[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1217095A1 - Schutzbeschichtung für ein bei hohen Temperaturen verwendetes Bauteil, insbesondere Turbinenbauteil - Google Patents

Schutzbeschichtung für ein bei hohen Temperaturen verwendetes Bauteil, insbesondere Turbinenbauteil Download PDF

Info

Publication number
EP1217095A1
EP1217095A1 EP01129065A EP01129065A EP1217095A1 EP 1217095 A1 EP1217095 A1 EP 1217095A1 EP 01129065 A EP01129065 A EP 01129065A EP 01129065 A EP01129065 A EP 01129065A EP 1217095 A1 EP1217095 A1 EP 1217095A1
Authority
EP
European Patent Office
Prior art keywords
coating
protective coating
component
sealing
protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01129065A
Other languages
English (en)
French (fr)
Inventor
Hans-Peter Dr. Bossmann
Axel Dr. Kranzmann
Harald Dr. Prof. Reiss
Hans Joachim Dr. Schmutzler
Marianne Dr. Sommer
Ludwig Dr. Weiler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Schweiz AG
Alstom Power NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG, Alstom Power NV filed Critical Alstom Schweiz AG
Publication of EP1217095A1 publication Critical patent/EP1217095A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2112Aluminium oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2118Zirconium oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/228Nitrides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05001Preventing corrosion by using special lining materials or other techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]

Definitions

  • the invention relates to a protective coating for a thermally stressed component, in particular turbine component, for protection against corrosion and / or oxidation and / or erosion.
  • Turbine components in particular turbine blades, are in operation of the turbine exposed to corrosive and / or oxidative and / or erosive media.
  • the turbine components consist regularly of materials related to the in operation mechanical loads occurring on the turbine are optimized. These materials, which are based on nickel-based alloys, for example, are relative susceptible to corrosion, oxidation and / or erosion.
  • Usual basic materials for turbine components, especially for turbine blades, are: CM 247, CMSX 4 and IN 738.
  • a protective coating consist of a metallic, crystalline material that is usually used alongside others sufficient chemical elements in the aluminum components and contains chrome.
  • the aluminum provides the desired protection against oxidation, gradually on the outer surface of the protective coating a protective aluminum oxide layer grows up.
  • the alloying element supports this Chrome the formation of the protective aluminum oxide layer.
  • the life of such a protective coating is limited because the protective aluminum oxide layer continues to grow, causing the protective coating more and more aluminum is removed. With that way decreasing aluminum content of the protective coating reduces its strength and therefore their lifetime. By damaging the protective coating the lifespan for the item to be protected is also reduced Component.
  • the invention seeks to remedy this.
  • the present invention deals with deal with the problem for a protective coating of the type mentioned to specify an embodiment that has an increased lifetime.
  • the protective coating a single-layer or multi-layer sealing coating made of an amorphous material.
  • the invention is based on the general idea of the advantageous properties an amorphous structure in materials that protect against Corrosion and / or oxidation and / or erosion are suitable for manufacture a long-lasting protective coating.
  • Amorphous materials or amorphous structures are characterized by a low thermal conductivity, low diffusion speeds as well as high hardness and high thermal Stability.
  • the realization of these properties according to the invention in a corrosion-resistant and / or oxidation-resistant and / or erosion-resistant Material leads to a protective coating with a longer service life.
  • the invention uses the knowledge that the weak points of a conventional Protective coating or the weak points of the component surface are at the grain boundaries at which neighboring crystals of a crystalline Border structure together. For example, there is in the grain boundaries an increased concentration of alloy impurities, as a rule are susceptible to corrosion, oxidation or erosion. Except for monocrystalline Structures always have a large number of crystalline materials on the outside of these grain boundaries that are exposed to the aggressive media. in the In contrast, an amorphous structure has no grain boundaries, which means local Concentrations of impurities and thus weak points in the amorphous sealing coating can be avoided. The amorphous structure the sealing coating thus offers the aggressive media fewer points of attack and therefore has an increased lifetime.
  • such a sealing coating can be of high quality and goodness are produced, which in particular have no holes or gaps having. This can cause diffusion of aggressive atoms or molecules into the Sealing coating into or through the sealing coating be slowed down. Unlike a naturally growing one Aluminum oxide layer in which there are gaps between the crystals that form or holes can occur, this results in a further improvement in Protective effect and thus the lifetime of the protective coating and ultimately of the coated component.
  • the sealing coating on the Be arranged surface of the component hinders the transport of aggressive molecules or atoms, e.g. Oxygen, to the component, so that a long service life is guaranteed for the component can be.
  • aggressive molecules or atoms e.g. Oxygen
  • the protective coating can be in addition to Sealing coating a single-layer or multi-layer component coating Made from a crystalline material that is on the surface of the component is arranged, the sealing coating then on the Component coating is arranged.
  • This component coating can, for example from a conventional protective layer with a crystalline material exist, e.g. B. made of a nickel-based alloy.
  • a such component coating does provide relatively high-quality protection against corrosion, Offer oxidation and erosion, however, due to the free grain boundaries a relatively short lifetime. Due to the sealing coating applied to it are the grain boundaries of this component coating before a direct one Attack protected by the aggressive media, thereby extending the lifetime of this Coating significantly increased.
  • the protective coating according to the invention can additionally a single-layer or multi-layer thermal insulation coating have, which is arranged on the sealing coating.
  • a thermal insulation coating With the help of such a thermal insulation coating, the temperature exposure the sealing layer as well as the component and - if available - also the (conventional) component coating can be reduced. For example thereby necessary mechanical properties of the base material of the Component are guaranteed.
  • Such a thermal insulation coating can, for example consist of stabilized zirconium oxide.
  • the sealing coating is applied to one single-crystal or directionally solidified material applied.
  • FIGS. 1 to 4 one that is only shown in regions Component 1, for example a turbine blade, on its outer surface 2 with a protective coating 3 according to the invention for protection against Corrosion and / or oxidation and / or erosion can be coated.
  • This protective coating 3 has a single-layer or multi-layer sealing coating 4, which are made of an amorphous material or from a material with an amorphous structure.
  • the amorphous sealing coating 4 can from an amorphous metal, from an amorphous transition metal, from one amorphous metal alloy or from an amorphous non-metallic compound or combinations of these materials.
  • Sealing coating 4 made of an aluminum oxide-based or silicon carbon nitride-based Material or from a yttrium oxide-containing or cerium oxide-containing Material.
  • the sealing coating is used to achieve high stability 4 is preferably made relatively thin, i.e. their extension or Thickness perpendicular to the surface 2 of the component 1 is relatively small.
  • the thickness of the sealing coating 4 is less than 20 ⁇ m.
  • An advantage for the sealing coating 4 is a thickness of approximately 0.1 ⁇ m to 10 ⁇ m.
  • the amorphous sealing coating 4 a material is used that is in itself a sufficient thermal Stability as well as sufficient corrosion resistance and / or oxidation resistance and / or has erosion resistance.
  • the protective effect of such Material is significantly improved by the proposed amorphous structure.
  • the protective coating 3 in a first Embodiment exclusively from the sealing coating 4, the is accordingly arranged directly on the surface 2 of the component 1.
  • the Sealing coating 4 for example made of amorphous aluminum oxide or made of amorphous silicon carbon nitride, for example by a physical Steam coating process (“PVD process”) or by a chemical Damf coating process (“CVD process”) applied to component 1 become. Laser PVD processes or laser CVD processes are preferred here. Due to the sealing coating 4, the material of the Component 1 effectively protected against exposure to aggressive media, whereby the component 1 has an increased service life.
  • the protective coating 3 according to the invention can be used in a second Embodiment in addition to the sealing coating 4, a thermal insulation coating 5 have. While the sealing coating 4 on is arranged on the surface 2 of the component 1, there is the thermal insulation coating 5 on the sealing coating 4.
  • the thermal insulation coating 5 can consist, for example, of a stabilized zirconium oxide, conveniently by air plasma spraying, flame spraying or by an electron beam PVD process is applied in one or more layers.
  • the temperature of the sealing coating 4 and the component 1 can be reduced, for example certain required mechanical properties, e.g. Stability, rigidity, Stretch behavior, the sealing layer 4 and the component 1 ensure can.
  • the protective coating 3 according to the invention can be used for a third Embodiment in addition to the sealing coating 4, a component coating 6 have, for example in the manner of a conventional Protective layer is formed from a crystalline material. It is single-layered or multi-layer component coating 6 directly on the Surface 2 of component 1 arranged during the sealing coating 4 is applied to the component coating 6.
  • the sealing coating 4 protects the crystalline component coating 6 and in particular their corrosion-sensitive and / or oxidation-sensitive and / or grain boundaries sensitive to erosion prior to direct exposure with the aggressive media. This increases the life of the crystalline Component coating 6 and thus the service life of component 1.
  • the protective coating 3 according to the invention can be used for a fourth Embodiment in addition to the sealing coating 4 and the component coating 6 again have a thermal insulation coating 5, the crystalline Component coating 6 on the surface 2 of component 1, the amorphous Sealing coating 4 on the component coating 6 and the thermal insulation coating 5 is arranged on the sealing coating 4.
  • the Thermal insulation coating 5 can thus the thermal load on the sealing coating 4, reduce component coating 6 and component 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft eine Schutzbeschichtung (3) für ein thermisch belastetes Bauteil (1), insbesondere Turbinenbauteil, zum Schutz vor Korrosion und/oder Oxidation und/oder Erosion. Zur Verbesserung der Lebenszeit der Schutzbeschichtung (3) bzw. des Bauteils (1) weist die Schutzbeschichtung (3) eine einschichtige oder mehrschichtige Versiegelungsbeschichtung (4) aus einem amorphen Werkstoff auf. <IMAGE>

Description

Technisches Gebiet
Die Erfindung betrifft eine Schutzbeschichtung für ein thermisch belastetes Bauteil, insbesondere Turbinenbauteil, zum Schutz vor Korrosion und/oder Oxidation und/oder Erosion.
Turbinenbauteile, insbesondere Turbinenschaufeln, sind im Betrieb der Turbine korrosiven und/oder oxidativen und/oder erosiven Medien ausgesetzt. Die Turbinenbauteile bestehen regelmäßig aus Werkstoffen, die hinsichtlich der im Betrieb der Turbine auftretenden mechanischen Belastungen optimiert sind. Diese Werkstoffe, die beispielsweise auf Nickelbasislegierungen basieren, sind jedoch relativ anfällig gegenüber Korrosion, Oxidation und/oder Erosion. Übliche Grundmaterialien für Turbinenbauteile, insbesondere für Turbinenschaufeln, sind: CM 247, CMSX 4 und IN 738.
Stand der Technik
Um die Lebensdauer der Turbinenbauteile zu erhöhen, kann deren Korrosionsbeständigkeit durch die Aufbringung einer Schutzbeschichtung der eingangs genannten Art verbessert werden. Bekannte Schutzbeschichtungen bestehen aus einem metallischen, kristallinen Werkstoff, der üblicherweise neben anderen chemischen Elementen hinreichende Gehalte an den Bestandteilen Aluminium und Chrom enthält. Dabei sorgt das Aluminium für den gewünschten Oxidationsschutz, da auf der außenliegenden Oberfläche der Schutzbeschichtung allmählich eine schützende Aluminiumoxidschicht aufwächst. Dabei unterstützt das Legierungselement Chrom die Ausbildung der schützenden Aluminiumoxidschicht. Die Lebensdauer einer solchen Schutzbeschichtung ist jedoch begrenzt, da die schützende Aluminiumoxidschicht permanent weiterwächst, wodurch der Schutzbeschichtung mehr und mehr Aluminium entzogen wird. Mit dem auf diese Weise abnehmenden Aluminiumgehalt der Schutzbeschichtung reduziert sich deren Festigkeit und somit auch deren Lebenszeit. Durch die Beschädigung der Schutzbeschichtung reduziert sich dann auch die Lebensdauer für das zu schützende Bauteil.
Darstellung der Erfindung
Hier will die Erfindung Abhilfe schaffen. Die vorliegende Erfindung beschäftigt sich mit dem Problem, für eine Schutzbeschichtung der eingangs genannten Art eine Ausführungsform anzugeben, die eine erhöhte Lebenszeit aufweist.
Erfindungsgemäß wird dieses Problem dadurch gelöst, dass die Schutzbeschichtung eine einschichtige oder mehrschichtige Versiegelungsbeschichtung aus einem amorphen Werkstoff aufweist.
Die Erfindung beruht auf dem allgemeinen Gedanken, die vorteilhaften Eigenschaften einer amorphen Gefügestruktur bei Werkstoffen, die zum Schutz vor Korrosion und/oder Oxidation und/oder Erosion geeignet sind, zur Herstellung einer langlebigen Schutzbeschichtung auszunutzen. Amorphe Werkstoffe bzw. amorphe Gefügestrukturen zeichnen sich durch eine geringe Wärmeleitfähigkeit, geringe Diffusionsgeschwindigkeiten sowie hohe Härte und hohe thermische Stabilität aus. Die erfindungsgemäße Realisierung dieser Eigenschaften bei einem korrosionsbeständigen und/oder oxidationsbeständigen und/oder erosionsbeständigen Werkstoff führt zu einer Schutzbeschichtung mit erhöhter Lebenszeit.
Die Erfindung nutzt dabei die Erkenntnis, dass die Schwachstellen einer herkömmlichen Schutzbeschichtung bzw. die Schwachstellen der Bauteiloberfläche bei den Korngrenzen liegen, bei denen benachbarte Kristalle einer kristallinen Gefügestruktur aneinander grenzen. In den Korngrenzen herrscht beispielsweise eine erhöhte Konzentration von Legierungsverunreinigungen, die in der Regel anfällig für Korrosion, Oxidation bzw. Erosion sind. Abgesehen von monokristallinen Strukturen weisen kristalline Werkstoffe an ihrer Außenseite stets eine Vielzahl dieser Korngrenzen auf, die den aggressiven Medien ausgesetzt sind. Im Unterschied dazu besitzt ein amorphes Gefüge keine Korngrenzen, wodurch lokale Konzentrationen von Verunreinigungen und somit Schwachstellen in der amorphen Versiegelungsbeschichtung vermieden werden. Die amorphe Gefügestruktur der Versiegelungsbeschichtung bietet den aggressiven Medien somit weniger Angriffsstellen und besitzt dadurch eine erhöhte Lebenszeit.
Desweiteren kann eine solche Versiegelungsbeschichtung mit einer hohen Qualität und Güte hergestellt werden, die insbesondere keine Löcher oder Lücken aufweist. Hierdurch kann eine Diffusion aggressiver Atome oder Moleküle in die Versiegelungsbeschichtung hinein bzw. durch die Versiegelungsbeschichtung hindurch verlangsamt werden. Im Unterschied zu einer natürlich wachsenden Aluminiumoxidschicht, bei der zwischen den sich ausbildenden Kristallen Lücken oder Löcher auftreten können, ergibt sich dadurch eine weitere Verbesserung der Schutzwirkung und somit der Lebenszeit der Schutzbeschichtung und letztlich des beschichteten Bauteils.
Bei einer ersten Ausführungsform kann die Versiegelungsbeschichtung auf der Oberfläche des Bauteils angeordnet sein. Die langlebige Versiegelungsbeschichtung behindert den Transport aggressiver Moleküle oder Atome, z.B. Sauerstoff, zum Bauteil, so dass für das Bauteil eine hohe Lebenszeit gewährleistet werden kann.
Bei einer zweiten Ausführungsform kann die Schutzbeschichtung zusätzlich zur Versiegelungsbeschichtung eine einschichtige oder mehrschichtige Bauteilbeschichtung aus einem kristallinen Werkstoff aufweisen, die auf der Oberfläche des Bauteils angeordnet ist, wobei die Versiegelungsbeschichtung dann auf der Bauteilbeschichtung angeordnet ist. Diese Bauteilbeschichtung kann beispielsweise aus einer herkömmlichen Schutzschicht mit einem kristallinen Werkstoff bestehen, z. B. aus einer Nickelbasislegierung. Wie eingangs erläutert, kann eine solche Bauteilbeschichtung zwar einen relativ hochwertigen Schutz vor Korrosion, Oxidation und Erosion bieten, besitzt jedoch aufgrund der freien Korngrenzen eine relativ kurze Lebenszeit. Durch die darauf aufgebrachte Versiegelungsbeschichtung sind die Korngrenzen dieser Bauteilbeschichtung vor einem direkten Angriff der aggressiven Medien geschützt, wodurch sich die Lebenszeit dieser Beschichtung deutlich erhöht.
Bei einer bevorzugten Weiterbildung kann die erfindungsgemäße Schutzbeschichtung zusätzlich eine einschichtige oder mehrschichtige Wärmedämmbeschichtung aufweisen, die auf der Versiegelungsbeschichtung angeordnet ist. Mit Hilfe einer solchen Wärmedämmbeschichtung kann die Temperaturbeaufschlagung der Versiegelungsschicht sowie des Bauteils und - soweit vorhanden - auch der (herkömmlichen) Bauteilbeschichtung reduziert werden. Beispielsweise können dadurch notwendige mechanische Eigenschaften des Grundwerkstoffs des Bauteils gewährleistet werden. Eine solche Wärmedämmbeschichtung kann beispielsweise aus stabilisiertem Zirkonoxid bestehen.
Um eine hohe mechanische Stabilität für die amorphe Versiegelungsbeschichtung gewährleisten zu können, wird diese relativ dünn ausgebildet. Bevorzugt wird dabei eine dicke von weniger als 20 µm. Von besonderem Vorteil ist eine Versiegelungsbeschichtung mit einer Dicke von etwa 0,1 µm bis 10 µm.
In zweckmässiger Ausgestaltung wird die Versiegelungsbeschichtung auf einen einkristallinen oder gerichtet erstarrten Werkstoff aufgebracht.
Weitere wichtige Merkmale und Vorteile der erfindungsgemäßen Schutzbeschichtung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
Kurze Beschreibung der Zeichnungen
Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen, jeweils schematisch,
Fig. 1
eine Schnittansicht auf einen Bereich eines Bauteils, das mit einer Schutzbeschichtung nach der Erfindung ausgestattet ist, bei einer ersten Ausführungsform,
Fig. 2
eine Schnittansicht wie in Fig. 1, jedoch bei einer zweiten Ausführungsform,
Fig. 3
eine Schnittansicht wie in Fig. 1, jedoch bei einer dritten Ausführungsform, und
Fig. 4
eine Schnittansicht wie in Fig. 1, jedoch bei einer vierten Ausführungsform.
Wege zur Ausführung der Erfindung
Entsprechend den Figuren 1 bis 4 kann ein nur bereichsweise dargestelltes Bauteil 1, beispielsweise eine Turbinenschaufel, an seiner außenliegenden Oberfläche 2 mit einer erfindungsgemäßen Schutzbeschichtung 3 zum Schutz vor Korrosion und/oder Oxidation und/oder Erosion beschichtet sein. Diese Schutzbeschichtung 3 weist eine einschichtige oder mehrschichtige Versiegelungsbeschichtung 4 auf, die aus einem amorphen Werkstoff bzw. aus einem Werkstoff mit amorphem Gefüge besteht. Die amorphe Versiegelungsbeschichtung 4 kann aus einem amorphen Metall, aus einem amorphen Übergangsmetall, aus einer amorphen Metallegierung oder aus einer amorphen nichtmetallischen Verbindung oder aus Kombinationen dieser Materialien bestehen. Vorzugsweise besteht die Versiegelungsbeschichtung 4 aus einem aluminiumoxid-basierten oder siliziumcarbonnitrid-basierten Werkstoff oder aus einem yttriumoxid-haltigen oder ceroxid-haltigen Werkstoff. Zur Erzielung einer hohen Stabilität ist die Versiegelungsbeschichtung 4 vorzugsweise relativ dünn ausgebildet, d.h. ihre Erstreckung bzw. Dicke senkrecht zur Oberfläche 2 des Bauteils 1 ist relativ gering. Beispielsweise beträgt die Dicke der Versiegelungsbeschichtung 4 weniger als 20 µm. Von besonderem Vorteil ist für die Versiegelungsbeschichtung 4 eine Dicke von etwa 0,1 µm bis 10 µm.
Es ist klar, dass für die Herstellung der amorphen Versiegelungsbeschichtung 4 ein Werkstoff verwendet wird, der an sich bereits eine hinreichende thermische Stabilität sowie ausreichend Korrosionsbeständigkeit und/oder Oxidationsbeständigkeit und/oder Erosionbeständigkeit aufweist. Die Schutzwirkung eines solchen Werkstoffes wird durch das vorgeschlagene amorphe Gefüge deutlich verbessert.
Gemäß Fig. 1 besteht die erfindungsgemäße Schutzbeschichtung 3 bei einer ersten Ausführungsform ausschließlich aus der Versiegelungsbeschichtung 4, die dementsprechend direkt auf der Oberfläche 2 des Bauteils 1 angeordnet ist. Die Versiegelungsbeschichtung 4, beispielsweise aus amorphen Aluminiumoxid oder aus amorphen Siliziumcarbonnitrid, kann beispielsweise durch ein physikalisches Dampfbeschichtungsverfahren ("PVD-Verfahren") oder durch ein chemisches Damfbeschichtungsverfahren ("CVD-Verfahren") auf das Bauteil 1 aufgebracht werden. Bevorzugt werden hier Laser-PVD-Verfahren bzw. Laser-CVD-Verfahren. Durch die Versiegelungsbeschichtung 4 wird somit der Werkstoff des Bauteils 1 vor einer Beaufschlagung mit aggressiven Medien effektiv geschützt, wodurch das Bauteil 1 eine erhöhte Standzeit erhält.
Gemäß Fig. 2 kann die erfindungsgemäße Schutzbeschichtung 3 bei einer zweiten Ausführungsform neben der Versiegelungsbeschichtung 4 eine Wärmedämmbeschichtung 5 aufweisen. Während die Versiegelungsbeschichtung 4 auf der Oberfläche 2 des Bauteils 1 angeordnet ist, befindet sich die Wärmedämmbeschichtung 5 auf der Versiegelungsbeschichtung 4. Die Wärmedämmbeschichtung 5 kann beispielsweise aus einem stabilisierten Zirkonoxid bestehen, das zweckmäßig durch Luftplasmaspritzen, Flammspritzen oder durch ein Elektronenstrahl-PVD-Verfahren einschichtig oder mehrschichtig aufgebracht wird.
Durch die Wärmedämmbeschichtung 5 kann die Temperatur der Versiegelungsbeschichtung 4 sowie des Bauteils 1 herabgesetzt werden, um beispielsweise bestimmte geforderte mechanische Eigenschaften, z.B. Stabilität, Steifigkeit, Dehnverhalten, der Versiegelungsschicht 4 bzw. des Bauteils 1 gewährleisten zu können.
Gemäß Fig. 3 kann die erfindungsgemäße Schutzbeschichtung 3 bei einer dritten Ausführungsform zusätzlich zur Versiegelungsbeschichtung 4 eine Bauteilbeschichtung 6 aufweisen, die beispielsweise nach Art einer herkömmlichen Schutzschicht aus einem kristallinen Werkstoff gebildet ist. Dabei ist die einschichtig oder mehrschichtig aufgebaute Bauteilbeschichtung 6 direkt auf der Oberfläche 2 des Bauteils 1 angeordnet, während die Versiegelungsbeschichtung 4 auf die Bauteilbeschichtung 6 aufgetragen ist. Bei dieser Ausführungsform schützt die Versiegelungsbeschichtung 4 die kristalline Bauteilbeschichtung 6 und insbesondere deren korrosionsempfindliche und/oder oxidationsempfindliche und/oder erosionsempfindliche Korngrenzen vor einer direkten Beaufschlagung mit den aggressiven Medien. Hierdurch erhöht sich die Lebensdauer der kristallinen Bauteilbeschichtung 6 und somit die Standzeit des Bauteils 1.
Gemäß Fig. 4 kann die erfindungsgemäße Schutzbeschichtung 3 bei einer vierten Ausführungsform neben der Versiegelungsbeschichtung 4 und der Bauteilbeschichtung 6 wieder eine Wärmedämmbeschichtung 5 aufweisen, wobei die kristalline Bauteilbeschichtung 6 auf der Oberfläche 2 des Bauteils 1, die amorphe Versiegelungsbeschichtung 4 auf der Bauteilbeschichtung 6 und die Wärmedämmbeschichtung 5 auf der Versiegelungsbeschichtung 4 angeordnet ist. Die Wärmedämmbeschichtung 5 kann somit die thermische Belastung der Versiegelungsbeschichtung 4, der Bauteilbeschichtung 6 und des Bauteils 1 reduzieren.
Bezugszeichenliste
1
Bauteil
2
Oberfläche von 1
3
Schutzbeschichtung
4
Versiegelungsbeschichtung
5
Wärmedämmbeschichtung
6
Bauteilbeschichtung

Claims (11)

  1. Schutzbeschichtung für ein thermisch belastetes Bauteil (1), insbesondere Turbinenbauteil, zum Schutz vor Korrosion und/oder Oxidation und/oder Erosion, wobei die Schutzbeschichtung (3) eine einschichtige oder mehrschichtige Versiegelungsbeschichtung (4) aus einem amorphen Werkstoff aufweist.
  2. Schutzbeschichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass die Versiegelungsbeschichtung (4) aus einem amorphen Metall oder aus einem amorphen Übergangsmetall oder aus einer amorphen Metallegierung oder aus einer nichtmetallischen Verbindung oder aus Kombinationen dieser Materialien besteht.
  3. Schutzbeschichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die Versiegelungsbeschichtung (4) auf der Oberfläche (2) des Bauteils (1) angeordnet ist.
  4. Schutzbeschichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die Schutzbeschichtung (3) eine einschichtige oder mehrschichtige Bauteilbeschichtung (6) aus einem kristallinen Werkstoff aufweist, die auf der Oberfläche (2) des Bauteils (1) angeordnet ist, wobei die Versiegelungsbeschichtung (4) auf der Bauteilbeschichtung (6) angeordnet ist.
  5. Schutzbeschichtung nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass die Schutzbeschichtung (3) eine einschichtige oder mehrschichtige Wärmedämmbeschichtung (5) aufweist, die auf der Versiegelungsbeschichtung (4) angeordnet ist.
  6. Schutzbeschichtung nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass die Versiegelungsbeschichtung (4) relativ dünn ist.
  7. Schutzbeschichtung nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass die Versiegelungsbeschichtung (4) weniger als 20 µm dick ist.
  8. Schutzbeschichtung nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass die Versiegelungsbeschichtung (4) etwa 0,1 µm bis 10 µm dick ist.
  9. Schutzbeschichtung nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, dass die Versiegelungsbeschichtung (4) aus einem oxid-basierten Werkstoff besteht.
  10. Schutzbeschichtung nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, dass die Versiegelungsbeschichtung (4) aus einem aluminiumoxid-basierten oder siliziumcarbonnitrid-basierten Werkstoff oder aus einem yttriumoxid-haltigen oder ceroxid-haltigen Werkstoff besteht.
  11. Schutzbeschichtung nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, dass die Versiegelungsbeschichtung (4) direkt auf einen einkristallinen oder gerichtet erstarrten Werkstoff aufgebracht ist.
EP01129065A 2000-12-23 2001-12-07 Schutzbeschichtung für ein bei hohen Temperaturen verwendetes Bauteil, insbesondere Turbinenbauteil Withdrawn EP1217095A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10065207 2000-12-23
DE10065207 2000-12-23

Publications (1)

Publication Number Publication Date
EP1217095A1 true EP1217095A1 (de) 2002-06-26

Family

ID=7669129

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01129065A Withdrawn EP1217095A1 (de) 2000-12-23 2001-12-07 Schutzbeschichtung für ein bei hohen Temperaturen verwendetes Bauteil, insbesondere Turbinenbauteil

Country Status (4)

Country Link
US (1) US20020132131A1 (de)
EP (1) EP1217095A1 (de)
JP (1) JP2002241961A (de)
DE (1) DE10126896A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141110B2 (en) 2003-11-21 2006-11-28 General Electric Company Erosion resistant coatings and methods thereof
US7279239B2 (en) 2002-08-07 2007-10-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Laminating product including adhesion layer and laminate product including protective film
EP1903321A1 (de) * 2006-09-25 2008-03-26 Grundfos Management A/S Halbleiterbauelement
WO2009065625A1 (de) * 2007-11-23 2009-05-28 Siemens Aktiengesellschaft Brennerelement und brenner mit aluminiumoxidbeschichtung und verfahren zur beschichtung eines brennerelementes
EP2143819A1 (de) * 2008-07-11 2010-01-13 Siemens Aktiengesellschaft Beschichtungsverfahren und Korrosionsschutzbeschichtung für Turbinen-Komponenten
EP2275741A1 (de) * 2009-07-14 2011-01-19 Siemens AG Düse und Verfahren zur Herstellung einer Düse
CN102062412A (zh) * 2009-11-18 2011-05-18 西门子公司 旋流器叶片、旋流器和燃烧器组件
EP2862958A2 (de) 2013-10-17 2015-04-22 Mahle International GmbH Stahlkolben für eine Brennkraftmaschine und Verfahren zu dessen Herstellung

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10056241B4 (de) * 2000-11-14 2010-12-09 Alstom Technology Ltd. Niederdruckdampfturbine
US20050255329A1 (en) 2004-05-12 2005-11-17 General Electric Company Superalloy article having corrosion resistant coating thereon
WO2006034054A1 (en) * 2004-09-16 2006-03-30 Belashchenko Vladimir E Deposition system, method and materials for composite coatings
US20080166561A1 (en) * 2005-08-16 2008-07-10 Honeywell International, Inc. Multilayered erosion resistant coating for gas turbines
US7534086B2 (en) * 2006-05-05 2009-05-19 Siemens Energy, Inc. Multi-layer ring seal
US20120128502A1 (en) * 2009-07-28 2012-05-24 Mitsubishi Electric Corporation Erosion resistant machine component, method for forming surface layer of machine component, and method for manufacturing steam turbine
JP2013516326A (ja) * 2010-01-04 2013-05-13 クルーシブル インテレクチュアル プロパティ エルエルシー アモルファス合金シール及び接合
CN102523746A (zh) * 2010-09-16 2012-06-27 三菱电机株式会社 利用放电加工的表面层形成方法以及该表面层
JP5774355B2 (ja) * 2011-04-14 2015-09-09 株式会社東芝 熱機器構造体
US8802225B2 (en) * 2011-05-31 2014-08-12 United Technologies Corporation Article having vitreous monocoating
US8807955B2 (en) * 2011-06-30 2014-08-19 United Technologies Corporation Abrasive airfoil tip
US20140010663A1 (en) * 2012-06-28 2014-01-09 Joseph Parkos, JR. Gas turbine engine fan blade tip treatment
GB2519047B (en) * 2012-08-14 2018-08-22 Snecma A method of measuring the temperature reached by a part, in particular a turbine engine part
EP2767616A1 (de) 2013-02-15 2014-08-20 Alstom Technology Ltd Turbomaschinenkomponente mit einem erosions- und korrosionsbeständigen Beschichtungssystem und Verfahren zur Herstellung solch einer Komponente
DE102013223585A1 (de) * 2013-11-19 2015-06-03 MTU Aero Engines AG Einlaufbelag auf Basis von Metallfasern
US10065396B2 (en) 2014-01-22 2018-09-04 Crucible Intellectual Property, Llc Amorphous metal overmolding
US9719420B2 (en) * 2014-06-02 2017-08-01 General Electric Company Gas turbine component and process for producing gas turbine component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179802A (ja) * 1984-09-27 1986-04-23 Mitsubishi Heavy Ind Ltd 蒸気タ−ビンのタ−ビンブレ−ド
DE3722482A1 (de) * 1987-07-08 1989-01-19 Claus Dipl Chem Wuestefeld Werkstueck mit einer schicht aus einem keramischen material und verfahren zum herstellen eines solchen werkstueckes
FR2691477A1 (fr) * 1992-05-22 1993-11-26 Neyrpic Revêtements métalliques à base d'alliages amorphes résistant à l'usure et à la corrosion, procédés d'obtention et applications aux revêtements antiusure pour matériel hydraulique.
DE19609690A1 (de) * 1996-03-13 1997-10-09 Karlsruhe Forschzent Turbinenschaufel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3051228C2 (de) * 1979-03-27 1998-12-17 Canon Kk Aufzeichnungskopf und Verfahren zu dessen Herstellung
AU616736B2 (en) * 1988-03-03 1991-11-07 Asahi Glass Company Limited Amorphous oxide film and article having such film thereon
US5209835A (en) * 1988-03-03 1993-05-11 Asahi Glass Company Ltd. Method for producing a specified zirconium-silicon amorphous oxide film composition by sputtering
EP0486475B1 (de) * 1988-03-03 1997-12-03 Asahi Glass Company Ltd. Amorpher Oxid-Film und Gegenstand mit einem solchen Film
DE4110005A1 (de) * 1991-03-27 1992-10-01 Krupp Widia Gmbh Verbundkoerper, verwendung des verbundkoerpers und verfahren zu seiner herstellung
DE19614459A1 (de) * 1996-04-12 1997-10-16 Grundfos As Elektronisches Bauelement
DE19614458C2 (de) * 1996-04-12 1998-10-29 Grundfos As Druck- oder Differenzdrucksensor und Verfahren zu seiner Herstellung
DE19815677C2 (de) * 1998-04-08 2002-02-07 Dresden Ev Inst Festkoerper Verbundkörper und Verfahren zu dessen Herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179802A (ja) * 1984-09-27 1986-04-23 Mitsubishi Heavy Ind Ltd 蒸気タ−ビンのタ−ビンブレ−ド
DE3722482A1 (de) * 1987-07-08 1989-01-19 Claus Dipl Chem Wuestefeld Werkstueck mit einer schicht aus einem keramischen material und verfahren zum herstellen eines solchen werkstueckes
FR2691477A1 (fr) * 1992-05-22 1993-11-26 Neyrpic Revêtements métalliques à base d'alliages amorphes résistant à l'usure et à la corrosion, procédés d'obtention et applications aux revêtements antiusure pour matériel hydraulique.
DE19609690A1 (de) * 1996-03-13 1997-10-09 Karlsruhe Forschzent Turbinenschaufel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 198623, Derwent World Patents Index; Class M13, AN 1986-146453, XP002192924 *
KNOTEK O ET AL: "DIFFUSION BARRIER DESIGN AGAINST RAPID INTERDIFFUSION OF MCRA1Y ANDNI-BASE MATERIAL", SURFACE AND COATINGS TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 61, PART 1, 19 April 1993 (1993-04-19), pages 6 - 13, XP000577732, ISSN: 0257-8972 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279239B2 (en) 2002-08-07 2007-10-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Laminating product including adhesion layer and laminate product including protective film
US7141110B2 (en) 2003-11-21 2006-11-28 General Electric Company Erosion resistant coatings and methods thereof
US7431566B2 (en) 2003-11-21 2008-10-07 General Electric Company Erosion resistant coatings and methods thereof
EP1903321A1 (de) * 2006-09-25 2008-03-26 Grundfos Management A/S Halbleiterbauelement
WO2008037334A1 (de) * 2006-09-25 2008-04-03 Grundfos Management A/S Halbleiterbauelement
US8294237B2 (en) 2006-09-25 2012-10-23 Grundfos Management A/S Semiconductor structural element
RU2447361C2 (ru) * 2007-11-23 2012-04-10 Сименс Акциенгезелльшафт Элемент горелки и горелка с покрытием из оксида алюминия и способ покрытия элемента горелки
WO2009065625A1 (de) * 2007-11-23 2009-05-28 Siemens Aktiengesellschaft Brennerelement und brenner mit aluminiumoxidbeschichtung und verfahren zur beschichtung eines brennerelementes
WO2010003816A1 (de) * 2008-07-11 2010-01-14 Siemens Aktiengesellschaft Beschichtungsverfahren und korrosionsschutzbeschichtung für turbinen-komponenten
CN102089456A (zh) * 2008-07-11 2011-06-08 西门子公司 涡轮机部件的涂覆方法以及防腐蚀涂层
EP2143819A1 (de) * 2008-07-11 2010-01-13 Siemens Aktiengesellschaft Beschichtungsverfahren und Korrosionsschutzbeschichtung für Turbinen-Komponenten
CN102089456B (zh) * 2008-07-11 2015-04-01 西门子公司 涡轮机部件的涂覆方法以及防腐蚀涂层
EP2275741A1 (de) * 2009-07-14 2011-01-19 Siemens AG Düse und Verfahren zur Herstellung einer Düse
CN102062412A (zh) * 2009-11-18 2011-05-18 西门子公司 旋流器叶片、旋流器和燃烧器组件
EP2325542A1 (de) * 2009-11-18 2011-05-25 Siemens Aktiengesellschaft Verwirbelungsschaufel, Verwirbeler und Brennanordnung
EP2862958A2 (de) 2013-10-17 2015-04-22 Mahle International GmbH Stahlkolben für eine Brennkraftmaschine und Verfahren zu dessen Herstellung
DE102013221102A1 (de) 2013-10-17 2015-05-07 Mahle International Gmbh Stahlkolben für eine Brennkraftmaschine und Verfahren zu dessen Herstellung

Also Published As

Publication number Publication date
JP2002241961A (ja) 2002-08-28
DE10126896A1 (de) 2002-07-11
US20020132131A1 (en) 2002-09-19

Similar Documents

Publication Publication Date Title
EP1217095A1 (de) Schutzbeschichtung für ein bei hohen Temperaturen verwendetes Bauteil, insbesondere Turbinenbauteil
DE69706850T2 (de) Artikel mit schutzschicht, enthaltend eine verbesserte verankerungsschicht und seine herstellung
DE69606708T2 (de) Bauteil aus superlegierung mit einem schutzschichtsystem
DE60305329T2 (de) Hochoxidationsbeständige komponente
DE602005002334T2 (de) Werkstück auf Superlegierungsbasis mit einer Gamma-Strich-Nickelaluminid-Beschichtung
DE69615012T2 (de) Erosions-korrosionsschutzschicht für hochtemperaturbauteile
DE10056617C2 (de) Werkstoff für temperaturbelastete Substrate
WO1999055527A2 (de) Erzeugnis mit einer schutzschicht gegen korrosion sowie verfahren zur herstellung einer schutzschicht gegen korrosion
CH694164A5 (de) Hochtemperatur-Komponente, insbesondere für eine Gasturbine, und Verfahren zu deren Herstellung.
EP2251457B1 (de) NiCoCrAl- oder CoCrAl-Schicht mit Re
DE112004003138B4 (de) Aluminiumoxidschutzschicht und Herstellungsverfahren dafür
DE2740398A1 (de) Zweifachueberzug fuer den schutz gegen thermische beanspruchungen und korrosion
EP1902160B1 (de) Keramische wärmedämmschicht
EP3063309B1 (de) Oxidationsbarriereschicht
EP2796588B1 (de) Verfahren zur Herstellung einer Hochtemperaturschutzbeschichtung
DE69603183T2 (de) Metallisches bauelement mit hochtemperatur schutzbeschichtung und verfahren zum beschichten eines bauelementes
EP1029100B1 (de) Erzeugnis mit einem schichtsystem zum schutz gegen ein heisses aggressives gas
DE102005060243A1 (de) Verfahren zum Beschichten einer Schaufel und Schaufel einer Gasturbine
DE69615412T2 (de) Metallischer gegenstand mit oxidschicht und eine verbesserte haftschicht
WO2008110607A1 (de) Turbinenbauteil mit wärmedämmschicht
EP1260602B1 (de) Verfahren zum Erzeugen eines wärmedämmenden Schichtsystems auf einem metallischen Substrat
EP1382707A1 (de) Schichtsystem
EP2695964A1 (de) Bauteilangepasste Schutzschicht
EP1892311B1 (de) Turbinenschaufel mit einem Beschichtungssystem
EP2607515A2 (de) Diffusionsbeschichtungsverfahren und damit hergestellte Chromschicht

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

17P Request for examination filed

Effective date: 20021122

AKX Designation fees paid

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20030703

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031114