium-pressure column pressure (plus line losses).
  • a superatmospheric pressure for example the medium-pressure column pressure (plus line losses).
  • Oxygen-enriched liquid 22 is withdrawn from the bottom of the high-pressure column 9, cooled in a first supercooling countercurrent 23, introduced via line 24 and throttle valve 25 in the medium-pressure column and there subjected to the first part of a further countercurrent rectification. To another part 26 it is forwarded by a second supercooling countercurrent 27.
  • the supercooled oxygen-enriched liquid 28 under intermediate pressure branches into two parts 29, 31, one of which is throttled via valve 30 into the low-pressure column 11.
  • a portion 33 of the gaseous overhead nitrogen of the high pressure column 9 is heated in the main heat exchanger 7 to about ambient temperature and recovered under the pressure of the high pressure column as product 34 (GAN).
  • Nitrogen recovered in the first main condenser 12 is partly undercooled (23) and fed as reflux 36 to the top of the medium-pressure column 10. Furthermore The second main condenser 13 generates return line 37 for the medium-pressure column and, if required, liquid nitrogen product 38.
  • oxygen 39 is withdrawn liquid with a purity of about 99.5 mol% and introduced into a secondary condenser 40. There it is partially vaporized in indirect heat exchange with condensing overhead nitrogen 41 of the high pressure column 9.
  • a first, somewhat impure oxygen product 42, 43 is recovered from the vapor formed at about the medium pressure column pressure (GOX), optionally after compression in the second stage 44 of an oxygen compressor 56/44 with aftercooling 45. From the proportion remaining liquid in the secondary condenser 40 46th By internal compression, a purer high pressure oxygen product 49 (GOX-IC) is produced.
  • GOX-IC medium pressure column pressure
  • the liquid 46 is brought by means of a pump 47 to a corresponding pressure, passed through a liquid line 48 to the cold end of the main heat exchanger and evaporated there and warmed.
  • a portion 82 of the gaseous nitrogen from the top of the medium pressure column is warmed in the main heat exchanger 7 and can be obtained via line 83 or - as shown - via line 86 after compression in a nitrogen compressor 84 with aftercooler 85 as a pressurized product (PGAN).
  • PGAN pressurized product
  • a first argon-enriched stream 59 is withdrawn in gaseous form from an intermediate point of the medium-pressure column 10, which is arranged below the feed 24/25 of oxygen-enriched liquid and below the air supply via line 21.
  • the current 59 is in a condenser-evaporator 60 at least partially, preferably completely condensed and finally introduced via line 61 and throttle valve 62 into a crude argon column 63, which is operated at about the same pressure as the low-pressure column 11.
  • the feed point of the first argon-enriched stream is, for example, 30 to 40 theoretical plates, preferably 33 to 38 theoretical plates above the sump for a total of 70 to 90 theoretical plates, preferably 78 to 85 theoretical plates in the crude argon column 63.
  • the condenser-evaporator 60 provides A portion 65 of the non-evaporated bottoms liquid 64 of the crude argon column 63 is returned to medium-pressure column pressure in a pump 66 and returned to the medium-pressure column 10 (66). The remainder 67 is introduced into the low-pressure column 11.
  • a second argon-enriched stream 68 in gaseous form from the low-pressure column 11 of the crude argon column is fed directly to the sump.
  • the top condenser 69 of the crude argon column 63 is operated with oxygen-enriched liquid 31, which has been expanded in a valve 32 to a suitable pressure (approximately equal to low-pressure column pressure).
  • a suitable pressure approximately equal to low-pressure column pressure.
  • steam 70 is introduced at a suitable location in the low-pressure column.
  • the crude argon product (the "argon-rich fraction") 75 is withdrawn in gaseous form from the top of the crude argon column 63 or from the liquefaction space of the top condenser 69.
  • the first argon-enriched stream 259 in the main heat exchanger 7 is warmed to an intermediate temperature, passed via line 271 to a flash-down machine 272 where it is expanded to about 0.2 bar over crude argon column pressure and finally into the evaporation space of the condenser-evaporator 60 (274 , 276).
  • the expansion machine 272 is preferably designed as a turbine and coupled to a braking device 273, preferably a generator.
  • FIG. 3 largely corresponds to FIG. 2, except that a bottom reboiler for the crude argon column 63 is dispensed with and the first argon-enriched stream 374, which has been released for work, is introduced into the bottom of the crude argon column in gaseous form.
  • the argon transition turbine (272 in FIG. 2) is also dispensed with, and the first argon-enriched stream 459 is throttled directly into the bottom of the crude argon column 63 (462).
  • FIGS. 2 to 4 show alternatives to the injection of turbine air 19 shown in Figure 1 in the low-pressure column. These deviating methods of refrigeration can also be combined with each of the methods of FIGS. 2 to 4.
  • the air turbine 518 relaxes in the method of Figure 5 only to about the operating pressure of the medium-pressure column 10. This variant is therefore in particular at relatively low cooling demand in question and increases the oxygen yield of the process.
  • the working expanded air 519 is fed together with the second feed air stream 20-21 via line 521 into the medium-pressure column 10.
  • FIG. 6 relates to a modification of FIG. 5, in which the turbine air 6 is compressed upstream of the turbine-driven secondary compressor 14 in a further after-compressor 681, which is driven by external energy, with after-cooling 682.
  • a higher pressure ratio can be achieved at the turbine 518 and thus produce more cold.
  • process refrigeration in a nitrogen turbine 718 according to FIG. 7 can be obtained.
  • a portion 787 of the withdrawn from the high-pressure column 9 nitrogen 33 is heated in the main heat exchanger 7 only to an intermediate temperature and working to relax to about medium pressure column pressure (718).
  • the expanded high pressure column nitrogen 788 is finally combined with the medium pressure column nitrogen 82 upstream of the main heat exchanger 7.
  • the nitrogen turbine 718 is not coupled to a generator or an oil brake as in FIG. 7, but is braked by means of a secondary compressor 814 which increases the pressure in the turbine stream 887 and thus the inlet pressure of the turbine 718.
  • the corresponding portion 887 of the high pressure column nitrogen is previously preheated to about ambient temperature and cooled downstream of the postcompressor 814 by means of an aftercooler 815.
  • a portion 988 of the gaseous nitrogen 82 is released from the intermediate pressure column 10 from an intermediate temperature to perform a work.
  • the expansion machine 918 is braked for example by an oil brake or a generator.
  • the expanded nitrogen gas 989 is virtually depressurized and is removed under ambient temperature via line 990 (GAN).
  • FIG. 10 is based on FIG. 1, but shows a modified guidance of the oxygen product from the low-pressure column 11.
  • the entire bottom product of the low-pressure column is removed in liquid form (line 1076).
  • the pumped low-pressure column oxygen 1079 is warmed in the first supercooling countercurrent 27 and finally introduced via line 1080 in the medium-pressure column 10.
  • Line 39 now promotes the entire gaseous oxygen to be obtained, which was produced in medium-pressure column 10 and low-pressure column 11.
  • This "pumping back" of the low-pressure column oxygen in the medium-pressure column can be applied in an analogous manner in the embodiments of Figures 2 to 9 and their variants.
  • the embodiments show a rectification system for nitrogen-oxygen separation, which is designed as a triple column in the strict sense, that is high-pressure column, medium pressure column and low pressure column are arranged one above the other and are in pairs via a main capacitor 12, 13 in heat exchanging connection.
  • the invention is also applicable to any other 3-pillar system.
  • the medium-pressure column may be arranged next to a classical Linde double column comprising high-pressure column and low-pressure column; alternatively, all three columns could be arranged side by side.
  • Other condenser configurations for the low pressure column, the medium pressure column and for the high pressure column can be used in the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (7)

  1. Procédé de séparation d'air à basse température dans un système de rectification prévu pour la séparation azote-oxygène, qui présente une colonne à haute pression (9), une colonne à basse pression (11) et une colonne à moyenne pression (10), et dans une colonne à argon brut (63), dans lequel
    (a) au moins un courant d'air d'entrée est introduit dans le système de rectification pour la séparation azote-oxygène (8, 19, 21, 521),
    (b) au moins un courant produit d'oxygène ou d'azote (52, 54, 58, 1076) est prélevé de la colonne à basse pression (11),
    (c) au moins un premier courant enrichi en argon (59, 61, 259, 271, 274, 276, 374) est prélevé du système de rectification prévu pour la séparation azote-oxygène et amené à la colonne à argon brut (63), et
    (d) une fraction riche en argon (75), dont la teneur en argon est supérieure à celle du premier courant enrichi en argon (59, 61, 259, 271, 274, 276, 374), est prélevée à la colonne à argon brut (63),
    caractérisé en ce que
    (e) le premier courant enrichi en argon (59, 61, 259, 271, 274, 276, 374) est prélevé de la colonne à moyenne pression (10).
  2. Procédé suivant la revendication 1, caractérisé en ce qu'un deuxième courant enrichi en argon (68) est soutiré de la colonne à basse pression et est introduit dans la colonne à argon brut (63).
  3. Procédé suivant la revendication 1 ou 2, caractérisé en ce que le liquide de fond (64) de la colonne à argon brut (63) est au moins partiellement recyclé (65, 66) dans la colonne à moyenne pression (10).
  4. Procédé suivant l'une des revendications 1 à 3, caractérisé en ce qu'au moins une partie du premier courant enrichi en argon (59, 274) est, en amont de l'introduction (61, 276) dans la colonne à argon brut (63), au moins partiellement condensé dans un évaporateur-condenseur (60).
  5. Procédé suivant la revendication 4, caractérisé en ce que, dans l'évaporateur-condenseur (60), une partie d'un liquide, en particulier du liquide de fond de colonne, est évaporée hors de la colonne à argon brut (63).
  6. Procédé suivant l'une des revendications 1 à 5, caractérisé en ce qu'au moins une partie du premier courant enrichi en argon (259, 271) est, en amont de l'introduction (276, 374) dans la colonne à argon brut (63), détendue (272) d'une manière produisant du travail.
  7. Dispositif de séparation d'air à basse température comprenant un système de rectification prévu pour la séparation azote-oxygène, qui présente une colonne à haute pression (9), une colonne à basse pression (11) et une colonne à moyenne pression (10), ainsi qu'une colonne à argon brut (63), et
    (a) au moins un conduit à d'air d'entrée (8, 19, 21, 521) pour introduire au moins un courant d'air d'entrée dans le système de rectification pour la séparation azote-oxygène,
    (b) au moins un conduit à produit (52, 54, 58, 1076) pour prélever au moins un courant produit d'oxygène ou d'azote à partir de la colonne à basse pression (11),
    (c) un premier conduit de transfert d'argon (59, 61, 259, 271, 274, 276, 374) pour l'introduction d'un courant enrichi en argon à partir du système de rectification prévu pour la séparation azote-oxygène dans la colonne à argon brut (63), et
    (d) un conduit à produit-argon brut (75) pour le prélèvement d'une fraction riche en argon dont la teneur en argon est supérieure à celle du premier courant enrichi en argon, à partir de la colonne à argon brut (63),
    caractérisé en ce que
    (e) le premier conduit de transfert d'argon (59, 61, 259, 271, 274, 276, 374) est relié à la colonne à moyenne pression (10).
EP02011458A 2002-04-17 2002-05-24 Système de séparation d'air cryogénique à trois colonnes avec production d'argon Expired - Lifetime EP1357342B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10217091 2002-04-17
DE10217091A DE10217091A1 (de) 2002-04-17 2002-04-17 Drei-Säulen-System zur Tieftemperatur-Luftzerlegung mit Argongewinnung

Publications (2)

Publication Number Publication Date
EP1357342A1 EP1357342A1 (fr) 2003-10-29
EP1357342B1 true EP1357342B1 (fr) 2006-11-02

Family

ID=28685145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02011458A Expired - Lifetime EP1357342B1 (fr) 2002-04-17 2002-05-24 Système de séparation d'air cryogénique à trois colonnes avec production d'argon

Country Status (3)

Country Link
EP (1) EP1357342B1 (fr)
AT (1) ATE344428T1 (fr)
DE (2) DE10217091A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023900A1 (de) 2009-06-04 2010-12-09 Linde Aktiengesellschaft Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
CN110307695A (zh) * 2018-03-20 2019-10-08 乔治洛德方法研究和开发液化空气有限公司 产品氮气和产品氩的制造方法及其制造装置
US11852408B2 (en) 2020-05-20 2023-12-26 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for separating air by cryogenic distillation

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
FR2972794B1 (fr) * 2011-03-18 2015-11-06 Air Liquide Appareil et procede de separation d'air par distillation cryogenique
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090B1 (fr) 2011-12-01 2014-07-16 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
FR3011916B1 (fr) * 2013-10-15 2015-11-13 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2963369B1 (fr) 2014-07-05 2018-05-02 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963370B1 (fr) 2014-07-05 2018-06-13 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
EP2963371B1 (fr) 2014-07-05 2018-05-02 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
WO2018114052A2 (fr) 2016-12-23 2018-06-28 Linde Aktiengesellschaft Procédé de séparation cryogénique d'air et système de séparation de l'air
CA3063409A1 (fr) 2017-05-16 2018-11-22 Terrence J. Ebert Appareil et procede de liquefaction de gaz

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604116A (en) * 1982-09-13 1986-08-05 Erickson Donald C High pressure oxygen pumped LOX rectifier
US5049173A (en) * 1990-03-06 1991-09-17 Air Products And Chemicals, Inc. Production of ultra-high purity oxygen from cryogenic air separation plants
DE4126945A1 (de) * 1991-08-14 1993-02-18 Linde Ag Verfahren zur luftzerlegung durch rektifikation
US5305611A (en) * 1992-10-23 1994-04-26 Praxair Technology, Inc. Cryogenic rectification system with thermally integrated argon column
GB9412182D0 (en) * 1994-06-17 1994-08-10 Boc Group Plc Air separation
US5669237A (en) * 1995-03-10 1997-09-23 Linde Aktiengesellschaft Method and apparatus for the low-temperature fractionation of air
GB9619687D0 (en) * 1996-09-20 1996-11-06 Boc Group Plc Air separation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023900A1 (de) 2009-06-04 2010-12-09 Linde Aktiengesellschaft Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
CN110307695A (zh) * 2018-03-20 2019-10-08 乔治洛德方法研究和开发液化空气有限公司 产品氮气和产品氩的制造方法及其制造装置
CN110307695B (zh) * 2018-03-20 2020-10-30 乔治洛德方法研究和开发液化空气有限公司 产品氮气和产品氩的制造方法及其制造装置
US11852408B2 (en) 2020-05-20 2023-12-26 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for separating air by cryogenic distillation

Also Published As

Publication number Publication date
DE50208594D1 (de) 2006-12-14
ATE344428T1 (de) 2006-11-15
DE10217091A1 (de) 2003-11-06
EP1357342A1 (fr) 2003-10-29

Similar Documents

Publication Publication Date Title
EP1357342B1 (fr) Système de séparation d'air cryogénique à trois colonnes avec production d'argon
EP2235460B1 (fr) Procédé et installation pour la séparation cryogénique d'air
EP2236964B1 (fr) Procédé et dispositif de séparation de l'air à basse température
EP2015013A2 (fr) Procédé et dispositif de production d'un gaz sous pression par séparation cryogénique d'air
DE10139727A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP1074805B1 (fr) Procédé et dispositif pour la production d'oxygène sous pression
EP2015012A2 (fr) Procédé pour la séparation cryogénique d'air
EP0948730B1 (fr) Procede et dispositif de production d'azote comprime
EP1482266A1 (fr) Procédé et dispositif pour la récupération de Krypton et/ou Xénon par séparation cryogénique d'air
EP3290843A2 (fr) Procédé et dispositif destiné à fabriquer de l'azote pressurisé et liquide par décomposition à basse température de l'air
EP3870915A1 (fr) Procédé et installation de séparation d'air à basse température
DE102007035619A1 (de) Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
DE19609490A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE19537913A1 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
EP2551619A1 (fr) Procédé et dispositif destinés à l'obtention d'oxygène pressurisé et d'azote pressurisé par la décomposition à basse température de l'air
WO2021078405A1 (fr) Procédé et système pour la séparation d'air à basse température
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
EP4065910A1 (fr) Procédé et installation pour fractionnement à basse température de l'air
WO2014102014A2 (fr) Procédé et dispositif de séparation de l'air à basse température
EP2600090B1 (fr) Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102017010001A1 (de) Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
DE102010056569A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
DE10045121A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Produkts durch Tieftemperaturzerlegung von Luft
EP4320397A1 (fr) Procédé et installation de fractionnement à basse température d'air
DE10251485A1 (de) Verfahren und Vorrichtung zur Argongewinnung durch Tieftemperaturzerlegung von Luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040427

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KUNZ, CHRISTIAN

Inventor name: ROTTMANN, DIETRICH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061102

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50208594

Country of ref document: DE

Date of ref document: 20061214

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070202

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070402

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20061102

EN Fr: translation not filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 20070531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070203

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100519

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208594

Country of ref document: DE

Effective date: 20111201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111201