[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1204635A1 - Verzweigte, weitgehend ungesättigte fettalkoholethersulfate - Google Patents

Verzweigte, weitgehend ungesättigte fettalkoholethersulfate

Info

Publication number
EP1204635A1
EP1204635A1 EP00960443A EP00960443A EP1204635A1 EP 1204635 A1 EP1204635 A1 EP 1204635A1 EP 00960443 A EP00960443 A EP 00960443A EP 00960443 A EP00960443 A EP 00960443A EP 1204635 A1 EP1204635 A1 EP 1204635A1
Authority
EP
European Patent Office
Prior art keywords
branched
unsaturated fatty
acid
largely
largely unsaturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00960443A
Other languages
English (en)
French (fr)
Inventor
Alfred Westfechtel
Norbert Hübner
Ansgar Behler
Hans-Christian Raths
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Personal Care and Nutrition GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Publication of EP1204635A1 publication Critical patent/EP1204635A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/463Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfuric acid derivatives, e.g. sodium lauryl sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C305/00Esters of sulfuric acids
    • C07C305/02Esters of sulfuric acids having oxygen atoms of sulfate groups bound to acyclic carbon atoms of a carbon skeleton
    • C07C305/14Esters of sulfuric acids having oxygen atoms of sulfate groups bound to acyclic carbon atoms of a carbon skeleton being acyclic and unsaturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair

Definitions

  • the invention is in the field of anionic surfactants and relates largely to unsaturated fatty alcohol ether sulfates which, as a result of branching in the hydrocarbon chain, have significantly improved properties compared with linear homologues, a process for their preparation and their use for the preparation of surface-active agents.
  • Sulfates of unsaturated fatty alcohol ethoxylates which are essentially obtained by ethoxylation, sulfation and subsequent neutralization of the corresponding sebum-based alkenols, are important raw materials for the production of both cosmetic preparations and detergents, dishwashing detergents and cleaning agents.
  • the advantageous properties of these substances are: the presence of the double bond in the molecule is linked, but this also poses problems since the unsaturated fatty alcohol ether sulfates are easily susceptible to autoxidation, which is associated with discoloration and undesirable chemical changes (for example formation of peroxides and hydroperoxides).
  • the process described above is technically complex due to the two hydrogenation steps and, with the isostearyl alcohol ether sulfates, provides substitutes which can only partially replace the unsaturated fatty alcohol ether sulfates.
  • the task of the present task was to provide unsaturated fatty alcohol ether sulfates which are characterized by improved application properties, preferably higher oxidation stability.
  • the invention relates to branched, largely unsaturated fatty alcohol ether sulfates, obtainable in that
  • the branched, largely unsaturated fatty alcohol ether sulfates have a significantly higher autoxidation stability than the linear homologues of the same chain length and the same iodine number. Further advantages are improved wetting capacity, quicker solubility in cold water and easier biodegradability.
  • Another object of the invention relates to a process for the production of branched, largely unsaturated fatty alcohol ether sulfates, in which
  • the sequence of steps (a) to (d) provides on the basis of dimerized, preferably monounsaturated C ⁇ to C ⁇ fatty acids, ie oleic acid, elaidic acid, petro- selinsic gadoleic acid and erucic acid and their mixtures branched, largely unsaturated fatty alcohols in the iodine number range from 45 to 85 This is undoubtedly completely sufficient for a number of applications, but if fatty substances which have a higher content of unsaturated compounds are required, it is recommended that the The monomer fraction obtained in the dimerization is first subjected to a fractional crystallization and the resulting liquid phase is subjected, if appropriate after distillation, to the esterification.
  • the resulting fatty acid and its methyl ester are a fairly pure isoolic acid or methyl isoolate, which have an iodine number in the range 75 to 95 In in any case it is advisable to take the methylest to subject it and
  • the esterification of the fatty acids with methanol is carried out according to the methods of the prior art and is used to produce methyl esters which are relatively easy to hydrogenate instead of the methyl esters other low alkyl esters, such as ethyl, propyl or butyl esters, can of course also be produced and then hydrogenated, the choice of alcohol is not critical per se and is based solely on economic criteria and availability.
  • methyl or low alkyl esters it is in principle also possible to hydrogenate the fatty acids directly, but special catalysts are then required for this purpose, which do not form salts with the acids, and the reactor material must also be corrosion-resistant.
  • the previously obtained branched, largely unsaturated fatty alcohols are then alkoxylated in a manner known per se, ie added to the hydroxyl group ethylene oxide, propylene oxide or their mixtures in random or block distribution. On average 1 to 50, in particular 5 to 15, moles of ethylene oxide and / or 1 up to 5 moles of propylene oxide added
  • the alkoxylation is carried out by the processes of the prior art, i.e. usually in the presence of alkaline homogeneous or heterogeneous catalysts, such as, for example, sodium methylate, potassium tert-butoxide or calcined hydrotalcite or hydrophobicized with fatty acids. Accordingly, the alkoxylates can also be conventional have broad or narrow homolog distribution Sulfation and neutralization
  • the fatty alcohol alkoxylates previously prepared can also be converted into the sulfates in a manner known per se.
  • the attack of the sulfonating agent can take place both on the hydroxyl group and on the double bond.
  • the sulfation takes place about 10 times faster than the sulfonation, ie the addition of sulfur trioxide to the double bond, especially at low temperatures in the range of about 30 ° C., predominantly, ie to more than 90% by weight, (ether) sulfates are obtained .
  • the reaction of the branched, largely unsaturated fatty alcohols, for example with gaseous sulfur trioxide can be carried out in the manner known for fatty acid lower alkyl esters [J.Falbe (ed.), "Surfactants in consumer products"; Springer Verlag, Berlin-Heidelberg, 1987, p.61] take place, with reactors working according to the falling film principle being preferred.
  • the sulfur trioxide is diluted with an inert gas, preferably air or nitrogen, and used in the form of a gas mixture which contains the sulfonating agent in a concentration of 1 to 8, in particular 2 to 5,% by volume.
  • the molar ratio of alkoxylate to sulfating agent is usually 1: 0.95 to 1: 1.8, but preferably 1: 1.0 to 1: 1.6. and in particular 1: 1, 3 to 1: 1, 5.
  • the sulfation is usually carried out at temperatures of 25 to 90, preferably 35 to 80 ° C.
  • chlorosulfonic acid or amidosulfonic acid can also be used as the sulfonating agent.
  • the acidic sulfates obtained in the reaction are stirred into aqueous bases, neutralized and adjusted to a pH of 6.5 to 8.5.
  • the neutralization is selected with bases from that of alkali metal hydroxides such as sodium, potassium and lithium hydroxide, alkaline earth metal oxides and hydroxides such as magnesium oxide, magnesium hydroxide, calcium oxide and calcium hydroxide, ammonia, mono-, di- and tri-C2-alkanolamines, for example mono -, Di- and triethanolamine and primary, secondary or tertiary C 4 alkylamines formed group.
  • the neutralization bases are preferably used in the form of 5 to 55% by weight aqueous solutions, with 25 to 50% by weight aqueous sodium hydroxide solution being preferred.
  • the sulfates obtainable by the process according to the invention are present as aqueous solutions with an active substance content of 20 to 80, preferably 30 to 50% by weight.
  • the sulfates can be bleached in a manner known per se by adding hydrogen peroxide or sodium hypochlorite solution in order to achieve a further color brightening which is desired for many applications.
  • Based on the solids content in the sulfate solution 0.2 to 2% by weight of hydrogen peroxide, calculated as 100% by weight substance, or corresponding amounts of sodium hypochlorite are used.
  • the pH of the solutions can be adjusted using suitable buffering agents, e.g. B. be kept constant with sodium phosphate or citric acid. To stabilize against bacterial attack, conservation is also recommended, e.g. B. with formaldehyde solution, p-hydroxybenzoate, sorbic acid or other known preservatives.
  • the new branched, largely unsaturated fatty alcohol ether sulfates are notable for particular oxidation stability and are therefore suitable for the production of surface-active agents, preferably washing, rinsing, cleaning and finishing agents, as well as cosmetic and / or pharmaceutical preparations in which they are present in amounts of 1 to 50, preferably 5 to 35 and in particular 10 to 25 wt .-% can be contained.
  • branched, largely unsaturated fatty alcohol sulfates according to the invention are used as raw materials for the production of washing, rinsing, cleaning or finishing agents (“softeners”), they are usually in liquid form, ie as aqueous solutions or pastes; for the production of powder detergents
  • the aqueous mixtures can subsequently be dried.
  • Liquid preparations can have a non-aqueous fraction in the range from 5 to 50 and preferably 15 to 35% by weight.
  • the agent in the context of this invention, they are aqueous solutions of the mixtures mentioned
  • "essentially anhydrous" means that the agent preferably does not contain free water which is not bound as water of crystallization or in comparable form Water tolerable, especially in quantities bi
  • the detergents used can contain other typical ingredients, such as builders, bleaching agents, bleach activators, solvents, detergent boosters, enzymes, enzyme stabilizers, viscosity regulators, graying inhibitors, optical brighteners, soil repellants, foam inhibitors, inorganic Contain salts and fragrances and dyes.
  • Suitable liquid builders are ethylenediaminetetraacetic acid, nitrilotriacetic acid, citric acid and inorganic phosphonic acids such as e.g. the neutral reacting sodium salts of 1-hydroxyethane-1,1-diphosphonate, which can be present in amounts of 0.5 to 5, preferably 1 to 2,% by weight.
  • finely crystalline, synthetic and bound water-containing zeolite such as zeolite NaA in detergent quality is used as the solid builder.
  • zeolite NaX and mixtures of NaA and NaX are also suitable.
  • the zeolite can be used as a spray-dried powder or as an undried stabilized suspension that is still moist from its manufacture.
  • the zeolite can contain minor additions of nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated Ci2-Ci8 fatty alcohols with 2 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • SITUATE Nete zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22, in particular 20 to 22% by weight of bound water.
  • Suitable substitutes or partial substitutes for zeolites are crystalline, layered sodium silicates of the general formula NaMSixO ⁇ x + ryH ⁇ O, where M is sodium or hydrogen, x is a number from 1, 9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European patent application EP 0164514 A.
  • Preferred crystalline layered silicates are those in which M in the general formula stands for sodium and x assumes the values 2 or 3.
  • Powder detergents based on the branched, largely branched fatty alcohol ether sulfates according to the invention preferably contain 10 to 60% by weight of zeolite and / or crystalline layered silicates as solid builders, mixtures of zeolite and crystalline layered silicates in any ratio being particularly advantageous.
  • the agents contain 20 to 50% by weight of zeolite and / or crystalline layered silicates.
  • Particularly preferred agents contain up to 40% by weight of zeolite and in particular up to 35% by weight of zeolite, in each case based on anhydrous active substance.
  • Other suitable ingredients of the agents are water-soluble amorphous silicates; they are preferably used in combination with zeolite and / or crystalline layered silicates.
  • Particularly preferred are agents which, above all, sodium silicate with a molar ratio (module) Na ⁇ O; SiO 2 from 1: 1 to 1: 4.5, preferably from 1: 2 to 1: 3.5, included.
  • the content of amorphous sodium silicates in the agents is preferably up to 15% by weight and preferably between 2 and 8% by weight.
  • Phosphates such as tripolyphosphates, pyrophosphates and orthophosphates can also be present in small amounts in the compositions.
  • the content of the phosphates in the compositions is preferably up to 15% by weight, but in particular 0 to 10% by weight.
  • the agents can also contain layered silicates of natural and synthetic origin. Layered silicates of this type are known, for example, from patent applications DE 2334899 B, EP 0026529 A and DE 3526405 A. Their usability is not limited to a special composition or structural formula. However, smectites, in particular bentonites, are preferred here. Suitable sheet silicates, which belong to the group of water-swellable smectites, are, for example, those of the general formulas
  • the layered silicates can hydrogen, alkali, alkaline earth ions, in particular Contain Na + and Ca 2+ .
  • the amount of water of hydration is usually in the range of 8 to 20% by weight and depends on the swelling condition or the type of processing.
  • Useful sheet silicates are known, for example, from US 3,966,629, US 4,062,647, EP 0026529 A and EP 0028432 A.
  • Layer silicates are preferably used which are largely free of calcium ions and strongly coloring iron ions due to an alkali treatment.
  • Usable organic builders are, for example, the polycarboxylic acids preferably used in the form of their sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), provided that such use is not objectionable for ecological reasons. and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 800 to 150,000 (based on acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids is generally 5,000 to 200,000, preferably 10,000 to 120,000 and in particular 50,000 to 100,000. The use of polymeric polycarboxylates is not absolutely necessary.
  • agents are preferred which are biodegradable polymers, for example terpolymers, the monomers acrylic acid and maleic acid or salts thereof, and vinyl alcohol or vinyl alcohol derivatives or the monomers acrylic acid and 2-alkylallylsulfonic acid or containing their salts and sugar derivatives.
  • terpolymers which are obtained according to the teaching of German patent applications DE 4221381 A and DE 4300772 A are particularly preferred.
  • Further suitable builder substances are polyacetals, which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application EP 0280223 A.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Other bleaching agents are, for example, peroxy carbonate, citrate perhydrates and salts of peracids, such as perbenzoates, peroxyphthalates or diperoxydodecanedioic acid. They are usually used in amounts of 8 to 25% by weight.
  • the use of sodium perborate monohydrate in amounts of 10 to 20% by weight and in particular 10 to 15% by weight is preferred. Due to its ability to bind free water with the formation of the tetrahydrate, it contributes to increasing the stability of the agent.
  • bleach activators can be incorporated into the preparations.
  • these are N-acyl or O-acyl compounds which form organic peracids with hydrogen peroxide, preferably N, N'-tetraacylated diamines, furthermore carboxylic acid anhydrides and esters of polyols such as glucose pentaacetate.
  • the bleach activators contain bleach activators in the usual range, preferably between 1 and 10% by weight and in particular between 3 and 8% by weight.
  • Particularly preferred bleach activators are N, N, N ', N'-tetraacetylethylenediamine and 1,5-diacetyl-2,4-dioxo-hexahydro-1,3,5-triazine.
  • suitable organic solvents are mono- and / or polyfunctional alcohols having 1 to 6 carbon atoms, preferably having 1 to 4 carbon atoms.
  • Preferred alcohols are ethanol, 1, 2-propanediol, glycerol and mixtures thereof.
  • the compositions preferably contain 2 to 20% by weight and in particular 5 to 15% by weight of ethanol or any mixture of ethanol and 1, 2-propanediol or in particular of ethanol and glycerol.
  • the preparations either contain, in addition to the mono- and / or polyfunctional alcohols having 1 to 6 carbon atoms or solely polyethylene glycol with a relative molecular weight between 200 and 2000, preferably up to 600, in amounts of 2 to 17% by weight ,
  • toluenesulfonate, xylenesulfonate, cumene sulfonate or mixtures thereof can be used as hydrotropes.
  • Suitable enzymes are those from the class of proteases, lipases, amylases, cellulases or mixtures thereof. Enzymatic active ingredients obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis and Streptomyces griseus are particularly suitable. Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used. Their proportion can be about 0.2 to about 2% by weight. The enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition. In addition to the mono- and polyfunctional alcohols and the phosphonates, the agents can contain further enzyme stabilizers.
  • sodium formate 0.5 to 1% by weight sodium formate can be used. It is also possible to use proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • boron compounds for example boric acid, boron oxide, borax and other alkali metal borates such as the salts of orthoboric acid (H3BO3), metaboric acid (HBO2) and pyrobic acid (tetraboric acid H2B4O7), is particularly advantageous.
  • Viscosity regulators which can be used are, for example, hardened castor oil, salts of long-chain fatty acids, preferably in amounts of 0 to 5% by weight and in particular in amounts of 0.5 to 2% by weight, for example sodium, potassium, aluminum, magnesium - and titanium stearates or the sodium and / or potassium salts of behenic acid, and further polymeric compounds are used the.
  • the latter preferably include polyvinylpyrrolidone, urethanes and the salts of polymeric polycarboxylates, for example homopolymeric or copolymeric polyacrylates, polymethacrylates and in particular copolymers of acrylic acid with maleic acid, preferably those composed of 50% to 10% maleic acid.
  • the relative molecular weight of the homopolymers is generally between 1000 and 100000, that of the copolymers between 2000 and 200000, preferably between 50,000 to 120,000, based on the free acid.
  • Water-soluble polyacrylates which are crosslinked, for example, with about 1% of a polyallyl ether of sucrose and which have a relative molecular weight above one million are also particularly suitable. Examples of this are the polymers with thickening action available under the name Carbopol® 940 and 941.
  • the crosslinked polyacrylates are preferably used in amounts not exceeding 1% by weight, preferably in amounts of 0.2 to 0.7% by weight.
  • the agents can additionally contain about 5 to 20% by weight of a partially esterified copolymer, as described in European patent application EP 0367049 A.
  • These partially esterified polymers are obtained by copolymerizing (a) at least one C 4 -C28 olefin or mixtures of at least one C 4 -C28 olefin with up to 20 mol% of Ci-C ⁇ -alkyl vinyl ethers and (b) ethylenically unsaturated Dicarboxylic acid anhydrides with 4 to 8 carbon atoms in a molar ratio of 1: 1 to copolymers with K values from 6 to 100 and subsequent partial esterification of the copolymers with reaction products such as C 1 -C 3 alcohols, C 3 -C 22 fatty acids, C 1 -C 2 alkyl phenols, secondary C2-C3o-amines or mixtures thereof with at least one C2-C-alkylene oxide or tetrahydrofuran and hydrolysis of the anhydride groups of the copolymers to give carboxyl groups, the partial esterification of the copolymers being carried out to such an extent that 5 to 50% of the carb
  • the partially esterified copolymers can be present either in the form of the free acid or preferably in partially or completely neutralized form.
  • the copolymers are advantageously used in the form of an aqueous solution, in particular in the form of a 40 to 50% strength by weight solution.
  • the copolymers not only contribute to the primary and secondary washing performance of the liquid washing and cleaning agent, but also bring about a desired reduction in the viscosity of the concentrated liquid washing agent.
  • the use of these partially esterified copolymers gives concentrated aqueous liquid detergents which are flowable under the sole influence of gravity and without the action of other shear forces.
  • the concentrated aqueous liquid detergents preferably contain partially esterified copolymers in amounts of 5 to 15% by weight and in particular in amounts of 8 to 12% by weight.
  • Graying inhibitors have the task of keeping the dirt detached from the fibers suspended in the liquor and thus preventing graying.
  • Water-soluble colloids of mostly organic nature are suitable for this, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble, acidic Group-containing polyamides are suitable for this purpose. Soluble starch preparations and starch products other than those mentioned above can also be used, eg degraded starches, strong aldehydes etc. Polyvinylpyrrod is also useful.
  • cellulose ethers such as carboxymethyl cellulose, methyl cellulose, hydroxyalkyl cellulose and mixed ethers such as Methylhydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof and polyvinyl pyrrolidone, for example in amounts of 0.1 to 5% by weight, based on the composition
  • the agents can contain, as optical brighteners, derivatives of diaminostilbenedisulfonic acid or their alkali metal salts.
  • examples include salts of 4,4'-B ⁇ s (2-an ⁇ l ⁇ no-4-morphol ⁇ no-1, 3,5-t ⁇ az ⁇ nyl-6-am ⁇ no) st ⁇ lben- 2,2'-disulfonic acid or compounds of the same structure which carry a diethanolamino group, a methylamino group, an anino group or a 2-methoxyethylamino group instead of the morpho-imo group.
  • Brighteners of the substituted diphenylstyryl type can also be present, for example those Alkali salts of 4,4'-bis (2-sulfostyryl) diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl, or 4- (4-chlorostyryl) -4 '- (2nd -suifostyryl) -d ⁇ phenyls Mixtures of the aforementioned brighteners can also be used.
  • Uniformly white granules are obtained if, apart from the usual brighteners, the agents are used in customary amounts, for example between 0.1 and 0.5% by weight, preferably between 0.1 and 0 , 3% by weight, also in small amounts, for example 10 6 to 10 3 % By weight, preferably around 10 5 % by weight, of a blue dye.
  • a particularly preferred dye is Tinolux® (commercial product of Ciba-Geigy)
  • Suitable soil-repellants are substances which preferably contain ethylene terephthalate and / or polyethylene glycol terephthalate groups, the molar ratio of ethylene terephthalate to polyethylene glycol terephthalate being in the range from 50 50 to 90 10%.
  • the molecular weight of the linking polyethylene glycol units is in particular in the range from 750 to 5000, ie the degree of ethoxylation of the polymers containing polyethylene glycol groups can be approximately 15 to 100.
  • the polymers are characterized by an average molecular weight of approximately 5000 to 200,000 and can have a block, but preferably a random structure, preferred polymers are those with molar ratios of ethylene terephthalate / polyethylene glycol terephthalate from about 65 35 to about 90 10, preferably from about 70 30 to 80 20. Also preferred are those polymers which have linking polyethylene glycol units with a molecular weight of 750 to 500 0, preferably from 1000 to about 3000 and a molecular weight of the polymer from about 10,000 to about 50,000. Examples of commercially available polymers are the products Milease® T (ICI) or Repelotex® SRP 3 (Rh ⁇ ne-Poulenc)
  • foam inhibitors When used in machine washing processes, it may be advantageous to add conventional foam inhibitors to the detergents.
  • Soaps of natural or synthetic origin for example, which have a high proportion of Ci8-C24 fatty acids are suitable.
  • Suitable non-surfactant-like foam inhibitors are, for example, organopolysiloxanes and their mixtures with microfine, if appropriate signed silica as well as paraffins, waxes, microcrystalline waxes and their mixtures with signed silica or bistearylethylenediamide.
  • Mixtures of various foam inhibitors are also used with advantages, for example those made of silicones, paraffins or waxes.
  • the foam inhibitors, in particular silicone or paraffin-containing foam inhibitors are preferably bound to a granular, water-soluble or dispersible carrier substance. Mixtures of paraffins and bistearylethylenediamides are particularly preferred.
  • the pH of liquid, in particular also liquid-concentrated, agents is generally 7 to 10.5, preferably 7 to 9.5 and in particular 7 to 8.5. Higher pH values, for example above 9, can be set by using small amounts of sodium hydroxide solution or alkaline salts such as sodium carbonate or sodium silicate.
  • the liquid preparations generally have viscosities between 150 and 10,000 mPas (Brookfield viscometer, spindle 1, 20 revolutions per minute, 20 ° C.). Viscosities between 150 and 5000 mPas are preferred for the essentially water-free agents.
  • the viscosity of these aqueous agents is preferably below 2000 mPas and is in particular between 150 and 1000 mPas.
  • the bulk density of the solid preparations is generally 300 to 1200 g / l, in particular 500 to 1100 g / l.
  • They can be produced by any of the known processes such as mixing, spray drying, granulating and extruding. Processes in which several partial components, for example spray-dried components and granulated and / or extruded components, are mixed with one another are particularly suitable. It is also possible for spray-dried or granulated components to be subsequently treated, for example with nonionic surfactants, in particular ethoxylated fatty alcohols, by the customary processes.
  • the anionic surfactants in the form of a spray-dried, granulated or extruded compound, either as an additive component in the process or as an additive to other granules.
  • the preferred heavier granules with bulk densities above 600 g / l preferably contain components which improve the detergent behavior and / or improve the dissolving behavior of the granules.
  • alkoxylated fatty alcohols with 12 to 80 moles of ethylene oxide per mole of alcohol, for example tallow fatty alcohol with 14 EO, 30 EO or 40 EO, and polyethylene glycols with a relative molecular weight between 200 and 12000, preferably between 200 and 600, are advantageously used.
  • Suitable surface modifiers are known from the prior art.
  • suitable, finely divided zeolites, silicas, amorphous silicates, fatty acids or fatty acid salts for example calcium stearate, but in particular mixtures of zeolite and silicas or zeolite and calcium stearate are particularly preferred.
  • the branched, largely unsaturated fatty alcohol ether sulfates according to the invention can also be used to produce cosmetic and / or pharmaceutical preparations, such as, for example, hair shampoos, hair lotions, foam baths, shower baths, creams, gels, lotions, alcoholic and aqueous / alcoholic solutions, emulsions, wax / fat compositions, Stick preparations, powders or ointments are used.
  • cosmetic and / or pharmaceutical preparations such as, for example, hair shampoos, hair lotions, foam baths, shower baths, creams, gels, lotions, alcoholic and aqueous / alcoholic solutions, emulsions, wax / fat compositions, Stick preparations, powders or ointments are used.
  • agents can also be used as further auxiliaries and additives, mild surfactants, oil bodies, emulsifiers, superfatting agents, pearlescent waxes, consistency enhancers, thickeners, polymers, silicone compounds, fats, waxes, stabilizers, biogenic agents, deodorants, antiperspirants, antidandruff agents, film formers, swelling agents, Contain UV protection factors, antioxidants, hydrotropes, preservatives, insect repellents, self-tanners, solubilizers, perfume oils, dyes and the like.
  • Suitable mild, i.e. particularly skin-compatible surfactants are fatty alcohol sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, Fettklaresarco- Sinate, fatty acid taurides, fatty acid glutamates, ⁇ -olefin sulfonates, ethercarboxylic acids, alkyl oligoglucosides de, fatty acid glucamides, alkylamidobetaines and / or protein fatty acid condensates, the latter preferably based on wheat proteins.
  • esters of linear C6-C22 fatty acids with branched alcohols in particular 2-ethylhexanol
  • esters of hydroxycarboxylic acids with linear or branched C6-C22 fatty alcohols in particular dioctyl malates
  • esters of linear and / or branched fatty acids with polyhydric alcohols are suitable (such as propylene glycol, dimer diol or trimer triol) and / or Guerbet alcohols, triglycerides based on C ⁇ -Cio fatty acids, liquid mono- / di- / triglyceride mixtures based on C ⁇ -Cis fatty acids
  • esters of C6-C22 fatty alcohols get and / or Guerbet alcohols with aromatic carboxylic acids, especially benzoic acid, esters of C2-Ci2-dicarboxylic acids with linear or branched alcohols with 1 to 22 carbon atoms or polyols with 2 to 10 carbon atoms and 2 to
  • Finsolv® TN linear or branched, symmetrical or asymmetrical dialkyl ethers with 6 to 22 carbon atoms per alkyl group, ring opening products of epoxidized fatty acid esters with polyols, silicone oils and / or aliphatic or naphthenic hydrocarbons, such as squalane , Squalene or dialkylcyclohexanes.
  • Suitable emulsifiers are nonionic surfactants from at least one of the following groups:
  • Partial esters of polyglycerol (average degree of self-condensation 2 to 8), polyethylene glycol (molecular weight 400 to 5000), trimethylolpropane, pentaerythritol, sugar alcohols (e.g. sorbitol), alkyl glucosides (e.g. methyl glucoside, butyl glucoside, lauryl glucoside) and polyglucosides (e.g.
  • cellulose / or unsaturated, linear or branched fatty acids with 12 to 22 carbon atoms and / or hydroxycarboxylic acids with 3 to 18 carbon atoms and their adducts with 1 to 30 moles of ethylene oxide; > Mixed esters of pentaerythritol, fatty acids, citric acid and fatty alcohol according to DE 1165574 PS and / or mixed esters of fatty acids with 6 to 22 carbon atoms, methyl glucose and polyols, preferably glycerol or polyglycerol.
  • adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols or with castor oil are known, commercially available products. These are mixtures of homologs whose average degree of alkoxylation is the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate, with which the addition reaction is carried out.
  • Ci ⁇ / is fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE 2024051 PS as refatting agents for cosmetic preparations.
  • Alkyl and / or alkenyl oligoglycosides their preparation and their use are known from the prior art. They are produced in particular by reacting glucose or oligosaccharides with primary alcohols with 8 to 18 carbon atoms.
  • the glycoside residue both monoglycosides in which a cyclic sugar residue is glycosidically bonded to the fatty alcohol and oligomeric glycosides with a degree of oligomerization of up to about 8 are suitable.
  • the degree of oligomerization is a statistical mean value which is based on a homolog distribution customary for such technical products.
  • Suitable partial glycerides are hydroxystearic acid monoglyceride, stearic acid diglyceride hydroxy, isostearic acid, Isostearinklarediglycerid, oleic acid monoglyceride, oleic acid diglyceride, Ricinolklaremoglycerid, Ricinolklarediglycerid, Linolklaremonoglycerid, linoleic acid diglyceride, LinolenTalkremonoglycerid, Linolenklastedigiycerid, Erucaklaremonoglycerid, erucic acid diglyceride, rid Weinchuremonoglycerid, Weinklarediglycerid, Citronenklamonoglycerid, Citronendiglyce-, Malic acid monoglyceride, malic acid diglyceride and their technical mixtures, which may still contain minor amounts of triglyceride from the manufacturing process. Addition products of 1 to 30, preferably 5 to
  • polyglycerol esters are polyglyceryl-2 dipolyhydroxystearates (Dehymuls® PGPH), polyglycerol-3-diisostearates (Lameform® TGI), polyglyceryl-4 isostearates (Isolan® Gl 34), polyglyceryl-3 oleates, diisostearoyl polyglyearylate-3 (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010 / 90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL) , Polyglyceryl-3 Distearate (Cremophor® GS 32) and Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Is
  • polystyrene resin examples include the mono-, di- and triesters of trimethylolpropane or pentaerythritol with lauric acid, coconut fatty acid, taig fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like which are optionally reacted with 1 to 30 mol of ethylene oxide.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are surface-active compounds that contain at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines, such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example coconut acylaminopropyldimethylammonium glycinate, and 2-alkyl-3-carboxylm -hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for
  • Suitable emulsifiers are ampholytic surfactants.
  • Ampholytic surfactants are surface-active compounds which, in addition to a C ⁇ -alkyl or -acyl group, contain at least one free amino group and at least one -COOH or -S ⁇ 3H group in the molecule and are capable of forming internal salts.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each with about 8 bisacid acids 18 carbon atoms in the alkyl group.
  • ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and Ci2 / i8-acylsarcosine.
  • cationic surfactants are also suitable as emulsifiers, those of the ester quat type, preferably methyl-quaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • Pearlescent waxes are: alkylene glycol diesters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15 carbon atom
  • Suitable consistency agents are primarily fatty alcohols or hydroxyfatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and also partial glycerides, fatty acids or hydroxyfatty acids. A combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Suitable thickeners are, for example, Aerosil types (hydrophilic silicas), polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl cellulose, and also higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates , (eg Carbopole® from Goodrich or Synthalene® from Sigma), polyacrylamides, polyvinyl alcohol and polyvinylpyrrolidone, surfactants such as ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with a narrow homolog distribution or alkyl oligoglucosides as well as Cooking salt and ammonium chloride.
  • Aerosil types hydrophilic silicas
  • polysaccharides in
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, such as, for example, a quaternized hydroxyethyl cellulose, which is available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers, such as, for example, Luviquat® (BASF) Condensation products of polyglycols and amines, quaternized collagen polypeptides such as lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers, such as amidomethicones, copolymers of adipic acid and dimethylaaminohydroxypropyldiethylenetriamine (Cartaretine® / Sandoz), copolymers of acrylic acid with dimethyl
  • Suitable anionic, zwitterionic, amphoteric and nonionic polymers are, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and esters thereof, uncrosslinked and polyol-crosslinked polyacrylic acids, acrylamidopropyl / Acrylate copolymers, octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxyproyl methacrylate copolymers, polyvinylpyrrolidone, vinylpyrrolidone / vinyl acetate copolymers, vinylpyrrolidone / dimethylaminoethyl methacrylate / vinylcaprolactam terpolymer and optionally der
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluorine-, glycoside- and / or alkyl-modified silicone compounds, which can be both liquid and resinous at room temperature.
  • Simethicones which are mixtures of dimethicones with an average chain length of 200 to 300 dimethylsiloxane units and hydrogenated silicates, are also suitable.
  • a detailed overview of suitable volatile silicones can also be found by Todd et al. in Cosm.Toil. 91, 27 (1976).
  • fats are glycerides
  • waxes include natural waxes, e.g. Candelilla wax, camauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, walnut, lanolin (wool wax), pretzel fat, ceresin, ozokerite (earth wax), petrolatum, paraffin wax, wax ; chemically modified waxes (hard waxes), e.g. Montanester waxes, Sasol waxes, hydrogenated jojoba waxes and synthetic waxes, such as Polyalkylene waxes and polyethylene glycol waxes in question.
  • natural waxes e.g. Candelilla wax, camauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax
  • Biogenic active substances are, for example, tocopherol, tocopheroiacetate, tocopherol palmitate, ascorbic acid, deoxy ⁇ bonucleic acid, retinol, bisabolol, allantoin, phytant ⁇ ol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, plant extracts and vitamin complexes
  • deodorants counteract body odors, mask or eliminate body odors caused by the action of skin bacteria on apocromatic sweat, whereby unpleasant smelling degradation products are formed. Accordingly, deodorants contain active ingredients which act as germ inhibitors, enzyme inhibitors, odor absorbers or odor suppressants
  • Suitable enzyme inhibitors are, for example, esterase inhibitors. These are preferably methyl alkyl citrates such as methyl methyl citrate, methyl propyl citrate, trisopropyl citrate, methyl butyl citrate and especially methyl citrate (Hydagen® CAT, Henkel KGaA, Dusseldorf / FRG).
  • methyl alkyl citrates such as methyl methyl citrate, methyl propyl citrate, trisopropyl citrate, methyl butyl citrate and especially methyl citrate (Hydagen® CAT, Henkel KGaA, Dusseldorf / FRG).
  • esterase inhibitors are sterolsulfates or phosphates, such as, for example, Lanoste ⁇ n-, Choleste ⁇ n-, Campesterm-, Stigmastenn- and Sitosten ⁇ nsulfate or -phosphate, dicarboxylic acids and their esters, such as, for example, glutaric acid, glutaric acid monoethyl ester, glutteroate ester acid, glutarsoate ester, Diethyl adipate, malonic acid and diethyl malonate, hydroxycarbonates and their esters such as citric acid, malic acid, tartaric acid or tartaric acid diethyl ester, and zinc glycinate
  • sterolsulfates or phosphates such as, for example, Lanoste ⁇ n-, Choleste ⁇ n-, Campesterm-, Stigmastenn- and Sitosten ⁇ nsulfate or -phosphate
  • dicarboxylic acids and their esters such as, for example
  • Suitable as odor absorbers are substances that absorb and largely retain odor-forming compounds.You can lower the partial pressure of the individual components and thus also reduce their rate of propagation.It is important that perfumes must remain unaffected.Odor absorbers have no activity against bacteria.For example, they contain a complex zinc salt as the main component the ricinoleic acid or special, largely odorless fragrances known to the person skilled in the art as "fixators", such as extracts of labdanum or styrax or certain abietic acid derivatives. Odorants or perfumes function as odor reflectors
  • Perfume oils are, for example, mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers, stems and leaves, fruits, fruit peels, roots, woods, herbs and grasses, needles and branches as well as resins and balms. Animal raw materials, such as civet and castoreum, are also suitable. Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, p-tert-butylcyclohexyl acetate, linalyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether
  • the aldehydes include, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal
  • the ketones include, for example, the jonones and methylcedryl ketone
  • the alcohols are anethole, citronellellone Eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol
  • the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labdanum oil and lavandin oil.
  • Antiperspirants reduce the formation of sweat by influencing the activity of the eccrine sweat glands and thus counteract axillary ingress and body odor.
  • Aqueous or anhydrous formulations of antiperspirants typically contain the following ingredients:
  • non-aqueous solvents such as As ethanol, propylene glycol and / or glycerin.
  • Salts of aluminum, zirconium or zinc are particularly suitable as astringent antiperspirant active ingredients.
  • suitable antiperspirant active ingredients are, for example, aluminum chloride, aluminum chlorohydrate, aluminum dichlorohydrate, aluminum sesquichlorohydrate and their complex compounds, for. B. with propylene glycol-1, 2nd Aluminum hydroxyallantoinate, aluminum chloride tartrate, aluminum zirconium trichlorohydrate, aluminum zirconium tetrachlorohydrate, aluminum zirconium pentachlorohydrate and their complex compounds z.
  • B. with amino acids such as glycine.
  • conventional oil-soluble and water-soluble auxiliaries can be present in smaller amounts in antiperspirants. Examples of such oil-soluble auxiliaries are:
  • water-soluble additives are e.g. Preservatives, water-soluble fragrances, pH adjusters, e.g. Buffer mixtures, water soluble thickeners, e.g. water-soluble natural or synthetic polymers such as e.g. Xanthan gum, hydroxyethyl cellulose, polyvinyl pyrrolidone or high molecular weight polyethylene oxides.
  • Climbazole, octopirox and zinc pyrethione can be used as antidandruff agents.
  • Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Montmorillonites, clay minerals, pemules and alkyl-modified carbopol types can serve as swelling agents for aqueous phases. Further suitable polymers or swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993).
  • UV light protection factors are understood to mean, for example, organic substances (light protection filters) which are liquid or crystalline at room temperature and which are able to absorb ultraviolet rays and absorb the energy absorbed in the form of longer-wave radiation, e.g. To give off heat again.
  • UVB filters can be oil-soluble or water-soluble. As oil-soluble substances e.g. to call:
  • 3-benzylidene camphor or 3-benzylidene norcampher and its derivatives for example 3- (4-methylbenzylidene) camphor as described in EP 0693471 B1; > 4-aminobenzoic acid derivatives, preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate; Esters of cinnamic acid, preferably 2-ethylhexyl 4-methoxycinnamate, propyl 4-methoxycinnamate, isoamyl 4-methoxycinnamate, 2-ethylhexyl 2-cyano-3,3-phenylcinnamate (octocrylene);
  • esters of salicylic acid preferably salicylic acid 2-ethylhexyl ester, salicylic acid 4-isopropylbenzyl ester, salicylic acid homomethyl ester;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone;
  • Esters of benzalmalonic acid preferably di-2-ethylhexyl 4-methoxybenzmalonate; Triazine derivatives, e.g. 2,4,6-trianilino- (p-carbo-2'-ethyl-1 '-hexyloxy) -1, 3,5-triazine and octyl triazone as described in EP 0818450 A1 or dioctyl butamido triazone (Uvasorb ® HEB);
  • Triazine derivatives e.g. 2,4,6-trianilino- (p-carbo-2'-ethyl-1 '-hexyloxy) -1, 3,5-triazine and octyl triazone as described in EP 0818450 A1 or dioctyl butamido triazone (Uvasorb ® HEB);
  • UV-A filters -4'-methoxydibenzoyl-methane (Parsol 1789), 1-phenyl-3- (4'-isopropylphenyl) propane-1,3-dione and enamine compounds, as described in DE 19712033 A1 (BASF).
  • the UV-A and UV-B filters can of course also be used in mixtures.
  • insoluble light protection pigments namely finely dispersed metal oxides or salts, are also suitable for this purpose.
  • suitable metal oxides are, in particular, zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • Silicates (talc), barium sulfate or zinc stearate can be used as salts.
  • the oxides and salts are used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm. They can have a spherical shape, but it is also possible to use particles which have an ellipsoidal shape or a shape which differs from the spherical shape in some other way.
  • the Pig elements can also be surface-treated, ie hydrophilized or hydrophobized.
  • Typical examples are coated titanium dioxides, such as titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck). Silicones, and in particular trialkoxyoctylsilanes or simethicones, are particularly suitable as hydrophobic coating agents. So-called micro- or nanopigments are preferably used in sunscreens. Micronized zinc oxide is preferably used. Further suitable UV light protection filters can be found in the overview by P.Finkel in S ⁇ FW-Journal 122, 543 (1996).
  • secondary light stabilizers of the antioxidant type can also be used, which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin.
  • Typical examples are amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (e.g. urocanic acid) and their derivatives, peptides such as D, L-carnosine, D-carnosine, L-carnosine and their derivatives (e.g. anserine) , Carotenoids, carotenes (e.g.
  • ⁇ -carotene, ß-carotene, lycopene) and their derivatives chlorogenic acid and their derivatives, lipoic acid and their derivatives (e.g. dihydroliponic acid), aurothioglucose, propylthiouracil and other thiols (e.g.
  • thioredoxin glutathione, cysteine, Cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters) and their salts, dilauryl thiodipropionate, distearyl thio propionate, thiodipropionic acid and their derivatives (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) as well as sulfoximine compounds (eg buthioninsulfoximines, homocysteine sulfoximine, butioninsulfones, penta-, hexa-, himathion in) in very low tolerable doses (e.g.
  • ⁇ -hydroxy fatty acids e.g. citric acid, lactic acid, malic acid
  • humic acid e.g. galienic acid, bile extracts, biirubin, biliverdin, EDTA, EGTA and its derivatives
  • unsaturated fatty acids and their derivatives e.g. ⁇ -linolenic acid, linoleic acid, oleic acid
  • folic acid and their derivatives ubiquinone and ubiquinol and their derivatives, vitamin C and derivatives (e.g.
  • vitamin E acetate vitamin E acetate
  • vitamin A palmitate vitamin A palmitate
  • ZnO, ZnS0 selenium and its derivatives (e.g. Selenium-methionine), stilbenes and their derivatives (e.g. stilbene oxide, trans-stilbene oxide) and the derivatives (salts, esters, ethers, sugars, nucleotides, nucleosides, peptides and lipids) of these active substances which are suitable according to the invention.
  • stilbenes and their derivatives e.g. stilbene oxide, trans-stilbene oxide
  • derivatives salts, esters, ethers, sugars, nucleotides, nucleosides, peptides and lipids
  • Hydrotropes such as ethanol, isopropyl alcohol, or polyols can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols can still contain further functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are
  • Alkylene glycols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Dialcohol amines such as diethanolamine or 2-amino-1, 3-propanediol.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid and the further classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Ordinance.
  • N, N-diethyl-m-toluamide, 1, 2-pentanediol or ethyl butylacetylaminopropionate are suitable as insect repellents, and dihydroxyacetone is suitable as a self-tanning agent.
  • Perfume oils include mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), Needles and twigs (spruce, fir, pine, mountain pine), resins and balms (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenyl glycinate, allyl cyclohexyl benzylatepylpropionate, and
  • the ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde,
  • Essential oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, for example sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • bergamot oil dihydromyrcenol, lilial, lyral, citronellol, phenylethyl alcohol, ⁇ -hexylcinnamaldehyde, geraniol, benzyl acetone, cyclamen aldehyde, linalool, Boisambrene Forte, Ambroxan, indole, hedione, Sandelice, lemon oil, mandarin oil, orange oil, allyl amyl glycolate, Cyclovertal, lavandin oil, muscatel Sage oil, ß-damascone, geranium oil bourbon, cyclohexyl salicylate, Vertofix Coeur, Iso-E-Super, Fixolide NP, evernyl, iraldein gamma, phenylacetic acid, geranyl acetate, benzyl acetate, rose oxide, romilllate, irot
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • the total proportion of auxiliaries and additives can be 1 to 50, preferably 5 to 40,% by weight, based on the composition.
  • the agents can be produced by customary cold or hot processes; the phase inversion temperature method is preferably used.
  • Example 1 23 kg of monomeric fatty acid Edenor® 935 (Henkel KGaA) were esterified with 20 kg of methanol for 2 hours at 240 ° C. and 100 bar. After the water / methanol mixture had been separated off, the same amount of fresh methanol was added and the process was repeated twice. The ester thus obtained had an acid number of 0.8. The methyl ester was hydrogenated in a fixed bed mode over a Zn-Cr catalyst to obtain the double bond. Here, 0.5 volume units of methyl ester per hour - based on the total volume of the plant - were enforced. After the methanol had been driven off, the crude alcohol was distilled (3% lead, 90% main run, 6% residue).
  • the resulting alcohol showed a hydroxyl number of 192, a saponification number of 0.9 and an iodine number of 74; the fixed point was 25.8 ° C.
  • 293 g (1 mol) of the isooleyl alcohol thus obtained were placed in a stirred autoclave and dried at 100 ° C. for about 45 minutes.
  • the ethoxylation was carried out with 88 g (2 mol) of ethylene oxide at 120 to 160 ° C. and an autogenous pressure of 5 bar. After cooling the reaction mixture was evacuated to remove traces of unreacted ethylene oxide.
  • Example 2 Monomer fatty acid was largely freed from straight-chain, saturated fatty acids by crystallization from methanol / water (Emersol method). In this way, approximately 20% by weight of fatty acid, predominantly palmitic and stearic acid, were separated off.
  • the liquid fatty acid mixture obtained after distilling off the solvent had a titer of 5 ° C. and was first converted into the methyl ester analogously to Example 1 and then hydrogenated to the unsaturated fatty alcohol. This showed a hydroxyl number of 191, a saponification number of 1.7 and an iodine number of 87; the fixed point was 3.8 ° C.
  • Cosmetic preparations water, preservatives ad 100 wt.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Wood Science & Technology (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Detergent Compositions (AREA)

Abstract

Vorgeschlagen werden verzweigte, weitgehend ungesättigte Fettalkoholethersulfate, die man erhält, indem man (a) ungesättigte Fettsäuren mit 16 bis 22 Kohlenstoffatomen in an sich bekannter Weise dimerisiert, (b) die bei der Dimerisierung anfallende Monomerfraktion abtrennt, (c) die in dieser Fraktion enthaltenen verzweigten, weitgehend ungesättigten Fettsäuren in die entsprechenden Fettsäuremethylester überführt, (d) die verzweigten, weitgehend ungesättigten Fettsäuremethylester unter Erhalt der Doppelbindungen zu den entsprechenden verzweigten, weitgehend ungesättigten Fettalkoholen hydriert, und diese (e) in an sich bekannter Weise alkoxyliert, sulfatiert und neutralisiert.

Description

Verzweigte, weitgehend ungesättigte Fettalkoholethersulfate
Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der anionischen Tenside und betrifft weitgehend ungesättigte Fettalkoholethersulfate, die sich infolge von Verzweigungen in der Kohlenwasserstoffkette gegenüber linearen Homologen durch signifikant verbesserte Eigenschaften auszeichnen, ein Verfahren zu deren Herstellung sowie ihre Verwendung zur Herstellung von oberflächenaktiven Mitteln.
Stand der Technik
Sulfate ungesättigter Fettalkoholethoxylate, die im wesentlichen durch Ethoxylierung, Sulfatierung und anschließende Neutralisation der entsprechenden talgbasierten Alkenole erhalten werden, stellen wichtige Rohstoffe für die Herstellung sowohl von kosmetischen Zubereitungen als auch von Wasch-, Spül- und Reinigungsmitteln dar. Die vorteilhaften Eigenschaften dieser Stoffe sind an das Vorhandensein der Doppelbindung im Molekül geknüpft, was gleichzeitig jedoch auch Probleme aufwirft, da die ungesättigten Fettalkoholethersulfate leicht der Autoxidation anheimfallen, was mit Verfärbungen und unerwünschten chemischen Veränderungen (z.B. Bildung von Peroxiden und Hydroperoxiden) verbunden ist.
Es ist deshalb klar, daß im Markt der Wunsch nach ungesättigten Fettalkoholethersulfaten mit verbesserter Oxidationsstabilität oder geeigneten Ersatzstoffen besteht, welche über mindestens gleichwertige anwendungstechnische Eigenschaften verfügen. Als Alternative für ungesättigte Fettalkoholethersulfate haben indes bislang nur mehr oder minder reine Isostearylalkoholethersulfate zur Verfügung gestanden. Zu deren Herstellung ist es jedoch erforderlich, zunächst Ölsäure zu dimerisieren, die Fraktion monomerer, verzweigter Fettsäuren abzutrennen, zu härten, einer fraktionierten Kristallisation zu unterwerfen, die dabei anfallende flüssige, isostearinsäurereiche Fraktion abzutrennen, mit Methanol zu verestern und die Ester anschließend zu den Alkoholen zu hydrieren, welche dann abschließend zunächst in die Alkoxylate und dann in die Ethersulfate überführt werden.
Das oben geschilderte Verfahren ist indes durch die zwei Hydrierschritte technisch aufwendig und liefert mit den Isostearylalkoholethersulfaten Ersatzstoffe, die die ungesättigten Fettalkoholethersulfate nur bedingt ersetzen können. Somit hat die Aufgabe der vorliegenden Aufgabe darin bestanden, ungesättigte Fettalkoholethersulfate zur Verfügung zu stellen, die sich durch verbesserte anwendungstechnische Eigenschaften, vorzugsweise eine höhere Oxidationsstabilität auszeichnen. Beschreibung der Erfindung
Gegenstand der Erfindung sind verzweigte, weitgehend ungesättigte Fettalkoholethersulfate, dadurch erhältlich, daß man
(a) ungesättigte Fettsäuren mit 16 bis 22 Kohlenstoffatomen in an sich bekannter Weise dimerisiert,
(b) die bei der Dimerisierung anfallende Monomerfraktion abtrennt,
(c) die in dieser Fraktion enthaltenen verzweigten, weitgehend ungesättigten Fettsäuren in die entsprechenden Fettsauremethylester überführt,
(d) die verzweigten, weitgehend ungesättigten Fettsauremethylester unter Erhalt der Doppelbindungen zu den entsprechenden verzweigten, weitgehend ungesättigten Fettalkoholen hydriert, und diese
(e) in an sich bekannter Weise alkoxyliert, sulfatiert und neutralisiert.
Überraschenderweise wurde gefunden, daß die verzweigten, weitgehend ungesättigten Fettalkoholethersulfate gegenüber den linearen Homologen gleicher Kettenlänge und gleicher lodzahl eine deutlich höhere Autoxidationsstabilität aufweisen. Weitere Vorteile bestehen in einem verbesserten Netzvermögen sowie einer rascheren Kaltwasserlöslichkeit und leichteren biologischen Abbaubarkeit.
Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur Herstellung von verzweigten, weitgehend ungesättigten Fettalkoholethersulfaten, bei dem man
(a) ungesättigte Fettsäuren mit 16 bis 22 Kohlenstoffatomen in an sich bekannter Weise dimerisiert,
(b) die bei der Dimerisierung anfallende Monomerfraktion abtrennt,
(c) die in dieser Fraktion enthaltenen verzweigten, verzweigten ungesättigten Fettsäuren in die entsprechenden Fettsauremethylester überführt,
(d) die verzweigten, weitgehend ungesättigten Fettsauremethylester unter Erhalt der Doppelbindungen zu den entsprechenden verzweigten, weitgehend ungesättigten Fettalkoholen hydriert, und diese
(e) in an sich bekannter Weise alkoxyliert, sulfatiert und neutralisiert.
Herstellung der Fettalkohole
Die Dimerisierung von Fettsäuren und die Gewinnung von Monomerfettsäuren aus den Dimerisaten ist aus dem Stand der Technik hinreichend bekannt. In diesem Zusammenhang sei beispielsweise auf die Übersichten von A.Behr et al. [Fat Sci.Technol. 93, 340 (1991)] sowie H.Möhring et al. [ibid. 94, 41 (1992) und 94, 241 (1992)] verwiesen Die Abfolge der Schritte (a) bis (d) liefert auf Basis von dimeπ- sierten, vorzugsweise einfach ungesättigten Cιε- bis C∑∑-Fettsauren, also Olsaure, Elaidinsaure, Petro- selinsaure Gadoleinsaure und Erucasaure sowie deren Gemischen verzweigte, weitgehend ungesättigte Fettalkohole im lodzahlbereich von 45 bis 85 Für eine Reihe von Anwendungen ist dies zweifellos völlig ausreichend, werden jedoch Fettstoffe benotigt, die einen höheren Gehalt an ungesättigten Verbindungen aufweisen, empfiehlt es sich, daß man die bei der Dimerisierung anfallende Monomerfraktion zunächst einer fraktionierten Kristallisation unterwirft und die dabei anfallende flussige Phase gegebenenfalls nach Destillation der Veresterung unterwirft Die dabei anfallende Fettsaure und deren Methylester stellen eine schon ziemliche reine Isoolsaure bzw einen Isoolsauremethylester dar, die eine lodzahl im Bereich 75 bis 95 aufweisen In jedem Fall ist es ratsam, die Methylester und/oder die Fettalkohole einer Destillation und/oder fraktionierten Kristallisation („Wintensierung") zu unterwerfen Die Veresterung der Fettsauren mit Methanol erfolgt nach den Verfahren des Stands der Technik und dient dazu Methylester zu erzeugen, die sich vergleichsweise leicht hydrieren lassen Anstelle der Methylester können selbstverständlich auch andere Niedngalkylester, wie z B Ethyl-, Propyl- oder Butylester erzeugt und dann hydriert werden, die Auswahl des Alkohols ist an sich unkritisch und richtet sich ausschließlich nach wirtschaftlichen Kriterien und Verfügbarkeit Anstelle der Methyl- bzw Niedngalkylester ist es grundsätzlich auch möglich, die Fettsauren direkt zu hydrieren, allerdings werden für diesen Zweck dann spezielle Katalysatoren benotigt, die mit den Sauren keine Salze bilden, zudem muß das Reaktormateπal korrosionssicher sein Auch die Hydrierung der ungesättigten Methylester zu den entsprechenden Alkoholen kann in an sich bekannter Weise erfolgen Entsprechende Verfahren und Katalysatoren, insbesondere solche auf Basis von Kupfer und Zink, sind beispielsweise den folgenden Druckschriften zu entnehmen DE 4335781 C1, EP 0602108 B1, US 3193586 und US 3729520 (Henkel), auf den Inhalt dieser Schriften wird ausdrücklich Bezug genommen
Alkoxylierunq
Die zuvor erhaltenen verzweigten, weitgehend ungesättigten Fettalkohole werden anschließend in an sich bekannter Weise alkoxyliert, d h an die Hydroxylgruppe Ethylenoxid, Propylenoxid oder deren Gemische in Random- oder Blockverteilung angelagert Vorzugsweise werden durchschnittlich 1 bis 50, insbesondere 5 bis 15 Mol Ethylenoxid und/oder 1 bis 5 Mol Propylenoxid addiert Die Alkoxylierung erfolgt nach den Verfahren des Stands der Technik, also üblicherweise in Gegenwart alkalischer homogener oder heterogener Katalysatoren, wie z B Natnummethylat, Kalium-tert butylat oder calcinierter bzw mit Fettsauren hydrophobierter Hydrotalcit Dem entsprechend können die Alkoxylate auch eine konventionell breite oder eingeengte Homologenverteilung aufweisen Sulfatierunq und Neutralisation
Die Überführung der zuvor hergestellten Fettalkoholalkoxylate in die Sulfate kann ebenfalls in an sich bekannter Weise erfolgen. Der Angriff des Sulfiermittels kann dabei sowohl an der Hydroxylgruppe als auch an der Doppelbindung stattfinden. Da die Sulfatierung jedoch gerade bei niedrigen Temperaturen im Bereich von etwa 30 °C etwa 10mal schneller abläuft als die Sulfonierung, also die Anlagerung von Schwefeltrioxid an die Doppelbindung, werden überwiegend, d.h. zu mehr als 90 Gew.-% (Ether-) Sulfate erhalten. Die Umsetzung der verzweigten, weitgehend ungesättigten Fettalkohole beispielsweise mit gasförmigem Schwefeltrioxid kann in der für Fettsäureniedrigalkylester bekannten Weise [J.Falbe (ed.), "Surfactants in consumer products"; Springer Verlag, Berlin-Heidelberg, 1987, S.61] erfolgen, wobei Reaktoren, die nach dem Fallfilmprinzip arbeiten, bevorzugt sind. Dabei wird das Schwefeltrioxid mit einem inerten Gas, vorzugsweise Luft oder Stickstoff verdünnt und in Form eines Gasgemisches, welches das Sulfieragens in einer Konzentration von 1 bis 8, insbesondere 2 bis 5 Vol.-% enthält, eingesetzt. Das molare Einsatzverhältnis von Alkoxylat zu Sulfatierungsmittel beträgt üblicherweise 1 : 0,95 bis 1 : 1 ,8, vorzugsweise jedoch 1 : 1 ,0 bis 1 : 1 ,6. und insbesondere 1 : 1 ,3 bis 1 : 1 ,5. Die Sulfatierung wird in der Regel bei Temperaturen von 25 bis 90, vorzugsweise 35 bis 80°C durchgeführt. Anstelle von Schwefeltrioxid können als Sulfiermittel auch Chlorsulfonsäure oder Amidosulfonsäure eingesetzt werden. Die bei der Reaktion anfallenden sauren Sulfate werden in wäßrige Basen eingerührt, neutralisiert und auf einen pH-Wert von 6,5 bis 8,5 eingestellt. Die Neutralisation wird mit Basen ausgewählt aus der von Alkalimetallhydroxiden wie Natrium-, Kalium- und Lithiumhydroxid, Erdalkalimetalloxiden und -hydroxiden wie Magnesiumoxid, Magnesiumhydroxid, Calciumoxid und Calciumhy- droxid, Ammoniak, Mono-, Di- und Tri-C2 -Alkanolaminen, beispielsweise Mono-, Di- und Triethanola- min sowie primären, sekundären oder tertiären Cι-4-Alkylaminen gebildeten Gruppe durchgeführt. Die Neutralisationsbasen gelangen dabei vorzugsweise in Form 5 bis 55 Gew.-%iger wäßriger Lösungen zum Einsatz, wobei 25 bis 50 Gew.-%ige wäßrige Natriumhydroxidlösung bevorzugt ist. Die nach dem erfindungsgemäßen Verfahren erhältlichen Sulfate liegen nach Neutralisation als wäßrige Lösungen mit einem Aktivsubstanzgehalt von 20 bis 80, vorzugsweise 30 bis 50 Gew.-% vor. Die Sulfate können nach der Neutralisation in an sich bekannter Weise durch Zusatz von Wasserstoffperoxid- oder Natriumhypochloritlösung gebleicht werden, um eine für viele Anwendungen erwünschte weitere Farbaufhellung zu erreichen. Dabei werden, bezogen auf den Feststoffgehalt in der Lösung der Sulfate, 0,2 bis 2 Gew.-% Wasserstoffperoxid, berechnet als 100 Gew.-%ige Substanz, oder entsprechende Mengen Natriumhypochlorit eingesetzt. Der pH-Wert der Lösungen kann unter Verwendung geeigneter Puffermittel, z. B. mit Natriumphosphat oder Citronensäure konstant gehalten werden. Zur Stabilisierung gegen Bakterienbefall empfiehlt sich ferner eine Konservierung, z. B. mit Formaldehydlösung, p- Hydroxybenzoat, Sorbinsäure oder anderen bekannten Konservierungsstoffen. Gewerbliche Anwendbarkeit
Die neuen verzweigten, weitgehend ungesättigten Fettalkoholethersulfate zeichnen sich durch besondere Oxidationsstabilität aus und eignen sich daher zur Herstellung von oberflächenaktiven Mitteln, vorzugsweise Wasch-, Spül-, Reinigungs- und Avivagemitteln sowie kosmetischen und/oder pharmazeutischen Zubereitungen, in denen sie in Mengen von 1 bis 50, vorzugsweise 5 bis 35 und insbesondere 10 bis 25 Gew.-% enthalten sein können.
Wasch-, Spül-, Reinigungs- und Avivaqemittel
Sofern die erfindungsgemäßen verzweigten, weitgehend ungesättigten Fettalkoholsulfate als Rohstoffe für die Herstellung von Wasch-, Spül-, Reinigungs- oder Avivagemitteln („Softener") dienen, liegen sie üblicherweise in flüssiger Form, d.h. als wäßrige Lösungen oder Pasten vor; zur Herstellung von Pulverwaschmitteln können die wäßrigen Mischungen in der Folge getrocknet werden. Flüssige Zubereitungen können einen nicht wäßrigen Anteil im Bereich von 5 bis 50 und vorzugsweise 15 bis 35 Gew.- % aufweisen. Im einfachsten Fall handelt es sich um wäßrige Lösungen der genannten Mischungen. Bei den Flüssigwaschmitteln kann es sich aber auch um im wesentlichen wasserfreie Mittel handeln. Dabei bedeutet "im wesentlichen wasserfrei" im Rahmen dieser Erfindung, daß das Mittel vorzugsweise kein freies, nicht als Kristallwasser oder in vergleichbarer Form gebundenes Wasser enthält. In einigen Fällen sind geringe Menge an freiem Wasser tolerierbar, insbesondere in Mengen bis zu 5 Gew.-%. Die im Detergensbereich eingesetzten Mittel können weitere typische Inhaltsstoffe, wie beispielsweise Buil- der, Bleichmittel, Bleichaktivatoren, Lösungsmittel, Wasch kraftverstärker, Enzyme, Enzymstabilisatoren, Viskositätsregulatoren, Vergrauungsinhibitoren, optische Aufheller, Soil repellants, Schauminhibitoren, anorganische Salze sowie Duft- und Farbstoffe enthalten.
Geeignete flüssige Builder sind Ethylendiamintetraessigsäure, Nitrilotriessigsäure, Citronensäure sowie anorganische Phosphonsäuren, wie z.B. die neutral reagierenden Natriumsalze von 1- Hydroxyethan-1 ,1 ,-diphosphonat, die in Mengen von 0,5 bis 5, vorzugsweise 1 bis 2 Gew.-% zugegen sein können.
Als feste Builder wird insbesondere feinkristalliner, synthetisches und gebundenes Wasser enthaltender Zeolith wie Zeolith NaA in Waschmittelqualität eingesetzt. Geeignet sind jedoch auch Zeolith NaX sowie Mischungen aus NaA und NaX. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxy- lierten Ci2-Ci8-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen oder ethoxylierte Isotridecanole. Geeig- nete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser. Geeignete Substitute bzw. Teilsubstitute für Zeolithe sind kristalline, schichtför- mige Natriumsilicate der allgemeinen Formel NaMSixO∑x+ryH∑O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen Patentanmeldung EP 0164514 A beschrieben. Bevorzugte kristalline Schichtsilicate sind solche, in denen M in der allgemeinen Formel für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch γ-Natriumdisilicate Na2Si2θs-yH2θ bevorzugt, wobei ß-Natriumdisilicat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrieben ist. Pulverwaschmittel auf Basis der erfindungsgemäßen verzweigtem weitgehend verzweigten Fettalkoholethersulfate enthalten als feste Builder vorzugsweise 10 bis 60 Gew.-% Zeolith und/oder kristalline Schichtsilicate, wobei Mischungen von Zeolith und kristallinen Schichtsilicaten in einem beliebigen Verhältnis besonders vorteilhaft sein können. Insbesondere ist es bevorzugt, daß die Mittel 20 bis 50 Gew.-% Zeolith und/oder kristalline Schichtsilicate enthalten. Besonders bevorzugte Mittel enthalten bis 40 Gew.-% Zeolith und insbesondere bis 35 Gew.-% Zeolith, jeweils bezogen auf wasserfreie Aktivsubstanz. Weitere geeignete Inhaltsstoffe der Mittel sind wasserlösliche amorphe Silicate; vorzugsweise werden sie in Kombination mit Zeolith und/oder kristallinen Schichtsilicaten eingesetzt. Insbesondere bevorzugt sind dabei Mittel, welche vor allem Natriumsilicat mit einem molaren Verhältnis (Modul) Na∑O ; Siθ2 von 1 :1 bis 1 :4,5, vorzugsweise von 1 :2 bis 1 :3,5, enthalten. Der Gehalt der Mittel an amorphen Natriumsilicaten beträgt dabei vorzugsweise bis 15 Gew.-% und vorzugsweise zwischen 2 und 8 Gew.-%. Auch Phosphate wie Tripolyphosphate, Pyrophosphate und Orthophosphate können in geringen Mengen in den Mitteln enthalten sein. Vorzugsweise beträgt der Gehalt der Phosphate in den Mitteln bis 15 Gew.-%, jedoch insbesondere 0 bis 10 Gew.-%. Außerdem können die Mittel auch zusätzlich Schichtsilicate natürlichen und synthetischen Ursprungs enthalten. Derartige Schichtsilicate sind beispielsweise aus den Patentanmeldungen DE 2334899 B, EP 0026529 A und DE 3526405 A bekannt. Ihre Verwendbarkeit ist nicht auf eine spezielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbesondere Bentonite. Geeignete Schichtsilicate, die zur Gruppe der mit Wasser quellfähigen Smectite zählen, sind z.B. solche der allgemeinen Formeln
(OH)4Si8-yAly(MgxAI -x)θ2o Montmorrilonit (OH)4Si8-yAly(Mg6-zLiz)θ2o Hectorit (OH)4Si8-yAly(Mg6-z Alz)02o Saponit
mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6. Zusätzlich kann in das Kristallgitter der Schichtsilicate gemäß den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilicate aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkaliionen, insbesondere Na+ und Ca2+ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Brauchbare Schichtsilicate sind beispielsweise aus US 3,966,629, US 4,062,647, EP 0026529 A und EP 0028432 A bekannt. Vorzugsweise werden Schichtsilicate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Cal- ciumionen und stark färbenden Eisenionen sind. Brauchbare organische Gerüstsubstanzen sind beispielsweise die bevorzugt in Form ihrer Natriumsalze eingesetzten Polycarbonsäuren, wie Citronen- säure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Ni- trilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citro- nensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150000 (auf Säure bezogen). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5000 bis 200000, vorzugsweise 10000 bis 120000 und insbesondere 50000 bis 100000. Der Einsatz polymerer Polycarboxylate ist nicht zwingend erforderlich. Falls jedoch polymere Polycarboxylate eingesetzt werden, so sind Mittel bevorzugt, welche biologisch abbaubare Polymere, beispielsweise Terpolymere, die als Monomere Acrylsäure und Maleinsäure bzw. deren Salze sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Acrylsäure und 2-Alkylallyl- sulfonsäure bzw. deren Salze sowie Zuckerderivate enthalten. Insbesondere sind Terpolymere bevorzugt, die nach der Lehre der deutschen Patentanmeldungen DE 4221381 A und DE 4300772 A erhalten werden. Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 Kohlenstoffatome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP 0280223 A beschrieben erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaral- dehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Unter den als Bleichmittel dienenden, in Wasser Wasserstoffperoxid liefernden Verbindungen haben das Natriumperborat-Tetrahydrat und das Natriumperborat-Monohydrat eine besondere Bedeutung. Weitere Bleichmittel sind beispielsweise Peroxycarbonat, Citratperhydrate sowie Salze der Persäuren, wie Perbenzoate, Peroxyphthalate oder Diperoxydodecandisäure. Sie werden üblicherweise in Mengen von 8 bis 25 Gew.-% eingesetzt. Bevorzugt ist der Einsatz von Natriumperborat-Monohydrat in Mengen von 10 bis 20 Gew.-% und insbesondere von 10 bis 15 Gew.-%. Durch seine Fähigkeit, unter Ausbildung des Tetrahydrats freies Wasser binden zu können, trägt es zur Erhöhung der Stabilität des Mittels bei. Um beim Waschen bei Temperaturen von 60°C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Präparate eingearbeitet werden. Beispiele hierfür sind mit Wasserstoffperoxid organische Persäuren bildende N-Acyl- bzw. O-Acyl-Verbindungen, vorzugsweise N,N'- tetraacylierte Diamine, ferner Carbonsäureanhydride und Ester von Polyolen wie Glucosepentaacetat. Der Gehalt der bleichmittelhaltigen Mittel an Bleichaktivatoren liegt in dem üblichen Bereich, vorzugsweise zwischen 1 und 10 Gew.-% und insbesondere zwischen 3 und 8 Gew.-%. Besonders bevorzugte Bleichaktivatoren sind N,N,N',N'-Tetraacetylethylendiamin und 1 ,5-Diacetyl-2,4-dioxo-hexahydro-1 ,3,5- triazin.
Als organische Lösungsmittel kommen beispielsweise mono- und/oder polyfunktionelle Alkohole mit 1 bis 6 Kohlenstoffatomen, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in Frage. Bevorzugte Alkohole sind Ethanol, 1 ,2-Propandiol, Glycerin sowie deren Gemische. Die Mittel enthalten vorzugsweise 2 bis 20 Gew.-% und insbesondere 5 bis 15 Gew.-% Ethanol oder ein beliebiges Gemisch aus Ethanol und 1 ,2-Propandiol oder insbesondere aus Ethanol und Glycerin. Ebenso ist es möglich, daß die Zubereitungen entweder zusätzlich zu den mono- und/oder polyfunktionellen Alkoholen mit 1 bis 6 Kohlenstoffatomen oder allein Polyethylenglykol mit einer relativen Molekülmasse zwischen 200 und 2000, vorzugsweise bis 600 in Mengen von 2 bis 17 Gew.-% enthalten. Als Hydrotrope können beispielsweise Toluolsulfonat, Xylolsulfonat, Cumolsulfonat oder deren Mischungen eingesetzt werden.
Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus sub- tilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Ihr Anteil kann etwa 0,2 bis etwa 2 Gew.-% betragen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Zusätzlich zu den mono- und polyfunktionellen Alkoholen und den Phosphonaten können die Mittel weitere Enzymstabilisatoren enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Na- triumformiat eingesetzt werden. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calcium- salzen und einem Calciumgehalt von vorzugsweise etwa 1 ,2-Gew.-%, bezogen auf das Enzym, stabilisiert sind. Besonders vorteilhaft ist jedoch der Einsatz von Borverbindungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Orthoborsäure (H3BO3), der Metaborsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2B4O7).
Als Viskositätsregulatoren können beispielsweise gehärtetes Rizinusöl, Salze von langkettigen Fettsäuren, die vorzugsweise in Mengen von 0 bis 5 Gew.-% und insbesondere in Mengen von 0,5 bis 2 Gew.-%, beispielsweise Natrium-, Kalium-, Aluminium-, Magnesium- und Titanstearate oder die Natrium- und/oder Kaliumsalze der Behensäure, sowie weitere polymere Verbindungen eingesetzt wer- den. Zu den letzteren gehören bevorzugt Polyvinylpyrrolidon, Urethane und die Salze polymerer Polycarboxylate, beispielsweise homopolymerer oder copolymerer Polyacrylate, Polymethacrylate und insbesondere Copolymere der Acrylsäure mit Maleinsäure, vorzugsweise solche aus 50 % bis 10 % Maleinsäure. Die relative Molekülmasse der Homopolymeren liegt im allgemeinen zwischen 1000 und 100000, die der Copolymeren zwischen 2000 und 200000, vorzugsweise zwischen 50000 bis 120000, bezogen auf die freie Säure. Insbesondere sind auch wasserlösliche Polyacrylate geeignet, die beispielsweise mit etwa 1 % eines Polyallylethers der Sucrose quervernetzt sind und die eine relative Molekülmasse oberhalb einer Million besitzen. Beispiele hierfür sind die unter dem Namen Carbopol® 940 und 941 erhältlichen Polymere mit verdickender Wirkung. Die quervernetzten Polyacrylate werden vorzugsweise in Mengen nicht über 1 Gew.-%, vorzugsweise in Mengen von 0,2 bis 0,7 Gew.-% eingesetzt. Die Mittel können zusätzlich etwa 5 bis 20 Gew.-% eines partiell veresterten Copolymerisats enthalten, wie es in der europäischen Patentanmeldung EP 0367049 A beschrieben ist. Diese partiell veresterten Polymere werden durch Copolymerisation von (a) mindestens einem C4-C28-Olefin oder Mischungen aus mindestens einem C4-C28-Olefin mit bis zu 20 Mol-% Ci-C∑β-Alkylvinylethern und (b) ethylenisch ungesättigten Dicarbonsäureanhydriden mit 4 bis 8 Kohlenstoffatomen im Molverhältnis 1 : 1 zu Copolymerisaten mit K-Werten von 6 bis 100 und anschließende partielle Veresterung der Copolymerisate mit Umsetzungsprodukten wie Cι-Ci3-Alkoholen, Cβ-C22-Fettsäuren, Cι-Ci2-Alkylphe- nolen, sekundären C2-C3o-Aminen oder deren Mischungen mit mindestens einem C2-C -Alkylenoxid oder Tetrahydrofuran sowie Hydrolyse der Anhydridgruppen der Copolymerisate zu Carboxylgruppen erhalten, wobei die partielle Veresterung der Copolymerisate soweit geführt wird, daß 5 bis 50 % der Carboxylgruppen der Copolymerisate verestert sind. Bevorzugte Copolymerisate enthalten als ethylenisch ungesättigtes Dicarbonsäureanhydrid Maleinsäureanhydrid. Die partiell veresterten Copolymerisate können entweder in Form der freien Säure oder vorzugsweise in partiell oder vollständig neutralisierter Form vorliegen. Vorteilhafterweise werden die Copolymerisate in Form einer wäßrigen Lösung, insbesondere in Form einer 40 bis 50 Gew.-%igen Lösung eingesetzt. Die Copolymerisate leisten nicht nur einen Beitrag zur Primär- und Sekundärwaschleistung des flüssigen Wasch- und Reinigungsmittels, sondern bewirken auch eine gewünschte Viskositätserniedrigung der konzentrierten flüssigen Waschmittel. Durch den Einsatz dieser partiell veresterten Copolymerisate werden konzentrierte wäßrige Flüssigwaschmittel erhalten, die unter dem alleinigen Einfluß der Schwerkraft und ohne Einwirkung sonstiger Scherkräfte fließfähig sind. Vorzugsweise beinhalten die konzentrierten wäßrigen Flüssigwaschmittel partiell veresterte Copolymerisate in Mengen von 5 bis 15 Gew.-% und insbesondere in Mengen von 8 bis 12 Gew.-%.
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Vergrauen zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet Weiterhin lassen sich lösliche Starke- praparate und andere als die obengenannten Starkeprodukte verwenden, z B abgebaute Starke, Aldehydstarken usw Auch Polyvinylpyrro don ist brauchbar Bevorzugt werden jedoch Celluloseether, wie Carboxymethylcellulose, Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhy- droxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische sowie Poiyvmylpyrrolidon, beispielsweise in Mengen von 0,1 bis 5 Gew -%, bezogen auf die Mittel
Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsaure bzw deren Alkali- metallsalze enthalten Geeignet sind z B Salze der 4,4'-Bιs(2-anιlιno-4-morpholιno-1 ,3,5-tπazιnyl-6- amιno)stιlben-2,2'-dιsulfonsaure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpho- Imo-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Ani nogruppe oder eine 2- Methoxyethylaminogruppe tragen Weiterhin können Aufheller vom Typ der substituierten Diphenylsty- ryle anwesend sein, z B die Alkalisalze des 4,4'-Bιs(2-sulfostyryl)-dιphenyls, 4,4'-Bιs(4-chlor-3-sulfo- styryl)-dιphenyls, oder 4-(4-Chlorstyryl)-4'-(2-suifostyryl)-dιphenyls Auch Gemische der vorgenannten Aufheller können verwendet werden Einheitlich weiße Granulate werden erhalten, wenn die Mittel außer den üblichen Aufhellern in üblichen Mengen, beispielsweise zwischen 0,1 und 0,5 Gew -%, vorzugsweise zwischen 0,1 und 0,3 Gew -%, auch geringe Mengen, beispielsweise 106 bis 103 Gew -%, vorzugsweise um 105 Gew -%, eines blauen Farbstoffs enthalten Ein besonders bevorzugter Farbstoff ist Tinolux® (Handelsprodukt der Ciba-Geigy)
Als schmutzabweisenden Polymere („soil repellants") kommen solche Stoffe in Frage, die vorzugsweise Ethylenterephthalat- und/oder Polyethyienglycolterephthalatgruppen enthalten, wobei das Mol- verhaltnis Ethylenterephthalat zu Polyethylenglycolterephthalat im Bereich von 50 50 bis 90 10 egen kann Das Molekulargewicht der verknüpfenden Polyethylenglycoleinheiten liegt insbesondere im Bereich von 750 bis 5000, d h , der Ethoxylierungsgrad der Polyethylenglycolgruppenhaltigen Polymere kann ca 15 bis 100 betragen Die Polymeren zeichnen sich durch ein durchschnittliches Molekulargewicht von etwa 5000 bis 200 000 aus und können eine Block-, vorzugsweise aber eine Random-Struktur aufweisen Bevorzugte Polymere sind solche mit Molverhaltnissen Ethylenterephthalat/Polyethylen- glycolterephthalat von etwa 65 35 bis etwa 90 10, vorzugsweise von etwa 70 30 bis 80 20 Weiterhin bevorzugt sind solche Polymeren, die verknüpfende Polyethylenglycoleinheiten mit einem Molekulargewicht von 750 bis 5000, vorzugsweise von 1000 bis etwa 3000 und ein Molekulargewicht des Polymeren von etwa 10 000 bis etwa 50 000 aufweisen Beispiele für handelsübliche Polymere sind die Produkte Milease® T (ICI) oder Repelotex® SRP 3 (Rhόne-Poulenc)
Beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen Hierfür eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an Ci8-C24-Fettsauren aufweisen Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls signierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit signierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z.B. solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- oder paraffinhaltige Schauminhibitoren, an eine granuläre, in Wasser lösliche bzw. dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamiden bevorzugt.
Der pH-Wert flüssiger, insbesondere auch flüssig-konzentrierter Mittel beträgt im allgemeinen 7 bis 10,5, vorzugsweise 7 bis 9,5 und insbesondere 7 bis 8,5. Die Einstellung höherer pH-Werte, beispielsweise oberhalb von 9, kann durch den Einsatz geringer Mengen an Natronlauge oder an alkalischen Salzen wie Natriumcarbonat oder Natriumsilicat erfolgen. Die flüssigen Zubereitungen weisen im allgemeinen Viskositäten zwischen 150 und 10000 mPas (Brookfield-Viskosimeter, Spindel 1 , 20 Umdrehungen pro Minute, 20°C) auf. Dabei sind bei den im wesentlichen wasserfreien Mitteln Viskositäten zwischen 150 und 5000 mPas bevorzugt. Die Viskosität dieser wäßrigen Mittel liegt vorzugsweise unter 2000 mPas und liegt insbesondere zwischen 150 und 1000 mPas.
Herstellung fester Zubereitungen
Das Schüttgewicht der festen Zubereitungen beträgt im allgemeinen 300 bis 1200 g/l, insbesondere 500 bis 1100 g/l. Ihre Herstellung kann nach jedem der bekannten Verfahren wie Mischen, Sprühtrocknung, Granulieren und Extrudieren erfolgen. Geeignet sind insbesondere solche Verfahren, in denen mehrere Teilkomponenten, beispielsweise sprühgetrocknete Komponenten und granulierte und/oder extrudierte Komponenten miteinander vermischt werden. Dabei ist es auch möglich, daß sprühgetrocknete oder granulierte Komponenten nachträglich in der Aufbereitung beispielsweise mit nichtionischen Tensiden, insbesondere ethoxylierten Fettalkoholen, nach den üblichen Verfahren beaufschlagt werden. Insbesondere in Granululations- und Extrusionsverfahren ist es bevorzugt, die gegebenenfalls vorhandenen Aniontenside in Form eines sprühgetrockneten, granulierten oder extru- dierten Compounds entweder als Zumischkomponente in dem Verfahren oder als Additiv nachträglich zu anderen Granulaten einzusetzen. Insbesondere die bevorzugten schwereren Granulate mit Schüttgewichten oberhalb 600 g/l enthalten vorzugsweise Komponenten, welche das Einspüiverhalten und/oder das Löseverhalten der Granulate verbessern. Vorteilhafterweise werden hierzu alkoxylierte Fettalkohole mit 12 bis 80 Mol Ethylenoxid pro Mol Alkohol, beispielsweise Taigfettalkohol mit 14 EO, 30 EO oder 40 EO, und Polyethylenglykole mit einer relativen Molekülmasse zwischen 200 und 12000, vorzugsweise zwischen 200 und 600, eingesetzt.
Ebenso ist es möglich und kann in Abhängigkeit von der Rezeptur von Vorteil sein, wenn weitere einzelne Bestandteile des Mittels, beispielsweise Citrat bzw. Citronensäure oder andere Polycarboxylate bzw. Polycarbonsäuren, polymere Polycarboxylate, Zeolith und/oder Schichtsilikate, die gegebenenfalls kristallin sein können, nachträglich zu sprühgetrockneten, granulierten und/oder extrudierten Komponenten, die gegebenenfalls mit nichtionischen Tensiden und/oder anderen bei der Verarbeitungstemperatur flüssigen bis wachsartigen Inhaltsstoffen beaufschlagt sind, hinzugemischt werden. Bevorzugt ist dabei ein Verfahren, bei dem die Oberfläche von Teilkomponenten des Mittels oder des gesamtem Mittels zur Reduzierung der Klebrigkeit der an Niotensiden reichen Granulate und/oder zu ihrer verbesserten Löslichkeit nachträglich behandelt wird. Geeignete Oberflächenmodifizierer sind dabei aus dem Stand der Technik bekannt. Neben weiteren geeigneten sind dabei feinteilige Zeolithe, Kieselsäuren, amorphe Silikate, Fettsäuren oder Fettsäuresalze, beispielsweise Calciumstearat, insbesondere jedoch Mischungen aus Zeolith und Kieselsäuren oder Zeolith und Calciumstearat besonders bevorzugt.
Kosmetische und/oder pharmazeutische Zubereitungen
Die erfindungsgemäßen verzweigten, weitgehend ungesättigten Fettalkoholethersulfate können auch zur Herstellung von kosmetischen und/oder pharmazeutischen Zubereitungen, wie beispielsweise Haarshampoos, Haarlotionen, Schaumbäder, Duschbäder, Cremes, Gele, Lotionen, alkoholische und wäßrig/alkoholische Lösungen, Emulsionen, Wachs/ Fett-Massen, Stiftpräparaten, Pudern oder Salben dienen. Diese Mittel können ferner als weitere Hilfs- und Zusatzstoffe milde Tenside, Ölkörper, Emul- gatoren, Überfettungsmittel, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Polymere, Siliconverbindungen, Fette, Wachse, Stabilisatoren, biogene Wirkstoffe, Deodorantien, Antitranspirantien, Antischuppenmittel, Filmbildner, Quellmittel, UV-Lichtschutzfaktoren, Antioxidantien, Hydrotrope, Konservierungsmittel, Insektenrepellentien, Selbstbräuner, Solubilisatoren, Parfümöle, Farbstoffe und dergleichen enthalten.
Typische Beispiele für geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholsulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarco- sinate, Fettsäuretauride, Fettsäureglutamate, α-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucosi- de, Fettsäureglucamide, Alkylamidobetaine und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen C6-C22-Fet- talkoholen, Ester von verzweigten C6-Ci3-Carbonsäuren mit linearen C6-C22-Fettalkoholen, wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, My- ristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cety- lerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, Isostearylo- leat, Isostearylbehenat, Isostearyloleat, Oleylmyristat, Oleylpalmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Beheny- lisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstea- rat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Hy- droxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylengly- col, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis Cβ-Cio-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von Cβ-Cis-Fettsäuren, Ester von C6-C22-Fettalko- holen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Ci2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
> Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest;
> Alkyl- und/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alk(en)ylrest und deren ethoxylierte Analoga;
> Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
> Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polyethylengly- col (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Polyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid; > Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 1165574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.
> Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
> Wollwachsalkohole;
> Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
> Polyalkyienglycole sowie
> Glycerincarbonat.
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. Ci/is-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 2024051 PS als Rückfettungsmittel für kosmetische Zubereitungen bekannt.
Alkyl- und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligo- sacchariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglycerid, Hydroxy- stearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäurediglycerid, Ölsäuremonoglycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinolsäurediglycerid, Linolsäuremonoglycerid, Linolsäure- diglycerid, Linolensäuremonoglycerid, Linolensäuredigiycerid, Erucasäuremonoglycerid, Erucasäure- diglycerid, Weinsäuremonoglycerid, Weinsäurediglycerid, Citronensäuremonoglycerid, Citronendiglyce- rid, Apfelsäuremonoglycerid, Apfelsäurediglycerid sowie deren technische Gemische, die untergeordnet aus dem Hersteliungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride.
Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitandiisostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitandioleat, Sorbitantrioleat, Sorbi- tanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sor- bitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitan- sesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, Sor- bitansesquitartrat, Sorbitanditartrat, Sorbitantritartrat, Sorbitanmonocitrat, Sorbitansesquicitrat, Sorbi- tandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat, Sorbitandimaleat, Sorbitantri- maleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.
Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxystearate (Dehy- muls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Polyglyceryl-4 Isostearate (Isolan® Gl 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) und Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemische.
Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Taigfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensäure und dergleichen.
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N , N-dimethylam- moniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylaminopropyl-N,N- dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer Cβ -Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -Sθ3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hy- droxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsauren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropio- nat und das Ci2/i8-Acylsarcosin. Schließlich kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquatemierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind.
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxy- lierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäureal- kanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycoiester, speziell Ethylenglycoldi- stearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stea- rinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfett- säuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten.
Geeignete Verdickungsmittel sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysac- charide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxyme- thylcellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® von Goodrich oder Synthalene® von Sigma), Poly- acrylamide, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäu- reglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Poly- glycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium hydroxy- propyl hydrolyzed Collagen (Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amidomethicone, Copolymere der Adipinsäure und Dimethyla- minohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl- diallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z.B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quaterniert.es Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino-1 ,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1 , Mirapol® AZ-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylacetat/Butylmaleat/ Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, un- vernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/Methylmethacrylat/tert.Butylaminoethylmethacrylat/2-Hydroxyproyl- methacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage.
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder al- kylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethico- nen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm.Toil. 91, 27 (1976).
Typische Beispiele für Fette sind Glyceride, als Wachse kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Camaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reis- keimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffin wachse, Mikrowach- se; chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethylenglycolwachse in Frage.
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden. Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopheroiacetat, Tocopherolpalmitat, Ascorbinsaure, Desoxyπbonucleinsaure, Retinol, Bisabolol, Allantoin, Phytantπol, Panthenol, AHA-Sau- ren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Ole, Pflanzenextrakte und Vitaminkomplexe zu verstehen
Kosmetische Deodorantien (Desodorantien) wirken Korpergeruchen entgegen, überdecken oder beseitigen sie Korpergeruche entstehen durch die Einwirkung von Hautbakterien auf apokrmen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden Dementsprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Ge- ruchsuberdecker fungieren
Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z B 4-Hydroxybenzoesaure und ihre Salze und Ester, N-(4-Chlorphenyl)-N'-(3,4 dichlor- phenyl)harnstoff, 2,4,4'-Tπchlor-2'-hydroxydιphenylether (T closan), 4-Chlor-3,5-dιmethylphenol, 2,2 - Methylen-bιs(6-brom-4-chlorphenol), 3-Methyl-4-(1-methylethyl)phenol, 2-Benzyl-4-chlorphenol, 3-(4- Chlorphenoxy)-1 ,2-propandιol, 3-lod-2-propιnylbutylcarbamat, Chlorhexidin, 3,4,4'-Tπchlorcarbanιlιd (TTC), antibakteπelle Riechstoffe, Thymol, Thymianol, Eugenol, Nelkenöl, Menthol, Minzol, Farnesol, Phenoxyethanol, Glyceπnmonolaurat (GML), Diglyceπnmonocapπnat (DMC), Sahcylsaure-N-alkylamide wie z B Sahcylsaure-n-octylamid oder Sahcylsaure-n-decylamid
Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet Hierbei handelt es sich vorzugsweise um Tnalkylcitrate wie Tπmethylcitrat, Tnpropylcitrat, Trnsopropylcitrat, Tnbutylcitrat und insbesondere Tnethylcitrat (Hydagen® CAT, Henkel KGaA, Dusseldorf/FRG) Die Stoffe inhibieren die Enzymaktivitat und reduzieren dadurch die Geruchsbildung Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosteπn-, Cholesteπn-, Campesterm-, Stigmastenn- und Sitosteπnsulfat bzw -phosphat, Dicarbonsauren und deren Ester, wie beispielsweise Glutarsäure, Glutarsauremonoethylester, Glutarsaurediethylester, Adipinsäure, Adipin- sauremonoethylester, Adipinsaurediethylester, Malonsaure und Malonsaurediethylester, Hydroxycarb- nonsauren und deren Ester wie beispielsweise Citronensaure, Apfelsaure, Weinsaure oder Weinsaure- diethylester, sowie Zinkglycinat
Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit Wichtig ist, daß dabei Parfüms unbeeintrachtigt bleiben müssen Geruchsabsorber haben keine Wirksamkeit gegen Bakterien Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsaure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z B Extrakte von Labdanum bzw Styrax oder bestimmte Abietinsauredeπvate Als Geruchsuberdecker fungieren Riechstoffe oder Par¬
is fümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Keto- ne, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Ben- zyiacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzyl- aceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citro- nenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß- Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen die Schweißbildung, und wirken somit Achseinässe und Körpergeruch entgegen. Wässrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typischerweise folgende Inhaltsstoffe:
> adstringierende Wirkstoffe,
> Ölkomponenten,
> nichtionische Emulgatoren,
> Coemulgatoren,
> Konsistenzgeber,
> Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder
> nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin. Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z.B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumsesquichlorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1 ,2. Aluminiumhydroxyallantoinat, Aluminiumchloridtartrat, Alu- minium-Zirkonium-Trichlorohydrat, Aluminium-Zirkonium-tetrachlorohydrat, Aiuminium-Zirkonium-pen- tachlorohydrat und deren Komplexverbindungen z. B. mit Aminosäuren wie Glycin. Daneben können in Antitranspirantien übliche öllösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllöslichen Hilfsmittel können z.B. sein:
> entzündungshemmende, hautschützende oder wohlriechende ätherische Öle,
> synthetische hautschützende Wirkstoffe und/oder
> öllösliche Parfümöle.
Übliche wasserlösliche Zusätze sind z.B. Konservierungsmittel, wasserlösliche Duftstoffe, pH-Wert- Stellmittel, z.B. Puffergemische, wasserlösliche Verdickungsmittel, z.B. wasserlösliche natürliche oder synthetische Polymere wie z.B. Xanthan-Gum, Hydroxyethylcellulose, Polyvinylpyrrolidon oder hochmolekulare Polyethylenoxide.
Als Antischuppenmittel können Climbazol, Octopirox und Zinkpyrethion eingesetzt werden.
Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäure- reihe, quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen.
Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkyl- modifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R.Lochhead in Cosm.Toil. 108, 95 (1993) entnommen werden.
Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:
3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methylbenzy- liden)campher wie in der EP 0693471 B1 beschrieben; > 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester, 4- (Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoesäureamylester; Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäurepro- pylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Octo- crylene);
> Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylben- zylester, Salicylsäurehomomenthylester;
> Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-me- thoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
> Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester; Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1 '-hexyloxy)-1 ,3,5-triazin und Octyl Tria- zon, wie in der EP 0818450 A1 beschrieben oder Dioctyl Butamido Triazone (Uvasorb® HEB);
> Propan-1 ,3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1 ,3-dion;
> Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP 0694521 B1 beschrieben.
Als wasserlösliche Substanzen kommen in Frage:
> 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkyiammonium-, Alkanolammonium- und Glucammoniumsalze;
> Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5- sulfonsäure und ihre Salze;
> Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bornyiidenmethyl)benzol- sulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1 ,3-dion, 4-tert.-Butyl-4'-methoxydibenzoyl- methan (Parsol 1789), 1 -Phenyl-3-(4'-isopropylphenyl)-propan-1 ,3-dion sowie Enaminverbindungen, wie beschrieben in der DE 19712033 A1 (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pig- mente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coating ittel kommen dabei vor allem Silicone und dabei speziell Trial- koxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mi- kro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiert.es Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P.Finkel in SÖFW-Journal 122, 543 (1996) zu entnehmen.
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α-Carotin, ß-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Au- rothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cysta- min und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl- , γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodi- propionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleo- side und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Bu- tioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Äpfelsäure), Huminsäure, Galiensäure, Gallenextrakte, Biiirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Öisäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A- palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajak- harzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Man- nose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnS0 ) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stil- benoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nu- kleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopro- pylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktioneile Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
> Glycerin;
> Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethyienglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
> technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1 ,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
> Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
> Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
> Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
> Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
> Aminozucker, wie beispielsweise Glucamin;
> Dialkoholamine, wie Diethanolamin oder 2-Amino-1 ,3-propandiol.
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Para- bene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffkiassen. Als Insekten-Repellentien kommen N,N-Diethyl-m-toluamid, 1 ,2- Pentandiol oder Ethyl Butylacetylaminopropionate in Frage, als Selbstbräuner eignet sich Dihydroxya- ceton.
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Bu- tylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, oc-lsomethylionon und Me- thylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanu- möl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessig- säure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt - oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur-Methode.
Beispiele
Beispiel 1. 23 kg Monomerfettsäure Edenor® 935 (Henkel KGaA) wurden mit 20 kg Methanol 2 h bei 240 °C und 100 bar verestert Nach Abtrennen der Wasser/Methanol-Mischung wurde die gleiche Menge Frisch-Methanol zugesetzt und der Vorgang zweimal wiederholt. Der so erhaltene Ester besaß eine Säurezahl von 0,8. Der Methylester wurde in der Festbettfahrweise an einem Zn-Cr-Katalysator unter Erhalt der Doppelbindung hydriert. Hierbei wurden pro Stunde 0,5 Volumeneinheiten Methylester - bezogen auf das Gesamtvolumen der Anlage - durchgesetzt. Nach Abtrieb des Methanols wurde der Rohalkohol destilliert (3% Vorlauf, 90 % Hauptlauf, 6% Rückstand). Der resultierende Alkohol zeigte eine Hydroxylzahl von 192, eine Verseifungszahl von 0,9 und eine lodzahl von 74; der Festpunkt betrug 25,8 °C. 293 g (1 Mol) des so erhaltenen Isooleylalkohols wurden in einem Rührautoklaven gegeben und bei 100 °C für ca. 45 Minuten getrocknet. Nach der Zugabe von 2 g Natriummethylat in Form einer 30 Gew.-%igen methanolischen Lösung als basischer Katalysator wurde die Ethoxylierung mit 88 g (2 Mol) Ethylenoxid bei 120 bis 160 °C und einem autogenen Druck von 5 bar durchgeführt. Nach Abkühlen der Reaktionsmischung wurde evakuiert, um Spuren nicht umgesetzten Ethylenoxids zu beseitigen. Das lsooleylalkohol+2EO-Addukt besaß folgende Kenndaten: OHZ = 146, IZ = 56. 381 g (1 Mol) Isooleylalkohol +2EO wurden mit Schwefeltrioxid im Molverhältnis 1 : 1 ,05 auf einem Fallfiimreaktor bei 30 °C und einer Verdünnung von 5% Schwefeltrioxid/Stickstoff sulfatiert und unmittelbar nach Verlassen des Reaktors mit wäßriger Natriumhydroxidlösung neutralisiert. Zur Zerstörung cyclischer Sulfatie- rungsprodukte wurde bei pH = 10 eine Stunde nachhydrolysiert. Die Analyse des Isooleylethersulfat- Natriumsalzes ergab folgende Werte.
Trockenrückstand 44,3 Gew.-%
Waschaktive Substanz nach Epton 32,3 Gew.-%
Unsulfatiert.es 10,2 Gew.-%
Natriumsulfat 1 ,1 Gew.-%
Beispiel 2. Monomerfettsäure wurde durch Kristallisation aus Methanol/Wasser (Emersol-Verfahren) von geradkettigen, gesättigten Fettsäuren weitgehend befreit. Auf diese Weise wurden ca. 20 Gew.% Fettsäure, überwiegend Palmitin- und Stearinsäure, abgetrennt. Die nach Abdestillation des Lösemittels erhaltene flüssige Fettsäuremischung besaß einen Titer von 5 °C und wurde analog Beispiel 1 zunächst in den Methylester überführt und dann zum ungesättigten Fettalkohol hydriert. Dieser zeigte eine Hydroxylzahl von 191 , eine Verseifungszahl von 1 ,7 und eine lodzahl von 87; der Festpunkt betrug 3,8 °C. 293 g (1 Mol) des so erhaltenen Isooleylalkohols wurden in einem Rührautoklaven gegeben und bei 100 °C für ca. 45 Minuten getrocknet. Nach der Zugabe von 2 g Natriummethylat in Form einer 30 Gew.-%igen methanolischen Lösung als basischer Katalysator wurde die Ethoxylierung mit 88 g (2 Mol) Ethylenoxid bei 120 bis 160 °C und einem autogenen Druck von 5 bar durchgeführt. Nach Abkühlen der Reaktionsmischung wurde evakuiert, um Spuren nicht umgesetzten Ethylenoxids zu beseitigen. Das lsooleylalkohol+2EO-Addukt besaß folgende Kenndaten: OHZ = 146, IZ = 65. 381 g (1 Mol) Isooleylalkohol +2EO wurden mit Schwefeltrioxid im Molverhältnis 1 : 0,95 auf einem Fallfilmreaktor bei 35 °C und einer Verdünnung von 5% Schwefeltrioxid/Stickstoff sulfatiert und unmittelbar nach Verlassen des Reaktors mit wäßriger Natriumhydroxidlösung neutralisiert. Zur Zerstörung cyclischer Sulfa- tierungsprodukte wurde bei pH = 10 eine Stunde nachhydrolysiert. Die Analyse des isooleylethersulfat- Natriumsalzes ergab folgende Werte.
Trockenrückstand 40,1 Gew.-%
Waschaktive Substanz nach Epton 30,5 Gew.-%
Unsulfatiert.es 12,7 Gew.-%
Natriumsulfat 0,8 Gew.-%
In den nachfolgenden Tabellen 1 und 2 sind eine Reihe von Formulierungsbeispiele angegeben.
Tabelle 1
Detergenszubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%)
(1-6) Light Duty Detergent (7-9) Heavy Duty detergent (10) Toilettenstein Tabelle 1
Detergenszubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%) - Fortsetzung
(11-15) Handgeschirrspülmittel (16, 17) Maschinengeschirrspülmittel (18-20) Reinigungsmittel
Tabelle 2
Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.
(21-24) Haarspülung, (25-26) Haarkur, (27-28) Duschbad, (29) Duschgel, (30) Waschlotion Tabelle 2
Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%) - Fortsetzung
(31-34) Duschbad „Two-in-One), (35-40) Shampoo Tabelle 2
Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%) - Fortsetzung 2
(41-45) Schaumbad, (46) Softcreme, (47, 48) Feuchtigkeitsemulsion, (49, 50) Nachtcreme

Claims

Patentansprüche
1. Verzweigte, weitgehend ungesättigte Fettalkoholethersulfate, dadurch erhältlich, daß man
(a) ungesättigte Fettsäuren mit 16 bis 22 Kohlenstoffatomen in an sich bekannter Weise dimerisiert,
(b) die bei der Dimerisierung anfallende Monomerfraktion abtrennt,
(c) die in dieser Fraktion enthaltenen verzweigten, weitgehend ungesättigten Fettsäuren in die entsprechenden Fettsauremethylester überführt,
(d) die verzweigten, weitgehend ungesättigten Fettsauremethylester unter Erhalt der Doppelbindungen zu den entsprechenden verzweigten, weitgehend ungesättigten Fettalkoholen hydriert, und diese
(e) in an sich bekannter Weise unter Erhalt der Doppelbindung alkoxyliert, sulfatiert und neutralisiert.
2. Verfahren zur Herstellung von verzweigten, weitgehend ungesättigten Fettalkoholethersulfaten, bei dem man
(a) ungesättigte Fettsäuren mit 16 bis 22 Kohlenstoffatomen in an sich bekannter Weise dimerisiert,
(b) die bei der Dimerisierung anfallende Monomerfraktion abtrennt,
(c) die in dieser Fraktion enthaltenen verzweigten, weitgehend ungesättigten Fettsäuren in die entsprechenden Fettsauremethylester überführt,
(d) die verzweigten, weitgehend ungesättigten Fettsauremethylester unter Erhalt der Doppelbindungen zu den entsprechenden verzweigten, weitgehend ungesättigten Fettalkoholen hydriert und diese
(e) in an sich bekannter Weise alkoxyliert, sulfatiert und neutralisiert.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man die bei der Dimerisierung anfallende Monomerfraktion zunächst einer fraktionierten Kristallisation unterwirft und die dabei anfallende flüssige Phase gegebenenfalls nach Destillation der Veresterung unterwirft.
4. Verfahren nach den Ansprüchen 2 und/oder 3, dadurch gekennzeichnet, daß man die Methylester und/oder die Fettalkohole einer Destillation und/oder fraktionierten Kristallisation unterwirft.
5. Verfahren nach mindestens einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß man die verzweigten, weitgehend ungesättigten Fettalkohole mit Schwefeltrioxid oder Chlorsulfonsäure sulfatiert.
6. Verfahren nach mindestens einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß man an die verzweigten, weitgehend ungesättigten Fettalkohole durchschnittlich 1 bis 50 Mol Alkylenoxid anlagert.
7. Verfahren nach mindestens einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß man die verzweigten, weitgehend ungesättigten Fettalkoholalkoxylate bei Temperaturen im Bereich von 25 bis 90 °C sulfatiert.
8. Verfahren nach mindestens einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß man die verzweigten, weitgehend ungesättigten Fettalkoholalkoxylate bei einem molaren Einsatzverhältnis von Alkoxylat zu Sulfatierungsmittel im Bereich von 1 : 0,95 bis 1 : 1 ,8 sulfatiert.
9. Verwendung der verzweigten, weitgehend ungesättigten Fettalkoholethersulfate nach Anspruch 1 zur Herstellung von Wasch-, Spül-, Reinigungs- und Avivagemitteln.
10. Verwendung der verzweigten, weitgehend ungesättigten Fettalkoholethersulfate nach Anspruch 1 zur Herstellung von kosmetischen und/oder pharmazeutischen Zubereitungen.
EP00960443A 1999-08-20 2000-08-11 Verzweigte, weitgehend ungesättigte fettalkoholethersulfate Withdrawn EP1204635A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE1999139537 DE19939537A1 (de) 1999-08-20 1999-08-20 Verzweigte, weitgehend ungesättigte Fettalkoholethersulfate
DE19939537 1999-08-20
PCT/EP2000/007846 WO2001014326A1 (de) 1999-08-20 2000-08-11 Verzweigte, weitgehend ungesättigte fettalkoholethersulfate

Publications (1)

Publication Number Publication Date
EP1204635A1 true EP1204635A1 (de) 2002-05-15

Family

ID=7919041

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00960443A Withdrawn EP1204635A1 (de) 1999-08-20 2000-08-11 Verzweigte, weitgehend ungesättigte fettalkoholethersulfate

Country Status (3)

Country Link
EP (1) EP1204635A1 (de)
DE (1) DE19939537A1 (de)
WO (1) WO2001014326A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108117936A (zh) * 2016-11-30 2018-06-05 黎凯华 一种低泡沫洁厕剂

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4300321A1 (de) * 1993-01-08 1994-07-14 Henkel Kgaa Oligoglycerinethersulfate
DE4422858C1 (de) * 1994-06-30 1995-07-27 Henkel Kgaa Ungesättigte Fettalkohole mit verbessertem Kälteverhalten
DE19542569A1 (de) * 1995-11-15 1997-05-22 Henkel Kgaa Fettalkohol(ether)sulfate mit verbessertem Kälteverhalten
AUPO846297A0 (en) * 1997-08-08 1997-09-04 Ici Australia Operations Proprietary Limited Anionic alkoxylate surfactant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0114326A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108117936A (zh) * 2016-11-30 2018-06-05 黎凯华 一种低泡沫洁厕剂

Also Published As

Publication number Publication date
WO2001014326A1 (de) 2001-03-01
DE19939537A1 (de) 2001-02-22

Similar Documents

Publication Publication Date Title
WO2000045788A1 (de) Detergensgemische
EP1204634B1 (de) Verzweigte weitgehend ungesättigte fettalkoholsulfate
WO2001001929A2 (de) Mikrokapseln - iv
DE19921186A1 (de) Hochkonzentriert fließfähige Perlglanzkonzentrate
WO2003052037A1 (de) Hochkonzentriert fliessfähige perlglanzkonzentrate
DE19929511A1 (de) Hochkonzentriert fließfähige Aniontensidmischungen
EP1204627B1 (de) Verfahren zur herstellung von verzweigten, weitgehend ungesättigten fettalkoholpolyglycolethern
DE19954830C1 (de) Verzweigte, weitgehend ungesättigte Fettalkohol(ether)phosphate
DE19939566C1 (de) Verzweigte, weitgehend ungesättigte Esteröle, Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von kosmetischen und/oder pharmazeutischen Zubereitungen
DE19927172C1 (de) Wäßrige Perlglanzkonzentrate
WO2001010403A1 (de) Wässrige perlglanzdispersionen alkoylierte canbonsäureester enthaltend
WO2000029530A1 (de) Herstellung niedrigviskoser wässriger detergenszubereitungen
DE19944543C2 (de) Tensidgemische
DE19931998C2 (de) Wäßrige Perlglanzkonzentrate
DE19944544A1 (de) Tensidgemische
DE19927653C2 (de) Wäßrige Perlglanzkonzentrate
DE19927173C1 (de) Wäßrige Perlglanzkonzentrate
WO2001014326A1 (de) Verzweigte, weitgehend ungesättigte fettalkoholethersulfate
WO2001097610A1 (de) Verfahren zur antimikrobiellen behandlung von durch mikrobiellen befall gefährdeten materialien
DE19944547C1 (de) Tensidgemische
EP1061121B1 (de) Wässrige Perlglanzkonzentrate
DE19930300C2 (de) Wäßrige Perlglanzkonzentrate
DE19937295C2 (de) Syndetseifen
EP1237893A1 (de) Magnesium(ether)sulfat-pasten
DE19960099A1 (de) Guerbetalkohole

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20020209

17Q First examination report despatched

Effective date: 20030714

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040127