EP1211070B2 - Device and method for synchronizing processes running in several units - Google Patents
Device and method for synchronizing processes running in several units Download PDFInfo
- Publication number
- EP1211070B2 EP1211070B2 EP01126527A EP01126527A EP1211070B2 EP 1211070 B2 EP1211070 B2 EP 1211070B2 EP 01126527 A EP01126527 A EP 01126527A EP 01126527 A EP01126527 A EP 01126527A EP 1211070 B2 EP1211070 B2 EP 1211070B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- system clock
- time
- clock
- values
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G7/00—Synchronisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F33/00—Indicating, counting, warning, control or safety devices
Definitions
- the invention relates to an apparatus and a method for the synchronization of processes that are performed by separate processors and are tuned to the system clock of a central unit.
- Application finds this device or the process in completed processes on various components of a paper-processing machine
- the EP 0 747 216 B1 Prior to connecting various units that are supplied with Winkelscellungssignale by two bus systems. Each unit receives by means of a bus system constantly the current angle value and by means of the other bus system information to be made to a switching operation. The angle setpoint at which the switching process is to be triggered is stored in a memory of the respective unit.
- a plurality of slave units are connected to a master unit, which exchange data via a system bus.
- the system bus continues to transmit a system clock to the slave units via the master unit.
- This system clock serves the slave units as a reference signal.
- the slave units synchronize by means of a PLL circuit respectively to the system clock and thus ensure a synchronous clock generation in the slave units to the master unit.
- the PLL circuits in the slave units switch to stand-alone mode, ensuring clock generation for each slave unit until the system clock returns.
- the device according to the invention and the corresponding method is based on the object to bring about a synchronization of many processes with simple means.
- the device assumes that a central unit takes over the coordination of different further units located in the periphery.
- the task of the central unit is to synchronize all processes running on the periphery.
- the frequency of the system clock is chosen to be relatively low. The clock signal thus moves in a frequency range, whereby a distribution of the clock signal over longer distances is possible. Furthermore, it is possible to suppress the incoming system clock by suitable filter measures.
- the device according to the invention proposes to multiply the incoming system clock in the peripheral unit according to the requirements.
- This so-called module clock then generated has the desired resolution, or is advantageously adjustable to the desired resolution.
- the clock always prevails at the peripheral unit, which is required for the respective process.
- the device according to the invention provides a clock integrated in the peripheral units, which is synchronized by the system clock. Between the respective synchronization intervals by the system clock, the clock is free.
- the module clock frequency stable at the peripheral unit proposes a variant of the invention to stabilize these by means of quartz. According to a calculated drift, which results from the quality of the stabilizing quartz, the time interval of the synchronization interval can be determined.
- the generation of a local module clock has the advantage that in case of failure of the system clock generated in the central unit there is no risk that processes run uncontrolled and lead to accidents, since a vote of independently running processes is no longer possible.
- the procedure is such that a failure of the system clock is detected by the processor in the peripheral unit, which then controlled down the process based on the local module clock to a stop.
- the required time between failure of the system clock and the controlled shutdown of the process is so short that the drifting of the module clock from the system clock mentioned above does not lead to any significant problems.
- all processes that take place at the various peripheral units and are synchronized with one another by the system clock are brought to a controlled halt by the locally generated module clock.
- a method according to the invention also proposes that a so-called synchronization interval takes place at regular intervals, for example after every hundredth system clock.
- a time announcement 37 is made to the peripheral unit, which adjusts the peripheral unit to the absolute time.
- all peripheral units receive a time adjustment for absolute time, a so-called time stamp.
- each peripheral unit can tune its processes to the running machine, that is, running processes can be kept synchronous by corrective measures, or starting processes can be started at the right time or angle of the machine.
- the peripheral unit With the simultaneous notification of the value of the time of acquisition, the peripheral unit is able to extrapolate the transmitted value at any time between two transmitted values. This means that even the time delay in the transmission of the values results in the problem that when the values are received, they are no longer up to date.
- the advantage of the device or method according to the invention is that it is almost irrelevant how long the transmission of the values takes, since the current value can always be determined.
- the start time of a starting process between two transmitted values can be calculated exactly by the above-mentioned extrapolation.
- the event to be performed can be triggered without the need for a time-synchronous instruction of the central unit.
- Such an angle-dependent event can be triggered by each peripheral unit without the need for direct cabling with a central incremental encoder. This saves on the one hand cabling and on the other hand ensures a lower susceptibility to interference.
- the method according to the invention proposes the following variant:
- the auxiliary drive is equipped with its own setpoint generator. This setpoint generator calculates the setpoints for the auxiliary drive.
- sampling cycles are defined in which the actual values of the auxiliary drive are read in and new nominal values are specified using various control algorithms.
- the actual values of the main drive are sent at discrete times (for reasons of bus load), but their frequency is less than the sampling cycles of the auxiliary drive.
- An additional application of the device or the method according to the invention is that different synchronously running motors are not controlled by the actual values of a main drive, but on a central command specification.
- Running drives in a speed ratio e.g. Half-speed, third-speed or double-speed, a setpoint generator in the peripheral unit ensures the generation of correspondingly adapted setpoint values.
- All motor controllers now use the same algorithm and always read the actual values of the motors at the exact same time. This time corresponds to the system clock. This ensures that all motors are controlled to a virtual electronic wave.
- Fig. 1 shows a cross-linking of two processors 1a, b.
- the processors 1a, b, together with an interface 2a, b and connected input / output cards 3a, b and motor control cards 4a, b respectively represent a unit 5a, b.
- the respective local components, such as processor 1a and interface 2a, and 1b and 2b are interconnected by means of VME bus system 6.
- On the interface 2a is still a system clock 7.
- This system clock 7 is forwarded by means of free line 9, for example, a CAN bus system 10 to the located in the periphery input / output card 3a and the motor control board 4a.
- the number of input / output cards 3a, or the number of motor control cards 4a is irrelevant.
- the system clock is passed to the interface 2b of the unit 5b.
- a system clock processing 8 for example, contains a filter or an amplifier.
- the system clock 7 is also supplied to the unit 5b associated input / output card 3b and the motor control card 4b via line 9.
- the input / output card 3b or motor control card 4b also referred to as subscribers, can be extended by subscribers 16a, b whose use is not defined.
- the number of interfaces 2a, b per unit 5a, b may be greater than shown in this embodiment.
- the system clock 7 is furthermore made available via the local VME bus system 6a, b to all local components 1a, b or 2a, b belonging to the unit 5a, b. Via a line 9d further units 5n can be connected to the system clock 7.
- the multiplication unit 11 has the task to multiply the resolution according to the required conditions. This can, for example, based on an embodiment according to Fig.2 respectively.
- Fig. 2 shows a block diagram of a multiplication unit 11 as it is present on the various input / output cards 3a, b and engine control cards 4a, b.
- a frequency generator 12 a clock having a frequency of, for example, 1 MHz is generated. For frequency stabilization this is associated with a quartz 13.
- a counter 14 is connected to the frequency generator 12. With the system clock 7, the counter 14 is started or reset. If the system clock 7 has, for example, a clock frequency of 1 kHz, the counter counts within a period of the system clock 7 from 0-999 and repeats this process constantly. More specifically, this means that the pulses of the frequency generator 12 are turned on in case they are synchronous with the system clock 7, so to speak.
- the synchronized module clock 15 of the input / output card, 3ab or motor control card 4ab is provided at one output.
- Fig. 3a to 3e are several diagrams showing the system clock 7 ( Fig. 3a ) the ramp function of the counter 14 ( Fig. 3b ) and a fine resolution of the module clock 15 ( Fig. 3c, d, e ) demonstrate.
- the diagram after Fig. 3a shows the system clock 7, wherein in the diagram according to Fig. 3b the ramp function of the counter 14 is always started with the falling edge 30 of the system clock 7.
- the counter 14 counts from 0-999 within a period each between the falling edges 30 of the system clock 7.
- the ramp functions 33, 34, 35 show different behavior which is indicated by the diagrams according to FIG Fig. 3c, d, e can be explained. So is in Fig.
- the diagram after Fig. 3d shows the case that the module clock 15 compared to the system clock 7 is slightly faster than the thousandth of the system clock 7. Because the counter 14 no longer increases its count at 999, the last count (999) remains until a reset of the Counter takes place by the falling edge 30 of the system clock 7. Likewise, there is thus again a correction or synchronization.
- the diagram after Fig. 3e represents yet another variant. After reaching the count 999, the counter is not reset by the system clock 7, because this has failed, for example, but there is a reset of the counter due to exceeding a predetermined time window 36. This time window 36 is at a defined Counting (eg 990) starts and ends, for example 10 microseconds after reaching the count 999.
- a forced resetting of the module clock 15 which simultaneously results in that the clocked by the module clock 15 processes from the time of the first failure of the system clock, controlled be brought to a standstill.
- the effect of the time window 36 is also equal to a filtering.
- a connection of the time window 36 with the system clock 7 can be achieved by means of an AND gate, as a result of which the system clock 7 is switched through only within the time window 36 is possible. Spurious signals that are on the line of the system clock 7 are ignored outside of the time window 36.
- Figure 4 shows a timing diagram over the course of a section of the system clock 7.
- the clock frequency of the system clock 7 is for example at 1 kHz and has an unequal duty cycle.
- the rising edge 31 already occurs after, for example, 50 .mu.s.
- the user 2b, 3ab, 4ab can start a measuring cycle 32 after the falling edge 30, for example 550 .mu.s after the falling edge 30, which as a rule is in the high state of System clocks 7 is located.
- the subscriber 2b, 3ab, 4ab focuses his attention on recognizing when the next system clock 7 comes.
- time announcement 37 Every 100 ms, that is to say after every one hundredth system clock 7, a so-called time announcement 37 occurs.
- This time announcement 37 is recognized by the fact that 550 ⁇ s after the falling edge 30 no high state of the system clock prevails.
- the subscriber 2b, 3ab, 4ab thus recognizes that this is the announcement of the time announcement 37.
- This time announcement 37 receives each participant 2b, 3ab, 4ab an exact indication of the time that has elapsed since the machine was turned on (absolute time).
- the advantage is that subscribers who are subsequently switched on, that is to say during which the machine is already running, are always informed of the absolute time of the machine.
- Each subscriber 2b, 3ab, 4ab can then perform an event related to the absolute time without having to receive the command thereto from the central unit 5a.
- Fig. 5 shows a block diagram for the control of two motors.
- Fig. 5 is opposite Fig.1 to the effect that a motor 20a, b and an incremental encoder 21a, b have been added to the motor control board 4a, b.
- the interface 2a is an input device 22 for inputs that can be done by the operator of the machine attached.
- the motor 20a is the main motor responsible for the rotational movement of the cylinders of a printing press. This motor 20a is controlled as follows:
- the operator of the machine enters a value for the speed.
- This value is supplied via the CAN bus system 10 a of the motor control board 4 a, which determines therefrom the control values (current setpoint values) for the motor 20 a and adjusts.
- the motor 20a is provided with an incremental encoder 21a which is either directly seated on the motor shaft of the motor 20a or at a suitable position of the gear train driven by the motor 20a.
- the pulses of the incremental encoder 21a are read in by the motor drive board 4a. The reading-in process always takes place at the time of a system clock 7. From these pulses, the speed, the acceleration and the angular position of the motor 20a are calculated in the motor control board 4a.
- these values are used to control the motor 20a, on the other hand, these values are always communicated together with the detection time to all other subscribers 3a, b4b.
- the included acquisition time makes it irrelevant whether the data is transmitted quickly, whether the data is transmitted at a certain time or whether all participants receive the data at the same time.
- motor control card 4b which has been given the task, for example, by the processor 2b of operating the motor 20b in synchronism with the motor 20a.
- a task is implemented in the engine control card 4b by a so-called command interpreter.
- the motor control card 4b now receives the values speed, acceleration and angular position of the motor 20a at regular intervals. From these values, the setpoint values for the own motor 20b are calculated.
- the time interval between two transmissions of the values speed, acceleration and angular position of the motor 20a with the corresponding indication of the detection time is possibly too great for a synchronous attitude of two motors 20a, b, so that interpolation takes place in the meantime.
- This interpolation is performed on the motor control board 4b and the setpoint values for the motor 20b are calculated on the basis of these interpolated values.
- a multiplication unit 11 for generating a module clock 15 is located on the motor control card 4b Fig.2 ,
- the resolution of the module clock 15 is set so that the operations executing on the motor drive board 4b (interpolation of the course of the motor 20a, input of the pulses of the incremental encoder 21b, calculation of the actual values of the motor 20b from the pulses of the incremental encoder 21b, calculation of new set values for the Motor 21b, etc.) are all considered time optimized.
Landscapes
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Control Of Multiple Motors (AREA)
- Control Of Stepping Motors (AREA)
- Control By Computers (AREA)
- Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
- Time Recorders, Dirve Recorders, Access Control (AREA)
- Multi Processors (AREA)
- Control Of Velocity Or Acceleration (AREA)
- Train Traffic Observation, Control, And Security (AREA)
- Numerical Control (AREA)
- Conveying And Assembling Of Building Elements In Situ (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Synchronisation von Prozessen, die von separaten Prozessoren ausgeführt werden und auf den Systemtakt einer zentralen Einheit abgestimmt sind. Anwendung findet diese Vorrichtung bzw. das Verfahren bei abgeschlossenen Prozessen an verschiedenen Komponenten einer papierverarbeitenden MaschineThe invention relates to an apparatus and a method for the synchronization of processes that are performed by separate processors and are tuned to the system clock of a central unit. Application finds this device or the process in completed processes on various components of a paper-processing machine
Üblicherweise ist es aus Vorrichtungen bzw. Verfahren bekannt, dass über einen Bus ein spezielles Protokoll geschickt wird, wodurch die verschiedenen Prozessoren mit dem Leitsystem synchronisiert werden. Derartige Systeme belasten die Prozessoren zeitlich und setzen dazu eine spezielle Hardware voraus.Usually, it is known from devices or methods that a special protocol is sent over a bus, whereby the various processors are synchronized with the control system. Such systems burden the processors in terms of time and require special hardware.
Insbesondere schlägt die
Aus dem Dokument
Als nächstliegender Stand der Technik ist das Dokument
Ausgehend von diesem Stand der Technik liegt der erfindungsgemäßen Vorrichtung und dem entsprechenden Verfahren die Aufgabe zu Grunde, mit einfachen Mitteln eine Synchronisation vieler Prozesse herbeizuführen.Based on this prior art, the device according to the invention and the corresponding method is based on the object to bring about a synchronization of many processes with simple means.
Gelöst wird diese Aufgabe durch die kennzeichnenden Merkmale von Anspruch 1 und 2.This problem is solved by the characterizing features of
Die erfindungsgemäße Vorrichtung geht davon aus, dass eine zentrale Einheit die Koordination von verschiedenen in der Peripherie befindlichen weiteren Einheiten übernimmt. Dabei kommt der zentralen Einheit die Aufgabe zu, alle an der Peripherie ablaufenden Prozesse zu synchronisieren. Dazu wird ein zentral erzeugter Systemtakt auf einer freien Leitung eines Feld-Busses, z. B. CAN-BUS, an sämtliche am Prozess beteiligten Einheiten geleitet. Um die Störanfälligkeit des Systemtaktes gering zu halten, bzw. ein Übersprechen dieses Taktsignals auf andere Signalleitungen zu verhindern, wird die Frequenz des Systemtakts relativ niedrig gewählt. Das Taktsignal bewegt sich somit in einem Frequenzbereich, wodurch eine Verteilung des Taktsignals über längere Distanzen möglich ist. Weiterhin ist es möglich, den ankommenden Systemtakt durch geeignete Filtermaßnahmen zu entstören.The device according to the invention assumes that a central unit takes over the coordination of different further units located in the periphery. The task of the central unit is to synchronize all processes running on the periphery. For this purpose, a centrally generated system clock on a free line of a field bus, z. B. CAN-BUS, passed to all units involved in the process. In order to keep the susceptibility of the system clock low, or to prevent a crosstalk of this clock signal to other signal lines, the frequency of the system clock is chosen to be relatively low. The clock signal thus moves in a frequency range, whereby a distribution of the clock signal over longer distances is possible. Furthermore, it is possible to suppress the incoming system clock by suitable filter measures.
Üblicherweise ist es erforderlich, dass für einen Prozess in der peripheren Einheit ein schnellerer Takt benötigt wird, als der Systemtakt. Deshalb schlägt die erfindungsgemäße Vorrichtung vor, in der peripheren Einheit den ankommenden Systemtakt entsprechend den Erfordernissen zu multiplizieren. Dieser dann erzeugte sogenannte Modultakt weist die gewünschte Auflösung auf, bzw. ist vorteilhafter Weise auf die gewünschte Auflösung einstellbar. Somit herrscht an der peripheren Einheit immer der Takt vor, der für den jeweiligen Prozess erforderlich ist.It is usually necessary for a process in the peripheral unit to require a faster clock than the system clock. Therefore, the device according to the invention proposes to multiply the incoming system clock in the peripheral unit according to the requirements. This so-called module clock then generated has the desired resolution, or is advantageously adjustable to the desired resolution. Thus, the clock always prevails at the peripheral unit, which is required for the respective process.
Die erfindungsgemäße Vorrichtung sieht einen in die peripheren Einheiten integrierten Taktgeber vor, der durch den Systemtakt synchronisiert wird. Zwischen den jeweiligen Synchronisationsintervallen durch den Systemtakt läuft der Taktgeber frei. Um den Modultakt an der peripheren Einheit frequenzstabil zu halten, schlägt eine erfindungsgemäße Variante vor diesen mittels Quarz zu stabilisieren. Entsprechend einer einkalkulierten Drift, die sich durch die Güte des stabilisierenden Quarzes ergibt, kann der Zeitabstand des Synchronisationsintervalls bestimmt werden.The device according to the invention provides a clock integrated in the peripheral units, which is synchronized by the system clock. Between the respective synchronization intervals by the system clock, the clock is free. In order to keep the module clock frequency stable at the peripheral unit proposes a variant of the invention to stabilize these by means of quartz. According to a calculated drift, which results from the quality of the stabilizing quartz, the time interval of the synchronization interval can be determined.
Die Erzeugung eines lokalen Modultaktes bringt den Vorteil, dass bei Ausfall des in der zentralen Einheit erzeugten Systemtaktes nicht die Gefahr besteht, dass Prozesse unkontrolliert ablaufen und zu Unfällen führen, da eine Abstimmung der unabhängig laufenden Prozesse nicht mehr möglich ist. Dazu ist die Vorgehensweise so, dass ein Ausbleiben des Systemtaktes durch den Prozessor in der peripheren Einheit erkannt wird, der daraufhin den Prozess anhand des lokalen Modultaktes kontrolliert bis zum Stillstand herunterfährt. Die erforderliche Zeitspanne zwischen Ausbleiben des Systemtaktes und dem kontrollierten Herunterfahren des Prozesses ist so kurz, dass das bereits erwähnte Abdriften des Modultaktes vom Systemtakt zu keiner nennenswerten Problematik führt. Das heißt alle Prozesse, die an den verschiedenen peripheren Einheiten ablaufen und durch den Systemtakt zueinander synchronisiert werden, werden durch den vor Ort erzeugten Modultakt kontrolliert zum Stillstand gebracht.The generation of a local module clock has the advantage that in case of failure of the system clock generated in the central unit there is no risk that processes run uncontrolled and lead to accidents, since a vote of independently running processes is no longer possible. For this purpose, the procedure is such that a failure of the system clock is detected by the processor in the peripheral unit, which then controlled down the process based on the local module clock to a stop. The required time between failure of the system clock and the controlled shutdown of the process is so short that the drifting of the module clock from the system clock mentioned above does not lead to any significant problems. In other words, all processes that take place at the various peripheral units and are synchronized with one another by the system clock are brought to a controlled halt by the locally generated module clock.
Ein erfindungsgemäßes Verfahren schlägt weiterhin vor, dass in regelmäßigen Abständen, beispielsweise nach jedem hundertsten Systemtakt ein so genannter Synchronisationsintervall erfolgt. Mit diesem Vorgang erfolgt an die periphere Einheit eine Zeitansage 37, welche die periphere Einheit auf die Absolutzeit abgleicht. Bei dem Synchronisationsintervall erhalten alle peripheren Einheiten für einen Zeitabgleich auf Absolutzeit, einen sogenannten Zeitstempel. Durch die Verteilung dieser Information kann jede periphere Einheit ihre Prozesse auf die laufende Maschine abstimmen, das heißt, laufende Prozesse können durch korrigierende Maßnahmen auf Synchronität gehalten werden, oder beginnende Prozesse können zum richtigen Zeitpunkt, bzw. zur richtigen Winkelstellung der Maschine gestartet werden.A method according to the invention also proposes that a so-called synchronization interval takes place at regular intervals, for example after every hundredth system clock. With this process, a
Weiterhin erhalten alle peripheren Einheiten z.B. mittels CAN-Bussystem folgende Werte und den Erfassungszeitpunkt der Werte, die zur Steuerung einer papierverarbeitenden Maschine relevant sind:
- Drehzahl v(t)
- Beschleunigung a(t)
- aktuelle Winkelstellung ϕ(t)
- gegebenenfalls weitere Werte von Gebern, wie z.B. Papierankunftssignale eines Anlegers.
- Speed v (t)
- Acceleration a (t)
- current angular position φ (t)
- where applicable, other values of donors, such as an investor's paper arrival signals.
Mit der gleichzeitigen Mitteilung des Erfassungszeitpunkts des Wertes ist die periphere Einheit in der Lage, durch eine Extrapolation den übermittelten Wert auf jeden beliebigen Zeitpunkt zwischen zwei übermittelten Werten zu berechnen. Das heißt, bereits durch die Zeitverzögerung in der Übermittlung der Werte ergibt sich das Problem, dass bei Erhalt der Werte, diese schon nicht mehr aktuell sind. Durch die erfindungsgemäße Vorrichtung, bzw. das Verfahren ergibt sich der Vorteil, dass es beinahe unerheblich ist, wie lange die Übermittlung der Werte dauert, da der aktuelle Wert immer ermittelt werden kann.With the simultaneous notification of the value of the time of acquisition, the peripheral unit is able to extrapolate the transmitted value at any time between two transmitted values. This means that even the time delay in the transmission of the values results in the problem that when the values are received, they are no longer up to date. The advantage of the device or method according to the invention is that it is almost irrelevant how long the transmission of the values takes, since the current value can always be determined.
Ein zusätzlicher Vorteil liegt darin, dass der Startzeitpunkt eines anlaufenden Prozesses zwischen zwei übermittelten Werten durch die oben erwähnte Extrapolation exakt errechnet werden kann. Beispielsweise erhält die periphere Einheit mit der Übermittlung der Werte die aktuelle Winkelstellung der Maschine z.B. ϕ= 270°, die Geschwindigkeit, v = 8000 Umdrehungen/Stunde, die Beschleunigung a = 0 . Der Teilnehmer soll bei einer Winkelstellung von ϕ = 278° ein Ereignis auslösen, bzw. einen Prozess starten. Anhand der erhaltenen Werte kann der Teilnehmer die Zeit errechnen, bis die Maschine die Winkelstellung von ϕ = 278° erreicht hat. Anhand der eigenen Zeitbasis, bzw. dem Modultakt der bei Erhalt des letzten Systemtakts auf diesen synchronisiert wurde, kann das zu erfolgende Ereignis ausgelöst werden, ohne dass dazu eine zeitsynchrone Anweisung der zentralen Einheit erfolgen muss. Ein solches winkelabhängiges Ereignis kann von jeder peripheren Einheit ausgelöst werden, ohne dass dazu eine direkte Verkabelung mit einem zentralen Inkrementalgeber notwendig ist. Dieses spart einerseits Verkabelungsaufwand und sorgt andererseits für eine geringere Störanfälligkeit.An additional advantage is that the start time of a starting process between two transmitted values can be calculated exactly by the above-mentioned extrapolation. For example, with the transmission of the values, the peripheral unit obtains the current angular position of the machine, e.g. φ = 270 °, the speed, v = 8000 revolutions / hour, the acceleration a = 0. The participant should trigger an event at an angular position of φ = 278 ° or start a process. Based on the values obtained, the participant can calculate the time until the machine has reached the angular position of φ = 278 °. On the basis of its own time base, or the module clock that was synchronized to it on receipt of the last system clock, the event to be performed can be triggered without the need for a time-synchronous instruction of the central unit. Such an angle-dependent event can be triggered by each peripheral unit without the need for direct cabling with a central incremental encoder. This saves on the one hand cabling and on the other hand ensures a lower susceptibility to interference.
Ist es aus welchen Gründen auch immer zum Zeitpunkt des Systemtakts nicht möglich die Istwerte des Motors einzulesen, können diese auch zu einem beliebigen Zeitpunkt eingelesen werden. Anschließend werden durch Extrapolation die Istwerte auf den Zeitpunkt zurück oder nach vorne gerechnet, zu dem ein Systemtakt vorgelegen hat, bzw. vorliegt.If, for whatever reason, it is not possible to read in the actual values of the motor at the time of the system clock, they can also be read in at any time. Subsequently, by extrapolation, the actual values are calculated back to the time or forward at which a system clock was or is present.
Für die synchrone Steuerung von Zusatzantrieben die separat vom Hauptantrieb ablaufen, schlägt das erfindungsgemäße Verfahren folgende Variante vor:For the synchronous control of auxiliary drives which run separately from the main drive, the method according to the invention proposes the following variant:
Der Zusatzantrieb wird mit einem eigenen Sollwertgenerator ausgestattet. Dieser Sollwertgenerator errechnet die Sollwerte für den Zusatzantrieb. Entsprechend der dynamischen Anforderungen des Zusatzantriebs, werden Abtastzyklen definiert, bei denen die Istwerte des Zusatzantriebes eingelesen und anhand verschiedener Regelalgorithmen neue Sollwerte vorgeben werden. Die Istwerte des Hauptantriebs werden zu diskreten Zeitpunkten (aus Gründen der Busbelastung) versendet, deren Frequenz aber geringer ist als die Abtastzyklen des Zusatzantriebes. Durch den jeweils mitversendeten Erfassungszeitpunkt der Istwerte des Hauptantriebs kann der weitere Verlauf der Istwerte des Hauptantriebes am Zusatzantrieb für jeden beliebigen Zeitpunkt rechnerisch ermittelt werden (Interpolation/Extrapolation).The auxiliary drive is equipped with its own setpoint generator. This setpoint generator calculates the setpoints for the auxiliary drive. In accordance with the dynamic requirements of the auxiliary drive, sampling cycles are defined in which the actual values of the auxiliary drive are read in and new nominal values are specified using various control algorithms. The actual values of the main drive are sent at discrete times (for reasons of bus load), but their frequency is less than the sampling cycles of the auxiliary drive. By the respectively sent in detection time of the actual values of the main drive, the further course of the actual values of the main drive at the auxiliary drive for each arbitrary time point can be calculated (interpolation / extrapolation).
Eine zusätzliche Anwendung der erfindungsgemäßen Vorrichtung, bzw. des Verfahrens besteht darin, dass verschiedene zueinander synchron laufende Motoren nicht nach den Istwerten eines Hauptantriebs, sondern auf eine zentralen Befehlsvorgabe geregelt werden. Das heißt, von der zentralen Einheit werden Befehle für sämtliche am Prozess beteiligten Antriebe vorgegeben. Laufen Antriebe in einem Drehzahlverhältnis z.B. halbtourig, dritteltourig oder auch doppelttourig, sorgt ein Sollwertgenerator in der peripheren Einheit für die Erzeugung entsprechend angepasster Sollwerte. Alle Motorregler arbeiten jetzt nach demselben Algorithmus und lesen die Istwerte der Motoren immer zum exakt gleichen Zeitpunkt ein. Dieser Zeitpunkt entspricht dem Systemtakt. Dadurch wird erreicht, dass alle Motoren auf eine virtuelle elektronische Welle geregelt werden.An additional application of the device or the method according to the invention is that different synchronously running motors are not controlled by the actual values of a main drive, but on a central command specification. This means that the central unit issues commands for all drives involved in the process. Running drives in a speed ratio e.g. Half-speed, third-speed or double-speed, a setpoint generator in the peripheral unit ensures the generation of correspondingly adapted setpoint values. All motor controllers now use the same algorithm and always read the actual values of the motors at the exact same time. This time corresponds to the system clock. This ensures that all motors are controlled to a virtual electronic wave.
Anhand eines Ausführungsbeispiels soll die Erfindung nachfolgend näher erläutert werden.
Es zeigen:
- Fig. 1
- ein Blockdiagramm der Vernetzung verschiedener Prozessoren,
- Fig. 2
- ein Blockdiagramm über eine Multiplikationseinheit,
- Fig. 3a
- ein Zeitdiagramm des Systemtakts,
- Fig. 3b
- ein Zeitdiagramm eines Zählvorgangs,
- Fig. 3c
- ein Zeitdiagramm der Feinauflösung des Modultakts,
- Fig. 3d
- ein Zeitdiagramm der Feinauflösung des Modultakts,
- Fig. 3e
- ein Zeitdiagramm der Feinauflösung des Modultakts,
- Fig. 4
- ein Zeitdiagramm über den Verlauf des Systemtakts,
- Fig. 5
-
Fig. 1 mit zusätzlicher Motoransteuerung.
Show it:
- Fig. 1
- a block diagram of the networking of different processors,
- Fig. 2
- a block diagram of a multiplication unit,
- Fig. 3a
- a timing diagram of the system clock,
- Fig. 3b
- a time diagram of a counting process,
- Fig. 3c
- a time diagram of the fine resolution of the module clock,
- Fig. 3d
- a time diagram of the fine resolution of the module clock,
- Fig. 3e
- a time diagram of the fine resolution of the module clock,
- Fig. 4
- a time diagram of the course of the system clock,
- Fig. 5
-
Fig. 1 with additional motor control.
An der Ein-/Ausgangskarte 3a,b und der Motorsteuerkarte 4a,b werden Aufgaben ausgeführt, die eine Zeitauflösung benötigen, die feiner ist als sie der Systemtakt 7 zur Verfügung stellt. Deshalb werden in diesen Karten 3a,b 4a,b zusätzliche Multiplikationseinheiten 11 benötigt. Die Multiplikationseinheit 11 hat die Aufgabe die Auflösung entsprechend der erforderlichen Gegebenheiten zu multiplizieren. Dieses kann beispielsweise anhand einer Ausführung gemäß
In
Das Diagramm nach
Die Wirkung des Zeitfensters 36 kommt auch einer Filterung gleich. Beispielsweise kann mittels UND-Gatter eine Verknüpfung des Zeitfensters 36 mit dem Systemtakt 7 erzielt werden, wodurch ein Durchschalten des Systemtakts 7 nur innerhalb des Zeitfensters 36 möglich ist. Störsignale, die sich auf der Leitung des Systemtakts 7 befinden werden außerhalb des Zeitfensters 36 ignoriert.The effect of the
Mittels der Eingabeeinrichtung 22 gibt der Bediener der Maschine einen Wert für die Drehzahl ein. Dieser Wert wird über das CAN-Bussystem 10 a der Motorsteuerkarte 4a zugeführt, welche daraus die Ansteuerwerte (Stromsollwerte) für den Motor 20a ermittelt und einstellt. Am Motor 20a befindet sich ein Inkrementalgeber 21a der entweder direkt auf der Motorwelle des Motors 20a sitzt oder an einer geeigneten Stelle des durch den Motor 20a angetriebenen Getriebes bzw. Zahnradzugs. Die Pulse des Inkrementalgebers 21a werden von der Motoransteuerkarte 4a eingelesen. Der Einlesevorgang erfolgt immer zum Zeitpunkt eines Systemtakts 7. Aus diesen Pulsen werden in der Motorsteuerkarte 4a die Drehzahl, die Beschleunigung und die Winkelstellung des Motors 20a errechnet. Diese errechneten Werte dienen zum einen der Regelung für den Motor 20a, zum anderen werden diese Werte immer zusammen mit dem Erfassungszeitpunkt allen weiteren Teilnehmern 3a,b 4b mitgeteilt. Durch den mitgelieferten Erfassungszeitpunkt ist es unerheblich, ob die Daten schnell übertragen werden, ob die Daten zu einem bestimmten Zeitpunkt übertragen werden oder ob alle Teilnehmer die Daten gleichzeitig übermittelt bekommen.By means of the
Diese Werte erhält auch die Motorsteuerkarte 4b, die beispielsweise durch den Prozessor 2b die Aufgabe bekommen hat den Motor 20b synchron zu dem Motor 20a zu betreiben. Eine solche Aufgabe wird in der Motorsteuerkarte 4b durch einen sogenannten Befehlsinterpreter umgesetzt. Die Motorsteuerkarte 4b bekommt nun in regelmäßigen Abständen die Werte Drehzahl, Beschleunigung und Winkelstellung des Motors 20a übermittelt. Aus diesen Werten werden nun die Sollwerte für den eigenen Motor 20b berechnet.These values are also given to the
Der zeitliche Abstand zwischen zwei Übermittlungen der Werte Drehzahl, Beschleunigung und Winkelstellung des Motors 20a mit der entsprechenden Angabe des Erfassungszeitpunkts ist für eine Synchronhaltung zweier Motoren 20a,b möglicherweise zu groß, so dass in der Zwischenzeit eine Interpolation erfolgt. Diese Interpolation wird auf der Motorsteuerkarte 4b vorgenommen und anhand dieser interpolierten Werte die Sollwerte für den Motor 20b errechnet.The time interval between two transmissions of the values speed, acceleration and angular position of the
Weiterhin befindet sich auf der Motoransteuerkarte 4b eine Multiplikationseinheit 11 zur Erzeugung eines Modultakts 15 gemäß
- 1a,b1a, b
- Prozessorprocessor
- 2a,b2a, b
- Schnittstelleinterface
- 3a,b3a, b
- Ein-/Ausgabekarte (Teilnehmer)Input / output card (participant)
- 4a,b4a, b
- Motorsteuerkarte (Teilnehmer)Motor control card (participant)
- 5a,b5a, b
- Einheitunit
- 5n5n
- weitere Einheitanother unit
- 66
- VME-BussystemVME bus system
- 77
- Systemtaktsystem clock
- 88th
- SystemtaktaufbereitungSystem clock conditioning
- 99
- Leitungmanagement
- 1010
- CAN-BussystemCAN bus system
- 1111
- Multiplikationseinheitmultiplication unit
- 1212
- Frequenzgeneratorfrequency generator
- 1313
- Quarzquartz
- 1414
- Zählercounter
- 1515
- Modultaktmodule clock
- 16a,b16a, b
- TeilnehmerAttendees
- 20a,b20a, b
- Motorengine
- 21a,b21a, b
- Inkrementalgeberincremental
- 2222
- Eingabeeinrichtunginput device
- 3030
- abfallende Flankefalling edge
- 3131
- ansteigende Flankerising edge
- 3232
- Messzyklusmeasuring cycle
- 3333
- Rampenfunktionramp function
- 3434
- Rampenfunktionramp function
- 3535
- Rampenfunktionramp function
- 3636
- ZeitfensterTime window
- 3737
- Zeitansagetime Of Day
Claims (2)
- Device for synchronizing processes running on different units (5a, 5b, 5n) on different components of a paper-processing machine,
wherein a central unit is connected to further units (5a, 5b, 5n) via a field bus (10),
wherein the central unit is a device for generating a system cycle (7), wherein a free line (9) of the field bus (10) is provided for distributing the system cycle (7) to the further units (5a, 5b, 5n), and wherein devices for the multiplication (11) of the system cycle (7) are provided on the further units (5a, 5b, 5n),
characterized in
that the multiplication unit (11) includes a device for detecting an absolute time signal (37). - Method for synchronizing processes running on a central unit and on further units (5a, 5b, 5n) on different components of a paper-processing machine,
wherein a system cycle (7) is generated in the central unit and module cycles are generated in the further units, and wherein the system cycle (7) generated in the central unit is used to synchronize the module cycle generated in the further units (5a, 5b) and wherein multiplication devices (11) in the further units (5a, 5b, 5n) multiply the system cycle (7),
characterized in
that upon a failure of the system cycle (7), the processes run by the further units involved (5a, 5b, 5n) are shut down governed by the module cycle (15).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10059270 | 2000-11-29 | ||
DE10059270A DE10059270B4 (en) | 2000-11-29 | 2000-11-29 | Apparatus and method for synchronizing processes running on multiple units |
Publications (4)
Publication Number | Publication Date |
---|---|
EP1211070A2 EP1211070A2 (en) | 2002-06-05 |
EP1211070A3 EP1211070A3 (en) | 2003-08-27 |
EP1211070B1 EP1211070B1 (en) | 2010-06-30 |
EP1211070B2 true EP1211070B2 (en) | 2013-01-16 |
Family
ID=7665113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01126527A Expired - Lifetime EP1211070B2 (en) | 2000-11-29 | 2001-11-14 | Device and method for synchronizing processes running in several units |
Country Status (8)
Country | Link |
---|---|
US (1) | US6948085B2 (en) |
EP (1) | EP1211070B2 (en) |
JP (1) | JP4078065B2 (en) |
CN (1) | CN1272173C (en) |
AT (1) | ATE472407T1 (en) |
CZ (1) | CZ303068B6 (en) |
DE (2) | DE10059270B4 (en) |
HK (1) | HK1047726B (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3363872B2 (en) * | 2000-06-23 | 2003-01-08 | 株式会社東京機械製作所 | Synchronous control device with cutting register and print register automatic adjustment functions |
DE10248690B4 (en) | 2001-11-15 | 2019-10-31 | Heidelberger Druckmaschinen Ag | Method for synchronizing a plurality of electric drive units |
DE10312379B4 (en) | 2002-04-04 | 2018-06-28 | Heidelberger Druckmaschinen Ag | Method and device for the synchronization of drive combinations |
DE10246732A1 (en) * | 2002-10-07 | 2004-04-15 | OCé PRINTING SYSTEMS GMBH | Method of synchronizing actions controlled via local data network, e.g. for printer or copier, by carrying out control commands by respective micro-controllers when specified count value is reached |
US7091827B2 (en) * | 2003-02-03 | 2006-08-15 | Ingrid, Inc. | Communications control in a security system |
DE102005039450B4 (en) * | 2005-08-18 | 2008-04-30 | Dspace Digital Signal Processing And Control Engineering Gmbh | Method and network for synchronous processing and provision of data |
US7596711B2 (en) | 2005-08-19 | 2009-09-29 | Dspace Digital Signal Processing And Control Engineering Gmbh | Method and network for synchronistic processing and providing data using an extrapolation data set including at least one update time point |
JP2007219642A (en) * | 2006-02-14 | 2007-08-30 | Fanuc Ltd | Control system |
US8325767B2 (en) | 2006-09-29 | 2012-12-04 | Agilent Technologies, Inc. | Enhancement of IEEE 1588 synchronization using out-of-band communication path |
JPWO2008075404A1 (en) * | 2006-12-19 | 2010-04-02 | 株式会社システムブイマネジメント | Semiconductor manufacturing system |
DE102007031709B4 (en) * | 2007-07-06 | 2009-04-30 | Schneider Electric Motion Deutschland Gmbh & Co. Kg | Electric drive |
US8516293B2 (en) * | 2009-11-05 | 2013-08-20 | Novell, Inc. | System and method for implementing a cloud computer |
DE102008039793A1 (en) * | 2008-08-26 | 2010-03-04 | Siemens Aktiengesellschaft | Method for clock synchronization in a communication network and communication network |
US9766648B2 (en) | 2013-07-16 | 2017-09-19 | Ford Global Technologies, Llc | Controller system coordinated using a timing signal and method of controller coordination using a timing signal |
JP6236996B2 (en) | 2013-08-28 | 2017-11-29 | 富士通株式会社 | Information processing apparatus and information processing apparatus control method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5077686A (en) † | 1990-01-31 | 1991-12-31 | Stardent Computer | Clock generator for a computer system |
JPH07281785A (en) † | 1994-04-05 | 1995-10-27 | Toshiba Corp | Processor system |
US5481573A (en) † | 1992-06-26 | 1996-01-02 | International Business Machines Corporation | Synchronous clock distribution system |
US5613669A (en) † | 1994-06-03 | 1997-03-25 | Ferag Ag | Control process for use in the production of printed products and means for performing the process |
EP0894624A2 (en) † | 1997-07-30 | 1999-02-03 | Baldwin-Japan Ltd. | Printing plate or printed product identifying apparatus |
DE19803686A1 (en) † | 1998-01-30 | 1999-08-05 | Siemens Ag | Method and device for the communication of equal stations of a ring-shaped, serial optical fiber bus |
US5988846A (en) † | 1996-07-01 | 1999-11-23 | Asea Brown Boveri Ag | Method of operating a drive system and device for carrying out the method |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2812774A1 (en) * | 1978-03-23 | 1979-09-27 | Georg Dipl Phys Dr Heil | Synchronisation pulse supply procedure - derives pulses from time signals of transmitter or from transmitter with very constant frequency, or from auxiliary oscillator |
DE3803525C2 (en) * | 1988-02-05 | 1993-12-02 | Licentia Gmbh | Device for operating absolute real-time clocks in a process control system containing a central clock and subscribers |
US5117442A (en) * | 1988-12-14 | 1992-05-26 | National Semiconductor Corporation | Methods and circuits for synchronizing signals in a modular redundant fault tolerant computer system |
US5321698A (en) * | 1991-12-27 | 1994-06-14 | Amdahl Corporation | Method and apparatus for providing retry coverage in multi-process computer environment |
US5479648A (en) * | 1994-08-30 | 1995-12-26 | Stratus Computer, Inc. | Method and apparatus for switching clock signals in a fault-tolerant computer system |
DE19520919C2 (en) * | 1995-06-08 | 1998-02-26 | Roland Man Druckmasch | Control for a printing press |
US5691660A (en) * | 1995-11-28 | 1997-11-25 | International Business Machines Corporation | Clock synchronization scheme for fractional multiplication systems |
DE19704728A1 (en) * | 1997-02-08 | 1998-08-13 | Pact Inf Tech Gmbh | Method for self-synchronization of configurable elements of a programmable module |
JPH11202968A (en) * | 1998-01-20 | 1999-07-30 | Mitsubishi Electric Corp | Microcomputer |
DE19822211B4 (en) * | 1998-05-18 | 2004-02-05 | Eads Deutschland Gmbh | Method for reducing the data throughput during the transmission of at least partially changeable object-related data between communicating communication modules, and a device for carrying out the method |
JP2000165905A (en) * | 1998-11-27 | 2000-06-16 | Mitsubishi Electric Corp | Clock generation circuit |
DE19910069A1 (en) * | 1999-03-08 | 2000-11-23 | Peter Renner | Process automation |
US6121816A (en) * | 1999-04-23 | 2000-09-19 | Semtech Corporation | Slave clock generation system and method for synchronous telecommunications networks |
US6535926B1 (en) * | 1999-09-30 | 2003-03-18 | Rockwell Automation Technologies, Inc. | Time synchronization system for industrial control network using global reference pulses |
US6591370B1 (en) * | 1999-12-23 | 2003-07-08 | International Business Machines Corporation | Multinode computer system with distributed clock synchronization system |
-
2000
- 2000-11-29 DE DE10059270A patent/DE10059270B4/en not_active Expired - Fee Related
-
2001
- 2001-10-10 CZ CZ20013655A patent/CZ303068B6/en not_active IP Right Cessation
- 2001-11-14 AT AT01126527T patent/ATE472407T1/en not_active IP Right Cessation
- 2001-11-14 EP EP01126527A patent/EP1211070B2/en not_active Expired - Lifetime
- 2001-11-14 DE DE50115536T patent/DE50115536D1/en not_active Expired - Lifetime
- 2001-11-27 CN CNB011397381A patent/CN1272173C/en not_active Expired - Fee Related
- 2001-11-28 JP JP2001362587A patent/JP4078065B2/en not_active Expired - Lifetime
- 2001-11-29 US US09/997,981 patent/US6948085B2/en not_active Expired - Lifetime
-
2002
- 2002-12-31 HK HK02109458.4A patent/HK1047726B/en not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5077686A (en) † | 1990-01-31 | 1991-12-31 | Stardent Computer | Clock generator for a computer system |
US5481573A (en) † | 1992-06-26 | 1996-01-02 | International Business Machines Corporation | Synchronous clock distribution system |
JPH07281785A (en) † | 1994-04-05 | 1995-10-27 | Toshiba Corp | Processor system |
US5613669A (en) † | 1994-06-03 | 1997-03-25 | Ferag Ag | Control process for use in the production of printed products and means for performing the process |
US5988846A (en) † | 1996-07-01 | 1999-11-23 | Asea Brown Boveri Ag | Method of operating a drive system and device for carrying out the method |
EP0894624A2 (en) † | 1997-07-30 | 1999-02-03 | Baldwin-Japan Ltd. | Printing plate or printed product identifying apparatus |
DE19803686A1 (en) † | 1998-01-30 | 1999-08-05 | Siemens Ag | Method and device for the communication of equal stations of a ring-shaped, serial optical fiber bus |
Also Published As
Publication number | Publication date |
---|---|
HK1047726B (en) | 2007-02-23 |
CZ20013655A3 (en) | 2002-07-17 |
ATE472407T1 (en) | 2010-07-15 |
DE10059270B4 (en) | 2012-08-02 |
CZ303068B6 (en) | 2012-03-21 |
CN1272173C (en) | 2006-08-30 |
DE50115536D1 (en) | 2010-08-12 |
EP1211070B1 (en) | 2010-06-30 |
JP2002258980A (en) | 2002-09-13 |
EP1211070A2 (en) | 2002-06-05 |
US20020111696A1 (en) | 2002-08-15 |
US6948085B2 (en) | 2005-09-20 |
HK1047726A1 (en) | 2003-03-07 |
EP1211070A3 (en) | 2003-08-27 |
CN1356208A (en) | 2002-07-03 |
JP4078065B2 (en) | 2008-04-23 |
DE10059270A1 (en) | 2002-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1211070B2 (en) | Device and method for synchronizing processes running in several units | |
EP0816963B1 (en) | Operating method of a drive system and device for implementing the method | |
EP1368935B1 (en) | Synchronous, clocked communication system with local input/output components and method for integrating local input/output components into such a system | |
DE10333932A1 (en) | Synchronization of data processing units | |
WO2006111499A1 (en) | Method and device for synchronising two bus systems, and arrangement consisting of two bus systems | |
EP1368728A2 (en) | Synchronous, clocked communication system with a relative time clock and method for establishing such a system | |
EP1648116B1 (en) | Method for data transmission in a communication system | |
WO2018234006A1 (en) | Device and method for the synchronisation of clocks in control devices, and control device | |
DE3803525A1 (en) | DEVICE FOR OPERATING ABSOLUTELY REAL-TIME CLOCKS IN A PROCESS CONTROL SYSTEM CONTAINING A CENTRAL CLOCK AND PARTICIPANTS | |
EP0917954B1 (en) | Device and method for producing a reference value of a single position in a printing process | |
DE60035464T2 (en) | Network control system for rotary printing machines | |
DE102004050416A1 (en) | Method for synchronization in a redundant communication system | |
WO2012143217A1 (en) | Control device having a digital interface | |
EP1763768B1 (en) | Method and device for controlling a bus system, and corresponding bus system | |
DE60126013T2 (en) | Synchronous control of rotary printing machines | |
DE10333934A1 (en) | Synchronization of data processing units | |
EP3072250A1 (en) | Communication device, communication system and method for the synchronised sending of messages | |
EP1648104B1 (en) | Communication system and method of synchronisation of this system | |
DE19815647C2 (en) | Method for synchronizing a local to a central time base, and device for carrying out the method with preferred uses | |
WO2019016299A1 (en) | Timestamp unit and communication control unit for a subscriber station of a communication network | |
DE10237097B4 (en) | Correction of signal propagation times in distributed communication systems | |
DE102007031709B4 (en) | Electric drive | |
DE29809721U1 (en) | Arrangement for the control and regulation of technical processes | |
EP2097999A1 (en) | Method for handling data | |
DE3838348C2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7B 41F 33/00 A Ipc: 7G 04G 7/00 B |
|
17P | Request for examination filed |
Effective date: 20030721 |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17Q | First examination report despatched |
Effective date: 20090409 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50115536 Country of ref document: DE Date of ref document: 20100812 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100630 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101102 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100630 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100630 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100630 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: SIEMENS AKTIENGESELLSCHAFT Effective date: 20110329 |
|
BERE | Be: lapsed |
Owner name: HEIDELBERGER DRUCKMASCHINEN A.G. Effective date: 20101130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 50115536 Country of ref document: DE Effective date: 20110329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101011 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101130 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101130 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 472407 Country of ref document: AT Kind code of ref document: T Effective date: 20101114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100630 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20130116 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20121126 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 50115536 Country of ref document: DE Effective date: 20130116 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20121214 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20131114 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131114 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131202 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20191130 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50115536 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210601 |