[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1234964A1 - Method and apparatus for controlling the flow rate of a gas passing a throttle element - Google Patents

Method and apparatus for controlling the flow rate of a gas passing a throttle element Download PDF

Info

Publication number
EP1234964A1
EP1234964A1 EP01400449A EP01400449A EP1234964A1 EP 1234964 A1 EP1234964 A1 EP 1234964A1 EP 01400449 A EP01400449 A EP 01400449A EP 01400449 A EP01400449 A EP 01400449A EP 1234964 A1 EP1234964 A1 EP 1234964A1
Authority
EP
European Patent Office
Prior art keywords
flow
transfer function
pumped
throttle
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01400449A
Other languages
German (de)
French (fr)
Inventor
Jean-Denis Piques
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Automotive Electronics SAS
Original Assignee
Johnson Controls Automotive Electronics SAS
Sagem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Automotive Electronics SAS, Sagem SA filed Critical Johnson Controls Automotive Electronics SAS
Priority to EP01400449A priority Critical patent/EP1234964A1/en
Publication of EP1234964A1 publication Critical patent/EP1234964A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/083Introducing corrections for particular operating conditions for idling taking into account engine load variation, e.g. air-conditionning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0017Controlling intake air by simultaneous control of throttle and exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control

Definitions

  • the present invention relates to methods and devices for controlling a gas flow (generally air) passing through a throttle device the position is adjusted by an actuator, from a flow rate setpoint pumped from cyclically by a receiver, a collecting volume being interposed between the throttling organ and the receiving organ.
  • a gas flow generally air
  • the invention finds a particularly important application in internal combustion engine control systems having at least one combustion chamber of variable volume during a cycle, supplied with air at constant or variable pressure through a throttle whose position is controlled by an actuator, then through a manifold intake.
  • the throttling organ is generally constituted by a butterfly rotary and the latter term will be used later. However, it should be attributed a general meaning and as applying to any throttling organ having a adjustable position.
  • the present invention aims in particular to provide a method and a device air flow control better than those previously known to requirements of the practice, in particular in that they significantly reduce the pilot time constant.
  • the invention notably proposes a method for controlling the air flow through a butterfly controlled by an actuator from a mass flow set point cyclically pumped through the throttle valve and a Downstream intake manifold according to claim 1.
  • This process is based on the fact that one can, without undue error, model the transfer function of a collector of the kind used in internal combustion engines as a first order function having as an inlet the mass flow of air passing through the butterfly and as an outlet the mass flow of pumped air, with a time constant which is a function itself pumped mass flow and cycle frequency (i.e. engine speed).
  • the time constant ⁇ can be determined by a calibration prior and stored in a table with several entries.
  • the position given to the butterfly (opening angle in general) can be deduced at any time from Q butterfly by reading in a table taking into account temperature and pressure, supplied by sensors.
  • the invention also proposes a control device implementing the above method according to claim 6, as well as a system for internal combustion engine control in which the flow rate setpoint pumped is determined by a calculation unit from a torque setpoint supplied by a body controlled by the driver and possibly by additional torque calls due to the start-up of auxiliaries such as a air conditioning unit or a robotic gearbox in the case of a vehicle.
  • auxiliaries such as a air conditioning unit or a robotic gearbox in the case of a vehicle.
  • the invention proposes a device for controlling a throttle body controlled by an actuator and regulating a flow rate and a air pressure cyclically drawn through a function buffer volume known transfer device according to claim 5.
  • FIG. 1 indicates the transfer function of a buffer volume 23 placed downstream of a throttle member 8.
  • this transfer function if it is linear, can be written in Laplace notation: 1 / (1 + ⁇ p)
  • This transfer function causes, in the event of rapid opening of the throttle resulting in a flow step at the throttle level, by a progressive increase in the pumped flow (FIG. 2). On the contrary, it is possible to obtain a flow step pumped very quickly, as indicated in dashes in FIG. 3, by an excessive increase in the butterfly flow (curve in solid lines).
  • the butterfly must be ordered by implementing a transfer function compensating for that of the buffer volume, of the form: 1 + ⁇ .p K / (1 + ⁇ f.p)
  • the diagram in FIG. 4 shows the operations and the loops of regulation involved in controlling the opening angle of the throttle valve 8 of an internal combustion engine 9, in response to a request from torque produced by the driver's action on an accelerator pedal and by variations in the torque required by auxiliaries using power to the engine.
  • Most of the blocks shown in Figure 1 can be constituted by wired circuits or by programs which in this case can be executed either by a specific microprocessor or by the engine control computer provided on current vehicles.
  • the calculations are performed in digital form, which involves sampling and store the input data. On current engines, a period 0.01 s sampling rate was found to be satisfactory.
  • Block 10 of Figure 4 represents the calculation of a digital signal indicating the average torque indicated CMI, which must be supplied by engine 9 and corresponds to an average air flow determined in steady state.
  • the data of input of block 10 are the position of the pedal, supplied on an input 12 and representative of the setpoint torque that the driver wishes to apply to wheels, the engine speed N applied to an input 13 and giving the frequency debit calls by the rooms, and finally an entry indicating the call of torque possibly required by auxiliaries.
  • the sensors are analog, digital to analog converters not shown are provided.
  • the output signal from block 10, representative of the average torque indicated CMI is translated by a block 14 into a flow rate setpoint Qpomtig, which will called Qpc.
  • a regulation loop includes a subtractor 16 which receives the setpoint signal Qpc on an input and a signal indicating the pumped flow estimated real Qpr on the other entry.
  • the error ⁇ is applied, as well as Qpc, to a filter 18, generally of the PID type.
  • the output of this filter constitutes a signal flow objective pumped Qpo. But assimilate Qpo to a flow instruction butterfly neglects the transfer function due to the dynamic behavior of air in the collector.
  • Block 19 estimates the actual pumped flow mainly from temperature data T, pressure P and speed N of rotation of the engine.
  • the signal representative of Qpo is not used directly to calculate a value of setpoint ⁇ c of the throttle opening angle in a circuit 20 taking into counts the characteristic curve of the butterfly and the temperature T and the pressure F gas upstream of the throttle valve.
  • the signal Qpo is processed by a block 22 which applies a function inverse to the estimated transfer function of the collector 23 (figure 2), as will be seen below so as to provide an outlet a Qpapo signal representative of a throttle flow objective.
  • the butterfly 8 is controlled, in a conventional manner, by a loop of regulation comprising a subtractor 24 which receives on an input the opening of setpoint ⁇ c and on the other input a signal representative of the actual opening current ⁇ r and blocks 26 for controlling the actuator 28 of the throttle valve and 27 for supply of a signal ⁇ r representative of the opening angle.
  • the correction introduced consists in applying, to the signal representative of Qpomdozens, a reverse transfer function.
  • This operation amounts to a high pass filtering of type 1 + ⁇ .tp / K, where ⁇ and K are coefficients which depend on fixed characteristics of the engine (volume of the manifold, number of combustion chambers, ...) and of the motor speed.
  • This filtering also results in amplification of noise.
  • it is desirable to add filtering low pass having a time constant ⁇ f much shorter than the time constant of the collector (at least an order of magnitude).
  • the process can be modified to take into account an exhaust gas recirculation.
  • the flow admitted to the combustion chambers that is to say the pumped flow, depends on both the butterfly flow and the recirculation flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Method involves generating a value for the weight of air flow across a butterfly valve (8) as a function of the amount pumped and with a transfer function (22) inverse to the transfer function of the inlet manifold (23) downstream of the valve. The position of the butterfly valve is controlled as a function of the value of the flow across the valve and external functional parameters.

Description

La présente invention concerne les procédés et dispositifs de pilotage d'un débit de gaz (généralement d'air) traversant un organe d'étranglement dont la position est réglée par un actionneur, à partir d'une consigne de débit pompé de façon cyclique par un récepteur, un volume collecteur étant interposé entre l'organe d'étranglement et l'organe récepteur.The present invention relates to methods and devices for controlling a gas flow (generally air) passing through a throttle device the position is adjusted by an actuator, from a flow rate setpoint pumped from cyclically by a receiver, a collecting volume being interposed between the throttling organ and the receiving organ.

L'invention trouve une application particulièrement importante dans les systèmes de commande de moteurs à combustion interne ayant au moins une chambre de combustion de volume variable au cours d'un cycle, alimentée en air à une pression constante ou variable à travers un organe d'étranglement dont la position est commandée par un actionneur, puis à travers un collecteur d'admission. L'organe d'étranglement est généralement constitué par un papillon rotatif et ce dernier terme sera utilisé par la suite. On devra cependant y attribuer un sens général et comme s'appliquant à tout organe d'étranglement ayant une position ajustable.The invention finds a particularly important application in internal combustion engine control systems having at least one combustion chamber of variable volume during a cycle, supplied with air at constant or variable pressure through a throttle whose position is controlled by an actuator, then through a manifold intake. The throttling organ is generally constituted by a butterfly rotary and the latter term will be used later. However, it should be attributed a general meaning and as applying to any throttling organ having a adjustable position.

On connaít déjà des dispositifs de pilotage d'un débit massique d'air traversant un papillon à partir d'une consigne de débit pompé en aval du papillon, comportant un circuit d'asservissement qui commande la position du papillon en fonction de la consigne de débit et de paramètres de fonctionnement tels que la température de l'air et la pression. Dans le cas d'un moteur, le débit moyen d'air pompé par les chambres de combustion à travers le collecteur est égal, en régime permanent, au débit d'air qui traverse l'organe d'étranglement et la connaissance de la consigne de débit massique pompé (découlant elle-même d'une consigne de couple fixée par le conducteur et de la valeur de paramètres de fonctionnement du moteur) permet au circuit de commande de déterminer la position à donner à l'organe d'étranglement, le débit à travers le papillon étant égal au débit de consigne. Mais lors des transitoires, le collecteur introduit sur le débit au niveau du papillon un filtrage passe bas dont il n'a pas été tenu compte jusqu'ici. Les dispositifs existants ont en conséquence l'inconvénient d'une constante de temps importante, d'autant plus longue que le volume de l'espace compris entre le papillon et l'emplacement de consigne de débit (entrée de l'organe récepteur) est important.We already know devices for controlling a mass air flow crossing a throttle valve from a flow rate instruction pumped downstream of the throttle valve, comprising a servo circuit which controls the position of the throttle in function of the flow setpoint and operating parameters such as air temperature and pressure. In the case of an engine, the average air flow pumped by the combustion chambers through the manifold is equal, in steady state, at the air flow which passes through the throttle member and the knowledge of the mass flow setpoint pumped (itself arising a torque setpoint set by the driver and the parameter value engine) allows the control circuit to determine the position to be given to the throttle member, the flow rate through the butterfly being equal to the set flow. But during transients, the collector introduced on the flow rate at the throttle valve low pass filtering which has not been taken into account so far. Existing devices therefore have the disadvantage of a large time constant, the longer the volume of space between the throttle valve and the flow setpoint location (entry of the receiving organ) is important.

La présente invention vise notamment à fournir un procédé et un dispositif de pilotage de débit d'air répondant mieux que ceux antérieurement connus aux exigences de la pratique, notamment en ce qu'ils réduisent notablement la constante de temps du pilotage.The present invention aims in particular to provide a method and a device air flow control better than those previously known to requirements of the practice, in particular in that they significantly reduce the pilot time constant.

Dans ce but, l'invention propose notamment un procédé de pilotage du débit d'air traversant un papillon commandé par un actionneur à partir d'une consigne de débit massique pompé de façon cyclique à travers le papillon et un collecteur d'admission placé en aval, conforme à la revendication 1.To this end, the invention notably proposes a method for controlling the air flow through a butterfly controlled by an actuator from a mass flow set point cyclically pumped through the throttle valve and a Downstream intake manifold according to claim 1.

Ce procédé est fondé sur le fait que l'on peut, sans erreur excessive, modéliser la fonction de transfert d'un collecteur du genre utilisé dans les moteurs à combustion interne sous forme d'une fonction du premier ordre ayant comme entrée le débit massique d'air traversant le papillon et comme sortie le débit massique d'air pompé, avec une constante de temps qui est fonction elle-même du débit massique pompé et de la fréquence de cycle (c'est-à-dire du régime dans le cas d'un moteur).This process is based on the fact that one can, without undue error, model the transfer function of a collector of the kind used in internal combustion engines as a first order function having as an inlet the mass flow of air passing through the butterfly and as an outlet the mass flow of pumped air, with a time constant which is a function itself pumped mass flow and cycle frequency (i.e. engine speed).

Cette fonction de transfert peut donc s'écrire de la façon suivante : Qpompé + τ (d Qpompé/dt) = Qpapillon où :

  • Qpompé désigne le débit à la sortie du collecteur et en entrée de l'organe récepteur,
  • Qpapillon désigne le débit traversant le papillon, et
  • t désigne le temps,
  • τ la constante de temps de la fonction de transfert associée au collecteur d'admission.
  • This transfer function can therefore be written as follows: Qpompé + τ (d Qpompé / dt) = Qpapillon or :
  • Qpumped designates the flow rate at the outlet of the collector and at the inlet of the receiver,
  • Qpapillon designates the flow through the butterfly, and
  • t denotes time,
  • τ the time constant of the transfer function associated with the intake manifold.
  • La constante de temps τ peut être déterminée par un étalonnage préalable et mémorisée dans une table à plusieurs entrées. The time constant τ can be determined by a calibration prior and stored in a table with several entries.

    La position donnée au papillon (angle d'ouverture en général) peut être déduite à tout instant de Q papillon par lecture dans une table tenant compte de la température et de la pression, fournies par des capteurs.The position given to the butterfly (opening angle in general) can be deduced at any time from Q butterfly by reading in a table taking into account temperature and pressure, supplied by sensors.

    Sur certains moteurs à combustion interne, il est prévu une recirculation de gaz d'échappement, qui s'ajoute alors au débit massique traversant le papillon pour constituer le débit pompé. Il peut être tenu compte de cet ajout en modifiant de façon simple le mode de commande.On certain internal combustion engines, recirculation of exhaust gas, which then adds to the mass flow through the throttle valve to constitute the pumped flow. This addition can be taken into account by modifying simply the command mode.

    L'invention propose également un dispositif de pilotage mettant en oeuvre le procédé ci-dessus, conforme à la revendication 6, ainsi qu'un système de commande de moteur à combustion interne dans lequel la consigne de débit pompé est déterminée par un organe de calcul à partir d'une consigne de couple fournie par un organe commandé par le conducteur et éventuellement par des appels de couple supplémentaires dûs à la mise en route d'auxiliaires tels qu'un appareil de climatisation ou une boíte de vitesse robotisée dans le cas d'un véhicule.The invention also proposes a control device implementing the above method according to claim 6, as well as a system for internal combustion engine control in which the flow rate setpoint pumped is determined by a calculation unit from a torque setpoint supplied by a body controlled by the driver and possibly by additional torque calls due to the start-up of auxiliaries such as a air conditioning unit or a robotic gearbox in the case of a vehicle.

    La mise en oeuvre de l'invention se traduit, lors de d'application d'un échelon de consigne de couple, par la venue du papillon dans une position dépassant celle qu'il prendra une fois le nouveau régime permanent établi. Ce dépassement ou "overshoot", dont l'amplitude dépend du régime moteur initial, ne se traduit pas pour autant par un dépassement de la pression dans le collecteur et n'a aucun inconvénient.The implementation of the invention results, when applying a torque setpoint step, by the coming of the butterfly in a position beyond what it will take once the new permanent regime is established. This overshoot or "overshoot", the amplitude of which depends on the initial engine speed, does not mean that the pressure in the collector and has no drawbacks.

    Plus généralement, l'invention propose un dispositif de pilotage d'un organe d'étranglement commandé par un actionneur et réglant un débit et une pression d'air aspiré de façon cyclique à travers un volume tampon de fonction de transfert connue, conforme à la revendication 5.More generally, the invention proposes a device for controlling a throttle body controlled by an actuator and regulating a flow rate and a air pressure cyclically drawn through a function buffer volume known transfer device according to claim 5.

    En dehors de la commande d'un papillon, ce dispositif est notamment applicable :

    • à un circuit de recirculation des gaz d'échappement (éventuellement en même temps qu'à la commande de papillon),
    • à un circuit de suralimentation par compresseur ou turbo-compresseur.
    Apart from controlling a throttle valve, this device is particularly applicable:
    • an exhaust gas recirculation circuit (possibly at the same time as the throttle valve control),
    • to a supercharging circuit by compressor or turbo-compressor.

    Il n'est pas nécessaire que la fonction de transfert sont du premier ordre. It is not necessary that the transfer function are first order.

    Les caractéristiques ci-dessus ainsi que d'autres apparaítront mieux à la lecture de la description qui suit d'un mode particulier de réalisation donné à titre d'exemple non limitatif. La description se réfère aux dessins qui l'accompagnent, dans lesquels :

    • la figure 1 est un schéma destiné à faire apparaítre le principe du pilotage d'un organe d'étranglement placé en amont d'un volume tampon ;
    • la figure 2 est un diagramme montrant l'évolution du débit pompé lors d'une augmentation brutale du débit papillon ;
    • la figure 3, similaire à la figure 2, montre la variation à faire subir au débit papillon pour obtenir une augmentation rapide d'un échelon du débit pompé ;
    • la figure 4 est un synoptique représentant, sous forme de blocs successifs, les opérations qui interviennent dans le pilotage du débit massique d'air traversant un papillon ;
    • la figure 5 est un schéma montrant les éléments essentiels du circuit pneumatique d'alimentation des chambres de combustion d'un moteur à injection.
    The above characteristics as well as others will appear better on reading the following description of a particular embodiment given by way of nonlimiting example. The description refers to the accompanying drawings, in which:
    • Figure 1 is a diagram for showing the principle of piloting a throttling member placed upstream of a buffer volume;
    • Figure 2 is a diagram showing the evolution of the flow pumped during a sudden increase in the butterfly flow;
    • Figure 3, similar to Figure 2, shows the variation to be subjected to the butterfly flow to obtain a rapid increase of one step of the pumped flow;
    • Figure 4 is a block diagram representing, in the form of successive blocks, the operations involved in controlling the mass flow of air passing through a butterfly;
    • FIG. 5 is a diagram showing the essential elements of the pneumatic circuit supplying the combustion chambers of an injection engine.

    Le schéma de la figure 1 indique la fonction de transfert d'un volume tampon 23 placé en aval d'un organe d'étranglement 8. Comme on le verra plus en détail plus loin, cette fonction de transfert, si elle est linéaire, peut être écrite dans la notation de Laplace: 1/(1 + τp) The diagram in FIG. 1 indicates the transfer function of a buffer volume 23 placed downstream of a throttle member 8. As will be seen in more detail below, this transfer function, if it is linear, can be written in Laplace notation: 1 / (1 + τp)

    Cette fonction de transfert provoque, en cas d'ouverture rapide du papillon se traduisant par un échelon de débit au niveau du papillon, par une augmentation progressive du débit pompé (figure 2). On peut au contraire obtenir un échelon de débit pompé très rapidement, comme indiqué en tirets sur la figure 3, par une augmentation excessive du débit papillon (courbe en traits pleins). Pour cela, le papillon doit être commandé en mettant en oeuvre une fonction de transfert compensant celle du volume tampon, de la forme : 1 + τ.pK / (1 + τf.p) This transfer function causes, in the event of rapid opening of the throttle resulting in a flow step at the throttle level, by a progressive increase in the pumped flow (FIG. 2). On the contrary, it is possible to obtain a flow step pumped very quickly, as indicated in dashes in FIG. 3, by an excessive increase in the butterfly flow (curve in solid lines). For this, the butterfly must be ordered by implementing a transfer function compensating for that of the buffer volume, of the form: 1 + τ.p K / (1 + τf.p)

    Le synoptique de la figure 4 montre les opérations et les boucles de régulation qui interviennent dans la commande de l'angle d'ouverture du papillon 8 d'un moteur à combustion interne 9, en réponse à une demande de couple matérialisée par l'action du conducteur sur une pédale d'accélérateur et par les variations du couple requis par des auxiliaires empruntant de la puissance au moteur. La plupart des blocs représentés sur la figure 1 peuvent être constitués par des circuits câblés ou par des programmes qui dans ce cas pourront être exécutés soit par un microprocesseur particulier, soit par le calculateur de contrôle moteur prévu sur les véhicules actuels. Les calculs sont effectués sous forme numérique, ce qui implique d'échantillonner et de mémoriser les données d'entrée. Sur les moteurs actuels, une période d'échantillonnage de l'ordre de 0,01 s s'est révélée satisfaisante.The diagram in FIG. 4 shows the operations and the loops of regulation involved in controlling the opening angle of the throttle valve 8 of an internal combustion engine 9, in response to a request from torque produced by the driver's action on an accelerator pedal and by variations in the torque required by auxiliaries using power to the engine. Most of the blocks shown in Figure 1 can be constituted by wired circuits or by programs which in this case can be executed either by a specific microprocessor or by the engine control computer provided on current vehicles. The calculations are performed in digital form, which involves sampling and store the input data. On current engines, a period 0.01 s sampling rate was found to be satisfactory.

    Le bloc 10 de la figure 4 représente le calcul d'un signal numérique indiquant le couple moyen indiqué CMI, que devra fournir le moteur 9 et correspond à un débit moyen d'air déterminé en régime permanent. Les données d'entrée du bloc 10 sont la position de la pédale, fournie sur une entrée 12 et représentative du couple de consigne que le conducteur souhaite appliquer aux roues, le régime N du moteur appliqué sur une entrée 13 et donnant la fréquence des appels de débit par les chambres, et enfin une entrée indiquant l'appel de couple requis éventuellement par des auxiliaires. Lorsque les capteurs sont analogiques, des convertisseurs numérique-analogique non représentés sont prévus. Le signal de sortie du bloc 10, représentatif du couple moyen indiqué CMI, est traduit par un bloc 14 en une consigne de débit Qpompé, qui sera dénommée Qpc. Une boucle de régulation comporte un soustracteur 16 qui reçoit le signal de consigne Qpc sur une entrée et un signal indiquant le débit pompé réel estimé Qpr sur l'autre entrée. L'erreur ε est appliquée, ainsi que Qpc, à un filtre 18, généralement de type PID. La sortie de ce filtre constitue un signal d'objectif de débit pompé Qpo. Mais assimiler Qpo à une consigne de débit papillon néglige la fonction de transfert due au comportement dynamique de l'air dans le collecteur. Le bloc 19 estime le débit pompé réel à partir principalement des données de température T, de pression P et de vitesse N de rotation du moteur.Block 10 of Figure 4 represents the calculation of a digital signal indicating the average torque indicated CMI, which must be supplied by engine 9 and corresponds to an average air flow determined in steady state. The data of input of block 10 are the position of the pedal, supplied on an input 12 and representative of the setpoint torque that the driver wishes to apply to wheels, the engine speed N applied to an input 13 and giving the frequency debit calls by the rooms, and finally an entry indicating the call of torque possibly required by auxiliaries. When the sensors are analog, digital to analog converters not shown are provided. The output signal from block 10, representative of the average torque indicated CMI, is translated by a block 14 into a flow rate setpoint Qpompé, which will called Qpc. A regulation loop includes a subtractor 16 which receives the setpoint signal Qpc on an input and a signal indicating the pumped flow estimated real Qpr on the other entry. The error ε is applied, as well as Qpc, to a filter 18, generally of the PID type. The output of this filter constitutes a signal flow objective pumped Qpo. But assimilate Qpo to a flow instruction butterfly neglects the transfer function due to the dynamic behavior of air in the collector. Block 19 estimates the actual pumped flow mainly from temperature data T, pressure P and speed N of rotation of the engine.

    Dans un système de commande de moteur suivant l'invention, le signal représentatif de Qpo n'est pas utilisé directement pour calculer une valeur de consigne αc de l'angle d'ouverture du papillon dans un circuit 20 prenant en compte la courbe caractéristique du papillon et la température T et la pression Pdes gaz en amont du papillon. Le signal Qpo est traité par un bloc 22 qui lui applique une fonction inverse de la fonction de transfert estimée du collecteur d'admission 23 (figure 2), comme on le verra plus loin de façon à fournir en sortie un signal Qpapo représentatif d'un objectif de débit papillon.In a motor control system according to the invention, the signal representative of Qpo is not used directly to calculate a value of setpoint αc of the throttle opening angle in a circuit 20 taking into counts the characteristic curve of the butterfly and the temperature T and the pressure F gas upstream of the throttle valve. The signal Qpo is processed by a block 22 which applies a function inverse to the estimated transfer function of the collector 23 (figure 2), as will be seen below so as to provide an outlet a Qpapo signal representative of a throttle flow objective.

    Le papillon 8 est commandé, de façon classique, par une boucle de régulation comprenant un soustracteur 24 qui reçoit sur une entrée l'ouverture de consigne αc et sur l'autre entrée un signal représentatif de l'ouverture réelle courante αr et des blocs 26 de commande de l'actionneur 28 du papillon et 27 de fourniture d'un signal αr représentatif de l'angle d'ouverture.The butterfly 8 is controlled, in a conventional manner, by a loop of regulation comprising a subtractor 24 which receives on an input the opening of setpoint αc and on the other input a signal representative of the actual opening current αr and blocks 26 for controlling the actuator 28 of the throttle valve and 27 for supply of a signal αr representative of the opening angle.

    La correction introduite par le bloc 22 est déterminée à partir d'un modèle de comportement du collecteur 23 de la forme donnée en (1). Elle peut s'écrire, en transformée de Laplace : (Qpompé/Qpap) = K/1+τ.p) The correction introduced by block 22 is determined from a behavior model of the collector 23 of the form given in (1). It can be written, as a Laplace transform: (Qpompé / Qpap) = K / 1 + τ.p)

    La correction introduite consiste à appliquer, au signal représentatif de Qpompé, une fonction de transfert inverse. Cette opération revient à un filtrage passe haut du type 1 + τ.tp/K, où τ et K sont des coefficients qui dépendent de caractéristiques fixes du moteur (volume du collecteur, nombre de chambres de combustion,...) et de la vitesse du moteur. Ce filtrage entraíne également une amplification des bruits. Pour l'éviter et pour couper les constantes de temps les plus faibles du modèle, qui seraient incompatibles avec la période d'échantillonnage qui est choisie à une valeur suffisamment faible pour tenir compte du théorème de Shannon, il est souhaitable d'ajouter un filtrage passe bas, ayant une constante de temps τf beaucoup plus courte que la constante de temps du collecteur (d'au moins un ordre de grandeur). On a alors : (Qpap/Qpompé) = (1+ τp)/(K/1+τf.p) The correction introduced consists in applying, to the signal representative of Qpompé, a reverse transfer function. This operation amounts to a high pass filtering of type 1 + τ.tp / K, where τ and K are coefficients which depend on fixed characteristics of the engine (volume of the manifold, number of combustion chambers, ...) and of the motor speed. This filtering also results in amplification of noise. To avoid this and to cut the weakest time constants of the model, which would be incompatible with the sampling period which is chosen at a value low enough to take into account Shannon's theorem, it is desirable to add filtering low pass, having a time constant τf much shorter than the time constant of the collector (at least an order of magnitude). We then have: (Qpap / Qpompé) = (1+ τp) / (K / 1 + τf.p)

    Ce sera la valeur de la constante de temps la plus courte qui fixera alors une durée maximale pour la période d'échantillonnage.It will be the value of the shortest time constant which will then set a maximum duration for the sampling period.

    L'application du filtrage passe haut inverse de la fonction de transfert du collecteur implique de disposer des valeurs de τ et de K dans les diverses conditions de fonctionnement du moteur. Il suffira généralement de mémoriser une table de valeurs de τ en fonction de la vitesse de rotation du moteur et de la température de l'air dans le collecteur. En effet, τ pourra généralement s'écrire sous la forme : τ = K1.K2.K3.1/N où :

  • N est la vitesse du moteur, en nombre de tours par minute, par exemple,
  • K1 est proportionnel au rapport entre le nombre de tours par cycle et le nombre de chambres,
  • K2 est le rapport entre le volume du collecteur et le volume d'une chambre,
  • K3 est représentatif des rendements de remplissage, et dépend de la température et de la vitesse,
  • τ peut, sur un modèle donné de moteur, être mesuré une fois pour toutes aux diverses allures de fonctionnement susceptibles d'être rencontrées, puis les valeurs sont mémorisées, dans une table mise en oeuvre lors de l'opération figurée dans le bloc 22.
  • The application of reverse high pass filtering of the transfer function of the collector implies having the values of τ and K under the various operating conditions of the engine. It will generally suffice to memorize a table of values of τ as a function of the speed of rotation of the motor and of the temperature of the air in the manifold. Indeed, τ can generally be written in the form: τ = K1.K2.K3.1 / N or :
  • N is the speed of the motor, in number of revolutions per minute, for example,
  • K1 is proportional to the ratio between the number of turns per cycle and the number of rooms,
  • K2 is the ratio between the volume of the collector and the volume of a room,
  • K3 is representative of the filling yields, and depends on the temperature and the speed,
  • τ can, on a given model of engine, be measured once and for all at the various operating speeds likely to be encountered, then the values are memorized, in a table implemented during the operation shown in block 22.
  • Le procédé dont les étapes ont été décrites plus haut est encore applicable lorsque le couple demandé par le conducteur et matérialisé par le signal sur l'entrée 12 doit être juxtaposé à une consigne de couple supplémentaire demandée par un auxiliaire, par exemple par une boíte de vitesse automatique ou robotisée, par un régulateur de vitesse ou de distance, le système du freinage ou un limiteur de performances moteur. Dans ce cas, pour rendre moins brutale l'action provoquée par un échelon de couple, la consigne de débit pompé provenant de la boíte est traduite en débit papillon par un filtre à avance de phase inversant aussi la dynamique du collecteur.The process whose steps have been described above is still applicable when the torque requested by the driver and materialized by the signal on input 12 must be juxtaposed with a torque setpoint additional requested by an auxiliary, for example by a box of automatic or robotic speed, by a speed or distance regulator, the braking system or an engine performance limiter. In this case, for make the action caused by a torque step less brutal, the pumped flow from the box is translated into butterfly flow by a filter phase advance also reversing the dynamics of the collector.

    Enfin, le procédé peut être modifié pour prendre en compte une recirculation de gaz d'échappement. Dans ce cas, le débit admis aux chambres de combustion, c'est-à-dire le débit pompé, dépend à la fois du débit papillon et du débit de recirculation. Dans ce cas, l'hypothèse selon laquelle est fondée la régulation ci-dessus, qui est que la masse d'air dans le collecteur M est reliée aux débits par : Qpap = Qpompé + (dM/dt) est remplacée par : Qpap + QEGR = Qpompé + (dM/dt) où QEGR est la partie du débit de recirculation de gaz d'échappement constituée d'air.Finally, the process can be modified to take into account an exhaust gas recirculation. In this case, the flow admitted to the combustion chambers, that is to say the pumped flow, depends on both the butterfly flow and the recirculation flow. In this case, the assumption that the above regulation is based, which is that the air mass in the manifold M is related to the flow rates by: Qpap = Qpompé + (dM / dt) is replaced by: Qpap + QEGR = Qpompé + (dM / dt) where QEGR is the part of the exhaust gas recirculation flow consisting of air.

    Dans ce cas, l'équation unique reliant Qpap à Qpompé est remplacée par un système de deux équations dont l'une fait intervenir la constante de temps du système de recirculation, ce qui conduit simplement à appliquer deux filtrages passe haut différents, correspondant à des constantes de temps distinctes, aux signaux représentatifs du débit papillon et du débit de recirculation.In this case, the unique equation connecting Qpap to Qpompé is replaced by a system of two equations, one of which involves the time constant of recirculation system, which simply means applying two filters different high pass, corresponding to different time constants, signals representative of the butterfly flow and the recirculation flow.

    Claims (7)

    Procédé de pilotage du débit d'air traversant un papillon commandé par un actionneur, à partir d'une consigne de débit massique, pompé de façon cyclique, à travers le papillon (8) et un collecteur d'admission (23) placé en aval, du papillon, suivant lequel on génère une consigne de débit massique d'air à travers le papillon à partir de la consigne de débit pompé et d'une fonction de transfert (22) inverse de la fonction de transfert du collecteur et on commande la position du papillon en fonction de la dite consigne de débit à travers le papillon et de paramètres de fonctionnement externes mesurés ou mémorisés, la fonction de transfert inverse étant un filtrage de la forme : (1 + τ.p) / [K/(1 + τf.p)] où τ et K sont des coefficients fonction de la fréquence de cycle et de la température du gaz dans le collecteur et où τf est une constante de temps inférieure au moins d'un ordre de grandeur à la constante τ.Method for controlling the flow of air passing through a throttle valve controlled by an actuator, from a mass flow instruction, pumped cyclically, through the throttle valve (8) and an intake manifold (23) placed downstream , of the throttle valve, according to which a set point of mass air flow through the throttle is generated from the set point of pumped flow and of a transfer function (22) opposite to the transfer function of the manifold and the throttle position as a function of said flow rate setpoint through the throttle valve and of external operating parameters measured or stored, the reverse transfer function being a filtering of the form: (1 + τ.p) / [K / (1 + τf.p)] where τ and K are coefficients depending on the cycle frequency and the temperature of the gas in the collector and where τf is a time constant less than at least an order of magnitude than the constant τ. Procédé selon la revendication 1, caractérisé en ce qu'on ajoute, à la consigne de débit pompé, représentative d'une demande de couple introduite par un conducteur d'un moteur à combustion interne alimenté par l'air pompé, une consigne supplémentaire demandée par un auxiliaire du moteur que l'on traduit en débit papillon par un filtre à avance de phase.Method according to claim 1, characterized in that an additional requested instruction is added to the pumped flow instruction, representative of a torque demand introduced by a driver of an internal combustion engine supplied by the pumped air. by an engine auxiliary which is translated into throttle flow by a phase advance filter. Procédé selon la revendication 2, caractérisé en ce que l'on tient compte, dans le débit pompé admis aux chambres de combustion, d'un débit de recirculation.Method according to claim 2, characterized in that account is taken, in the pumped flow admitted to the combustion chambers, of a recirculation flow. Procédé selon la revendication 3, caractérisé en ce qu'on applique également un filtrage passe-bas pour compenser la dynamique du circuit de recirculation.Method according to claim 3, characterized in that a low-pass filtering is also applied to compensate for the dynamics of the recirculation circuit. Dispositif de pilotage d'un organe d'étranglement commandé par un actionneur et réglant un débit et une pression d'air aspiré de façon cyclique à travers un volume tampon de fonction de transfert connue, caractérisé par des moyens pour mémoriser une fonction de transfert inverse de la fonction de transfert du volume tampon, des moyens pour générer une consigne de débit massique d'air à travers l'organe d'étranglement à partir de la consigne de débit pompé et un circuit (26) de commande de l'état (α) de l'organe d'étranglement en fonction de la dite consigne de débit massique à travers l'organe et de paramètres de fonctionnement externes mesurés ou mémorisés.Device for controlling a throttle member controlled by an actuator and regulating a flow rate and a pressure of air aspirated cyclically through a buffer volume of known transfer function, characterized by means for memorizing a reverse transfer function the buffer volume transfer function, means for generating a mass air flow setpoint through the throttle member from the pumped flow setpoint and a state control circuit (26) ( α) of the throttle member as a function of the said mass flow setpoint through the member and of external operating parameters measured or stored. Dispositif de pilotage d'un débit d'air traversant un papillon (8) commandé par un actionneur (28), à partir d'une consigne de débit massique pompé de façon cyclique à travers le papillon et un collecteur d'admission placé en aval du papillon, caractérisé par des moyens pour mémoriser une fonction de transfert inverse de la fonction de transfert du collecteur, des moyens pour générer une consigne de débit massique d'air à travers le papillon à partir de la consigne de débit pompé et un circuit (26) de commande de la position (α) du papillon en fonction de la dite consigne de débit massique à travers le papillon et de paramètres de fonctionnement externes mesurés ou mémorisés, la dite fonction de transfert inverse étant un filtrage de la forme : (1 + τ.p)/[K/(1 + τf.p)] où τ et K sont des coefficients fonction de la fréquence de cycle et de la température du gaz dans le collecteur et où τf est une constante de temps inférieure au moins d'un ordre de grandeur à la constante τ.Device for controlling an air flow passing through a throttle valve (8) controlled by an actuator (28), from a mass flow set point pumped cyclically through the throttle valve and an intake manifold placed downstream of the throttle valve, characterized by means for memorizing a reverse transfer function of the transfer function of the collector, means for generating a mass air flow setpoint through the butterfly from the pumped flow setpoint and a circuit ( 26) for controlling the position (α) of the butterfly as a function of said mass flow setpoint through the butterfly and of external operating parameters measured or stored, said reverse transfer function being a filtering of the form: (1 + τ.p) / [K / (1 + τf.p)] where τ and K are coefficients depending on the cycle frequency and the temperature of the gas in the collector and where τf is a time constant less than at least an order of magnitude than the constant τ. Dispositif selon la revendication 5, caractérisé en ce que les dits paramètres sont la température et la pression de l'air d'admission ainsi que la pression en amont du papillon.Device according to Claim 5, characterized in that the said parameters are the temperature and the pressure of the intake air as well as the pressure upstream of the butterfly valve.
    EP01400449A 2001-02-20 2001-02-20 Method and apparatus for controlling the flow rate of a gas passing a throttle element Withdrawn EP1234964A1 (en)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    EP01400449A EP1234964A1 (en) 2001-02-20 2001-02-20 Method and apparatus for controlling the flow rate of a gas passing a throttle element

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP01400449A EP1234964A1 (en) 2001-02-20 2001-02-20 Method and apparatus for controlling the flow rate of a gas passing a throttle element

    Publications (1)

    Publication Number Publication Date
    EP1234964A1 true EP1234964A1 (en) 2002-08-28

    Family

    ID=8182629

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01400449A Withdrawn EP1234964A1 (en) 2001-02-20 2001-02-20 Method and apparatus for controlling the flow rate of a gas passing a throttle element

    Country Status (1)

    Country Link
    EP (1) EP1234964A1 (en)

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1408385A1 (en) * 2002-10-11 2004-04-14 STMicroelectronics S.A. Method for controlling a dynamic system, using a fuzzy logic model of at least one inverse transfer function of the system
    FR2910550A1 (en) * 2006-12-21 2008-06-27 Renault Sas Injector drift correction method for e.g. motor vehicle's direct injection oil engine, involves comparing actual injected and set point fuel quantities, and determining correction to be carried out to set point by using torque estimation
    FR2910549A1 (en) * 2006-12-21 2008-06-27 Renault Sas Injector drift correcting method for e.g. diesel engine of vehicle, involves determining drift correction value of injector to be added to nominal set point value by utilizing indicated average torque estimation for cylinders
    EP2351924B1 (en) * 2008-10-31 2016-12-28 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controller

    Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4215107C1 (en) * 1992-05-07 1994-01-20 Daimler Benz Ag Control system for fuel-injected IC engine - calculates required fuel quantity from accelerator pedal position, in turn used to calculate air intake mass flow rate
    DE19515855A1 (en) * 1995-04-29 1996-10-31 Volkswagen Ag Method for adjusting the movement of a performance-changing control element
    DE19618385A1 (en) * 1996-05-08 1997-11-13 Bosch Gmbh Robert Automobile engine management method
    EP0899439A2 (en) * 1997-08-28 1999-03-03 Nissan Motor Company, Limited Control apparatus and method for internal combustion engine
    US5925089A (en) * 1996-07-10 1999-07-20 Yamaha Hatsudoki Kabushiki Kaisha Model-based control method and apparatus using inverse model
    EP0987417A2 (en) * 1998-09-18 2000-03-22 Hitachi, Ltd. Method and apparatus for controlling intake airflow rate of an engine and method for controlling output

    Patent Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4215107C1 (en) * 1992-05-07 1994-01-20 Daimler Benz Ag Control system for fuel-injected IC engine - calculates required fuel quantity from accelerator pedal position, in turn used to calculate air intake mass flow rate
    DE19515855A1 (en) * 1995-04-29 1996-10-31 Volkswagen Ag Method for adjusting the movement of a performance-changing control element
    DE19618385A1 (en) * 1996-05-08 1997-11-13 Bosch Gmbh Robert Automobile engine management method
    US5925089A (en) * 1996-07-10 1999-07-20 Yamaha Hatsudoki Kabushiki Kaisha Model-based control method and apparatus using inverse model
    EP0899439A2 (en) * 1997-08-28 1999-03-03 Nissan Motor Company, Limited Control apparatus and method for internal combustion engine
    EP0987417A2 (en) * 1998-09-18 2000-03-22 Hitachi, Ltd. Method and apparatus for controlling intake airflow rate of an engine and method for controlling output

    Cited By (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1408385A1 (en) * 2002-10-11 2004-04-14 STMicroelectronics S.A. Method for controlling a dynamic system, using a fuzzy logic model of at least one inverse transfer function of the system
    FR2845780A1 (en) * 2002-10-11 2004-04-16 St Microelectronics Sa METHOD FOR CONTROLLING A DYNAMIC SYSTEM, USING A FOULD LOGIC MODEL OF AT LEAST ONE REVERSE TRANSFER FUNCTION OF THIS SYSTEM
    US7013187B2 (en) 2002-10-11 2006-03-14 Stmicroelectronics, S.A. Control procedure using a fuzzy logic model of at least one inverse transfer function of a dynamic system
    FR2910550A1 (en) * 2006-12-21 2008-06-27 Renault Sas Injector drift correction method for e.g. motor vehicle's direct injection oil engine, involves comparing actual injected and set point fuel quantities, and determining correction to be carried out to set point by using torque estimation
    FR2910549A1 (en) * 2006-12-21 2008-06-27 Renault Sas Injector drift correcting method for e.g. diesel engine of vehicle, involves determining drift correction value of injector to be added to nominal set point value by utilizing indicated average torque estimation for cylinders
    EP2351924B1 (en) * 2008-10-31 2016-12-28 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controller

    Similar Documents

    Publication Publication Date Title
    FR2759116A1 (en) METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
    FR2879526A1 (en) METHOD FOR AIDING STARTING A MOTOR VEHICLE AND ASSOCIATED DEVICE
    FR2736010A1 (en) METHOD AND DEVICE FOR CONTROLLING THE DRIVE UNIT OF A MOTOR VEHICLE
    FR2749040A1 (en) PROCEDURE FOR ADJUSTING THE PRESSURE IN THE SUCTION DUCT OF AN INTERNAL COMBUSTION ENGINE AND DEVICE FOR IMPLEMENTING THE PROCESS
    FR2822898A1 (en) METHOD AND DEVICE FOR CONTROLLING AND / OR DIAGNOSING A CONTROL SYSTEM INFLUENCING A MASS FLOW
    EP1234964A1 (en) Method and apparatus for controlling the flow rate of a gas passing a throttle element
    FR2844227A1 (en) Vehicle speed limiting method involves determining limit value for output quantity of drive unit, based on determined maximum permissible acceleration and by utilizing vehicle dynamics equation
    FR2840362A1 (en) METHOD FOR CONTROLLING THE FILLING OF AN INTERNAL COMBUSTION ENGINE
    FR2874237A1 (en) Supercharged internal combustion engine e.g. gasoline engine, controlling method, involves comparing values of mass air flow, and estimating defect if values have amplitude difference higher than predefined threshold
    FR2804472A1 (en) Method of controlling airflow through motor vehicle internal combustion engine intake involves determining position of butterfly valve as a function of flow across valve and external parameters
    CA2443251C (en) Process and device for automatically controlling the thrust of at least one engine of an aircraft in level flight at stable speed
    FR2861860A1 (en) Vehicle driving unit management method, involves predefining set point value for magnitude of output of driving unit, and releasing thrust of unit when set point value of magnitude passes below characteristic thrust value
    EP1792106B1 (en) Method for multi-operating mode control of an automated transmission for a motor vehicle, in particular for idle speed running with inactivated brake and corresponding device
    FR2990656A1 (en) Device for real-time development of torque set point on e.g. front wheel axle, of car, has selection module developing torque set point by selecting smaller value between torque reference and magnitude linked to another torque reference
    FR2868473A1 (en) Internal combustion engine e.g. diesel engine, control process for vehicle, involves adapting upstream control based on output magnitude of supply pressure adjustment, and correcting set point position of actuation unit based on magnitude
    EP1753947A2 (en) Method for controlling a set torque to be applied to wheels of an automatic transmission for a motor vehicle and corresponding device
    FR2768460A1 (en) METHOD FOR IMPLEMENTING AN INTERNAL COMBUSTION ENGINE
    FR2750734A1 (en) METHOD AND DEVICE FOR CONTROLLING THE INJECTED QUANTITY OF FUEL FITTED TO THE CYLINDERS OF AN INTERNAL COMBUSTION ENGINE
    FR2890118A1 (en) METHOD AND DEVICE FOR MANAGING AN INTERNAL COMBUSTION ENGINE
    FR2774425A1 (en) METHOD AND DEVICE FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
    EP0782664A1 (en) Device for driving the accessories of a motor vehicle combustion engine
    EP1375880A1 (en) Method and system for controlling an internal combustion engine
    FR2837432A1 (en) Motor vehicle gearchange control method involves controlling clutch actuator dependent on vehicle acceleration and drive slip
    FR2842869A1 (en) Method of adjusting distance for regulation of motor vehicle exhaust gas turbocharger involves comparing turbine variable to real value to provide correction value
    FR2905408A1 (en) Internal combustion engine e.g. supercharged diesel engine, controlling method for e.g. diesel type motor vehicle, involves calculating set point of ratio of detent in turbine to execute adjustment of boot pressure in manifold of engine

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20011013

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: JOHNSON CONTROLS AUTOMOTIVE ELECTRONICS

    AKX Designation fees paid

    Designated state(s): DE ES FR GB IT NL

    17Q First examination report despatched

    Effective date: 20040809

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20050222