[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1226089A1 - Elektromechanisches bauelement und verfahren zur herstellung desselben - Google Patents

Elektromechanisches bauelement und verfahren zur herstellung desselben

Info

Publication number
EP1226089A1
EP1226089A1 EP00979486A EP00979486A EP1226089A1 EP 1226089 A1 EP1226089 A1 EP 1226089A1 EP 00979486 A EP00979486 A EP 00979486A EP 00979486 A EP00979486 A EP 00979486A EP 1226089 A1 EP1226089 A1 EP 1226089A1
Authority
EP
European Patent Office
Prior art keywords
polymer
polymer body
electromechanical component
metal layer
active part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00979486A
Other languages
English (en)
French (fr)
Inventor
Heinz KÜCK
Metin Giousouf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hann-Schickard-Gesellschaft fuer Angewandte Forschung eV
Original Assignee
Hann-Schickard-Gesellschaft fuer Angewandte Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1999148613 external-priority patent/DE19948613C2/de
Application filed by Hann-Schickard-Gesellschaft fuer Angewandte Forschung eV filed Critical Hann-Schickard-Gesellschaft fuer Angewandte Forschung eV
Publication of EP1226089A1 publication Critical patent/EP1226089A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0077Other packages not provided for in groups B81B7/0035 - B81B7/0074
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C5/00Manufacture of fluid circuit elements; Manufacture of assemblages of such elements integrated circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0015Diaphragm or membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0042Electric operating means therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/0076Fabrication methods specifically adapted for microvalves using electrical discharge machining [EDM], milling or drilling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/0078Fabrication methods specifically adapted for microvalves using moulding or stamping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L2224/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips

Definitions

  • the present invention relates to microstructure technology and in particular to electromechanical components.
  • Electromechanical components are components that electrically detect or effect a mechanical effect. Examples of electromechanical components are sensors for linear accelerations, rotation rate sensors, force sensors, pressure sensors, but also micro valves or micropumps.
  • Accelerometers for example, i. H. Sensors for detecting a linear acceleration, or rotation rate sensors for detecting an angular acceleration, usually have a movable mass which is connected to a fixed frame via at least one spring bar. When an acceleration sensor is subjected to acceleration, the cantilever deforms elastically and the mass is deflected. This deflection can then be performed using a variety of known methods, such as. B. capacitive, inductive, optical, etc. are detected.
  • microvalves usually have a movable, elastic structure which, when an appropriate electrical signal is applied, reduces or increases a flow path for a fluid, i. H. which causes a flow limitation as a mechanical effect.
  • micropumps usually have a membrane that is elastic or is suspended elastically in order to change a volume.
  • a micropump will also have valves to change the volume with a defined one To achieve fluid transportation.
  • the mechanical effect in micropumps is therefore the transport or metering of a fluid.
  • Pressure sensors or force sensors can also have an elastically deformable membrane, which elastically deforms by a certain degree when a certain pressure is present, i. H. "Deflected", this deflection can then be detected in different ways, as in the case of the acceleration sensor, in order to obtain an electrical signal which indicates the pressure present.
  • All of the above-mentioned electromechanical components comprise an active part, which is elastically deformed by the external mechanical effect, or whose elastic deformation leads to the mechanical effect.
  • Such electromechanical components can have an integrated device for converting the mechanical effect into an electrical effect or for converting an electrical effect into a mechanical effect.
  • the known finger structure which has a first group of fingers which is connected to a movable part and which has a second group of fingers which is connected to a fixed part, with respect to which the movable part moves, may be mentioned here merely by way of example.
  • the two groups of fingers are arranged in an interlocking manner such that a relative deflection of the movable part relative to the fixed part results in a change in the distances between the fingers, which leads to a changed capacity of the finger arrangement.
  • This changed capacity is e.g. B. proportional to the acceleration acting on the moving part.
  • the mechanical effect can be brought about, for example, by changing the distance between two flat electrodes in the sense of a plate capacitor. This change in capacitance can be measured using an AC voltage.
  • Such electromechanical components are usually Manufactured in miniaturized form from silicon material using the silicon technology that has proven itself in wafer processing.
  • Silicon technology enables mass production, which has led to the fact that, for example, capacitive acceleration sensors which have been produced using silicon technology have been widely used, in particular in the field of automotive engineering, acceleration sensors for airbag systems being mentioned in particular here.
  • the inert mass is suspended from thin springs and provided with finger structures, which together with fixed similar finger structures form a capacitor, the capacitance of which changes during acceleration, as a result of which the acceleration can be detected electronically.
  • Silicon acceleration sensors are manufactured, for example, by the Bosch company in Reutlingen using polysilicon surface mechanics. With this technology, a wafer with sensor chips is produced and then connected to a lid wafer, which is also suitably prefabricated using techniques of silicon micromechanics, including the anodic bonding process, so that the sensitive micromechanically structured silicon sensor structures are protected. The composite wafer with the sealed sensor chips is then separated. The individual sensor chips are then assembled together with an electronics chip in a suitable housing using standard microelectronic technology processes in order to obtain the finished sensor system. The sensor systems can then be further processed like purely electronic components.
  • Advantages of these silicon acceleration sensors are the small size of the sensor and thus the chip, the manufacturability in the batch process as well as the high long-term stability and accuracy due to the favorable properties of the silicon material used.
  • a disadvantage of such systems is the fact that, due to their very small dimensions in the sensor structures, for example when considering finger structures, and because of the so-called sticking effect, such sensors have to be practically hermetically sealed against particles and moisture.
  • a further disadvantage is that the entire manufacturing process is still very expensive, despite the batch production and the assembly technology of the electronics technology, since in addition to the electronics chip, two silicon wafers also have to be manufactured, connected and separated using micromechanical processes.
  • DE 44 02 119 AI discloses a micro diaphragm pump, the diaphragm being made of titanium and the valves being made of polyimide.
  • the membrane can consist of polyimide, on which a heating coil is applied.
  • U.S. Patent No. 5,836,750 discloses an electrostatically operated mesopump with a plurality of unit cells.
  • a pump membrane can be made from metal-coated polymers, from metal, or from a conductive flexible elastic polymer.
  • DE 197 20 482 AI discloses a micromembrane pump with a membrane made of PC or PFA.
  • a piezo actuator can be attached to a brass sheet, which in turn is applied to the pump membrane.
  • the object of the present invention is to create less expensive electromechanical components and methods for producing the same, which nevertheless have mechanical and electrical properties which are comparable to those of silicon components.
  • the present invention is based on the knowledge that in order to produce really inexpensive electromechanical components, it is necessary to move away from the established silicon technology.
  • a polymer material is used as the starting material, which, for example, can be processed into almost any shape and structure using the likewise well-established injection molding technique and / or stamping technique.
  • Polymer materials are also generally very inexpensive.
  • the decisive advantage lies in the manufacturing technology.
  • the mechanical systems for carrying out polymer processing are considerably less complex and therefore much cheaper than the corresponding mechanical systems for silicon technology.
  • polymer materials also have elastic properties that can be used to produce cantilevers with defined deflection properties.
  • Mechanically active parts in the acceleration sensor described are the cantilevers, via which the seismic mass is suspended on the fixed frame.
  • the mechanically active part also includes the membrane, which is elastically deformable and would have too little long-term stability without a metal layer due to the flow properties of the plastic material.
  • the electromechanical component consists of a two-component polymer body which has a first part made of a first polymer material which can be metallized by wet chemistry and which has a second part made of a second polymer material which cannot be metallized wet-chemically , It is thus possible to define the necessary metallizations by means of a two-shot injection molding process.
  • the main advantage of the method according to the invention is the extraordinary cost reduction compared to electromechanical components produced using silicon technology, with cost reductions up to a factor of a thousand expected.
  • the minimum structure sizes that can currently be achieved with plastic processing are, at least today, significantly higher than those of silicon micromechanics. This primarily affects the dimensions of the springs and the distances between the capacitor electrodes.
  • a minimum capacitance must be achieved, which must be achieved in silicon technology by means of very small electrode spacings. In the method according to the invention, however, this does not have to be bought by an ever further miniaturization with its corresponding problems, but by an increase in the sizes, since materials which are considerably less expensive than silicon are used, and since the preferred injection molding method does not impose any significant limits on the height, for example has vibrating masses, which is however the case when using polysilicon.
  • the master or impression technique with polymer materials is known to have the potential to be able to produce structures in the micrometer range.
  • the larger design and size of the electromechanical component according to the invention has the advantage that the sensitivity to particles and contamination is not so great.
  • the entire metallized surface can be coated with a dense thin gold layer in order to also improve the sensitivity to moisture and the environment of the sensor system, so that the requirements for encapsulation become significantly lower than with silicon components.
  • the method of electroless chemical metallization is preferably used as the method for forming the metal layers. This method can advantageously be combined with the method of galvanic reinforcement of the metal layers, so that by controlling the metal thickness during galvanic amplification and the electrode spacing for finger structures as well as the natural frequency of the sensor element, when considering rotation rate sensors, it is controlled very precisely and optimized for the specific area of application can be.
  • the method according to the invention also provides the potential, the mass of the movable inert structure using the example of the acceleration sensor or the mass and also the elastic modulus of a membrane in the case of microvalves or micropumps, by controlling the amount of metal that is grown very precisely set.
  • the manufacturing process comprises a small number of steps compared to silicon technology, which means that the rejects during production and thus also the costs can be kept low.
  • FIG. 1 shows a schematic top view of the electromechanical component according to the present invention
  • FIG. 2 shows a schematic side view of the electromechanical component with housing bottom and housing cover according to a preferred embodiment of the present invention
  • FIG. 3 shows a side view of the electromechanical component in combination with an SMD component for electrical control and / or evaluation
  • FIG. 5 shows a side view of the electromechanical component with a spring and contact bumps for contacting an electronic circuit
  • FIG. 6 shows a side view of the electromechanical component with adhesive contact bumps for contacting an electronic circuit
  • Fig. 7 is a plan view of a section of the interlocking electrode groups of Fig. 1, but the electrode fingers are wave-shaped.
  • the electromechanical component 10 has a polymer body 12 which has a mechanically active part which has the two spring bars 14a, 14b and a seismic mass 14c.
  • the electromechanical component 10, which is shown in FIG. 1, is a sensor for measuring a mechanical acceleration.
  • the capacitive detection principle was used in the acceleration sensor shown in FIG. 1, which comprises a finger structure with a first group of fingers 16a, which are attached to a fixed frame 18, and a second group of fingers 16b, which has fingers that are attached to the seismic mass 14c are attached.
  • the electromechanical component 10 " which is shown in FIG.
  • Acceleration sensor is shown, further comprises some electronic circuit (chip) 20 and a connector 22, which is also part of the polymer body 12, ie the connector 22 and the fixed frame and the mechanically active part are all made of polymer material.
  • the electromechanical component further comprises conductor tracks 24a to 24c, which connect both the movable mass and the two first finger groups 16a of the finger structures to the chip or to corresponding connection surfaces of the chip via bond wires 26.
  • the electromechanical component 10 comprises further conductor tracks 28a to 28d, which on the one hand are also connected to the chip 20 via bond wires, and on the other hand merge into wider ends in order to connect the polymer body 12 with a connector which is four in the exemplary embodiment shown in FIG. 1 Has contacts to form.
  • the seismic (inertial) mass 14c When the electromechanical component 10 is subjected to a linear acceleration, the seismic (inertial) mass 14c is deflected with respect to the fixed frame 18, which leads to an elastic deformation of the spring bars 14a, 14b. The displacement of the mass 14c leads to a changed capacitance which can be detected using the first and second finger groups 16a, 16b and which can already be processed "in place” in the IC 20 in order to be output via the plug region 22.
  • the long-term stability of such an electromechanical component would not be particularly great, since polymer materials usually have a flow behavior over time.
  • a permanent deformation of the two cantilevers 14a, 14b over time leads to the occurrence of a plastic deformation in addition to the elastic deformation, as a result of which the sensor loses sensitivity over time and would ultimately become unusable.
  • this problem is solved by providing a metal layer 30 which at least partially covered the mechanically active part for mechanical stabilization thereof.
  • the mechanically active part comprises the springs 14a, 14b and the seismic mass 14c.
  • the spring bars are provided with the metal layer.
  • Another advantage of the present invention is that the metallic layers for stabilization, which are preferably designed so that they not only partially but completely surround the bars, can also serve to conduct electrical signals at the same time.
  • the polymer body 12 could consist of only one polymer material, the structuring of the capacitive detection electrodes and also the spring bars being carried out, for example, using a one-shot injection molding process, in order to then use a shadow mask to produce the metallization structure shown in FIG. H. to produce the metal layers on the mechanically active part for stabilization and the further metal layers to form the conductor tracks.
  • a two-shot injection molding process in which the areas that are in a first shot to be metallized later, using a wet-chemical metallizable polymer material, and then in a second shot to inject the solid frame around the result of the first shot.
  • This two-component injection molding technology has the advantage that the structuring of the metallization results to a certain extent automatically if the result of the second shot is metallized by wet chemical means, since only on the surfaces which consist of the first polymer material that can be metallized, a metal layer is formed, while no metal deposition takes place on the other surfaces, which consist of the second polymer material, which cannot be metallized by wet chemical means.
  • positive-locking anchors 32 are preferably provided, which result in the two polymer parts from the different polymer materials not only adhering to one another, but also being mechanically connected to one another in a positive manner are.
  • Anchoring structures of any design are available for this purpose, which are compatible with the manufacturing process in at least two stages.
  • the IC 20 does not have to be in the form of a packaged chip, but the same can also be provided as a bare chip with corresponding connection areas which can be contacted via the bond wires 26.
  • LCP Pd-doped LCP
  • PA polyamide
  • the two-component molded parts are then treated in a wet chemical process sequence in such a way that a metal layer is deposited autocatalytically on the surface of the first polymer material.
  • the most important work steps consist of cleaning the molded parts, tempering the molded parts and sensitizing the surface thereof by means of a surface reaction, such as. B. etching the surface or swelling and germination of the surface with Pd seeds.
  • the moldings are then coated with metal in the autocatalytic bath.
  • the layers that can be used are copper or nickel as the starting layer, conductor layer and layer for mechanical stabilization, and gold as the solderable and wire-bondable surface protection layer.
  • Typical metal layer thicknesses are of the order of 30 ⁇ m, although layer tensions or layer adhesion on the polymer material and in particular, of course, the deposition time limit the thickness.
  • a galvanic layer e.g. B. nickel to reinforce. While metal layers deposited without external current are characterized by a very high conformity of the layers, galvanic layers with fine structural details tend to have very inhomogeneous layer thicknesses, which have a negative effect on the geometry of the components, but particularly on the distances between the finger electrodes or on the springs and their elastic properties can impact.
  • the fixed metallized areas in the form of the finger electrodes 16a can be used as auxiliary electrodes in a preferred production method of the present invention in order to achieve a more homogeneous deposition on the cantilever and also on the seismic mass by applying a suitable potential. No metal is deposited on the auxiliary electrode. Electrical contacting of the areas is required for galvanic deposition. When the voltage is applied, an attractive force is exerted on the sensor structure, but this is compensated overall due to the symmetry of the structure.
  • an auxiliary connection 34 from the first or the second can be used Polymer material can be used. The auxiliary connection is then, after completion of the metallization process, when no more potential difference is applied to the comb structure, for. B. removed by punching.
  • the electromechanical component is equipped with the electronic circuit 20.
  • Various measures can be used for electrical contacting, which are discussed in detail in the further figures.
  • FIG. 2 shows a side view of the electromechanical component 10, wherein, as in FIG. 1, bond connections via bond wires 26 were used to contact the chip 20.
  • a potting compound 36 is applied over the area in which the chip 20 and the bond wires 26 are located.
  • 2 also shows the configuration of the external conductor tracks using the example of the conductor track 28d in the plug area, which is formed in such a way that it extends around the plug area 22.
  • the electromechanical component is encapsulated using a housing base 40 and a housing cover 42 in order to protect it from external influences.
  • both the housing base and the housing cover preferably also consist of the polymer material, and in the case of the two-component exemplary embodiment at least partially of the polymer material, which can be metallized, in order to metallize both on the outside of the housing base and on the outside of the housing cover identified by reference numeral 52 to ensure electromagnetic shielding, whereby both the noise and the sensitivity of the entire electromechanical component can be improved.
  • a suitable adhesive or a welding process can also be used. Suitable welding processes are ultrasonic welding or laser welding, especially with diode lasers. As has already been mentioned, the arrangement of guide pins 46 and guide holes 48 can be used to adjust the housing cover 42 and the housing base 40 to simplify the assembly process.
  • the housing base 40 and the housing cover 42 that is to say for the construction of the electromechanical component from three components
  • the sensor element is closed from only one side with a housing cover, while the other side is already closed during the manufacturing process of the polymer body.
  • the housing base is also formed at the same time, which can easily be achieved by a suitable casting mold can.
  • the housing cover must be designed so that it can be retrofitted in order to populate the chip 20 with the electromechanical component.
  • the connection surfaces of the conductor tracks 24a to 24c (FIG. 1) are "pulled out" up to the plug area 22, it is in principle also possible to form the entire electromechanical component in one go using a suitable casting mold, since in the case of using the wet chemical Metallization process in the catalytic bath, in contrast to the known silicon technologies, the surfaces to be metallized do not have to be accessible from above, since the auto-catalytic bath enters the cavities and leads to metal deposition wherever the polymer material is present on the metal underneath Use of the wet chemical process can be applied.
  • an injection molding method or a hot stamping method can also be used instead of the injection molding method in order to encapsulate the stamping parts then obtained in order to form the finished polymer body, in which but now the mechanically active part and, if a capacitive evaluation is used, also the second group of fingers, d. H. the fixed fingers attached to the frame 18 have a more precisely defined geometric shape.
  • Both the injection embossing process and the hot embossing process allow a very high structural fineness and in particular a low component distortion, which can occur due to alignment effects of the polymers if only an injection molding process is used.
  • SMD Surface Mont Device
  • FIG. 4 Another cheap variant of the contacting of the electrical circuit, which is now again available as a bare chip 20, is shown in FIG. 4.
  • the chip 20 is not contacted by soldering, gluing, bonding and the like, but only by spring force using metallized spring contacts 62.
  • a recess 64 is formed provided in the polymer body 12, which can be easily obtained by an appropriate injection mold.
  • the depression is preferably dimensioned such that, as shown in FIG. 4, the surface of the chip 20 is essentially flush with the surface of the polymer body 12. The chip is then placed in the recess and, if necessary, lightly attached so that it does not slip when the cover 42 is put on.
  • the spring contacts 62 are dimensioned such that when the snap connections 44 snap in, they exert pressure both on connection surfaces 66 of the chip 20 and on corresponding connection surfaces contacting interconnects, e.g. B. 24a, 28d, exercise such that a simple and above all releasable contact connection has been achieved. As is illustrated in FIG. 4 by the hatched areas of the spring contacts 62, the lower sections thereof are metallized so that electrical contact between the chip and the conductor track can occur in the first place.
  • the metallized spring contacts 62 can be injection molded from the polymer material, which can be metallized by a wet chemical process. If only a single polymer material is used, the spring contacts can also be made conductive using a shadow mask, etc.
  • FIG. 5 Another alternative of the chip attachment is shown in FIG. 5.
  • the chip 20 is turned over with respect to its orientation in FIG. 4, so that the connection surfaces 66 of the naked chip 20 are directed downward with reference to FIG. 5.
  • the same are placed on contact bump 68, whereupon the housing cover 42, which is provided with a pressure spring 70, is placed and pressed in the direction of the polymer body 12 until the snap connectors 44 snap into place.
  • the adhesive that forms the adhesive bumps 72 must of course be a conductive adhesive.
  • the adhesive contact bumps can, for example, be applied to the polymer body using the stamping technique, the dispensing technique or by means of a stencil printing technique.
  • the chip 20 preferably takes over the known electronic functions for use as an acceleration sensor, as a rotation rate sensor, as a microvalve, as a micropump, and as a pressure sensor as a force sensor.
  • Functions can for example, capacity reading, temperature compensation and self-test functions.
  • FIG. 7 shows a plan view of a section of the intermeshing electrode groups 100 from FIG. 1, the electrode fingers, however, being of wavy design.
  • the polymer body has wave-shaped electrode structures 100 in order to achieve a higher mechanical stability of thin tool walls during injection molding.
  • an electromechanical component according to the invention thus has movable elements, integrated conductor tracks and regions with metallized surfaces, the electromechanical components being produced from polymeric materials, preferably with the aid of two-component or multi-component injection molding technology and electroless chemical metallization.
  • the main advantages over electromechanical components made of silicon are: drastically reduced costs due to the simple manufacturability;
  • any shape of the polymer body for the realization of snap connections, pressure springs, alignment pins, guide holes, anchors, seals, ...;

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

Ein elektromechanisches Bauelement (10) besteht aus einem Polymerkörper (12), der einen mechanisch aktiven Teil (14a, 14b, 14c) und einen Rahmen (18) aufweist, und aus einer Metallschicht (30), die den mechanisch aktiven Teil zur mechanischen Stabilisierung desselben zumindest teilweise bedeckt, wobei ein Bereich des Polymerkörpers (12), auf dem die Metallschicht (30) vorgesehen ist, aus einem ersten Polymermaterial besteht, das nasschemisch metallisierbar ist, und wobei ein anderer Bereich, auf dem keine Metallschicht vorgesehen ist, aus einem zweiten Polymermaterial besteht, das nasschemisch nicht metallisierbar ist. Das elektromechanische Bauelement kann ein Beschleunigungssensor, ein Drehratensensor, ein Mikroventil, eine Mikropumpe, ein Drucksensor oder ein Kraftsensor sein. Das elektromechanische Bauelement verursacht bei seiner Herstellung im Gegensatz zu elektromechanischen Bauelementen, die durch eine Silizium-Technologie hergestellt werden, drastisch reduzierte Kosten, da zur Herstellung statt der aufwendigen Silizium-Technologie einfache Spritzguss- und/oder Prägeverfahren eingesetzt werden können.

Description

ELEKTROMECHANISCHES BAUELEMENT UND VERFAHREN ZUR HERSTELLUNG DESSELBEN
BESCHREIBUNG
Die vorliegende Erfindung bezieht sich auf die Mikrostruk- turtechnik und insbesondere auf elektromechanische Bauelemente .
Elektromechanische Bauelemente sind Bauelemente, die einen mechanischen Effekt elektrisch erfassen bzw. elektrisch bewirken. Beispiele für elektromechanische Bauelemente sind Sensoren für lineare Beschleunigungen, Drehratensensoren, Kraftsensoren, Drucksensoren, aber auch Mikroventile oder Mikropumpen.
Beschleunigungssensoren beispielsweise, d. h. Sensoren zur Erfassung einer linearen Beschleunigung, oder Drehratensensoren zum Erfassen einer Winkelbeschleunigung, haben üblicherweise eine bewegliche Masse, die über mindestens einen Federbalken mit einem festen Rahmen verbunden ist. Wenn ein Beschleunigungssensor einer Beschleunigung ausgesetzt wird, verformt sich der Federbalken elastisch, und die Masse wird ausgelenkt. Diese Auslenkung kann dann unter Verwendung einer Vielzahl von bekannten Verfahren, wie z. B. kapazitiv, induktiv, optisch etc., erfaßt werden.
Dagegen haben Mikroventile üblicherweise eine bewegliche, elastische Struktur, die bei Anlegung eines geeigneten elektrischen Signals einen Durchflußweg für ein Fluid verkleinert oder vergrößert, d. h. die als mechanischen Effekt eine Durchflußbegrenzung bewirkt.
Umgekehrt haben Mikropumpen üblicherweise eine Membran, die elastisch ist bzw. elastisch aufgehängt ist, um ein Volumen zu verändern. Eine Mikropumpe wird darüber hinaus auch Ventile aufweisen, um mit der Volumenänderung eine definierte Fluidbeförderung zu erreichen. Der mechanische Effekt bei Mikropumpen besteht somit in dem Transport bzw. der Dosierung eines Fluids.
Drucksensoren oder Kraftsensoren können ebenfalls eine elastisch verformbare Membran aufweisen, die bei Vorliegen eines bestimmten Drucks um einen bestimmten Grad elastisch verformt, d. h. "ausgelenkt", wird, wobei diese Auslenkung dann wieder wie beim Beschleunigungssensor auf verschiedene Arten und Weisen erfaßt werden kann, um ein elektrisches Signal zu erhalten, das den anliegenden Druck anzeigt. Sämtliche genannten elektromechanischen Bauelemente umfassen einen aktiven Teil, der durch den äußeren mechanischen Effekt elastisch verformt wird, bzw. dessen elastische Verformung zu dem mechanischen Effekt führt.
Solche elektromechanischen Bauelemente können eine integrierte Einrichtung zum Umwandeln des mechanischen Effekts in einen elektrischen Effekt bzw. zum Umwandeln eines elektrischen Effekts in einen mechanischen Effekt aufweisen. Lediglich beispielhaft sei hier die bekannte Fingerstruktur erwähnt, die eine erste Gruppe von Fingern aufweist, die mit einem beweglichen Teil verbunden ist, und die eine zweite Fingergruppe aufweist, die mit einem festen Teil verbunden ist, bezüglich dessen sich der bewegliche Teil bewegt. Die beiden Fingergruppen sind ineinandergreifend angeordnet, derart, daß eine relative Auslenkung des beweglichen Teils zum festen Teil eine Veränderung der Abstände zwischen den Fingern ergibt, die zu einer veränderten Kapazität der Fingeranordnung führt. Diese veränderte Kapazität ist z. B. proportional zu der auf den beweglichen Teil wirkenden Beschleunigung. Im Falle eines Drucksensors kann der mechanische Effekt beispielsweise durch Abstandsänderung zwischen zwei flächigen Elektroden im Sinne eines Plattenkondensators bewirkt werden. Diese Kapazitätsänderung kann unter Verwendung einer Wechselspannung gemessen werden.
Solche elektromechanischen Bauelemente werden üblicherweise in miniaturisierter Form aus Siliziummaterial unter Verwendung der bei der Waferprozessierung bewährten Siliziumtechnologie hergestellt. Die Siliziumtechnologie ermöglicht eine Massenproduktion, die dazu geführt hat, daß beispielsweise kapazitive Beschleunigungssensoren, die unter Verwendung der Siliziumtechnologie hergestellt worden sind, eine weite Verwendung erfahren haben, insbesondere im Bereich der Automobiltechnik, wobei hier besonders Beschleunigungssensoren für Airbag-Systeme genannt seien.
Bei solchen Siliziumsensoren ist die träge Masse an dünnen Federn aufgehängt und mit FingerStrukturen versehen, die zusammen mit feststehenden ähnlichen Fingerstrukturen einen Kondensator bilden, dessen Kapazität sich bei Beschleunigung ändert, wodurch die Beschleunigung elektronisch detektiert werden kann. Siliziumbeschleunigungssensoren werden beispielsweise in Polysilizium-Oberflächenmechanik von der Firma Bosch in Reutlingen hergestellt. Bei dieser Technologie wird ein Wafer mit Sensorchips hergestellt und anschließend mit einem ebenfalls mit Techniken der Silizi- um-Mikromechanik geeignet vorgefertigten Deckel-Wafer unter anderem mit dem anodischen Bondverfahren verbunden, so daß die empfindlichen mikromechanisch strukturierten Silizium- Sensorstrukturen geschützt sind. Anschließend wird der Ver- bund-Wafer mit den verschlossenen Sensorchips vereinzelt. Die einzelnen Sensor-Chips werden dann zusammen mit einem Elektronik-Chip in ein geeignetes Gehäuse unter Verwendung von Standardverfahren der Mikroelektroniktechnologie aufgebaut, um das fertige Sensorsystem zu erhalten. Die Sensorsysteme können anschließend wie rein elektronische Bauelemente weiterverarbeitet werden.
Vorteile dieser Siliziumbeschleunigingssensoren sind die kleine Baugröße des Sensors und damit des Chips, die Herstellbarkeit im Batch-Verfahren sowie die hohe Langzeitstabilität und Genauigkeit aufgrund der günstigen Eigenschaften des verwendeten Siliziummaterials. Nachteilig an solchen Systemen ist die Tatsache, daß solche Sensoren aufgrund ihrer sehr kleinen Abmessungen bei den Sensorstrukturen, wenn beispielsweise an Fingerstrukturen gedacht wird, und aufgrund des sogenannten Sticking-Effekts praktisch hermetisch dicht gegen Partikel und Feuchtigkeit geschützt werden müssen. Weiterhin ist nachteilig, daß der gesamte Herstellungsprozeß trotz der Batch-Fertigung und der Aufbautechnik der Elektroniktechnologie immer noch sehr teuer ist, da neben dem Elektronik-Chip auch zwei Silizium- Wafer mit mikromechanischen Verfahren hergestellt, verbunden und vereinzelt werden müssen.
Obwohl sich die Siliziumtechnologie sehr stark durchgesetzt hat, was zu günstigeren Preisen für die gesamten Reinraumanlagen und bereits zu einem hohen Automatisierungsgrad geführt hat, muß dennoch angemerkt werden, daß zur Wafer- prozessierung ein kompletter Reinraum sowie entsprechend geschultes Personal benötigt werden. Entscheidender Kostenfaktor ist somit nicht das Material selbst, sondern der Aufwand bei der Herstellung, der im wesentlichen durch die benötigten Anlagen und die aufzuwendenden Personalkosten bestimmt ist.
Die DE 44 02 119 AI offenbart eine Mikromembranpumpe, wobei die Membran aus Titan und die Ventile aus Polyimid hergestellt sind. Alternativ kann die Membran aus Polyimid bestehen, auf dem eine Heizwendel aufgebracht ist.
Das US-Patent Nr. 5,836,750 offenbart eine elektrostatisch betriebene Mesopumpe mit einer Mehrzahl von Elementarzellen. Eine Pumpmembran kann aus metallbeschichteten Polymeren, aus Metall oder aus einem leitfähigen flexiblen elastischen Polymer hergestellt werden.
Die DE 197 20 482 AI offenbart eine Mikromembranpumpe mit einer Membran aus PC oder PFA. Ein Piezoaktor kann auf einem Messingblech angebracht sein, welches wiederum auf der Pumpmembran aufgebracht ist. Die Aufgabe der vorliegenden Erfindung besteht darin, preisgünstigere elektromechanische Bauelemente und Verfahren zum Herstellen derselben zu schaffen, die dennoch mechanische und elektrische Eigenschaften haben, die mit denen von Silizium-Bauelementen vergleichbar sind.
Diese Aufgabe wird durch ein elektromechanisches Bauelement gemäß Patentanspruch 1 sowie durch ein Verfahren zur Herstellung eines elektromechanischen Bauelements gemäß Patentanspruch 21 gelöst.
Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, daß zur Herstellung wirklich preisgünstiger elektromechani- scher Bauelemente von der etablierten Siliziumtechnologie weggerückt werden muß. Erfindungsgemäß wird als Ausgangsmaterial ein Polymerwerkstoff verwendet, der beispielsweise unter Verwendung der ebenfalls gut etablierten Spritzgußtechnik und/oder Prägetechnik in nahezu beliebige Formen und Strukturen verarbeitet werden kann. Polymermaterialien sind im allgemeinen ebenfalls sehr preisgünstig. Der entscheidende Vorteil liegt jedoch in der Herstellungstechnik. Die maschinellen Anlagen zur Durchführung der Polymerverarbeitung sind wesentlich weniger aufwendig und damit wesentlich preisgünstiger als die entsprechenden maschinellen Anlagen für die Silizium-Technologie. Polymermaterialien haben ebenfalls je nach Zusammensetzung elastische Eigenschaften, die dazu verwendet werden können, um Federbalken mit definierten Auslenkungseigenschaften herzustellen.
Problematisch an Polymermaterialien ist jedoch, daß solche Kunststoffe Fließeigenschaften haben, die zu bedeutenden Problemen bezüglich der Langzeitstabilität führen, wenn keine Vorkehrungen getroffen werden. Erfindungsgemäß wird dieses Problem dadurch gelöst, daß mechanisch aktive Teile des Polymerkörpers, den das elektromechanische Bauelement aufweist, mit einer Metallschicht versehen werden. Dadurch ensteht ein Kunststoff-Metall-Verbundsystem, das ähnlich gute Eigenschaften erreichen kann, wie ein Bauteil, das vollständig aus Metall oder Silizium ist. Dies ist darauf zurückzuführen, daß die äußeren Metalloberflächen die mechanischen Parameter, wie beispielsweise die Steifigkeit bzw. das Flächenträgheitsmoment, stärker beeinflussen als der Kunststoffkern. Als Metallschicht selbst kann beispielsweise Gold verwendet werden. Zur weiteren Kostenreduktion kann jedoch auch eine Metallschicht aus Nickel, Kupfer etc. eingesetzt werden. Mechanisch aktive Teile sind bei dem beschriebenen Beschleunigungssensor die Federbalken, über die die seismische Masse an dem festen Rahmen aufgehängt ist. Im Falle von elektromechanischen Bauelementen, die Membranen aufweisen, umfaßt der mechanisch aktive Teil auch die Membran, die elastisch verformbar ist und ohne Metallschicht aufgrund der Fließeigenschaften des Kunststoffmaterials eine zu geringe Langzeitstabilität hätte.
Bei einem besonders bevorzugten Ausführungsbeispiel besteht das elektromechanische Bauelement aus einem Zwei-Komponen- ten-Polymerkörper, der einen ersten Teil aus einem ersten Polymermaterial aufweist, das naßchemisch metallisierbar ist, und der einen zweiten Teil aus einem zweiten Polymermaterial aufweist, das naßchemisch nicht metallisierbar ist. So ist es möglich, durch ein Zwei-Schuß-Spritzgußverfahren die nötigen Metallisierungen zu definieren, d. h. die Metallisierung der mechanisch aktiven Teile zur Verbesserung der mechanischen Stabilität derselben, jedoch auch die Metallisierungen, die zur Umsetzung des mechanischen Effekts in ein elektrisches Signal nötig sind, wie z. B. Fingerstrukturen, Kondensatorplatten, aber auch die erforderlichen Leiterbahnen des elektromechanischen Bauelements zu einem internen elektronischen Schaltkreis, der hybrid in den Polymerkörper eingesetzt wird bzw. auf dem Polymerkörper befestigt wird, oder zu einem äußeren Stecker.
Der wesentliche Vorteil des erfindungsgemäßen Verfahrens ist die außerordentliche Kostenreduktion gegenüber Silizium- Technologie hergestellten elektromechanischen Bauelementen, wobei Kostenreduzierungen bis zu einem Faktor von Tausend erwartet werden.
Die minimalen Strukturgroßen, die derzeit durch die KunststoffVerarbeitung erreicht werden können, liegen zumindest heute noch deutlich über denen der Silizium-Mikromechanik. Dadurch werden vor allem die Abmessungen der Federn und die Abstände zwischen Kondensatorelektroden beeinträchtigt. Um das elektrische Rauschen des Sensorsystems zu minimieren, muß eine Mindestkapazität erreicht werden, was bei der Siliziumtechnologie über sehr geringe Elektrodenabstände erreicht werden muß. Bei dem erfindungsgemäßen Verfahren muß dies jedoch nicht über eine immer weitere Miniaturisierung mit ihren entsprechenden Problemen erkauft werden, sondern durch eine Erhöhung der Baugrößen, da wesentlich kostengünstigere Werkstoffe als Silizium zum Einsatz kommen, und da das bevorzugte Spritzgießverfahren keine wesentlichen Begrenzungen für die Höhe von beispielsweise schwingenden Massen aufweist, was jedoch bei der Verwendung von Polysilizium sehr wohl der Fall ist.
Andererseits hat die Ur- bzw. Abformtechnik mit polymeren Werkstoffen bekanntermaßen auch das Potential, um auch Strukturen im Mikrometerbereich herstellen zu können. Dazu wird es bevorzugt, das Spritzgießverfahren mit einem Spritzprägeverfahren zu kombinieren, oder auch mit dem bekannten Heißprägeverfahren .
Die größere Bauform und Baugröße des erfindungsgemäßen elektromechanischen Bauelements bringt den Vorteil mit sich, daß die Empfindlichkeit für Partikel und Verunreinigungen nicht so groß ist. Darüber hinaus kann zur Erhöhung der Robustheit die gesamte metallisierte Oberfläche mit einer dichten dünnen Goldschicht überzogen werden, um auch die Feuchte- und Umweltempfindlichkeit des SensorSystems zu verbessern, so daß die Anforderungen an eine Verkapselung deutlich geringer werden als bei Silizium-Bauelementen. Vorzugsweise wird als Verfahren zum Bilden der Metallschichten das Verfahren der außenstromlosen chemischen Metallisierung eingesetzt. Dieses Verfahren kann günstigerweise mit dem Verfahren der galvanischen Verstärkung der Metallschichten kombiniert werden, wodurch durch Steuern der Metalldicke beim galvanischen Verstärken sowhl der Elektrodenabstand für Fingerstrukturen als auch die Eigenfrequenz des Sensorelements, wenn an Drehratensensoren gedacht wird, sehr genau gesteuert und für den bestimmten Anwendungsbereich optimiert werden können. Das erfindungsgemäße Verfahren liefert auch das Potential, die Masse der beweglichen trägen Struktur am Beispiel des Beschleunigungssensors bzw. die Masse und auch das Elastizitätsmodul einer Membran im Falle von Mikroventi- len bzw. Mikropumpen durch Steuern der Menge des Metalls, das aufgewachsen wird, sehr genau festzulegen.
Schließlich wird die gesamte Palette der Kunststoffspritz- gußtechnik, beispielsweise die Verwendung von Ausrichtungsstiften/Löchern sowie von Schnappverbindungen zum unlösbaren Verbinden sowie von integrierten Dichtungskanten bzw. extern eingesetzten Gummidichtungen eröffnet, die im Vergleich zur Siliziumtechnologie extrem preisgünstig sind und nahezu den gleichen Effekt erreichen können.
Schließlich umfaßt der Herstellungsprozeß im Vergleich zur Siliziumtechnologie eine geringe Anzahl von Schritten, wodurch der Ausschuß während der Produktion und damit auch die Kosten gering gehalten werden können.
Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeichnungen detailliert erläutert. Es zeigen:
Fig. 1 eine schematische Draufsicht des elektromechanischen Bauelements gemäß der vorliegenden Erfindung;
Fig. 2 eine schematische Seitenansicht des elektromechanischen Bauelements mit Gehäuseboden und Gehäuse- deckel gemäß einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung;
Fig. 3 eine Seitenansicht des elektromechanischen Bauelements in Kombination mit einem SMD-Bauelement zur elektrischen Ansteuerung und/oder Auswertung;
Fig. 4 eine Seitenansicht des elektromechanischen Bauelements mit Federkontakten zur Kontaktierung eines elektronischen Schaltkreises;
Fig. 5 eine Seitenansicht des elektromechanischen Bauelements mit einer Feder und Kontakthügeln zur Kontaktierung eines elektronischen Schaltkreises;
Fig. 6 eine Seitenansicht des elektromechanischen Bauelements mit Kleber-Kontakthügeln zur Kontaktierung eines elektronischen Schaltkreises; und
Fig. 7 eine Draufsicht auf einen Ausschnitt der ineinandergreifenden Elektrodengruppen von Fig. 1, wobei die Elektrodenfinger jedoch wellenförmig ausgebildet sind.
Fig. 1 zeigt ein elektromechanisches Bauelement, das allgemein mit dem Bezugszeichen 10 gekennzeichnet ist. Das elektromechanische Bauelement 10 weist einen Polymerkörper 12 auf, der einen mechanisch aktiven Teil hat, der die beiden Federbalken 14a, 14b sowie eine seismische Masse 14c aufweist. Das elektromechanische Bauelement 10, das in Fig. 1 gezeigt ist, ist ein Sensor zur Messung einer mechanischen Beschleunigung. Beispielhaft wurde bei dem in Fig. 1 gezeigten Beschleunigungssensor das kapazitive Erfassungsprinzip eingesetzt, das eine Fingerstruktur mit einer ersten Fingergruppe 16a, die an einem feststehenden Rahmen 18 angebracht sind, sowie eine zweite Fingergruppe 16b umfaßt, die Finger aufweist, die an der seismischen Masse 14c befestigt sind. Das elektromechanische Bauelement 10", das in Fig. 1 als Be- schleunigungssensor dargestellt ist, umfaßt ferner irgendeinen elektronischen Schaltkreis (Chip) 20 sowie einen Anschlußstecker 22, der ebenfalls ein Teil des Polymerkörpers 12 ist, d. h. der Anschlußstecker 22 und der feste Rahmen sowie der mechanisch aktive Teil sind alle aus Polymermaterial gebildet. Zur Ansteuerung bzw. Auslesung der Fingerstruktur 16a, 16b umfaßt das elektromechanische Bauelement ferner Leiterbahnen 24a bis 24c, die sowohl die bewegliche Masse als auch die beiden ersten Fingergruppen 16a der Fingerstrukturen über Bonddrähte 26 mit dem Chip bzw. mit entsprechenden Anschlußflächen des Chips verbinden. Darüber hinaus umfaßt das elektromechanische Bauelement 10 weitere Leiterbahnen 28a bis 28d, die einerseits ebenfalls über Bonddrähte mit dem Chip 20 verbunden sind, und die andererseits in breitere Enden übergehen, um mit dem Polymerkörper 12 einen Anschlußstecker, der beim in Fig. 1 gezeigten Ausführungsbeispiel vier Kontakte hat, zu bilden.
Wenn das elektromechanische Bauelement 10 einer linearen Beschleunigung unterzogen wird, so wird die seismische (träge) Masse 14c bezüglich des festen Rahmens 18 ausgelenkt, was zu einer elastischen Verformung der Federbalken 14a, 14b führt. Die Verschiebung der Masse 14c führt zu einer veränderten Kapazität, die unter Verwendung der ersten und zweiten Fingergruppen 16a, 16b erfaßt werden kann und in dem IC 20 bereits "an Ort und Stelle" verarbeitet werden kann, um über den Steckerbereich 22 ausgegeben zu werden.
Wie es bereits erwähnt worden ist, würde die Langzeitstabilität eines solchen elektromechanischen Bauelements nicht besonders groß sein, da Polymermaterialien üblicherweise ein Fließverhalten über der Zeit haben. Anders ausgedrückt führt eine ständige Verformung der beiden Federbalken 14a, 14b mit der Zeit dazu, daß neben der elastischen Verformung auch eine plastische Verformung auftritt, wodurch der Sensor mit der Zeit Empfindlichkeit verlieren und schließlich unbrauchbar werden würde. Erfindungsgemäß wird dieses Problem dadurch gelöst, daß eine Metallschicht 30 vorgesehen wird, die den mechanisch aktiven Teil zur mechanischen Stabilisierung desselben zumindest teilweise bedeckt. Bei dem in Fig. 1 gezeigten Ausführungsbeispiel umfaßt der mechanisch aktive Teil zum einen die Federn 14a, 14b als auch die seismische Masse 14c. Zur erfindungsgemäßen Stabilisierung, um eine gute Langzeitstabilität zu erreichen und somit überhaupt den Einsatz von Polymermaterialien für solche elektromechanischen Bauelemente zu ermöglichen, werden die Federbalken mit der Metallschicht versehen. Es ist jedoch nicht unbedingt erforderlich, aus mechanischen Stabilisierungsgründen auch die seismische Masse 14c zu metallisieren. Dies wird jedoch im vorliegenden Fall aufgrund des kapazitiven Erfassungsprinzips getan. Wenn kein kapazitives Erfassungsprinzip, sondern irgendein anderes Erfassungsprinzip verwendet wird, das keine Kontaktierung der beweglichen Masse 14c erfordert, so müßten lediglich die Federbalken 14a, 14b metallisiert werden, um ihre mechanischen Eigenschaften entscheidend zu verbessern.
Ein weiterer Vorteil der vorliegenden Erfindung besteht darin, daß die metallischen Schichten zur Stabilisierung, die vorzugsweise so ausgeführt werden, daß sie die Balken nicht nur teilweise, sondern vollständig umgeben, auch gleichzeitig zur Leitung von elektrischen Signalen dienen können.
Prinzipiell könnte der Polymerkörper 12 aus nur einem Polymermaterial bestehen, wobei die Strukturierung der kapazitiven Erfassungselektroden und auch der Federbalken beispielsweise unter Verwendung eines Ein-Schuß-Spritzgußverfahrens durchgeführt werden würde, um danach unter Verwendung einer Schattenmaske die in Fig. 1 gezeigte Metallisierungsstruktur, d. h. die Metallschichten auf dem mechanisch aktiven Teil zur Stabilisierung und die weiteren Metallschichten, um die Leiterbahnen zu bilden, herzustellen.
Es wird jedoch bevorzugt, ein Zwei-Schuß-Spritzgußverfahren einzusetzen, bei dem in einem ersten Schuß die Bereiche, die später metallisiert werden sollen, unter Verwendung eines naßchemisch metallisierbaren Polymermaterials hergestellt werden, um dann in einem zweiten Schuß um das Ergebnis des ersten Schusses herum den festen Rahmen zu spritzen. Diese Zwei-Komponenten-Spritzgußtechnologie hat den Vorteil, daß sich die Strukturierung der Metallisierung gewissermaßen von selbst ergibt, wenn das Ergebnis des zweiten Schusses naßchemisch metallisiert wird, da nur auf den Oberflächen, die aus dem ersten Polymerwerkstoff bestehen, der metallisierbar ist, eine Metallschicht gebildet wird, während auf den anderen Oberflächen, die aus dem zweiten Polymermaterial bestehen, das nicht naßchemisch metallisierbar ist, keine Metallablagerung stattfindet.
Der metallisierte Teil des Polymerkörpers haftet an dem nicht-metallisierten Teil per se aufgrund des Spritzgußverfahrens. Um jedoch die Verbindungen zu verbessern, da ja unter Umständen zumindest im Bereich der Federn mechanische Kräfte wirken, werden vorzugsweise formschlüssige Verankerungen 32 vorgesehen, die dazu führen, daß die beiden Polymerteile aus den unterschiedlichen Polymermaterialien nicht nur aneinander haften, sondern auch formschlüssig mechanisch miteinander verbunden sind. Hierzu bieten sich beliebig gestaltete Verankerungsstrukturen an, die mit dem Herstellungsverfahren in zumindest zwei Stufen kompatibel sind.
Wie es in Fig. 1 gezeigt ist, muß der IC 20 nicht als gehäuster Chip vorliegen, sondern derselbe kann auch als Nackt-Chip mit entsprechenden Anschlußflächen vorgesehen sein, die über die Bonddrähte 26 kontaktierbar sind.
Im nachfolgenden wird näher auf das bevorzugte Herstellungsverfahren unter Verwendung der zwei verschiedenen Polymermaterialien für die beiden Spritzguß-Schüsse eingegangen. Die Federn 14a, 14b, die seismische Masse 14c, die Fingerelektroden 16a, 16b sowie die Leiterbahnbereiche 24a bis 24c einerseits als auch die Leiterbahnbereiche 28a bis 28d ande- rerseits, die sich in den Steckerbereich 22 erstrecken, werden mit dem ersten Schuß aus einem geeigneten metallisierbaren ersten Polymerwerkstoff, beispielsweise aus Pd-dotier- tem LCP (LCP = ???) oder Polyamid (PA) 66 hergestellt. Dagegen werden der restliche Teil des festen Rahmens, die Isolationsgebiete und weitere Merkmale, wie z. B. Schnappverbinder, auf die bezugnehmend auf Fig. 2 eingegangen wird, mit dem zweiten Schuß aus dem zweiten Polymerwerkstoff hergestellt, der in dem dann einzusetzenden Metallisierungsprozeß kein Metall annimmt. Ein solcher Werkstoff ist beispielsweise undotiertes LCP oder PA 66. Für die Werkzeuggestaltung kann es jedoch unter Umständen auch vorteilhaft sein, die Reihenfolge beim Spritzgießprozeß umzukehren, d. h. zunächst die nicht zu metallisierenden Strukturen zu spritzen und dann die zu metalliserenden Strukturen.
Die Zwei-Komponenten-Spritzlinge werden anschließend in einer naßchemischen Prozeßfolge so behandelt, daß sich an der Oberfläche des ersten Polymerwerkstoffs eine Metallschicht autokatalythisch abscheidet. Die wichtigsten Arbeitsschritte bestehen dabei aus der Reinigung der Spritz- linge, der Temperung der Spritzlinge und der Sensibilisie- rung der Oberfläche derselben durch eine Oberflächenreaktion, wie z. B. ein Anätzen der Oberfläche oder Aufquellen und Bekeimen der Oberfläche mit Pd-Keimen.
Anschließend werden die Spritzlinge im autokatalythischen Bad mit Metall beschichtet. Als Schichten kommen Kupfer oder Nickel als Startschicht, Leiterschicht und Schicht zur mechanischen Stabilisierung sowie Gold als löt- und drahtbond- bare Oberflächenschutzschicht in Frage. Typische Metallschichtdicken liegen hierbei in der Größenordnung von 30 Im, wobei jedoch Schichtspannungen bzw. die Schichthaftung auf dem Polymerwerkstoff und insbesondere natürlich die Abscheidedauer die Dicke begrenzen.
Daher wird es bevorzugt, die Schichtdicke vor der Vergoldung durch eine galvanische Schicht, z. B. Nickel, zu verstärken. Während sich außenstromlos abgeschiedene Metallschichten durch eine sehr hohe Konformität der Schichten auszeichnen, neigen galvanische Schichten bei feinen Strukturdetails zu stark inhomogenen Schichtdicken, die sich negativ auf die Geometrie der Bauelemente, insbesondere aber auf die Abstände zwischen den Fingerelektroden oder auf die Federn und ihre elastischen Eigenschaften auswirken können.
Aufgrund der Symmetrie der Struktur können bei einem bevorzugten Herstellungsverfahren der vorliegenden Erfindung die feststehenden metallisierten Gebiete in Form der Fingerelektroden 16a als Hilfselektroden genutzt werden, um über das Anlegen eines geeigneten Potentials eine homogenere Abscheidung auf den Federbalken und auch auf der seismischen Masse zu erreichen. Dabei scheidet sich auf der Hilfselektrode kein Metall ab. Für die galvanische Abscheidung ist eine elektrische Kontaktierung der Gebiete erforderlich. Beim Anlegen der Spannung kommt es zu einer anziehenden Kraft auf die Sensorstruktur, die jedoch aufgrund der Symmetrie der Struktur insgesamt kompensiert wird.
Um jedoch sicher zu verhindern, daß sich die erste Fingergruppe 16a und die zweite Fingergruppe 16b beim Anlegen einer elektrischen Spannung dennoch nicht berühren, bzw. für unsymmetrische Strukturen, bei denen sich die Anziehungskräfte nicht aufheben, kann eine Hilfsverbindung 34 aus dem ersten oder dem zweiten Polymermaterial eingesetzt werden. Die Hilfsverbindung wird dann, nach Vollendung des Metallisierungsprozesses, wenn keine Potentialdifferenz mehr an die Kammstruktur angelegt wird, z. B. durch Ausstanzen entfernt.
Ein weiterer Parameter, der bei dem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung, bei dem der Polymerkörper aus zwei Polymerwerkstoffen besteht, berücksichtigt werden muß, ist die Verbundfestigkeit zwischen den verschiedenen Polymerwerkstoffen. Wenn zwei LCP-Werkstoffe im Zwei- Komponenten-Spritzgießverfahren ohne weitere Maßnahmen verbunden werden, entsteht eine u. U. zu geringe Haftfestig- keit. Um die Haftfestigkeit zwischen den Gebieten aus unterschiedlichem Polymermaterial zu verbessern, werden daher die bereits beschriebenen Verankerungen 32 eingesetzt, die insbesondere vorteilhafterweise dort plaziert werden, wo die höchsten mechanischen Belastungen auftreten, also im Bereich der Verbindungen der Federn mit dem festen Rahmen.
Nach der Herstellung und Metallisierung des Kunststoff- spritzlings wird das elektromechanische Bauelement mit dem elektronischen Schaltkreis 20 bestückt. Zur elektrischen Kontaktierung können verschiedene Maßnahmen eingesetzt werden, auf die in den weiteren Figuren im einzelnen eingegangen wird.
Fig. 2 zeigt eine Seitenansicht des elektromechanischen Bauelements 10, wobei, wie in Fig. 1, Bondverbindungen über Bonddrähte 26 zum Kontaktieren des Chips 20 verwendet wurden. Zur Erhöhung der Robustheit wird über den Bereich, in dem sich der Chip 20 und die Bonddrähte 26 befinden, eine Vergußmasse 36 aufgebracht. Fig. 2 zeigt ferner die Ausgestaltung der externen Leiterbahnen am Beispiel der Leiterbahn 28d im Steckerbereich, die so gebildet ist, daß sie sich um den Steckerbereich 22 herum erstreckt. In Fig. 2 ist ferner gezeigt, daß das elektromechanische Bauelement unter Verwendung eines Gehäusebodens 40 und eines Gehäusedeckels 42 eingekapselt wird, um es vor äußeren Einflüssen zu schützen. Zur Verbindung des Polymerkörpers 12 mit sowohl dem Gehäuseboden 40 als auch dem Gehäusedeckel 42 sind auf dem Gebiet der Kunststofftechnik bekannte Schnappverbindungen mit einem entsprechenden ersten Schnapphaken an der einen Komponente und einem entsprechenden zusammenpassenden Schnapphaken an der anderen Komponente vorgesehen, die allgemein durch das Bezugszeichen 44 gekennzeichnet sind. Zur Ausrichtung der beiden Komponenten sind ferner Ausrichtungsstifte 46 an sowohl dem Gehäuseboden 40 als auch dem Gehäusedeckel 42 vorgesehen, die in entsprechende Ausrichtungslöcher 48 einführbar sind. Zur Abdichtung des mechanisch aktiven Teils sind ferner umlaufende Dichtungen sowohl an dern Gehäusedeckel als auch an dem Gehäuseboden, die mit dem Bezugszeichen 50 bezeichnet sind, vorgesehen. Diese Dichtungen können entweder unter Verwendung von Gummiringen realisiert werden, oder aber auch durch an Gehäusedeckel und Gehäuseboden angespritzte Dichtungskanten. Vorzugsweise bestehen nämlich sowohl Gehäuseboden als auch Gehäusedeckel ebenfalls aus dem Polymermaterial, und im Falle des Zwei- Komponenten-Ausführungsbeispiels zumindest teilweise aus dem Polymermaterial, das metallisierbar ist, um eine Metallisierung sowohl an der Außenseite des Gehäusebodens als auch an der Außenseite des Gehäusedeckels, die mit dem Bezugszeichen 52 gekennzeichnet ist, zu erreichen, um eine elektromagnetische Abschirmung sicherzustellen, wodurch sowohl das Rauschen als auch die Empfindlichkeit des gesamten elektromechanischen Bauelements verbessert werden können.
Als Alternative zu der Verbindung des Polymerkörpers mit dem Gehäusedeckel 42 bzw. mit dem Gehäuseboden 40 unter Verwendung der Schnappverbinder 44 kann auch ein geeigneter Klebstoff oder ein Schweißverfahren eingesetzt werden. Geeignete Schweißverfahren sind das Ultraschallschweißen oder das Laserschweißen, insbesondere mit Diodenlasern. Wie es bereits erwähnt worden ist, kann zur Vereinfachung des Zusammenfügeprozesses die Anordnung aus Führungsstiften 46 und Führungslöchern 48 zur Justierung von Gehäusedeckel 42 und Gehäuseboden 40 verwendet werden.
Als Alternative zu der Konstruktion des elektromechanischen Bauelements unter Verwendung des Polymerkörpers, des Gehäusebodens 40 und des Gehäusedeckels 42, d. h. zur Konstruktion des elektromechanischen Bauelements aus drei Komponenten, wird bei einem bevorzugten Ausführungsbeispiel das Sensorelement von nur einer Seite aus mit einem Gehäusedeckel verschlossen, während die andere Seite bereis beim Herstellungsprozeß des Polymerkörpers verschlossen wird. In anderen Worten ausgedrückt wird bei dem Bilden des Polymerkörpers gleichzeitig auch der Gehäuseboden gebildet, was durch eine geeignete Gußform ohne weiteres erreicht werden kann .
Der Gehäusedeckel muß jedoch so gestaltet sein, daß er nachträglich aufgesetzt werden kann, um das elektromechanische Bauelement mit dem Chip 20 zu bestücken. Wenn jedoch auf einen bereits in dem elektromechanischen Bauelement eingebrachten Chip verzichtet wird, d. h. wenn die Anschlußflächen der Leiterbahnen 24a bis 24c (Fig. 1) bis zum Steckerbereich 22 "herausgezogen" werden, ist es prinzipiell auch möglich, das gesamte elektromechanische Bauelement unter Verwendung einer geeigneten Gußform in einem Zug zu bilden, da im Falle der Verwendung des naßchemischen Metallisierungsverfahrens im katalythischen Bad im Gegensatz zu den bekannten Siliziumtechnologien die zu metallisierenden Oberflächen nicht von oben zugänglich sein müssen, da das auto- katalythische Bad in die Hohlräume eintritt und überall dort zur Metallabscheidung führt, wo als Polymermaterial das Material vorhanden ist, auf dem Metall unter Verwendung des naßchemischen Verfahrens aufgebracht werden kann.
Um eine höhere geometrische Genauigkeit der mechanisch aktiven Teile des Polymerkörpers, d. h. der Federbalken 14a, 14b und der beweglichen Masse 14c im Falle des Beschleunigungssensors, zu schaffen, kann statt des Spritzgußverfahrens auch ein Spritzprägeverfahren oder ein Heißprägeverfahren verwendet werden, um die dann erhaltenen Prägeteile zu um- spritzen, um den fertigen Polymerkörper zu bilden, bei dem nun jedoch der mechanisch aktive Teil und im Falle der Verwendung einer kapazitiven Auswertung auch die zweite Fingergruppe, d. h. die an dem Rahmen 18 angebrachten festen Finger, eine noch genauer definierte geometrische Form haben. Sowohl das Spritzprägeverfahren als auch das Heißprägeverfahren erlauben eine sehr hohe Strukturfeinheit und besonders einen geringen Bauteilverzug, der aufgrund von Ausrichtungseffekten der Polymere auftreten kann, wenn lediglich ein Spritzgußverfahren eingesetzt wird.
In den nachfolgenden Fig. 3 bis 6 werden weitere Möglich- keiten zum Kontaktieren des Chips 20 an dem metallisierten Polymerkörper 12 beschrieben. Wie es in Fig. 3 gezeigt ist, muß der Chip 20 nicht unbedingt als sogenannter Nackt-Chip vorliegen, sondern er kann auch in Form eines SMD-Bauele- ments (SMD = Surface Mont Device), d. h. einem gehäusten und mit Anschlüssen 60 versehenen Bauelement, vorliegen, wobei die Anschlüsse 60 auf die Anschlußflächen der Leiterbahnen 24a bis 24c bzw. 28a bis 28d (Fig. 1) aufgesetzt und dann entweder leitfähig verklebt oder aber bevorzugterweise mit den Anschlußflächen verlötet werden. Die Verwendung von einfach handhabbaren SMD-Bauelementen, die zugleich aufgrund der Massenproduktion in hohen Stückzahlen mit standardisierten Maßen vorliegen, ist aufgrund der im Vergleich zu Siliziumsensoren erreichbaren großen Höhe und Breite der elektromechanischen Bauelemente aus Polymer möglich.
Eine weitere günstige Variante der Kontaktierung des elektrischen Schaltkreises, der nun wieder als Nackt-Chip 20 vorliegt, ist in Fig. 4 gezeigt. Bei dieser Variante wird der Chip 20 nicht durch Löten, Kleben, Bonden und dergleichen kontaktiert, sondern lediglich durch Federkraft unter Verwendung metallisierter Federkontakte 62. Bei einem solchen Ausführungsbeispiel der vorliegenden Erfindung wird, um eine einfachere Konstruktion der Federkontakte 62 zu erhalten, eine Vertiefung 64 in dem Polymerkörper 12 vorgesehen, die durch ein entsprechendes Spritzgießwerkzeug ohne weiteres erhalten werden kann. Vorzugsweise wird die Vertiefung so dimensioniert, daß, wie es in Fig. 4 gezeigt ist, die Oberfläche des Chips 20 mit der Oberfläche des Polymerkörpers 12 im wesentlichen bündig ist. Anschließend wird der Chip in die Vertiefung gelegt und, wenn es nötig ist, leicht angeheftet, daß er beim Aufsetzen des Deckels 42 nicht verrutscht. Wenn der Deckel dann aufgesetzt wird und Deckel und Polymerkörper 12 zusammengedrückt werden, rasten irgendwann die Schnappverbinder 44 ein. Die Federkontakte 62 sind so dimensioniert, daß sie, wenn die Schnappverbindungen 44 einschnappen, einen Druck sowohl auf Anschlußflächen 66 des Chips 20 als auch auf entsprechende Anschlußflächen der zu kontaktierenden Leiterbahnen, z. B. 24a, 28d, ausüben, derart, daß eine einfache und vor allem lösbare Kontaktverbindung erreicht worden ist. Wie es in Fig. 4 durch die schraffierten Bereiche der Federkontakte 62 veranschaulicht ist, sind die unteren Abschnitte derselben metallisiert, damit überhaupt erst ein elektrischer Kontakt zwischen Chip und Leiterbahn auftreten kann. Die metallisierten Federkontakte 62 können genauso wie die metallisierten Bereiche des Polymerkörpers 12 aus dem Polymermaterial gespritzt werden, das durch ein naßchemisches Verfahren metallisierbar ist. Im Falle der Verwendung nur eines einzigen Polymermaterials können die Federkontakte auch unter Verwendung einer Schattenmaske etc. leitend gemacht werden.
Eine weitere Alternative der Chipbefestigung ist in Fig. 5 dargestellt. Hier wird der Chip 20 bezüglich seiner Orientierung in Fig. 4 umgedreht, so daß die Anschlußflächen 66 des Nackt-Chips 20 bezugnehmend auf Fig. 5 nach unten gerichtet sind. Dieselben werden auf Kontakthügel 68 gelegt, woraufhin der Gehäusedeckel 42, der mit einer Andruckfeder 70 versehen ist, aufgesetzt und in Richtung des Polymerkörpers 12 gedrückt wird, bis die Schnappverbinder 44 einschnappen.
In Fig. 6 ist dagegen eine weitere Möglichkeit des Kontaktierens des Chips 20 gezeigt, wobei der Chip 20 hier mittels Kleber-Kontakthügeln 72 angeschlossen wird. Der Kleber, der die Kleber-Kontakthügel 72 bildet, muß selbstverständlich ein leitfähiger Kleber sein. Die Kleber-Kontakthügel können beispielsweise mit der Stempeltechnik, der Dispenstechnik oder mittels einer Schablonendrucktechnik auf dem Polymerkörper aufgebracht werden.
Der Chip 20 übernimmt bei den erfindungsgemäßen elektromechanischen Bauelementen vorzugsweise die bekannten elektronischen Funktionen für den Einsatz als Beschleunigungssensor, als Drehratensensor, als Mikroventil, als Mikropumpe, als Drucksensor als Kraftsensor. Funktionen können beispielsweise das Kapazitätsauslesen, Temperaturkompensa- tionen und Selbsttestfunktionen sein.
Fig. 7 zeigt eine Draufsicht auf einen Ausschnitt der ineinandergreifenden Elektrodengruppen 100 von Fig. 1, wobei die Elektrodenfinger jedoch wellenförmig ausgebildet sind. Wie es in Fig. 7 gezeigt ist, hat der Polymerkörper wellenförmige Elektrodenstrukturen 100, um damit eine höhere mechanische Stabilität von dünnen Werkzeugwänden beim Spritz- giessen zu erzielen.
Aus dem vorangegangenen ist ersichtlich, daß durch die geometrische Auslegung des aktiven Teils des elektromechanischen Bauelements, d. h. im Falle von Beschleunigungssensoren der Federn und der Masse, durch die Auswahl der Werkstoffe und durch die Optimierung der Metalldicken ähnliche Parameter wie bei bekannten Airbag-Sensoren aus Silizium erreicht werden können. Dies betrifft insbesondere die Grundkapazität, die Empfindlichkeit als Kapazitätsänderung mit anliegender Beschleunigung, die Eigenfrequenz und die Dämpfung. Aufgrund der ähnlichen Eigenschaften der erfindungsgemäßen elektromechanischen Bauelemente im Verglich zu Siliziumsensoren können sogar elektronische Schaltkreise verwendet werden, die eigentlich für Silizium vorgesehen sind, oder zumindest Schaltkreise, die zu den bereits vorhandenen Schaltkreisen ähnlich sind. Es muß somit auf elektronischer Seite kein vollständiges Redesign mehr erfolgen.
Zusammenfassend weist ein erfindungsgemäßes elektromechanisches Bauelement somit bewegliche Elemente, integrierte Leiterbahnen und Gebiete mit metallisierten Oberflächen auf, wobei die elektromechanischen Bauelemente aus polymeren Werkstoffen vorzugsweise mit Hilfe der Zwei- oder Mehr-Komponenten-Spritzgießtechnik und stromloser chemischer Metallisierung hergestellt werden. Die wesentlichen Vorteile gegenüber elektromechanischen Bauelementen aus Silizium sind: drastisch reduzierte Kosten durch die einfache Herstellbarkeit;
beliebige Formgebung der Polymerkörper zur Realisierung von Schnappverbindungen, Andruckfedern, Ausrichtungsstiften, Führungslöchern, Verankerungen, Dichtungen, ...;
geringere Empfindlichkeit gegenüber Verunreinigungen und Umgebungsbedingungen aufgrund der beliebig groß einstellbaren Bauelementegröße; und
beliebige dreidimensionale Formung statt der für Silizium bekannten zweidimensionalen Oberflächenbearbeitung.

Claims

PATENTANSPRÜCHE
1. Elektromechanisches Bauelement (10) mit folgenden Merkmalen:
einem Polymerkörper (12), der einen mechanisch aktiven Teil (14a - 14c) und einen Rahmen (18) aufweist; und
einer Metallschicht (30), die den mechanisch aktiven Teil (14a - 14c) zur mechanischen Stabilisierung desselben zumindest teilweise bedeckt,
wobei ein Bereich des Polymerkörpers (12), auf dem die Metallschicht (30; 24a - 24c, 28a - 28d, 52) vorgesehen ist, aus einem ersten Polymermaterial besteht, das naßchemisch metallisierbar ist, und wobei ein anderer Bereich, auf dem keine Metallschicht vorgesehen ist, aus einem zweiten Polymermaterial besteht, das naßchemisch nicht metallisierbar ist.
2. Elektromechanisches Bauelement (10) gemäß Anspruch 1, bei dem der mechanisch aktive Teil (14a - 14c) eine Feder (14a, 14b) aufweist, die den Rahmen (18) mit einer über eine Biegung der Feder (14a, 14b) beweglichen Masse (14c) verbindet; und
bei dem die Metallschicht (30) die Feder abgesehen von ihren Verbindungsstellen mit dem Rahmen (18) und der Masse (14c) vollständig umgibt.
3. Elektromechanisches Bauelement gemäß Anspruch 1 oder 2, bei dem ferner eine weitere Metallschicht (24a - 24c; 28a - 28d; 52) zum Leiten von elektrischen Signalen oder zur Abschirmung von elektromagnetischen Störungen auf einem mechanischen nicht-aktiven Bereich (18) des Polymerkörpers (12) vorgesehen ist.
4. Elektromechanisches Bauelement gemäß einem der vorher- gehenden Ansprüche, bei dem ein weiterer Bereich des Polymerkörpers (12), auf dem die weitere Metallschicht (24a - 24c, 28a - 28d, 52) vorgesehen ist, ebenfalls aus dem ersten Polymermaterial besteht.
5. Elektromechanisches Bauelement (10) gemäß Anspruch 4, bei dem der Polymerkörper (12) Verankerungseinrichtungen (32) aufweist, durch die zumindest der mechanisch aktive Teil (14a, 14b, 14c), der aus dem ersten Polymermaterial besteht, mit dem Teil des Polymerkörpers (12) im wesentlichen formschlüssig verbunden ist, der aus dem zweiten Polymermaterial besteht.
6. Elektromechanisches Bauelement gemäß einem der Ansprüche 3 bis 5,
bei dem der Polymerkörper (12) eine Elektrodenstruktur aufweist, die eine erste Elektrodengruppe (16b) an der beweglichen Masse (14c) und eine zweite Elektrodengruppe (16a) an dem festen Rahmen (18) aufweist, wobei die erste Gruppe und die zweite Gruppe ineinandergreifend angeordnet sind, um als kapazitiver Sensor für eine Bewegung der Masse (14c) zu wirken,
wobei die weitere Metallschicht sowohl die erste Elektrodengruppe als auch die zweite Elektrodengruppe zumindest teilweise bedeckt, und wobei die weitere Metallschicht so ausgestaltet ist, daß die erste Elektrodengruppe von der zweiten Elektrodengruppe durch einen Bereich des Polymerkörpers, der keine Metallisierung aufweist, elektrisch isoliert ist.
7. Elektromechanisches Bauelement gemäß einem der Ansprüche 3 bis 6, bei dem die weitere Metallschicht ferner einen Anschlußbereich aufweist, der voneinander elektrisch isolierte Kontaktflächen für einen elektronischen Schaltkreis (12), für einen Anschlußstecker und/oder einen SMD-/Lötanschluß umfaßt.
8. Elektromechanisches Bauelement gemäß einem der vorhergehenden Ansprüche, bei dem die Metallschicht (30) eine Sandwichstruktur verschiedener Metalle aufweist und/oder galvanisch verstärkt ist.
9. Elektromechanisches Bauelement gemäß einem der vorhergehenden Ansprüche, das ferner folgende Merkmale aufweist:
einen Gehäuseboden (40) aus Polymer; und
einen Gehäusedeckel (42) aus Polymer,
wobei der Polymerkörper (12) zwischen dem Gehäusedeckel (42) und dem Gehäuseboden (40) angeordnet ist.
10. Elektromechanisches Bauelement gemäß Anspruch 9, bei dem der Polymerkörper (12), der Gehäusedeckel (42) und der Gehäuseboden (40) Schnappeinrichtungen (44) aufweisen, durch die der Polymerkörper (12), der Gehäusedeckel (42) und der Gehäuseboden (40) miteinander mechanisch und/oder elektrisch verbunden sind.
11. Elektromechanisches Bauelement gemäß Anspruch 9 oder 10, bei dem eine Ausrichtungseinrichtung (46, 48) am Gehäusedeckel (42), am Gehäuseboden (40) und am Polymerkörper vorgesehen ist, um den Polymerkörper (12) mit dem Gehäuseboden (40) und mit dem Gehäusedeckel (42) auszurichten.
12. Elektromechanisches Bauelement gemäß einem der Ansprüche 9 bis 11, bei dem eine Dichtungseinrichtung (50) aus Polymer, insbesondere eine angespritzte Dichtung, einstückig zum Gehäuseboden (40), Gehäusedeckel (42) und/oder Polymerkörper (12) oder ein separater Dichtungsring vorgesehen ist, um das elektromechanische Bauelement (10) einzukapseln.
13. Elektromechanisches Bauelement gemäß Anspruch 9, bei dem der Polymerkörper (12) und der Gehäuseboden (40) einstückig ausgeführt sind.
14. Elektromechanisches Bauelement gemäß einem der Ansprüche 7 bis 13, das ferner folgendes Merkmal aufweist:
einen elektronischen Schaltkreis (20) zur Ansteuerung und/oder Auswertung des mechanisch aktiven Teils (14a - 14c), wobei der elektronische Schaltkreis mit den Kontaktflächen durch Bonddrähte (26), durch Lötmittel, durch leitfähigen Kleber (72) oder durch Federkraft betätigte Kontakte (70) elektrisch leitend verbunden ist.
15. Elektromechanisches Bauelement gemäß Anspruch 9, das ferner folgendes Merkmal aufweist:
einen elektronischen Schaltkreis (20) zur Ansteuerung und/oder Auswertung des mechanisch aktiven Teils, der mit den Kontaktflächen durch zumindest einen Federkontakt (62) elektrisch leitfähig verbunden ist, wobei der Federkontakt (62) einstückig mit dem Gehäusedeckel (42) oder dem Gehäuseboden ausgeführt ist und einen metallisierten Bereich aufweist, der sich von einem Anschlußbereich (66) des elektrischen Schaltkreises (20) zu einer Kontaktfläche auf dem Polymerkörper (12) erstreckt.
16. Elektromechanisches Bauelement gemäß Anspruch 15, bei dem der Polymerkörper (12) eine Ausnehmung (64) hat, in der der elektronische Schaltkreis (20) plaziert ist.
17. Elektromechanisches Bauelement, das als Beschleunigungssensor, Drehratensensor, Mikroventil, Mikropumpe, Drucksensor oder Kraftsensor ausgeführt ist.
18. Elektromechanisches Bauelement (10) gemäß einem der vorhergehenden Ansprüche, bei dem das zumindest eine Polymermaterial aus einer Gruppe ausgewählt ist, die Pd-dotiertes LCP, undotiertes LCP, Polyamid 6 und Polyamid 66 umfaßt, und bei dem die Metallschicht bzw. die weitere Metallschicht aus Kupfer, Nickel, Gold oder einer Kombination derselben besteht.
19. Elektromechanisches Bauelement nach einem der vorhergehenden Ansprüche, bei dem der mechanisch aktive Teil des Polymerkörper einen in dem Polymermaterial eingelegten Metallkörper zur Erhöhung der Masse aufweist.
20. Elektromechanisches Bauelement nach einem der vorhergehenden Ansprüche, bei dem der mechanisch aktive Teil des Polymerkörper Ausnehmungen aufweist, um Abstandshalter zu definieren, die ein Aneinanderhaften des mechanisch aktiven Teils an dem Rahmen bei Bewegung oder Berührung verhindern
21. Verfahren zum Herstellen eines elektromechanischen Bauelements (10) mit folgenden Schritten:
Bilden eines Polymerkörpers ( 12 ) , der einen mechanisch aktiven Teil (14a - 14c) und einen Rahmen (18) aufweist, wobei der Schritt des Bildens des Polymerkörpers folgende Schritte in beliebiger Reihenfolge aufweist:
Spritzgießen eines ersten Abschnitts des Polymerkörpers, der metallisiert werden soll, aus einem naßchemisch metallisierbaren ersten Polymermaterial ;
Spritzgießen eines zweiten Abschnitts des Polymerkörpers (12), der nicht metallisiert werden soll, aus einem naßchemisch nicht-metallisierbaren zweiten Polymermaterial; und
Bilden einer Metallschicht (30), die den mechanisch aktiven Teil (14a - 14c) zur mechanischen Stabilisierung desselben zumindest teilweise bedeckt, durch naßchemisches Metallisieren, derart, daß lediglich Oberflächen des Polymerkörpers (12), die aus dem ersten Polymermaterial bestehen, eine Metallschicht (30, 24a - 24c, 28a - 28d) erhalten.
22. Verfahren gemäß Anspruch 21, bei dem der Schritt des Bildens der Metallschicht (30) das Bedampfen unter Verwendung einer Schattenmaske aufweist.
23. Verfahren gemäß Anspruch 21, bei dem der Schritt des Bildens der Metallschicht ferner folgenden Schritt aufweist:
galvanisches Verstärken der naßchemisch erzeugten Metallschicht.
24. Verfahren gemäß Anspruch 23, bei dem das galvanische Verstärken folgende Schritte aufweist:
Fixieren des mechanisch aktiven Teils (14a - 14c) des Polymerkörpers (12) an dem Rahmen des Polymerkörpers (12) unter Verwendung einer Hilfsstruktur (34);
Anlegen eines Potentials an einen feststehenden Teil (16a) des Polymerkörpers (12);
Abscheiden eines Metalls auf den beweglichen Teil (14c) und den mechanisch aktiven Teil (14a, 14b); und
nach dem Schritt des galvanischen Verstärkens, Entfernen der Hilfsstruktur (34).
25. Verfahren gemäß einem der Ansprüche 21 bis 24, bei dem der Polymerkörper (12) derart gebildet wird, daß er Schnappverbindungen (44) aufweist;
bei dem ferner ein Polymerdeckel (42) und ein Polymergehäuseboden (40) spritzgegossen werden, die ebenfalls Schnappverbindungen (44) haben; und
bei dem der Polymerkörper, der Polymerdeckel und der Gehäuseboden (44) zusammengepreßt werden, bis die Schnappverbindungen eingerastet sind.
26. Verfahren gemäß Anspruch 25, bei dem der Polymerkörper (12) keine Schnappverbindungen hat, und bei dem der Polymerdeckel und der Gehäuseboden durch Ultraschallschweißen oder Laserschweißen miteinander verbunden werden.
27. Verfahren gemäß einem der Ansprüche 21 bis 24, bei dem im Schritt des Bildens des Polymerkörpers (12) gleichzeitig der Gehäuseboden (40) gebildet wird, so daß der Polymerkörper (12) und der Gehäuseboden (40) einstückig zueinander sind.
28. Verfahren gemäß Anspruch 26, bei dem der Schritt des Bildens folgende Schritte aufweist:
Spritzprägen oder Heißprägen eines Polymerausgangsstoffs, um ein Prägeelement zu erhalten, das den mechanisch aktiven Teil (14a - 14c) sowie geometrisch feine Strukturen des Rahmens aufweist; und
Umspritzen des Prägeelements durch Spritzgießen, um den Polymerkörper (12) zu erhalten.
29. Verfahren gemäß Anspruch 21, bei dem der Schritt des Bildens folgende Schritte aufweist: Spritzen eines Polymerausgangskörpers;
Spritzprägen oder Heißprägen des Polymerausgangskörpers, um den Polymerkörper zu erhalten, derart, daß der mechanisch aktive Teil (14a - 14c) sowie geometrisch feine Strukturen des Rahmens durch Spritzprägen oder Heißprägen definiert sind; und
Umspritzen des Prägeelements durch Spritzgießen, um den Polymerkörper (12) zu erhalten.
30. Verfahren gemäß einem der Ansprüche 21 bis 29, das ferner folgenden Schritt aufweist:
Bestücken des elektromechanischen Bauelements (10) mit einer elektrischen Schaltung (20) durch Kleben unter Verwendung von leitfähigem Kleber (72), durch Drahtbonden (26), durch Löten (60) oder durch dauerndes Ausüben eines mechanischen Drucks (62, 70) auf die elektronische Schaltung (20), um sowohl eine mechanische als auch eine elektrische Verbindung zwischen dem Polymerkörper und der elektronischen Schaltung (20) sicherzustellen.
31. Verfahren gemäß einem der Ansprüche 21 bis 30, bei dem vor dem Metallisieren folgende Schritte ausgeführt werden:
Reinigen des Polymerkörpers (12);
Tempern des Polymerkörpers (12); und
Sensibilisieren der Oberfläche des Polymerkörpers (12).
32. Verfahren gemäß Anspruch 31, bei dem der Schritt des Sensibilisierens der Oberfläche durch eine Oberflächenreaktion bewirkt wird, die ein Anätzen der Ober- fläche oder ein Aufquellen oder eine Plasmabehandlung und Bekeimen der Oberfläche mit geeigneten Keimen aufweist, um eine Metallisierung zu erreichen.
33. Verfahren gemäß einem der Ansprüche 21 bis 32, bei dem der Schritt des Bildens des Polymerkörpers folgende Schritte aufweist:
Bereitstellen eines Metallkörpers;
Umspritzen des Metallkörpers, um den Polymerkörper (12) zu bilden, derart, daß der mechanisch aktive Teil des Polymerkörpers den Metallkörper umfaßt.
34. Verfahren gemäß einem der Ansprüche 21 bis 33, bei dem durch die Metallschicht eine Elektrodenstruktur definiert ist, deren Kapazität durch Verstärken der Metallschichtdicke und die damit vebundene Änderung des Elektrodenabstands erhöht wird.
35. Verfahren gemäß einem der Ansprüche 21 bis 34, bei dem der Schritt des Bildens des Polymerkörpers (12) folgenden Schritt aufweist:
Formen von Ausnehmungen am mechanisch aktiven Teil oder am Rahmen, um Abstandshalter zu definieren, die ein Aneinanderhaften des mechanisch aktiven Teils (14a - 14c) und des Rahmens (18) bei Bewegung und Berührung verhindern.
36. Verfahren gemäß einem der Ansprüche 21 bis 35, bei dem der Polymerkörper (12) wellenförmige Elektrodenstrukturen (100) aufweist, um eine höhere mechanische Stabilität von dünnen Werkzeugwänden beim Spritzgiessen zu erzielen.
EP00979486A 1999-10-08 2000-10-06 Elektromechanisches bauelement und verfahren zur herstellung desselben Withdrawn EP1226089A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE1999148613 DE19948613C2 (de) 1999-10-08 1999-10-08 Elektromechanisches Bauelement mit einem Polymerkörper und Verfahren zur Herstellung desselben
DE19948613 1999-10-08
PCT/EP2000/009814 WO2001027026A1 (de) 1999-10-08 2000-10-06 Elektromechanisches bauelement und verfahren zur herstellung desselben

Publications (1)

Publication Number Publication Date
EP1226089A1 true EP1226089A1 (de) 2002-07-31

Family

ID=7925012

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00971334A Withdrawn EP1222142A1 (de) 1999-10-08 2000-10-06 Elektromechanisches bauelement und verfahren zur herstellung desselben
EP00979486A Withdrawn EP1226089A1 (de) 1999-10-08 2000-10-06 Elektromechanisches bauelement und verfahren zur herstellung desselben

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP00971334A Withdrawn EP1222142A1 (de) 1999-10-08 2000-10-06 Elektromechanisches bauelement und verfahren zur herstellung desselben

Country Status (5)

Country Link
US (1) US6644117B1 (de)
EP (2) EP1222142A1 (de)
JP (2) JP2003511256A (de)
DE (1) DE19964218C2 (de)
WO (2) WO2001027026A1 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2371674A (en) * 2001-01-30 2002-07-31 Univ Sheffield Micro-element package
FR2832270B1 (fr) * 2001-11-15 2006-07-28 Centre Nat Rech Scient Procede de reglage de l'ecartement de deux elements mecaniques d'une structure micromecanique sensiblement plane et resonateur electromecanique correspondant
US6959583B2 (en) 2002-04-30 2005-11-01 Honeywell International Inc. Passive temperature compensation technique for MEMS devices
US7199305B2 (en) * 2002-08-08 2007-04-03 Nanoink, Inc. Protosubstrates
JP4063057B2 (ja) * 2002-11-20 2008-03-19 株式会社デンソー 容量式加速度センサ
DE10259107B4 (de) * 2002-12-18 2005-09-08 Festo Ag & Co. Ventil
JP2004347475A (ja) * 2003-05-22 2004-12-09 Denso Corp 容量式力学量センサ
JP2005227089A (ja) * 2004-02-12 2005-08-25 Denso Corp 力学量センサ装置
US7032608B2 (en) * 2004-09-01 2006-04-25 Harris Corporation Microfluidic check-valve embedded in LCP
US7216048B2 (en) * 2004-12-30 2007-05-08 Honeywell International Inc. Calibrated pressure sensor
US20060191351A1 (en) * 2005-02-25 2006-08-31 Meehan Peter G Sealed capacitive sensor
US20090217997A1 (en) * 2005-05-04 2009-09-03 Alan Feinerman Thin welded sheets fluid pathway
EP1956355A4 (de) * 2005-11-15 2011-03-16 Appside Co Ltd Verspannungsinduzierender körper, kraftsensor des kapazitätstyps und beschleunigungssensor des kapazitätstyps
FI119728B (fi) 2005-11-23 2009-02-27 Vti Technologies Oy Menetelmä mikroelektromekaanisen komponentin valmistamiseksi ja mikroelektromekaaninen komponentti
US7696083B2 (en) * 2006-03-10 2010-04-13 Endeoco Corporation Multi-layer device
DE102008012826B4 (de) * 2007-04-02 2012-11-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Erzeugung einer dreidimensionalen mikromechanischen Struktur aus zweidimensionalen Elementen und mikromechanisches Bauelement
US8201450B2 (en) * 2007-09-13 2012-06-19 Panasonic Corporation Angular velocity sensor
DE102007044806A1 (de) * 2007-09-20 2009-04-02 Robert Bosch Gmbh Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements
DE102008000889B4 (de) 2008-03-31 2022-10-27 Robert Bosch Gmbh Wegbausensor und Verfahren zur Herstellung eines Wegbausensors mittels Einlegen und kraft-/formschlüssiger Verbindung
US8197235B2 (en) 2009-02-18 2012-06-12 Davis David L Infusion pump with integrated permanent magnet
US8353864B2 (en) 2009-02-18 2013-01-15 Davis David L Low cost disposable infusion pump
DE102009026806A1 (de) * 2009-06-08 2010-12-09 Robert Bosch Gmbh Elektronisches Bauteil sowie Verfahren zur Herstellung des elektronischen Bauteils
TWI383130B (zh) * 2009-07-13 2013-01-21 Univ Nat Taiwan 電容式壓力感測器裝置及其製造方法
DE102009045911A1 (de) * 2009-10-22 2011-04-28 Robert Bosch Gmbh Koppelvorrichtung, Anordnung mit einer Koppelvorrichtung, Verfahren zur Herstellung einer Anordnung mit einer Koppelvorrichtung
US9124083B2 (en) * 2010-01-25 2015-09-01 Apple Inc. Compression molded cable structures and methods for making the same
DE102011085471B4 (de) 2011-10-28 2021-09-16 Robert Bosch Gmbh Anordnung zur Direktkontaktierung von Kontaktmitteln und zugehörige Anschlusseinheit für eine Druckmesszelle
DE102012207939A1 (de) * 2012-05-11 2013-11-14 Robert Bosch Gmbh Federnder Anschlag für Beschleunigungssensor
US9560779B2 (en) * 2014-10-02 2017-01-31 Honeywell International Inc. Thermal stabilization of temperature sensitive components
JP6545918B1 (ja) * 2019-05-22 2019-07-17 Imv株式会社 加速度センサコアユニット、加速度センサを載置する基板のたわみを防止する方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421213A (en) 1990-10-12 1995-06-06 Okada; Kazuhiro Multi-dimensional force detector
DE4402119C2 (de) * 1994-01-25 1998-07-23 Karlsruhe Forschzent Verfahren zur Herstellung von Mikromembranpumpen
DE19719601A1 (de) * 1997-05-09 1998-11-12 Bosch Gmbh Robert Beschleunigungssensor
DE19720482C5 (de) 1997-05-16 2006-01-26 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Mikromembranpumpe
US5836750A (en) * 1997-10-09 1998-11-17 Honeywell Inc. Electrostatically actuated mesopump having a plurality of elementary cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0127026A1 *

Also Published As

Publication number Publication date
EP1222142A1 (de) 2002-07-17
WO2001027025A1 (de) 2001-04-19
JP2003511256A (ja) 2003-03-25
DE19964218A1 (de) 2001-05-31
JP2003511257A (ja) 2003-03-25
US6644117B1 (en) 2003-11-11
WO2001027026A1 (de) 2001-04-19
DE19964218C2 (de) 2003-04-10

Similar Documents

Publication Publication Date Title
DE19964218C2 (de) Elektromechanisches Bauelement mit einem Polymerkörper und Verfahren zur Herstellung desselben
DE19730914B4 (de) Mikroelektronik-Baugruppe
EP2167930B1 (de) Anschlusseinheit für eine druckmesszelle
DE102013100673B4 (de) Sensorbauelement und entsprechendes Herstellungsverfahren
WO2018019859A1 (de) Sensorkopf für einen kraft- oder drehmomentsensor
DE102009038706A1 (de) Sensorbauelement
WO2007020132A1 (de) Sensoranordnung mit einem substrat und mit einem gehäuse und verfahren zur herstellung einer sensoranordnung
DE102010006132A1 (de) Miniaturisiertes elektrisches Bauelement mit einem MEMS und einem ASIC
EP1472727A2 (de) Halbleiterbauteil mit sensor- bzw. aktoroberfläche und verfahren zu seiner herstellung
DE10054964B4 (de) Beschleunigungssensor mit einem Beschleunigungsdetektorchip in dem Durchgangsloch eines Signalverarbeitungschips auf einem Montageträger
DE102006046984A1 (de) Verfahren zur Herstellung eines Trägerelements mit einem Winkelsensor
DE102007005630B4 (de) Sensorchip-Modul und Verfahren zur Herstellung eines Sensorchip-Moduls
DE19948613C2 (de) Elektromechanisches Bauelement mit einem Polymerkörper und Verfahren zur Herstellung desselben
DE102017219901B3 (de) Mikromechanischer z-Inertialsensor
DE102013216901A1 (de) Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements
EP3931540A1 (de) Messgerät mit einem sensorelement und einer mess- und betriebsschaltung
DE102007001290A1 (de) Halbleitermodul
DE102011085471B4 (de) Anordnung zur Direktkontaktierung von Kontaktmitteln und zugehörige Anschlusseinheit für eine Druckmesszelle
DE102008053072B4 (de) Sensor für ein Rotorblatt oder eine Tragfläche
WO2008034663A1 (de) Sensoranordnung mit einem substrat und mit einem gehäuse und verfahren zur herstellung einer sensoranordnung
DE102004029084A1 (de) Mikro-Kraftsensor und Verfahren zum Herstellen eines Mikro-Kraftsensors
DE19636543A1 (de) Elektromechanische Meßwertaufnehmer und Verfahren zur Herstellung desselben
DE19548220A1 (de) Vorrichtung zur Regelung des Durchflusses einer Flüssigkeit
DE19527919C2 (de) Druck-Meßeinrichtung
WO2001004595A1 (de) Mikromechanisches bauelement mit kontaktdurchführungen, sowie verfahren zur herstellung eines mikromechanischen bauelements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GIOUSOUF, METIN

Inventor name: KUECK, HEINZ

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040610