EP1211336A1 - Superalliage à base de nickel pour aubes monocristallines de turbines industrielles ayant une résistance élevée à la corrosion à chaud - Google Patents
Superalliage à base de nickel pour aubes monocristallines de turbines industrielles ayant une résistance élevée à la corrosion à chaud Download PDFInfo
- Publication number
- EP1211336A1 EP1211336A1 EP00403362A EP00403362A EP1211336A1 EP 1211336 A1 EP1211336 A1 EP 1211336A1 EP 00403362 A EP00403362 A EP 00403362A EP 00403362 A EP00403362 A EP 00403362A EP 1211336 A1 EP1211336 A1 EP 1211336A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- resistance
- phase
- hot corrosion
- corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 229910000601 superalloy Inorganic materials 0.000 title claims abstract description 23
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 16
- 238000005260 corrosion Methods 0.000 title description 30
- 230000007797 corrosion Effects 0.000 title description 30
- 239000013078 crystal Substances 0.000 title description 5
- 238000007711 solidification Methods 0.000 claims abstract description 15
- 230000008023 solidification Effects 0.000 claims abstract description 15
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 13
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 4
- 230000000295 complement effect Effects 0.000 claims abstract description 3
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 3
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 3
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 3
- 229910045601 alloy Inorganic materials 0.000 description 55
- 239000000956 alloy Substances 0.000 description 55
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 14
- 239000011651 chromium Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- 238000000265 homogenisation Methods 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005496 eutectics Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000237536 Mytilus edulis Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000005495 investment casting Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 235000020638 mussel Nutrition 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/056—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
Definitions
- the invention relates to a nickel-based superalloy, suitable in the manufacture by direct solidification of monocrystalline blades stationary and mobile industrial gas turbines.
- Nickel-based superalloys are the most common materials most efficient used today for the manufacture of stationary and movable blades of industrial gas turbines. The two main features requested so far to these alloys for these specific applications are good creep resistance at temperatures up to go up to 850 ° C and very good corrosion resistance hot. Reference alloys commonly used in this area are those known under the designations IN738, IN939 and IN792.
- the blades produced with these reference alloys are produced by conventional lost wax casting and have a polycrystalline structure, that is to say that they consist of the juxtaposition of crystals randomly oriented with respect to each other. and called grains. These grains are themselves made up of an austenitic gamma ( ⁇ ) matrix based on nickel in which are hardened particles of gamma prime phase ( ⁇ '), the base of which is the intermetallic compound Ni 3 Al. This particular structure of Grain gives these alloys a high creep resistance up to temperatures around 850 ° C, which guarantees the longevity of the blades for which we generally seek lifetimes between 50,000 and 100,000 hours.
- the chemical composition of the alloys IN939, IN738 and IN792 has also been defined so as to give them excellent resistance to the environment of combustion gases, in particular with respect to hot corrosion, a particularly aggressive phenomenon in the industrial gas turbines.
- the classification of these alloys is: IN939 ⁇ IN738 ⁇ IN792. From the point of view of resistance to hot corrosion, the classification is reversed, ie: IN792 ⁇ IN738 ⁇ IN939.
- These monocrystalline blades are produced by solidification directed in lost wax foundry. Elimination of grain boundaries, which are preferred locations for creep deformation at high temperature, increased dramatically the performance of superalloys based on nickel.
- the solidification process monocrystalline allows to select the preferential orientation growth of the monocrystalline part and thus choose the orientation ⁇ 001> which is optimal from the point of the resistance to creep and to thermal fatigue, these two modes of mechanical stress being the most harmful to turbine blades.
- a nickel-based superalloy rich in chromium and capable of solidifying monocrystalline parts of industrial gas turbines is known under the name SC16 and described in FR 2 643 085 A. Its chromium concentration is equal to 16% by weight.
- the creep resistance characteristics of the SC16 alloy are such that this alloy provides, compared to the reference polycrystalline alloy IN738, a gain in operating temperature ranging from approximately 30 ° C. (830 ° C. instead of 800 ° C.) at around 50 ° C (950 ° C instead of 900 ° C). Comparative tests of cyclic corrosion at 850 ° C. in air at atmospheric pressure with contamination by Na 2 SO 4 have shown that the resistance to hot corrosion of the alloy SC16 was at least equivalent to that of the alloy polycrystalline reference IN738.
- the object of the invention is to propose a superalloy based on nickel having resistance to hot corrosion, in the aggressive environment of the combustion gases of industrial gas turbines, at least equivalent to that of polycrystalline reference superalloy IN792, with a creep resistance greater than or equal to that of the alloy IN792 reference in a temperature range from up to 1000 ° C.
- This superalloy must in particular be suitable for manufacturing by directed solidification of fixed monocrystalline vanes and large-scale mobiles (up to several tens of centimeters in height) of industrial gas turbines.
- This superalloy must also show good stability. microstructural with respect to phase precipitation fragile intermetallics rich in chromium during long-term maintenance at high temperature.
- the superalloy according to the invention capable of monocrystalline solidification, has the following weight composition: Co 4.75 to 5.25% Cr 11.5 to 12.5% MB 0.8 to 1.2% W 3.75 to 4.25% al 3.75 to 4.25% Ti 4 to 4.8% Your 1.75 to 2.25% VS 0.006 to 0.04% B ⁇ 0.01% Zr ⁇ 0.01% Hf ⁇ 1% Nb ⁇ 1% Ni and possible impurities: complement to 100%.
- the alloy according to the invention presents an excellent compromise between creep resistance and corrosion resistance hot. It is suitable for the manufacture of monocrystalline parts, that is to say made up of a single metallurgical grain. This particular structure is obtained for example using a conventional directed solidification process in a thermal gradient, using a device selection of grain with propeller or baffles or a germ Monocrystalline.
- the invention also relates to a turbine blade industrial carried out by monocrystalline solidification of above superalloy.
- Figures 1 and 2 are graphs illustrating the properties of different superalloys.
- SCB444 An alloy according to the invention called SCB444 was developed by targeting the nominal composition presented in Table I. In this table are also reported the nominal concentrations of major elements of the reference alloys IN939, IN738, IN792 and SC16. Concentrations by weight of major elements (%) Alloy Or Co Cr MB W al Ti Your Nb IN939 Based 19 22.5 - 2 1.9 3.7 1.4 1 IN738 Based 8.5 16 1.7 2.6 3.4 3.4 1.7 0.9 IN792 Based 9 12.4 1.9 3.8 3.1 4.5 3.9 - SC16 Based - 16 3 - 3.5 3.5 3.5 - SCB444 Based 5 12 1 4 4 4.4 2 -
- Chromium has a beneficial and predominant effect on the hold to hot corrosion of nickel-based superalloys.
- a concentration close to 12% by weight was necessary and sufficient in the alloy of the invention to obtain corrosion resistance to hot equivalent to that of the reference alloy IN792 under the conditions of the hot corrosion tests described further, which are representative of the environment created by the combustion gases of certain industrial turbines.
- a higher chromium content would not allow reach the volume fraction of phase ⁇ 'necessary for the good creep resistance of the alloy up to 1000 ° C, without the alloy becomes unstable with respect to the precipitation of fragile intermetallic phases rich in chromium in the matrix ⁇ .
- a lower concentration of chrome would not match the resistance to hot corrosion of the reference alloy IN792.
- Chrome also participates in the hardening of the matrix ⁇ in which this element is distributed preferentially.
- Molybdenum strongly hardens the ⁇ matrix in which this element is distributed preferentially.
- the quantity of molybdenum which can be introduced into the alloy is however limited because this element has a detrimental effect on the resistance to hot corrosion of superalloys based on nickel.
- a concentration close to 1% by weight in the alloy of the invention is not penalizing for its corrosion resistance and contributes significantly to its hardening.
- Cobalt also participates in solution hardening solid of the matrix ⁇ .
- the cobalt concentration has a influence on the solution dissolution temperature of the phase hardening ⁇ '(solvent temperature ⁇ '). It is so advantageous to increase the cobalt concentration for lower the solvent temperature of the ⁇ 'phase and facilitate homogenization of the alloy by heat treatment without may cause the onset of fusion. Besides, he can also be beneficial to reduce the concentration of cobalt to increase the solvent temperature of the phase ⁇ 'and thus benefit from greater stability of the ⁇ 'phase at high temperature which is favorable for creep resistance.
- the concentration around 5% in weight of cobalt in the alloy of the invention leads to a optimal compromise between good homogenization ability and good creep resistance.
- Tungsten whose concentration is close to 4% in weight in the alloy of the invention is distributed so substantially equal between phases ⁇ and ⁇ 'and contributes thus to their respective hardening. His concentration in the alloy is however limited because this element is heavy, and has a negative effect on the resistance to hot corrosion.
- the aluminum concentration is close to 4% by weight in the alloy of the invention.
- the presence of this element causes precipitation of the hardening phase ⁇ '.
- Aluminum also promotes resistance to oxidation. Titanium and tantalum elements are added to the alloy of the invention in order to strengthen the ⁇ 'phase in which they replace the aluminum element.
- the concentrations respective of these two elements in the alloy of the invention are close to 4.4% by weight for titanium and 2% by weight for tantalum. In the conditions described more far from hot corrosion tests, corresponding to the application aimed, experience has shown that the presence of titanium was more favorable to resistance to hot corrosion than tantalum is.
- the titanium concentration has however was limited on the one hand by the fact that this element can have a negative effect on oxidation resistance, and on the other hand because too high a concentration of titanium may cause destabilization of the ⁇ 'phase.
- the sum tantalum, titanium and aluminum concentrations defined roughly the volume fraction of hardening phase ⁇ '.
- the concentrations of these three elements were adjusted from so as to optimize the volume fraction of phase ⁇ ', all by keeping the ⁇ and ⁇ 'phases stable during maintain for a long time at high temperature, and taking taking into account that the chromium concentration has been set at about 12% by weight so as to achieve resistance to corrosion desired.
- the alloy SCB444 was developed in the form of single crystals of orientation ⁇ 001>.
- the density of this alloy was measured and found to be 8.22 g.cm -3 .
- the alloy After directed solidification, the alloy essentially consists of two phases: the austenitic matrix ⁇ , a solid solution based on nickel, and the phase ⁇ ', an intermetallic compound whose basic formula is Ni 3 Al, which precipitates most of the within the matrix ⁇ in the form of fine particles of size less than one micrometer during cooling in the solid state.
- ⁇ 'phase A small fraction of ⁇ 'phase is also found in massive particles resulting from a liquid eutectic transformation -> ⁇ + ⁇ ' at the end of solidification.
- the volume fraction of eutectic phase ⁇ / ⁇ ' is close to 1.4%.
- SCB444 alloy has undergone a homogenization heat treatment at a temperature of 1270 ° C for 3 hours with air cooling. This temperature is higher than the solvent temperature of phase ⁇ '(setting temperature in solution of the precipitates of phase ⁇ '), which is equal to 1253 ° C, and lower than the melting start temperature, equal to 1285 ° C.
- the purpose of this treatment is to dissolve all of the ⁇ 'phase precipitates whose distribution of sizes is very extensive in the raw solidification state directed, to eliminate massive particles of eutectic ⁇ / ⁇ 'and to reduce the chemical heterogeneities linked to the dendritic solidification structure.
- the difference between the solvent temperature ⁇ 'of the alloy SCB444 and its melting start temperature is very large, which allows easy application of the homogenization treatment without risk of merger and with the certainty of obtaining a homogeneous microstructure allowing resistance to creep optimized.
- the cooling after the homogenization treatment described above was produced by air quenching. In practical, the speed of this cooling must be sufficient high so that the particle size having precipitated during this cooling to be less than 500 nm.
- the homogenization heat treatment procedure which just described is an example to obtain the expected result, i.e. a homogeneous distribution of fines ⁇ 'phase particles whose size does not exceed 500 nm.
- SCB444 alloy has been tested after being subjected to a homogenization treatment as described above, then two income treatments to stabilize the size and volume fraction of ⁇ 'phase precipitates.
- a first income treatment consisted of heating the alloy at 1100 ° C for 4 hours with cooling to air which has the effect of stabilizing the size of ⁇ 'phase precipitates.
- a second income treatment at 850 ° C for 24 hours, followed by air cooling, optimizes the volume fraction of phase ⁇ '. This ⁇ 'phase volume fraction is estimated at 57% in SCB444 alloy. After all the treatments thermal, the ⁇ 'phase precipitated in the form of particles cuboidal whose size is between 200 and 500 nm.
- Cyclic hot corrosion tests were carried out at 900 ° C on the SCB444 alloy in an industrial corrosion bench with burner.
- the cycle was as follows: 1 hour at 900 ° C. in the corrosive atmosphere produced by the burner, then 15 minutes out of the oven at room temperature.
- the burner operated with fuel loaded with 0.20% sulfur.
- a 0.5 g -1 salt water solution of NaCl was sprayed onto the sample at a flow rate of 2.2 m 3 .h -1 .
- the sample was covered every 100 hours with a deposit of 0.5 mg.cm - 2 of Na 2 SO 4 .
- the alloys IN738 and IN792 were tested simultaneously.
- the corrosion resistance criterion is the number of cycles for which the first pits of corrosion appear on the surface of the sample.
- Creep tests in tension were carried out on test pieces machined in monocrystalline bars of orientation ⁇ 001>. The bars were previously homogenized and then returned according to the procedures described above. Break time values obtained at 750, 850 and 950 ° C for different levels of applied stress are given in Table II. Creep lifetime of SCB444 alloy Temperature (° C) Stress (MPa) Break time (h) 750 725 134 750 650 612 750 600 1152 850 500 43.1 850 425 168.5 850 300 3545 /> 3456 950 250 115/135 950 200 551/544 950 180 578 950 140 2109 950 120 3872
- the graph in FIG. 2 makes it possible to compare the creep rupture times obtained for the alloys SCB444, IN738, IN792 and SC16.
- the applied stress is plotted on the abscissa.
- the value of the Larson-Miller parameter is plotted on the ordinate.
- T the creep temperature in Kelvin and t the failure time in hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
- Une résistance à la corrosion à chaud optimisée, dans tous les cas au moins égale à celle du superalliage polycristallin de référence IN792, et ce dans divers environnements représentatifs de celui des gaz de combustion des turbines industrielles;
- Une fraction volumique maximale de précipités durcissants de phase γ' afin de favoriser la résistance au fluage à haute température;
- Une résistance au fluage jusqu'à 1000 °C supérieure à celle de l'alliage polycristallin de référence IN792;
- Une aptitude à l'homogénéisation par remise en solution totale des particules de phase γ', y compris les phases eutectiques γ/γ';
- L'absence de précipitation de phases intermétalliques fragiles riches en chrome, à partir de la matrice γ, au cours de maintiens de longue durée à haute température;
- Une masse volumique inférieure à 8,4 g.cm-3 afin de minimiser la masse des aubes monocristallines et par conséquent de limiter la contrainte centrifuge agissant sur ces aubes et sur le disque de turbine sur lequel elles sont fixées;
- Une bonne aptitude à la solidification monocristalline d'aubes de turbines dont la hauteur peut atteindre plusieurs dizaines de centimètres et la masse plusieurs kilogrammes.
Co | 4,75 à 5,25 % |
Cr | 11,5 à 12,5 % |
Mo | 0,8 à 1,2 % |
W | 3,75 à 4,25 % |
Al | 3,75 à 4,25 % |
Ti | 4 à 4,8 % |
Ta | 1,75 à 2,25 % |
C | 0,006 à 0,04 % |
B | ≤ 0,01 % |
Zr | ≤ 0,01 % |
Hf | ≤ 1 % |
Nb | ≤ 1 % |
Ni et impuretés éventuelles: complément à 100 %. |
Concentrations pondérales en éléments majeurs (%) | |||||||||
Alliage | Ni | Co | Cr | Mo | W | Al | Ti | Ta | Nb |
IN939 | Base | 19 | 22,5 | - | 2 | 1,9 | 3,7 | 1,4 | 1 |
IN738 | Base | 8,5 | 16 | 1,7 | 2,6 | 3,4 | 3,4 | 1,7 | 0,9 |
IN792 | Base | 9 | 12,4 | 1,9 | 3,8 | 3,1 | 4,5 | 3,9 | - |
SC16 | Base | - | 16 | 3 | - | 3,5 | 3,5 | 3,5 | - |
SCB444 | Base | 5 | 12 | 1 | 4 | 4 | 4,4 | 2 | - |
Durées de vie en fluage de l'alliage SCB444 | ||
Température (°C) | Contrainte (MPa) | Temps à rupture (h) |
750 | 725 | 134 |
750 | 650 | 612 |
750 | 600 | 1152 |
850 | 500 | 43,1 |
850 | 425 | 168,5 |
850 | 300 | 3545/>3456 |
950 | 250 | 115/135 |
950 | 200 | 551/544 |
950 | 180 | 578 |
950 | 140 | 2109 |
950 | 120 | 3872 |
Claims (2)
- Superalliage à base de nickel, apte à la solidification monocristalline, caractérisé en ce que sa composition pondérale est la suivante:
Co 4,75 à 5,25 % Cr 11,5 à 12,5 % Mo 0,8 à 1,2 % W 3,75 à 4,25 % Al 3,75 à 4,25 % Ti 4 à 4,8 % Ta 1,75 à 2,25 % C 0,006 à 0,04 % B ≤ 0,01 % Zr ≤ 0,01 % Hf ≤ 1 % Nb ≤ 1 % Ni et impuretés éventuelles: complément à 100 %. - Aube de turbine industrielle réalisée par solidification monocristalline d'un superalliage selon la revendication 1.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE60035052T DE60035052T2 (de) | 2000-11-30 | 2000-11-30 | Superlegierung auf Nickelbasis für Einkristallturbinenschaufeln von industriellen Turbinen mit hoher Beständigkeit gegen Heisskorrosion |
EP00403362A EP1211336B1 (fr) | 2000-11-30 | 2000-11-30 | Superalliage à base de nickel pour aubes monocristallines de turbines industrielles ayant une résistance élevée à la corrosion à chaud |
JP2001365810A JP2002194467A (ja) | 2000-11-30 | 2001-11-30 | 産業用タービンの単結晶ブレードのための高い耐高温腐食性をもつニッケル系超合金 |
US10/008,745 US20030047252A1 (en) | 2000-11-30 | 2001-11-30 | Nickel-based superalloy having high resistance to hot-corrosion for monocrystalline blades of industrial turbines |
US10/636,024 US20040069380A1 (en) | 2000-11-30 | 2003-08-07 | Nickel-based superalloy having high resistance to hot-corrosion for monocrystalline blades of industrial turbines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00403362A EP1211336B1 (fr) | 2000-11-30 | 2000-11-30 | Superalliage à base de nickel pour aubes monocristallines de turbines industrielles ayant une résistance élevée à la corrosion à chaud |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1211336A1 true EP1211336A1 (fr) | 2002-06-05 |
EP1211336B1 EP1211336B1 (fr) | 2007-05-30 |
Family
ID=8173964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00403362A Expired - Lifetime EP1211336B1 (fr) | 2000-11-30 | 2000-11-30 | Superalliage à base de nickel pour aubes monocristallines de turbines industrielles ayant une résistance élevée à la corrosion à chaud |
Country Status (4)
Country | Link |
---|---|
US (2) | US20030047252A1 (fr) |
EP (1) | EP1211336B1 (fr) |
JP (1) | JP2002194467A (fr) |
DE (1) | DE60035052T2 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3057880A1 (fr) * | 2016-10-25 | 2018-04-27 | Safran | Superalliage a base de nickel, aube monocristalline et turbomachine |
WO2020260645A1 (fr) * | 2019-06-28 | 2020-12-30 | Safran Aircraft Engines | Procédé de fabrication d'une pièce en superalliage monocristallin |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060182649A1 (en) * | 2005-02-16 | 2006-08-17 | Siemens Westinghouse Power Corp. | High strength oxidation resistant superalloy with enhanced coating compatibility |
EP2103700A1 (fr) * | 2008-03-14 | 2009-09-23 | Siemens Aktiengesellschaft | Alliages à base de nickel et leur utilisateur, pale ou aube de turbine et turbine à gaz |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4885216A (en) * | 1987-04-03 | 1989-12-05 | Avco Corporation | High strength nickel base single crystal alloys |
GB2234521A (en) * | 1986-03-27 | 1991-02-06 | Gen Electric | Nickel-base superalloys for producing single crystal articles having improved tolerance to low angle grain boundaries |
EP1038982A1 (fr) * | 1999-03-26 | 2000-09-27 | Howmet Research Corporation | Articles monocristallins en superalliage ayant une récrystallisation des grains reduite |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3109293C2 (de) * | 1980-03-13 | 1985-08-01 | Rolls-Royce Ltd., London | Verwendung einer Nickellegierung für einkristalline Gußstücke |
US5399313A (en) * | 1981-10-02 | 1995-03-21 | General Electric Company | Nickel-based superalloys for producing single crystal articles having improved tolerance to low angle grain boundaries |
US5154884A (en) * | 1981-10-02 | 1992-10-13 | General Electric Company | Single crystal nickel-base superalloy article and method for making |
US5403546A (en) * | 1989-02-10 | 1995-04-04 | Office National D'etudes Et De Recherches/Aerospatiales | Nickel-based superalloy for industrial turbine blades |
US5395584A (en) * | 1992-06-17 | 1995-03-07 | Avco Corporation | Nickel-base superalloy compositions |
US6355117B1 (en) * | 1992-10-30 | 2002-03-12 | United Technologies Corporation | Nickel base superalloy single crystal articles with improved performance in air and hydrogen |
JPH07286503A (ja) * | 1994-04-20 | 1995-10-31 | Hitachi Ltd | 高効率ガスタービン |
EP1054072B1 (fr) * | 1999-05-20 | 2003-04-02 | ALSTOM (Switzerland) Ltd | Superalliage à base de Nickel |
DE50006694D1 (de) * | 1999-07-29 | 2004-07-08 | Siemens Ag | Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils |
-
2000
- 2000-11-30 EP EP00403362A patent/EP1211336B1/fr not_active Expired - Lifetime
- 2000-11-30 DE DE60035052T patent/DE60035052T2/de not_active Expired - Lifetime
-
2001
- 2001-11-30 JP JP2001365810A patent/JP2002194467A/ja active Pending
- 2001-11-30 US US10/008,745 patent/US20030047252A1/en not_active Abandoned
-
2003
- 2003-08-07 US US10/636,024 patent/US20040069380A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2234521A (en) * | 1986-03-27 | 1991-02-06 | Gen Electric | Nickel-base superalloys for producing single crystal articles having improved tolerance to low angle grain boundaries |
US4885216A (en) * | 1987-04-03 | 1989-12-05 | Avco Corporation | High strength nickel base single crystal alloys |
EP1038982A1 (fr) * | 1999-03-26 | 2000-09-27 | Howmet Research Corporation | Articles monocristallins en superalliage ayant une récrystallisation des grains reduite |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3057880A1 (fr) * | 2016-10-25 | 2018-04-27 | Safran | Superalliage a base de nickel, aube monocristalline et turbomachine |
WO2018078269A1 (fr) * | 2016-10-25 | 2018-05-03 | Safran | Superalliage a base de nickel, aube monocristalline et turbomachine. |
US11220727B2 (en) | 2016-10-25 | 2022-01-11 | Safran | Superalloy based on nickel, monocrystalline blade and turbomachine |
WO2020260645A1 (fr) * | 2019-06-28 | 2020-12-30 | Safran Aircraft Engines | Procédé de fabrication d'une pièce en superalliage monocristallin |
FR3097879A1 (fr) * | 2019-06-28 | 2021-01-01 | Safran Aircraft Engines | Procede de fabrication d’une piece en superalliage monocristallin |
Also Published As
Publication number | Publication date |
---|---|
US20040069380A1 (en) | 2004-04-15 |
DE60035052T2 (de) | 2008-01-24 |
EP1211336B1 (fr) | 2007-05-30 |
JP2002194467A (ja) | 2002-07-10 |
DE60035052D1 (de) | 2007-07-12 |
US20030047252A1 (en) | 2003-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0971041B1 (fr) | Superalliage monocristallin à base de nickel à haut solvus phase gamma prime | |
CA2583140C (fr) | Alliage a base de nickel | |
EP0063511B1 (fr) | Superalliage monocristallin à matrice à base de nickel, procédé d'amélioration de pièces en ce superalliage et pièces obtenues par ce procédé | |
FR2731714A1 (fr) | Superalliages a base de nickel pour la production d'articles monocristallins ayant une tolerance amelioree aux joints de grains a faible desorientation | |
EP3710610B1 (fr) | Superalliage a base de nickel, aube monocristalline et turbomachine | |
EP1211335B1 (fr) | Superalliage à base de nickel à résistance très élevée à la corrosion à chaud pour aubes monocristallines de turbines industrielles | |
EP3710611B1 (fr) | Superalliage a base de nickel, aube monocristalline et turbomachine | |
EP1211336B1 (fr) | Superalliage à base de nickel pour aubes monocristallines de turbines industrielles ayant une résistance élevée à la corrosion à chaud | |
EP3802895B1 (fr) | Superalliage a base de nickel, aube monocristalline et turbomachine | |
EP4073283A1 (fr) | Superalliage a base de nickel | |
FR2860804A1 (fr) | Superalliage a base de nickel et pieces coulees en monocristal | |
FR2557146A1 (fr) | Traitement thermique avant compression isostatique a chaud de pieces moulees en superalliage | |
EP0187573B1 (fr) | Alliage à base de nickel | |
EP3918101B1 (fr) | Superalliage a base de nickel a tenue mecanique et environnementale elevee a haute temperature et a faible densite | |
FR2686902A1 (fr) | Superalliage monocristallin a base de nickel a tenue a l'oxydation amelioree et procede de preparation. | |
EP3911773B1 (fr) | Superalliage a base de nickel a faible densite et avec une tenue mecanique et environnementale elevee a haute temperature | |
WO2020260645A1 (fr) | Procédé de fabrication d'une pièce en superalliage monocristallin | |
WO2024047315A1 (fr) | Superalliage a base de nickel, aube monocristalline et turbomachine | |
FR3117507A1 (fr) | Procede de fabrication d'une piece en superalliage monocristallin | |
EP4493733A1 (fr) | Superalliage a base de nickel | |
EP0570270A1 (fr) | Superalliage monocristallin à base de nickel notamment pour aubes de turbines de moteurs-fusées, et procédé d'obtention | |
EP0570271A1 (fr) | Superalliage monocristallin à base fer-nickel, notamment pour aubes de turbines de moteurs-fusées, et procédé d'obtention | |
FR2729675A1 (fr) | Procede perfectionne d'elaboration et de traitement thermique d'un superalliage polycristallin a base de nickel, resistant a chaud |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20021125 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 60035052 Country of ref document: DE Date of ref document: 20070712 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070830 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080303 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TQ |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20191021 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20191022 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20191022 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60035052 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20201129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20201129 |