EP1292677A2 - Human hm74-like g protein coupled receptor - Google Patents
Human hm74-like g protein coupled receptorInfo
- Publication number
- EP1292677A2 EP1292677A2 EP01943478A EP01943478A EP1292677A2 EP 1292677 A2 EP1292677 A2 EP 1292677A2 EP 01943478 A EP01943478 A EP 01943478A EP 01943478 A EP01943478 A EP 01943478A EP 1292677 A2 EP1292677 A2 EP 1292677A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- gpcr
- polypeptide
- seq
- amino acid
- polynucleotide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
Definitions
- the invention relates to the area of G-protein coupled receptors. More particularly, it relates to the area of HM74-like G protein coupled receptors and their regulation.
- GPCR G-protein coupled receptors
- GPCRs include receptors for such diverse agents as dopamine, calcitonin, adrenergic hormones, endothelin, cAMP, adenosine, acetylcholine, serotonin, histamine, thrombin, kinin, follicle stimulating hormone, opsins, endothelial differentiation gene-1, rhodopsins, odorants, cytomegalovirus, G-proteins themselves, effector proteins such as phospholipase C, adenyl cyclase, and phosphodiesterase, and actuator proteins such as protein kinase A and protein kinase C.
- GPCRs possess seven conserved membrane-spanning domains connecting at least eight divergent hydrophilic loops. GPCRs (also known as 7TM receptors) have been characterized as including these seven conserved hydrophobic stretches of about 20 to 30 amino acids, connecting at least eight divergent hydrophilic loops. Most GPCRs have single conserved cysteine residues in each of the first two extracellular loops, which form disulfide bonds that are believed to stabilize functional protein structure. The seven transmembrane regions are designated as TM1, TM2, TM3, TM4, TM5, TM6, and TM7. TM3 has been implicated in signal transduction.
- Phosphorylation and lipidation (palmitylation or farnesylation) of cysteine residues can influence signal transduction of some GPCRs.
- Most GPCRs contain potential phosphorylation sites within the third cytoplasmic loop and/or the carboxy terminus.
- GPCRs such as the ⁇ -adrenergic receptor, phosphorylation by protein kinase A and/or specific receptor kinases mediates receptor desensitization.
- the ligand binding sites of GPCRs are believed to comprise hydrophilic sockets formed by several GPCR transmembrane domains.
- the hydrophilic sockets are surrounded by hydrophobic residues of the GPCRs.
- the hydrophilic side of each GPCR transmembrane helix is postulated to face inward and form a polar ligand binding site.
- TM3 has been implicated in several GPCRs as having a ligand binding site, such as the TM3 aspartate residue.
- TM5 serines, a TM6 asparagine, and TM6 or TM7 phenylalanines or tyrosines also are implicated in ligand binding.
- GPCRs are coupled inside the cell by heterotrimeric G-proteins to various intracellular enzymes, ion channels, and transporters (see Johnson et ah, Endoc. Rev. 10, 317-331, 1989).
- Different G-protein alpha-subunits preferentially stimulate particular effectors to modulate various biological functions in a cell.
- Phos- phorylation of cytoplasmic residues of GPCRs is an important mechanism for the regulation of some GPCRs.
- the effect of hormone binding is the activation inside the cell of the enzyme, adenylate cyclase.
- Enzyme activation by hormones is dependent on the presence of the nucleotide GTP.
- GTP also influences hormone binding.
- a G-protein connects the hormone receptor to adenylate cyclase. G-protein exchanges GTP for bound GDP when activated by a hormone receptor. The GTP-carrying form then binds to activated adenylate cyclase. Hydrolysis of GTP to GDP, catalyzed by the G-protein itself, returns the G-protein to its basal, inactive form.
- the G-protein serves a dual role, as an intermediate that relays the signal from receptor to effector, and as a clock that controls the duration of the signal.
- GPCRs which can play a role in preventing, ameliorating, or correcting dysfunctions or diseases including, but not limited to, infections such as bacterial, fungal, protozoan, and viral infections, particularly those caused by HIV viruses, pain, cancers, anorexia, bulimia, asthma, CNS diseases such as Parkinson's disease, cardiovascular diseases such as acute heart failure, hypotension, hypertension, angina pectoris, and myocardial infarction, urinary retention, osteoporosis, ulcers, asthma, inflammation, allergies, multiple sclerosis, benign prostatic hypertrophy, and psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia, several mental retardation, and dyskinesias, such as Huntington's disease and Tourett's syndrome.
- infections such as bacterial, fungal, protozoan, and viral infections
- infections such as bacterial, fungal, protozoan, and viral infections
- infections such as bacterial, fungal, protozoan, and viral infections
- infections such
- HM74-like GPCR human HM74-like G protein coupled receptor
- HM74-like GPCR polypeptide comprising an amino acid sequence selected from the group consisting of:
- amino acid sequences which are at least about 50% identical to the amino acid sequence shown in SEQ JD NO. 2; the amino acid sequence shown in SEQ ID NO. 2;
- amino acid sequences which are at least about 50% identical to the amino acid sequence shown in SEQ ID NO. 5;
- amino acid sequences which are at least about 50% identical to the amino acid sequence shown in SEQ ID NO. 6;
- amino acid sequences which are at least about 50% identical to the amino acid sequence shown in SEQ ID NO. 7;
- Yet another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation.
- a test compound is contacted with a test compound.
- HM74-like GPCR polypeptide comprising an amino acid sequence selected from the group consisting of:
- amino acid sequences which are at least about 50% identical to the amino acid sequence shown in SEQ JJD NO. 2;
- amino acid sequences which are at least about 50% identical to the amino acid sequence shown in SEQ JJD NO. 5; the amino acid sequence shown in SEQ JJD NO. 5;
- amino acid sequences which are at least about 50% identical to the amino acid sequence shown in SEQ ID NO. 6;
- amino acid sequences which are at least about 50% identical to the amino acid sequence shown in SEQ ID NO. 7;
- Binding between the test compound and the HM74-like GPCR polypeptide is detected.
- a test compound which binds to the HM74-like GPCR polypeptide is thereby identified as a potential agent for decreasing extracellular matrix degradation.
- the agent can work by decreasing the activity of the HM74-like GPCR.
- Another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation.
- a test compound is contacted with a polynucleotide encoding a HM74-like GPCR polypeptide, wherein the polynucleotide comprises a nucleotide sequence selected from the group consisting of:
- nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO. 1;
- nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ JJD NO. 3;
- a test compound which binds to the polynucleotide is identified as a potential agent for decreasing extracellular matrix degradation.
- the agent can work by decreasing the amount of the HM74-like GPCR through interacting with the HM74-like GPCR mRNA.
- Another embodiment of the invention is a method of screening for agents which regulate extracellular matrix degradation.
- a test compound is contacted with a HM74-like GPCR polypeptide comprising an amino acid sequence selected from the group consisting of:
- amino acid sequences which are at least about 50% identical to the amino acid sequence shown in SEQ ID NO. 2;
- amino acid sequences which are at least about 50% identical to the amino acid sequence shown in SEQ ID NO. 5;
- amino acid sequences which are at least about 50% identical to the amino acid sequence shown in SEQ JD NO. 6;
- amino acid sequences which are at least about 50% identical to the amino acid sequence shown in SEQ ID NO. 7;
- a HM74-like GPCR activity of the polypeptide is detected.
- a test compound which increases HM74-like GPCR activity of the polypeptide relative to HM74-like GPCR activity in the absence of the test compound is thereby identified as a potential agent for increasing extracellular matrix degradation.
- a test compound which decreases HM74-like GPCR activity of the polypeptide relative to HM74-like GPCR activity in the absence of the test compound is thereby identified as a potential agent for decreasing extracellular matrix degradation.
- Yet another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation.
- a test compound is contacted with a test compound.
- HM74-like GPCR product of a polynucleotide which comprises a nucleotide sequence selected from the group consisting of:
- nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO. 1 ;
- nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO. 3;
- Binding of the test compound to the HM74-like GPCR product is detected.
- a test compound which binds to the HM74-like GPCR product is thereby identified as a potential agent for decreasing extracellular matrix degradation.
- Still another embodiment of the invention is a method of reducing extracellular matrix degradation.
- a cell is contacted with a reagent which specifically binds to a polynucleotide encoding a HM74-like GPCR polypeptide or the product encoded by the polynucleotide, wherein the polynucleotide comprises a nucleotide sequence selected from the group consisting of:
- nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO. 1 ;
- nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO. 3;
- HM74-like GPCR activity in the cell is thereby decreased.
- the invention thus provides an HM74-like G protein coupled receptor which can be used to identify test compounds which may act as agonists or antagonists at the receptor site and which can be regulated to provide therapeutic effects.
- Fig. 1 shows the DNA-sequence encoding a HM74-like GPCR polypeptide.
- Fig. 2 shows the amino acid sequence deduced from the DNA-sequence of Fig.1.
- Fig. 3 shows the DNA-sequence encoding a HM74-like GPCR polypeptide.
- Fig. 4 shows the amino acid sequence of a human protein identified with SwissProt
- Fig. 5 shows the amino acid sequence of a HM74-like GPCR polypeptide.
- Fig. 6 shows the amino acid sequence of a HM74-like GPCR polypeptide.
- Fig. 7 shows the amino acid sequence of a HM74-like GPCR polypeptide.
- Fig. 8 shows the alignment of HM74-like GPCR polypeptide of Fig. 2 and the
- Fig. 9 shows the results of a BLOCK search.
- Fig. 10 shows the amino acid sequence of a HM74-like GPCR polypeptide. Transmembrane helix is indicated.
- the invention relates to an isolated polynucleotide encoding a HM74-like GPCR polypeptide and being selected from the group consisting of:
- HM74-like GPCR polypeptide comprising an amino acid sequence selected from the group consisting of:
- Human HM74-like GPCR is 42% identical over 286 amino acids to the human protein identified with SwissProt Accession No. P49019 (SEQ ID NO. 4) and annotated as a "probable G protein-coupled rece HM74.”
- Human HM74-like GPCR contains transmembrane helices from amino acids 95 to 114, 131 to 149, 169 to 187, 211 to 228, 256 to 273, 298 to 316, and 339 to 356.
- a search of the Prosite database indicates that human HM74-like GPCR is a G protein-coupled receptor ( PS00237
- HM74-like GPCR is expected to bind a ligand to produce a biological effect or activity typical of GPCRs, such as cyclic AMP formation, mobilization of intracellular and calcium, or phosphoinositide metabolism.
- human HM74-like GPCR can be used in therapeutic methods to treat disorders such as bacterial, fungal, protozoan, and viral infections, particularly those caused by HIV viruses, pain, cancers, anorexia, bulimia, asthma, cardiovascular diseases such as acute heart failure, hypotension, hypertension, angina pectoris, and myocardial infarction, urinary retention, osteoporosis, inflammation, ulcers, asthma, allergies, multiple sclerosis, benign prostatic hypertrophy, and psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia, several mental retardation, and dyskinesias, such as Parkinson's disease, Huntington's disease, and Tourett's syndrome.
- Human HM74-like GPCR also can be used to screen for human
- HM74-like GPCR polypeptides according to the invention comprise at least 15, 20, 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, or 400 contiguous amino acids selected from the amino acid sequence shown in SEQ ID NO. 2 or a biologically active variant thereof, as defined below.
- An HM74-like GPCR polypeptide of the invention therefore can be a portion of an HM74-like GPCR, a full-length HM74-like GPCR, or a fusion protein comprising all or a portion of an HM74-like GPCR.
- HM74-like GPCR polypeptide variants which are biologically active, i.e., retain the ability to bind a ligand to produce a biological effect, such as cyclic AMP formation, mobilization of intracellular calcium, or phosphoinositide metabolism, also are biologically active, i.e., retain the ability to bind a ligand to produce a biological effect, such as cyclic AMP formation, mobilization of intracellular calcium, or phosphoinositide metabolism, also are biologically active, i.e., retain the ability to bind a ligand to produce a biological effect, such as cyclic AMP formation, mobilization of intracellular calcium, or phosphoinositide metabolism, also are biologically active, i.e., retain the ability to bind a ligand to produce a biological effect, such as cyclic AMP formation, mobilization of intracellular calcium, or phosphoinositide metabolism, also are biologically active, i.e., retain the ability to bind a lig
- HM74-like GPCR polypeptides Preferably, naturally or non-naturally occurring HM74-like GPCR polypeptide variants have amino acid sequences which are at least about 50, preferably about 75, 90, 96, or 98% identical to an amino acid sequence shown in SEQ ID NO. 2 or a fragment thereof. Percent identity between a putative HM74-like GPCR polypeptide variant and an amino acid sequence of SEQ ID NO. 2 is determined using the Blast2 alignment program (Blosum62, Expect 10, standard genetic codes).
- Variations in percent identity can be due, for example, to amino acid substitutions, insertions, or deletions.
- Amino acid substitutions are defined as one for one amino acid replacements. They are conservative in nature when the substituted amino acid has similar structural and/or chemical properties. Examples of conservative replacements are substitution of a leucine with an isoleucine or valine, an aspartate with a glutamate, or a threonine with a serine.
- Amino acid insertions or deletions are changes to or within an amino acid sequence. They typically fall in the range of about 1 to 5 amino acids.
- Guidance in determining which amino acid residues can be substituted, inserted, or deleted without abolishing biological or immunological activity of an HM74-like GPCR polypeptide can be found using computer programs well known in the art, such as DNASTAR software.
- Whether an amino acid change results in a biologically active HM74-like GPCR polypeptide can readily be determined by assaying for binding to a ligand or by conducting a functional assay, such as those described in the specific examples, below.
- Fusion proteins are useful for generating antibodies against HM74-like GPCR polypeptide amino acid sequences and for use in various assay systems. For example, fusion proteins can be used to identify proteins which interact with portions of an
- HM74-like GPCR polypeptide Protein affinity chromatography or library-based assays for protein-protein interactions, such as the yeast two-hybrid or phage display systems, can be used for this purpose. Such methods are well known in the art and also can be used as drag screens.
- An HM74-like GPCR polypeptide fusion protein comprises two polypeptide segments fused together by means of a peptide bond.
- the first polypeptide segment comprises at least 15, 20, 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, or 400 or more contiguous amino acids of SEQ ID NO. 2 or a biologically active variant thereof.
- the first polypeptide segment also can comprise full-length HM74-like
- the second polypeptide segment can be a full-length protein or a protein fragment.
- Proteins commonly used in fusion protein construction include ⁇ -galactosidase, ⁇ - glucuronidase, green fluorescent protein (GFP), autofluorescent proteins, including blue fluorescent protein (BFP), glutathione-S-transferase (GST), luciferase, horse- radish peroxidase (HRP), and chloramphenicol acetyltransferase (CAT).
- GFP green fluorescent protein
- BFP blue fluorescent protein
- GST glutathione-S-transferase
- luciferase horse- radish peroxidase
- HRP horse- radish peroxidase
- CAT chloramphenicol acetyltransferase
- epitope tags are used in fusion protein constructions, including histidine (His) tags, FLAG tags, influenza hemagglutinin (HA) tags, Myc tags, VSV-G tags, and thioredoxin (Trx) tags.
- fusion constructions can include maltose binding protein (MBP), S-tag, Lex a DNA binding domain (DBD) fusions, GAL4 DNA binding domain fusions, and herpes simplex viras (HSV) BP16 protein fusions.
- MBP maltose binding protein
- S-tag S-tag
- GAL4 DNA binding domain fusions GAL4 DNA binding domain fusions
- HSV herpes simplex viras
- a fusion protein also can be engineered to contain a cleavage site located between the HM74-like GPCR polypeptide-encoding sequence and the heterologous protein sequence, so that the HM74-like GPCR polypeptide can be cleaved and purified away from the heterologous moiety.
- a fusion protein can be synthesized chemically, as is known in the art.
- a fusion protein is produced by covalently linking two polypeptide segments or by standard procedures in the art of molecular biology.
- Recombinant DNA methods can be used to prepare fusion proteins, for example, by making a DNA construct which comprises coding sequences selected from SEQ ID NO. 1 or 3 in proper reading frame with nucleotides encoding the second polypeptide segment and expressing the DNA construct in a host cell, as is known in the art.
- Many kits for constructing fusion proteins are available from companies such as Promega Corporation (Madison, WI), Stratagene (La Jolla, CA), CLONTECH (Mountain View, CA),
- Species homologs of human HM74-like GPCR polypeptide can be obtained using HM74-like GPCR polynucleotides (described below) to make suitable probes or primers for screening cDNA expression libraries from other species, such as mice, monkeys, or yeast, identifying cDNAs which encode homologs of HM74-like GPCR polypeptide, and expressing the cDNAs as is known in the art.
- Polynucleotides described below
- An HM74-like GPCR polynucleotide can be single- or double-stranded and com- prises a coding sequence or the complement of a coding sequence for an HM74-like
- GPCR polypeptide A nucleotide sequence encoding the HM74-like GPCR having SEQ ID NO. 2 is shown in SEQ JD NO. 1.
- HM74-like GPCR polypeptides Degenerate nucleotide sequences encoding human HM74-like GPCR polypeptides, as well as homologous nucleotide sequences which are at least about 50, preferably about 75, 90, 96, or 98% identical to the nucleotide sequence shown in SEQ ID NO. 1 or its complement also are HM74-like GPCR polynucleotides. Percent sequence identity between the sequences of two polynucleotides is determined using computer programs such as ALIGN which employ the FASTA algorithm, using an affine gap search with a gap open penalty of -12 and a gap extension penalty of -2.
- HM74-like GPCR polynucleotides which encode biologically active HM74-like GPCR polypeptides also are HM74-like GPCR polynucleotides.
- HM74-like GPCR polynucleotides described above also are HM74-like GPCR polynucleotides.
- homologous HM74-like GPCR polynucleotide sequences can be identified by hybridization of candidate polynucleotides to known HM74-like GPCR polynucleotides under stringent conditions, as is known in the art.
- homologous sequences can be identified which contain at most about 25-30% basepair mismatches. More preferably, homologous nucleic acid strands contain 15-25% basepair mismatches, even more preferably 5-15% basepair mismatches.
- Species homologs of the HM74-like GPCR polynucleotides disclosed herein also can be identified by making suitable probes or primers and screening cDNA expression libraries from other species, such as mice, monkeys, or yeast.
- Human variants of HM74- like GPCR polynucleotides can be identified, for example, by screening human cDNA expression libraries. It is well known that the T m of a double-stranded DNA decreases by 1-1.5°C with every 1% decrease in homology (Bonner et ah, J. Mol. Biol. 81, 123 (1973). Variants of human HM74-like GPCR polynucleotides or
- HM74-like GPCR polynucleotides of other species can therefore be identified by hybridizing a putative homologous HM74-like GPCR polynucleotide with a polynucleotide having a nucleotide sequence of SEQ ID NO. 1 or 3 or the complement thereof to form a test hybrid.
- the melting temperature of the test hybrid is compared with the melting temperature of a hybrid comprising polynucleotides having perfectly complementary nucleotide sequences, and the number or percent of basepair mismatches within the test hybrid is calculated.
- HM74-like GPCR polynucleotides Stringent wash conditions are well known and understood in the art and are disclosed, for example, in Sambrook et ah, MOLECULAR CLONING: A LABORATORY MANUAL, 2d ed., 1989, at pages 9.50-9.51.
- T m of a hybrid between an HM74-like GPCR polynucleotide having a nucleotide sequence shown in SEQ ID NO. 1 or the complement thereof and a polynucleotide sequence which is at least about 50, preferably about 75, 90, 96, or 98% identical to one of those nucleotide sequences can be calculated, for example, using the equation of Bolton and McCarthy, Proc. Nath Acad. Sci. U.S.A. 48, 1390 (1962):
- Stringent wash conditions include, for example, 4X SSC at 65°C, or 50% formamide, 4X SSC at 42°C, or 0.5X SSC, 0.1% SDS at 65°C.
- Highly stringent wash conditions include, for example, 0.2X SSC at 65°C.
- HM74-like GPCR polynucleotide can be isolated free of other cellular components such as membrane components, proteins, and lipids.
- Polynucleotides can be made by a cell and isolated using standard nucleic acid purification techniques, or synthesized using an amplification technique, such as the polymerase chain reaction (PCR), or by using an automatic synthesizer. Methods for isolating polynucleotides are routine and are known in the art. Any such technique for obtaining a polynucleotide can be used to obtain isolated HM74-like GPCR polynucleotides.
- restriction enzymes and probes can be used to isolate polynucleotide fragments which comprises HM74-like GPCR nucleotide sequences.
- Isolated polynucleotides are in preparations which are free or at least 70, 80, or 90% free of other molecules.
- HM74-like GPCR cDNA molecules can be made with standard molecular biology techniques, using HM74-like GPCR mRNA as a template. HM74-like GPCR cDNA molecules can thereafter be replicated using molecular biology techmques known in the art and disclosed in manuals such as Sambrook et al. (1989).
- An amplification technique such as PCR, can be used to obtain additional copies of polynucleotides of the invention, using either human genomic DNA or cDNA as a template.
- synthetic chemistry techniques can be used to synthesizes HM74-like GPCR polynucleotides.
- the degeneracy of the genetic code allows alternate nucleotide sequences to be synthesized which will encode an HM74-like GPCR polypeptide having, for example, an amino acid sequence shown in SEQ ID NO. 2 or a biologically active variant thereof.
- PCR-based methods can be used to extend the nucleic acid sequences encoding human HM74-like GPCR to detect upstream sequences such as promoters and regulatory elements.
- restriction-site PCR uses universal primers to retrieve unknown sequence adjacent to a known locus (Sarkar, PCR Methods Applic. 2, 318-322, 1993). Genomic DNA is first amplified in the presence of a primer to a linker sequence and a primer specific to the known region. The amplified sequences are then subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one. Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase.
- Inverse PCR also can be used to amplify or extend sequences using divergent primers based on a known region (Triglia et ah, Nucleic Acids Res. 16, 8186, 1988).
- Primers can be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences Inc., Madison, Minn.), to be 22-30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures about 68-72°C.
- the method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template.
- capture PCR involves PCR amplifi- cation of DNA fragments adjacent to a known sequence in human and yeast artificial chromosome DNA (Lagerstrom et ah, PCR Methods Applic. 1, 111-119, 1991).
- multiple restriction enzyme digestions and ligations also can be used to place an engineered double-stranded sequence into an unknown fragment of the DNA molecule before performing PCR.
- Randomly-primed libraries are preferable, in that they will contain more sequences which contain the 5' regions of genes. Use of a randomly primed library may be especially preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries can be useful for extension of sequence into 5' non-transcribed regulatory regions.
- capillary electrophoresis systems can be used to analyze the size or confirm the nucleotide sequence of PCR or sequencing products.
- capillary sequencing can employ flowable polymers for electrophoretic separation, four different fluorescent dyes (one for each nucleotide) which are laser activated, and detection of the emitted wavelengths by a charge coupled device camera.
- Output/light intensity can be converted to electrical signal using appropriate software (e.g. GENOTYPER and Sequence NAVIGATOR, Perkin Elmer), and the entire process from loading of samples to computer analysis and electronic data display can be computer controlled.
- Capillary electrophoresis is especially preferable for the sequencing of small pieces of DNA which might be present in limited amounts in a particular sample.
- HM74-like GPCR polypeptides can be obtained, for example, by purification from human cells, by expression of HM74-like GPCR polynucleotides, or by direct chemical synthesis.
- HM74-like GPCR polypeptides can be purified from any cell which expresses the receptor, including host cells which have been transfected with HM74-like GPCR polynucleotides which express such polypeptides. Colon, adenocarcinoma, liver, and kidney are particularly useful sources of HM74-like polypeptides.
- a purified HM74- like GPCR polypeptide is separated from other compounds which normally associate with the HM74-like GPCR polypeptide in the cell, such as certain proteins, carbohy- drates, or lipids, using methods well-known in the art. Such methods include, but are not limited to, size exclusion chromatography, ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis.
- HM74-like GPCR polypeptide can be conveniently isolated as a complex with its associated G protein, as described in the specific examples, below.
- a preparation of purified HM74-like GPCR polypeptides is at least 80% pure; preferably, the preparations are 90%, 95%, or 99% pure. Purity of the preparations can be assessed by any means known in the art, such as SDS-polyacrylamide gel electrophoresis.
- an HM74-like GPCR polynucleotide can be inserted into an expression vector which contains the necessary elements for the transcription and translation of the inserted coding sequence.
- Methods which are well known to those skilled in the art can be used to construct expression vectors containing sequences encoding HM74-like GPCR polypeptides and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described, for example, in Sambrook et al. (1989) and in Ausubel et ah, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley &
- a variety of expression vector/host systems can be utilized to contain and express sequences encoding an HM74-like GPCR polypeptide.
- microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors, insect cell systems infected with virus expression vectors (e.g., baculovirus), plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g. , Ti or pBR322 plasmids), or animal cell systems.
- microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors
- yeast transformed with yeast expression vectors insect cell systems infected with virus expression vectors (e.g., baculovirus), plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus
- control elements or regulatory sequences are those non-translated regions of the vector ⁇ enhancers, promoters, 5' and 3' untranslated regions — which interact with host cellular proteins to carry out transcription and translation. Such elements can vary in their strength and specificity.
- any number of suitable transcription and translation elements including constitutive and inducible promoters, can be used.
- inducible promoters such as the hybrid lacZ promoter of the BLUESCRIPT phagemid (Stratagene, LaJolla, Calif.) or pSPORTl plasmid (Life Technologies) and the like can be used.
- the baculovirus polyhedrin promoter can be used in insect cells.
- Promoters or enhancers derived from the genomes of plant cells e.g., heat shock, RUBISCO, and storage protein genes
- plant viruses e.g., viral promoters or leader sequences
- promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of a nucleotide sequence encoding an HM74-like GPCR polypeptide, vectors based on S V40 or EB V can be used with an appropriate selectable marker.
- a number of expression vectors can be selected depending upon the use intended for the HM74-like GPCR polypeptide. For example, when a large quantity of an HM74-like GPCR polypeptide is needed for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified can be used. Such vectors include, but are not limited to, multifunctional E. coli cloning and expression vectors such as BLUESCRIPT (Stratagene). In a BLUESCRIPT vector, a sequence encoding the HM74-like GPCR polypeptide can be ligated into the vector in frame with sequences for the amino- terminal Met and the subsequent 7 residues of ⁇ -galactosidase so that a hybrid protein is produced. pIN vectors (Van Heeke & Schuster, J Biol. Chem. 264, 5503-
- GST glutathione S-transferase
- fusion proteins are soluble and can easily be purified from lysed cells by adso ⁇ tion to glutathione-agarose beads followed by elution in the presence of free glutathione.
- Proteins made in such systems can be designed to include heparin, thrombin, or factor Xa protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.
- yeast Saccharomyces cerevisiae a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH can be used.
- HM74- like GPCR polypeptides can be driven by any of a number of promoters.
- viral promoters such as the 35S and 19S promoters of CaMV can be used alone or in combination with the omega leader sequence from TMV (Takamatsu, EMBOJ. 6, 307-311, 1987).
- plant promoters such as the small subunit of RUBISCO or heat shock promoters can be used (Coruzzi et ah, EMBO J. 3, 1671- 1680, 1984; Broglie et ah, Science 224, 838-843, 1984; Winter et ah, Results Probl. Cell Differ.
- constructs can be introduced into plant cells by direct DNA transformation or by pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (e.g., Hobbs or Murray, in MCGRAW HILL YEARBOOK OF SCIENCE AND TECHNOLOGY, McGraw Hill, New York, N.Y., pp. 191-196, 1992).
- An insect system also can be used to express an HM74-like GPCR polypeptide.
- Autographa californica nuclear polyhedrosis viras (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae.
- Sequences encoding HM74-like GPCR polypeptides can be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter.
- Successful insertion of HM74-like GPCR polypeptides will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein.
- the recombinant viruses can then be used to infect S. frugiperda cells or Trichoplusia larvae in which HM74-like GPCR polypeptides can be expressed (Engelhard et ah, Proc. Nat. Acad. Sci. 91, 3224-
- GPCR polypeptides in mammalian host cells are used as an expression vector.
- sequences encoding HM74-like GPCR polypeptides can be ligated into an adenovirus transcription/translation complex comprising the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome can be used to obtain a viable viras which is capable of expressing an HM74-like GPCR polypeptide in infected host cells (Logan & Shenk,
- transcription enhancers such as the Rous sarcoma viras (RSV) enhancer, can be used to increase expression in mammalian host cells.
- RSV Rous sarcoma viras
- HACs Human artificial chromosomes
- 6M to 10M are constructed and delivered to cells via conventional delivery methods (e.g., liposomes, polycationic amino polymers, or vesicles).
- Specific initiation signals also can be used to achieve more efficient translation of sequences encoding HM74-like GPCR polypeptides. Such signals include the ATG initiation codon and adjacent sequences. In cases where sequences encoding an HM74-like GPCR polypeptide, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals (including the ATG initiation codon) should be provided. The initiation codon should be in the correct reading frame to ensure translation of the entire insert. Exogenous translational elements and initiation codons can be of various origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used (see Scharf et ah, Results Probl. Cell Differ. 20, 125-162, 1994). Host Cells
- a host cell strain can be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed HM74-like GPCR polypeptide in the desired fashion.
- modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation.
- Post-translational processing which cleaves a "prepro" form of the polypeptide also can be used to facilitate correct insertion, folding and/or function.
- Different host cells which have specific cellular machinery and characteristic mechanisms for post- translational activities e.g., CHO, HeLa, MDCK, HEK293, and WI38
- ATCC American Type Culture Collection
- Stable expression is preferred for long-term, high-yield production of recombinant proteins.
- cell lines which stably express HM74-like GPCR polypeptides can be transformed using expression vectors which can contain viral origins of replication and/or endogenous expression elements and a selectable marker gene, on the same or on a separate vector. Following the introduction of the vector, cells can be allowed to grow for 1-2 days in an enriched medium before they are switched to a selective medium.
- the purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which successfully express the introduced HM74-like GPCR sequences.
- Resistant clones of stably transformed cells can be proliferated using tissue culture techniques appropriate to the cell type. See, for example, ANIMAL CELL CULTURE, R.I. Freshney, ed., 1986.
- any number of selection systems can be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler et ah, Cell 11, 223-32, 1977) and adenine phosphoribosylrransferase (Lowy et ah, Cell 22, 817-23, 1980) genes which can be employed in tk ⁇ or aprf cells, respectively. Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate (Wigler et a , Proc. Nath Acad. Sci.
- npt confers resistance to the aminoglycosides, neomycin and G-418 (Colbere-Garapin et ah, J. Mol. Biol. 150, 1- 14, 1981), and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murray, 1992, supra). Additional selectable genes have been described. For example, trpB allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman & Mulligan, Proc. Nath Acad. Sci. 85, 8047-51, 1988).
- Visible markers such as anthocyanins, ⁇ -glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, can be used to identify transformants and to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes et ah, Methods Mol. Biol. 55, 121-131, 1995).
- HM74-like GPCR polynucleotide is also present, its presence and expression may need to be confirmed. For example, if a sequence encoding an HM74-like GPCR polypeptide is inserted within a marker gene sequence, transformed cells containing sequences which encode an HM74-like GPCR polypeptide can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding an HM74-like GPCR polypeptide under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the HM74-like GPCR polynucleotide.
- host cells which contain an HM74-like GPCR polynucleotide and which express an HM74-like GPCR polypeptide can be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques which include membrane, solution, or chip-based technologies for the detection and/or quantification of nucleic acid or protein. For example, the presence of a polynucleotide sequence encoding an HM74-like GPCR polypeptide can be detected by DNA-DNA or DNA-RNA hybridization or amplification using probes or fragments or fragments of polynucleotides encoding an HM74-like GPCR polypeptide.
- Nucleic acid amplification-based assays involve the use of oligonucleotides selected from sequences encoding an HM74-like GPCR polypeptide to detect transformants which contain an HM74-like GPCR polynucleotide.
- HM74-like GPCR polypeptide A variety of protocols for detecting and measuring the expression of an HM74-like GPCR polypeptide, using either polyclonal or monoclonal antibodies specific for the polypeptide, are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS).
- ELISA enzyme-linked immunosorbent assay
- RIA radioimmunoassay
- FACS fluorescence activated cell sorting
- a two-site, monoclonal-based immunoassay using monoclonal antibodies reactive to two non-interfering epitopes on an HM74-like GPCR polypeptide can be used, or a competitive binding assay can be employed. These and other assays are described in Hampton et ah, SEROLOGICAL METHODS: A LABORATORY MANUAL,
- Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding HM74-like GPCR polypeptides include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.
- sequences encoding an HM74-like GPCR polypeptide can be cloned into a vector for the production of an mRNA probe.
- RNA probes are known in the art, are commercially available, and can be used to synthesize RNA probes in vitro by addition of labeled nucleotides and an appropriate RNA polymerase such as T7, T3, or SP6. These procedures can be conducted using a variety of commercially available kits (Amersham Pharmacia Biotech, Promega, and US Biochemical). Suitable reporter molecules or labels which can be used for ease of detection include radionuclides, enzymes, and fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
- Host cells transformed with nucleotide sequences encoding an HM74-like GPCR polypeptide can be cultured under conditions suitable for the expression and recovery of the protein from cell culture.
- the polypeptide produced by a transformed cell can be secreted or contained intracellularly depending on the sequence and/or the vector used.
- expression vectors containing polynucleotides which encode HM74-like GPCR polypeptides can be designed to contain signal sequences which direct secretion of soluble HM74-like GPCR polypeptides through a prokaryotic or eukaryotic cell membrane or which direct the membrane insertion of membrane-bound HM74-like GPCR polypeptide.
- HM74-like GPCR polypeptide can be joined to a nucleotide sequence encoding a polypeptide domain which will facilitate purification of soluble proteins.
- purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein
- a domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp., Seattle, Wash.). Inclusion of cleavable linker sequences such as those specific for Factor Xa or enterokinase (Invitrogen, San Diego, CA) between the purification domain and the HM74-like GPCR polypeptide also can be used to facilitate purification.
- One such expression vector provides for expression of a fusion protein containing an HM74-like GPCR polypeptide and 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site.
- the histidine residues facilitate purification by IMAC (immobilized metal ion affinity chromatography, as described in Porath et ah, Prot. Exp. Purif. 3, 263-281, 1992), while the enterokinase cleavage site provides a means for purifying the HM74-like GPCR polypeptide from the fusion protein.
- Vectors which contain fusion proteins are disclosed in Kroll et ah, DNA Cell Biol. 12, 441-453, 1993.
- HM74-like GPCR polypeptide can be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers et ah, Nuch Acids Res. Symp. Ser. 215-223, 1980; Horn et al. Nuch Acids Res. Symp. Ser. 225- 232, 1980).
- an HM74-like GPCR polypeptide itself can be produced using chemical methods to synthesize its amino acid sequence, such as by direct peptide synthesis using solid-phase techniques (Merrifield, J Am. Chem. Soc. 85, 2149-2154, 1963; Roberge et ah, Science 269, 202-204, 1995).
- Protein synthesis can be performed using manual techniques or by automation. Automated synthesis can be achieved, for example, using Applied Biosystems 431 A Peptide Synthesizer (Perkin Elmer). Optionally, fragments of HM74-like GPCR polypeptides can be separately synthesized and combined using chemical methods to produce a full- length molecule.
- the newly synthesized peptide can be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, PROTEINS: STRUCTURES AND
- HM74-like GPCR polypeptide can be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; see Creighton, supra). Additionally, any portion of the amino acid sequence of the HM74-like GPCR polypeptide can be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins to produce a variant polypeptide or a fusion protein. Production of Altered Polypeptides
- HM74-like GPCR polypeptide-encoding nucleotide sequences possessing non- naturally occurring codons codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce an RNA transcript having desirable properties, such as a half-life which is longer than that of a transcript generated from the naturally occurring sequence.
- nucleotide sequences disclosed herein can be engineered using methods generally known in the art to alter HM74-like GPCR polypeptide-encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, and/or expression of the polypeptide or mRNA product.
- DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides can be used to engineer the nucleotide sequences.
- site-directed mutagenesis can be used to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, introduce mutations, and so forth.
- Antibody as used herein includes intact immunoglobulin molecules, as well as fragments thereof, such as Fab, F(ab') 2 , and Fv, which are capable of binding an epitope of an HM74-like GPCR polypeptide.
- Fab fragment antigen binding protein
- F(ab') 2 fragment antigen binding protein
- Fv fragment antigen binding protein
- An antibody which specifically binds to an epitope of an HM74-like GPCR polypeptide can be used therapeutically, as well as in immunochemical assays, such as Western blots, ELISAs, radioimmunoassays, immunohistochemical assays, immunoprecipitations, or other immunochemical assays known in the art.
- immunochemical assays such as Western blots, ELISAs, radioimmunoassays, immunohistochemical assays, immunoprecipitations, or other immunochemical assays known in the art.
- Various immunoassays can be used to identify antibodies having the desired specificity.
- Such immunoassays typically involve the measurement of complex formation between an immunogen and an antibody which specifically binds to the immunogen.
- an antibody which specifically binds to an HM74-like GPCR polypeptide provides a detection signal at least 5-, 10-, or 20-fold higher than a detection signal provided with other proteins when used in an immunochemical assay.
- antibodies which specifically bind to HM74-like GPCR polypeptides do not detect other proteins in immunochemical assays and can immunoprecipitate an HM74-like
- HM74-like GPCR polypeptides can be used to immunize a mammal, such as a mouse, rat, rabbit, guinea pig, monkey, or human, to produce polyclonal antibodies.
- a mammal such as a mouse, rat, rabbit, guinea pig, monkey, or human
- an HM74-like GPCR polypeptide can be conjugated to a carrier protein, such as bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin.
- a carrier protein such as bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin.
- various adjuvants can be used to increase the immunological response.
- adjuvants include, but are not limited to, Freund's adjuvant, mineral gels (e.g., aluminum hydroxide), and surface active substances (e.g.
- BCG Bacilli Calmette-Gueri
- Corynebacterium parvum are especially useful.
- Monoclonal antibodies which specifically bind to an HM74-like GPCR polypeptide can be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These techniques include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique (Kohler et a , Nature 256, 495-497, 1985; Kozbor et ah, J. Immunol. Methods 81, 31-42, 1985; Cote et ah, Proc. Nath Acad. Sci. 80, 2026- 2030, 1983; Cole et ah, Mol. Cell Biol. 62, 109-120, 1984).
- chimeric antibodies the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used (Morrison et ah, Proc. Nath Acad. Sci. 81, 6851-6855, 1984; Neuberger et ah, Nature 312, 604-608, 1984; Takeda et ah, Nature 314, 452-454, 1985).
- Monoclonal and other antibodies also can be "humanized” to prevent a patient from mounting an immune response against the antibody when it is used therapeutically. Such antibodies may be sufficiently similar in sequence to human antibodies to be used directly in therapy or may require alteration of a few key residues.
- HM74-like GPCR polypeptide can contain antigen binding sites which are either partially or fully humanized, as disclosed in U.S. 5,565,332.
- single chain antibodies can be adapted using methods known in the art to produce single chain antibodies which specifically bind to HM74-like GPCR polypeptides.
- Antibodies with related specificity, but of distinct idiotypic composition can be generated by chain shuffling from random combinatorial immunoglobin libraries (Burton, Proc. Nath Acad. Sci. 88, 11120-23, 1991).
- Single-chain antibodies also can be constructed using a DNA amplification method, such as PCR, using hybridoma cDNA as a template (Thirion et ah, 1996, Eur. J. Cancer Prev. 5, 507-11).
- Single-chain antibodies can be mono- or bispecific, and can be bivalent or tetravalent. Construction of tetravalent, bispecific single-chain antibodies is taught, for example, in Coloma & Morrison, 1997, Nat. Biotechnol. 15, 159-63. Construction of bivalent, bispecific single-chain antibodies is taught in Mallender & Voss, 1994, J. Biol. Chem. 269, 199-206.
- a nucleotide sequence encoding a single-chain antibody can be constructed using manual or automated nucleotide synthesis, cloned into an expression construct using standard recombinant DNA methods, and introduced into a cell to express the coding sequence, as described below.
- single-chain antibodies can be produced directly using, for example, filamentous phage technology (Verhaar et ah, 1995, Int. J. Cancer 61, 497-501; Nicholls et ah, 1993, J Immunol. Meth. 165, 81- 91).
- Antibodies which specifically bind to HM74-like GPCR polypeptides also can be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature (Orlandi etah, Proc. Nath Acad. Sci. 86, 3833-3837, 1989; Winter et ah, Nature 349, 293-299, 1991).
- chimeric antibodies can be constructed as disclosed in WO 93/03151.
- Binding proteins which are derived from immunoglobulins and which are multivalent and multispecific, such as the "diabodies" described in WO 94/13804, also can be prepared.
- Antibodies according to the invention can be purified by methods well known in the art. For example, antibodies can be affinity purified by passage over a column to which an HM74-like GPCR polypeptide is bound. The bound antibodies can then be eluted from the column using a buffer with a high salt concentration.
- Antisense Oligonucleotides can be affinity purified by passage over a column to which an HM74-like GPCR polypeptide is bound. The bound antibodies can then be eluted from the column using a buffer with a high salt concentration.
- Antisense oligonucleotides are nucleotide sequences which are complementary to a specific DNA or RNA sequence. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form complexes and block either transcription or translation. Preferably, an antisense oligonucleotide is at least 11 nucleotides in length, but can be at least 12, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides long. Longer sequences also can be used. Antisense oligonucleotide molecules can be provided in a DNA construct and introduced into a cell as described above to decrease the level of HM74-like GPCR gene products in the cell.
- Antisense oligonucleotides can be deoxyribonucleotides, ribonucleotides, or a combination of both. Oligonucleotides can be synthesized manually or by an automated synthesizer, by covalently linking the 5' end of one nucleotide with the 3' end of another nucleotide with non-phosphodiester internucleotide linkages such alkylphosphonates, phosphorothioates, phosphorodithioates, alkylphosphonothioates, alkylphosphonates, phosphoramidates, phosphate esters, carbamates, acetamidate, carboxymethyl esters, carbonates, and phosphate triesters. See Brown, Meth. Mol. Biol. 20, 1-8, 1994; Sonveaux, Meth. Mol. Biol. 26, 1-72, 1994; Uhlmann et ah,
- HM74-like GPCR gene expression can be obtained by designing antisense oligonucleotides which will form duplexes to the control, 5', or regulatory regions of the HM74-like GPCR. Oligonucleotides derived from the transcription initiation site, e.g., between positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using "triple helix" base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or chaperons.
- An antisense oligonucleotide also can be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
- Antisense oligonucleotides which comprise, for example, 2,
- each stretch of complementary contiguous nucleotides is at least
- Non-complementary intervening sequences are preferably 1, 2, 3, or 4 nucleotides in length.
- One skilled in the art can easily use the calculated melting point of an antisense-sense pair to determine the degree of mismatching which will be tolerated between a particular antisense oligonucleotide and a particular HM74-like GPCR polynucleotide sequence.
- Antisense oligonucleotides can be modified without affecting their ability to hybridize to an HM74-like GPCR polynucleotide. These modifications can be internal or at one or both ends of the antisense molecule. For example, inter- nucleoside phosphate linkages can be modified by adding cholesteryl or diamine moieties with varying numbers of carbon residues between the amino groups and terminal ribose.
- Modified bases and/or sugars such as arabinose instead of ribose, or a 3', 5 '-substituted oligonucleotide in which the 3' hydroxyl group or the 5' phosphate group are substituted, also can be employed in a modified antisense oligonucleotide.
- modified oligonucleotides can be prepared by methods well known in the art. See, e.g., Agrawal et ah, Trends Biotechnol. 10, 152-158, 1992; Uhlmann et ah, Chem. Rev. 90, 543-584, 1990; Uhlmann et ah, Tetrahedron. Lett. 215, 3539-3542, 1987. Ribozymes
- Ribozymes are RNA molecules with catalytic activity. See, e.g., Cech, Science 236, 1532-1539; 1987; Cech, Ann. Rev. Biochem. 59, 543-568; 1990, Cech, Curr. Opin. Struct. Biol. 2, 605-609; 1992, Couture & Stinchcomb, Trends Genet. 12, 510-515,
- Ribozymes can be used to inhibit gene function by cleaving an RNA sequence, as is known in the art (e.g., Haseloff et ah, U.S. Patent 5,641,673).
- the mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. Examples include engineered hammerhead motif ribozyme molecules that can specifically and efficiently catalyze endonucleolytic cleavage of specific nucleotide sequences.
- the coding sequence of an HM74-like GPCR polynucleotide can be used to generate ribozymes which will specifically bind to mRNA transcribed from the HM74-like
- GPCR polynucleotide Methods of designing and constructing ribozymes which can cleave other RNA molecules in trans in a highly sequence specific manner have been developed and described in the art (see Haseloff et al. Nature 334, 585-591, 1988).
- the cleavage activity of ribozymes can be targeted to specific RNAs by engineering a discrete "hybridization" region into the ribozyme.
- the hybridization region contains a sequence complementary to the target RNA and thus specifically hybridizes with the target (see, for example, Gerlach et ah, EP 321,201).
- Specific ribozyme cleavage sites within an HM74-like GPCR RNA target can be identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target RNA containing the cleavage site can be evaluated for secondary structural features which may render the target inoperable. Suitability of candidate HM74-like GPCR RNA targets also can be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays. Longer complementary sequences can be used to increase the affinity of the hybridization sequence for the target. The hybridizing and cleavage regions of the ribozyme can be integrally related such that upon hybridizing to the target RNA through the complementary regions, the catalytic region of the ribozyme can cleave the target.
- Ribozymes can be introduced into cells as part of a DNA construct. Mechanical methods, such as microinjection, liposome-mediated transfection, electroporation, or calcium phosphate precipitation, can be used to introduce a ribozyme-containing DNA construct into cells in which it is desired to decrease HM74-like GPCR expression. Alternatively, if it is desired that the cells stably retain the DNA construct, the construct can be supplied on a plasmid and maintained as a separate element or integrated into the genome of the cells, as is known in the art.
- a ribozyme-encoding DNA construct can include transcriptional regulatory elements, such as a promoter element, an enhancer or UAS element, and a transcriptional terminator signal, for controlling transcription of ribozymes in the cells.
- ribozymes can be engineered so that ribozyme expression will occur in response to factors which induce expression of a target gene. Ribozymes also can be engineered to provide an additional level of regulation, so that destruction of mRNA occurs only when both a ribozyme and a target gene are induced in the cells.
- the invention provides assays for screening test compounds which bind to and/or modulate the activity of an HM74-like GPCR polypeptide or an HM74-like GPCR polynucleotide.
- a test compound preferably binds to an HM74-like GPCR polypeptide or polynucleotide. More preferably, a test compound decreases or increases a biological effect mediated via human HM74-like GPCR by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the test compound.
- Test compounds can be pharmacologic agents already known in the art or can be compounds previously unknown to have any pharmacological activity.
- the compounds can be naturally occurring or designed in the laboratory. They can be isolated from microorganisms, animals, or plants, and can be produced re- combinantly, or synthesized by chemical methods known in the art. If desired, test compounds can be obtained using any of the numerous combinatorial library methods known in the art, including but not limited to, biological libraries, spatially addressable parallel solid phase or solution phase libraries, synthetic library methods requiring deconvolution, the "one-bead one-compound” library method, and synthetic library methods using affinity chromatography selection.
- the biological library approach is limited to polypeptide libraries, while the other four approaches are applicable to polypeptide, non-peptide oligomer, or small molecule libraries of compounds. See Lam, Anticancer Drug Des. 12, 145, 1997.
- Test compounds can be screened for the ability to bind to HM74-like GPCR polypeptides or polynucleotides or to affect HM74-like GPCR activity or HM74-like GPCR gene expression using high throughput screening.
- high throughput screening many discrete compounds can be tested in parallel so that large numbers of test compounds can be quickly screened.
- the most widely established techniques utilize 96-well microtiter plates. The wells of the microtiter plates typically require assay volumes that range from 50 to 500 ⁇ l.
- many instruments, materials, pipettors, robotics, plate washers, and plate readers are commercially available to fit the 96-well format.
- free format assays or assays that have no physical barrier between samples, can be used.
- an assay using pigment cells (melanocytes) in a simple homogeneous assay for combinatorial peptide libraries is described by
- Chelsky placed a simple homogenous enzyme assay for carbonic anhydrase inside an agarose gel such that the enzyme in the gel would cause a color change throughout the gel. Thereafter, beads carrying combinatorial compounds via a photolinker were placed inside the gel and the compounds were partially released by UV-light. Compounds that inhibited the enzyme were observed as local zones of inhibition having less color change. Yet another example is described by Salmon et ah, Molecular Diversity 2, 57-63 (1996). In this example, combinatorial libraries were screened for compounds that had cytotoxic effects on cancer cells growing in agar.
- test samples are placed in a porous matrix.
- One or more assay components are then placed within, on top of, or at the bottom of a matrix such as a gel, a plastic sheet, a filter, or other form of easily manipulated solid support.
- a matrix such as a gel, a plastic sheet, a filter, or other form of easily manipulated solid support.
- the test compound is preferably a small molecule which binds to and occupies the active site of the HM74-like GPCR polypeptide, thereby making the ligand binding site inaccessible to substrate such that normal biological activity is prevented.
- small molecules include, but are not limited to, small peptides or peptide-like molecules.
- Potential ligands which may bind to a polypeptide of the invention include, but are not limited to, the natural ligands of known GPCRs and analogues or derivatives thereof.
- Natural ligands of GPCRs include, for example, adrenomedullin, amylin, calcitonin gene related protein (CGRP), calcitonin, anandamide, serotonin, histamine, adrenalin, noradrenalin, platelet activating factor, thrombin, C5a, bradykinin, and chemokines.
- CGRP calcitonin gene related protein
- either the test compound or the HM74-like GPCR polypeptide can comprise a detectable label, such as a fluorescent, radioisotopic, chemiluminescent, or enzymatic label, such as horseradish peroxidase, alkaline phosphatase, or luciferase. Detection of a test compound which is bound to the HM74-like GPCR polypeptide can then be accomplished, for example, by direct counting of radioemmission, by scintillation counting, or by determining conversion of an appropriate substrate to a detectable product.
- a detectable label such as a fluorescent, radioisotopic, chemiluminescent, or enzymatic label, such as horseradish peroxidase, alkaline phosphatase, or luciferase.
- binding of a test compound to an HM74-like GPCR polypeptide can be determined without labeling either of the interactants.
- a micro- physiometer can be used to detect binding of a test compound with an HM74-like GPCR polypeptide.
- a microphysiometer e.g., CytosensorTM
- LAPS light-addressable potentiometric sensor
- Determining the ability of a test compound to bind to an HM74-like GPCR polypeptide also can be accomplished using a technology such as real-time Bimolecular Interaction Analysis (BIA) (Sjolander & Urbaniczky, Anal. Chem. 63,
- BIA is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcoreTM). Changes in the optical phenomenon surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological molecules.
- SPR surface plasmon resonance
- an HM74-like GPCR polypeptide can be used as a "bait protein" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Patent 5,283,317; Zervos et ah, Cell 72, 223-232, 1993; Madura et ah, J. Biol. Chem. 268, 12046-12054, 1993; Bartel et ah, BioTechniques 14, 920-924, 1993; Iwabuchi et ah,
- the two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains.
- the assay utilizes two different DNA constracts.
- polynucleotide encoding an HM74-like GPCR polypeptide can be fused to a polynucleotide encoding the DNA binding domain of a known transcription factor (e.g. , GAL-4).
- a DNA sequence that encodes an unidentified protein (“prey" or "sample” can be fused to a polynucleotide that codes for the activation domain of the known transcription factor.
- the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ), which is operably linked to a transcriptional regulatory site responsive to the transcription factor.
- a reporter gene e.g., LacZ
- Expression of the reporter gene can be detected, and cell colonies containing the functional transcription factor can be isolated and used to obtain the DNA sequence encoding the protein which interacts with the HM74-like GPCR polypeptide.
- HM74-like GPCR polypeptide or polynucleotide
- test compound can be bound to a solid support.
- Suitable solid supports include, but are not limited to, glass or plastic slides, tissue culture plates, microtiter wells, tubes, silicon chips, or particles such as beads (including, but not limited to, latex, polystyrene, or glass beads).
- HM74-like GPCR polypeptide or polynucleotide
- test compounds are preferably bound to the solid support in an array, so that the location of individual test compounds can be tracked. Binding of a test compound to an HM74-like GPCR polypeptide (or polynucleotide) can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and microcentrifuge tubes.
- the HM74-like GPCR polypeptide is a fusion protein comprising a domain that allows the HM74-like GPCR polypeptide to be bound to a solid support.
- glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical) or glutathione derivatized microtiter plates, which are then combined with the test compound or the test compound and the non-adsorbed HM74-like GPCR polypeptide; the mixture is then incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components. Binding of the interactants can be determined either directly or indirectly, as described above. Alternatively, the complexes can be dissociated from the solid support before binding is determined.
- HM74-like GPCR polypeptide or polynucleotide
- test compound can be immobilized utilizing conjugation of biotin and streptavidin.
- Biotinylated HM74-like GPCR polypeptides (or polynucleotides) or test compounds can be prepared from biotin-
- HM74-like GPCR polypeptide using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, 111.) and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical).
- antibodies which specifically bind to an HM74-like GPCR polypeptide, polynucleotide, or a test compound, but which do not interfere with a desired binding site, such as the active site of the HM74-like GPCR polypeptide can be derivatized to the wells of the plate. Unbound target or protein can be trapped in the wells by antibody conjugation.
- Methods for detecting such complexes include immunodetection of complexes using antibodies which specifically bind to the HM74-like GPCR polypeptide or test compound, enzyme-linked assays which rely on detecting an activity of the HM74- like GPCR polypeptide, and SDS gel electrophoresis under non-reducing conditions. Screening for test compounds which bind to an HM74-like GPCR polypeptide or polynucleotide also can be carried out in an intact cell. Any cell which comprises an HM74-like GPCR polypeptide or polynucleotide can be used in a cell-based assay system.
- An HM74-like GPCR polynucleotide can be naturally occurring in the cell or can be introduced using techniques such as those described above. Binding of the test compound to an HM74-like GPCR polypeptide or polynucleotide is determined as described above.
- Test compounds can be tested for the ability to increase or decrease a biological effect of an HM74-like GPCR polypeptide. Such biological effects can be determined using functional assays such as those described in the specific examples, below. Functional assays can be carried out after contacting either a purified HM74-like GPCR polypeptide, a cell membrane preparation, or an intact cell with a test compound.
- a test compound which decreases an activity of an HM74-like GPCR by at least about 10, preferably about 50, more preferably about 75, 90, or 100% is identified as a potential therapeutic agent for decreasing HM74-like GPCR activity.
- a test compound which increases an HM74-like GPCR activity by at least about 10, preferably about 50, more preferably about 75, 90, or 100% is identified as a potential therapeutic agent for increasing HM74-like GPCR activity.
- Such a screening procedure involves the use of melanophores which are transfected to express an HM74-like GPCR polypeptide.
- a screening technique is described in WO 92/01810 published Feb. 6, 1992.
- an assay may be employed for screening for a compound which inhibits activation of the receptor polypeptide by contacting the melanophore cells which comprise the receptor with both a receptor ligand and a test compound to be screened. Inhibition of the signal generated by the ligand indicates that a test compound is a potential antagonist for the receptor, i.e., inhibits activation of the receptor.
- the screen may be employed for identifying a test compound which activates the receptor by contacting such cells with compounds to be screened and determining whether each test compound generates a signal, i.e., activates the receptor.
- test compounds may be contacted with a cell which expresses a human HM74-like GPCR polypeptide and a second messenger response, e.g., signal transduction or pH changes, can be measured to determine whether the test compound activates or inhibits the receptor.
- a second messenger response e.g., signal transduction or pH changes
- Another such screening technique involves introducing RNA encoding a human HM74-like GPCR polypeptide into Xenopus oocytes to transiently express the receptor.
- the transfected oocytes can then be contacted with the receptor ligand and a test compound to be screened, followed by detection of inhibition or activation of a calcium signal in the case of screening for test compounds which are thought to inhibit activation of the receptor.
- Another screening technique involves expressing a human HM74-like GPCR polypeptide in cells in which the receptor is linked to a phospholipase C or D.
- Such cells include endothelial cells, smooth muscle cells, embryonic kidney cells, etc.
- the screening may be accomplished as described above by quantifying the degree of activation of the receptor from changes in the phospholipase activity.
- test compounds which increase or decrease HM74-like GPCR gene expression are identified.
- An HM74-like GPCR polynucleotide is contacted with a test compound, and the expression of an RNA or polypeptide product of the HM74-like GPCR polynucleotide is determined.
- the level of expression of appropriate mRNA or polypeptide in the presence of the test compound is compared to the level of expression of mRNA or polypeptide in the absence of the test compound.
- the test compound can then be identified as a modulator of expression based on this comparison. For example, when expression of mRNA or polypeptide is greater in the presence of the test compound than in its absence, the test compound is identified as a stimulator or enhancer of the mRNA or polypeptide expression. Alternatively, when expression of the mRNA or polypeptide is less in the presence of the test compound than in its absence, the test compound is identified as an inhibitor of the mRNA or polypeptide expression.
- the level of HM74-like GPCR mRNA or polypeptide expression in the cells can be determined by methods well known in the art for detecting mRNA or polypeptide. Either qualitative or quantitative methods can be used.
- the presence of polypeptide products of an HM74-like GPCR polynucleotide can be determined, for example, using a variety of techniques known in the art, including immunochemical methods such as radioimmunoassay, Western blotting, and immunohistochernistry.
- polypeptide synthesis can be determined in vivo, in a cell culture, or in an in vitro translation system by detecting inco ⁇ oration of labeled amino acids into an HM74-like GPCR polypeptide.
- Such screening can be carried out either in a cell-free assay system or in an intact cell.
- Any cell which expresses an HM74-like GPCR polynucleotide can be used in a cell-based assay system.
- the HM74-like GPCR polynucleotide can be naturally occurring in the cell or can be introduced using techniques such as those described above.
- Either a primary culture or an established cell line, such as CHO or human embryonic kidney 293 cells, can be used.
- compositions of the invention can comprise, for example, an HM74-like GPCR polypeptide, HM74-like GPCR polynucleotide, antibodies which specifically bind to an HM74-like GPCR polypeptide, or mimetics, agonists, antagonists, or inhibitors of an HM74-like GPCR polypeptide activity.
- the compositions can be administered alone or in combination with at least one other agent, such as stabilizing compound, which can be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water.
- the compositions can be administered to a patient alone, or in combination with other agents, drugs or hormones.
- compositions of the invention can be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, parenteral, topical, sublingual, or rectal means.
- Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration.
- Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.
- Pharmaceutical preparations for oral use can be obtained through combination of active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores.
- Suitable excipients are carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums including arabic and tragacanth; and proteins such as gelatin and collagen.
- disintegrating or solubilizing agents can be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.
- Dragee cores can be used in conjunction with suitable coatings, such as concentrated sugar solutions, which also can contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
- suitable coatings such as concentrated sugar solutions, which also can contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
- Dyestuffs or pigments can be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.
- Push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol.
- Push-fit capsules can contain active ingredients mixed with a filler or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers.
- the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.
- compositions suitable for parenteral administration can be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline.
- Aqueous injection suspensions can contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
- suspensions of the active compounds can be prepared as appropriate oily injection suspensions.
- Suitable lipopbilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes.
- Non-lipid polycationic amino polymers also can be used for delivery.
- the suspension also can contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
- penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
- compositions of the present invention can be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.
- the pharmaceutical composition can be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms.
- the preferred preparation can be a lyophilized powder which can contain any or all of the following: 1-50 mM histidine, 0.1%-2% sucrose, and 2-7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.
- compositions After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. Such labeling would include amount, frequency, and method of administration.
- GPCRs are ubiquitous in the mammalian host and are responsible for many biological functions, including many pathologies. Accordingly, it is desirable to find compounds and drags which stimulate a GPCR on the one hand and which can inhibit the function of a GPCR on the other hand.
- compounds which activate a GPCR may be employed for therapeutic pu ⁇ oses, such as the treatment of asthma, inflammation, CNS disorders, including Parkinson's disease, acute heart failure, urinary retention, and osteoporosis.
- compounds which activate GPCRs are useful in treating various cardiovascular ailments such as caused by the lack of pulmonary blood flow or hypertension.
- these compounds may also be used in treating various physiological disorders relating to abnormal control of fluid and electrolyte homeostasis and in diseases associated with abnormal angiotensin-induced aldosterone secretion.
- compounds which inhibit activation of a GPCR can be used for a variety of therapeutic pu ⁇ oses, for example, for the treatment of hypotension and/or hypertension, angina pectoris, myocardial infarction, inflammation, ulcers, asthma, allergies, benign prostatic hypertrophy, and psychotic and neurological disorders including schizophrenia, manic excitement, depression, delirium, dementia or severe mental retardation, dyskinesias, such as Huntington's disease or Tourett's syndrome, among others.
- Compounds which inhibit GPCRs also are useful in reversing endogenous anorexia and in the control of bulimia.
- Cancer Human HM74-like GPCR may be useful for treating cancer.
- Cancer is a disease fundamentally caused by oncogenic cellular transformation. There are several hallmarks of transformed cells that distinguish them from their normal counte ⁇ arts and underlie the pathophysiology of cancer. These include uncontrolled cellular proliferation, unresponsiveness to normal death-inducing signals (immortalization), increased cellular motility and invasiveness, increased ability to recruit blood supply through induction of new blood vessel formation (angiogenesis), genetic instability, and dysregulated gene expression.
- Various combinations of these aberrant physiologies, along with the acquisition of drag-resistance frequently lead to an intractable disease state in which organ failure and patient death ultimately ensue.
- Genes or gene fragments identified through genomics can readily be expressed in one or more heterologous expression systems to produce functional recombinant proteins. These proteins are characterized in vitro for their biochemical properties and then used as tools in high-throughput molecular screening programs to identify chemical modulators of their biochemical activities. Agonists and/or antagonists of target protein activity can be identified in this manner and subsequently tested in cellular and in vivo disease models for anti-cancer activity. Optimization of lead compounds with iterative testing in biological models and detailed pharmacokinetic and toxicological analyses form the basis for drug development and subsequent testing in humans. Diabetes. Human HM74-like GPCR also may be useful for treating diabetes.
- Diabetes mellirus is a common metabolic disorder characterized by an abnormal elevation in blood glucose, alterations in lipids and abnormalities (complications) in the cardiovascular system, eye, kidney and nervous system. Diabetes is divided into two separate diseases: type 1 diabetes (juvenile onset) that results from a loss o f cells which make and secrete insulin, and type 2 diabetes (adult onset) which is caused by a defect in insulin secretion and a defect in insulin action.
- type 1 diabetes juvenile onset
- type 2 diabetes adult onset
- Type 1 diabetes is initiated by an autoimuune reaction that attacks the insulin secreting cells (beta cells) in the pancreatic islets.
- Agents that prevent this reaction from occurring or that stop the reaction before destruction of the beta cells has been accomplished are potential therapies for this disease.
- Other agents that induce beta cell proliferation and regeneration are also potential therapies.
- Type II diabetes is the most common of the two diabetic conditions (6% of the population).
- the defect in insulin secretion is an important cause of the diabetic condition and results from an inability of the beta cell to properly detect and respond to rises in blood glucose levels with insulin release.
- Therapies that increase the response by the beta cell to glucose would offer an important new treatment for this disease.
- the defect in insulin action in Type II diabetic subjects is another target for therapeutic intervention.
- Agents that increase the activity of the insulin receptor in muscle, liver and fat will cause a decrease in blood glucose and a normalization of plasma lipids.
- the receptor activity can be increased by agents that directly stimulate the receptor or that increase the intracellular signals from the receptor.
- Other therapies can directly activate the cellular end process, i.e. glucose transport or various enzyme systems, to generate an insulin-like effect and therefore a produce beneficial outcome.
- any agent that reduces body weight is a possible therapy.
- Both Type I and Type diabetes can be treated with agents that mimic insulin action or that treat diabetic complications by reducing blood glucose levels.
- agents that reduces new blood vessel growth can be used to treat the eye complications that develop in both diseases.
- Obesity Human HM74-like GPCR also may be used to treat obesity and other eating disorders.
- Obesity and overweight are defined as an excess of body fat relative to lean body mass.
- An increase in caloric intake or a decrease in energy expenditure or both can bring about this imbalance leading to su ⁇ lus energy being stored as fat.
- Obesity is associated with important medical morbidities and an increase in mortality.
- the causes of obesity are poorly understood and may be due to genetic factors, environmental factors or a combination of the two to cause a positive energy balance.
- anorexia and cachexia are characterized by an imbalance in energy intake versus energy expenditure leading to a negative energy balance and weight loss.
- Agents that either increase energy expenditure and/or decrease energy intake, abso ⁇ tion or storage would be useful for treating obesity, overweight, and associated comorbidities.
- Agents that either increase energy intake and/or decrease energy expenditure or increase the amount of lean tissue would be useful for treating cachexia, anorexia and wasting disorders.
- the human HM74-like GPCR gene, translated proteins, and agents which modulate the human HM74-like gene or portions of the gene or its products are useful for treating obesity, overweight, anorexia, cachexia, wasting disorders, appetite suppression, appetite enhancement, increases or decreases in satiety, modulation of body weight, and/or other eating disorders such as bulimia.
- this gene translated proteins and agents which modulate this gene or portions of the gene or its products are useful for treating obesity/overweight-associated comorbidities including hypertension; type 2 diabetes; coronary artery disease; hyperlipidemia; stroke; gallbladder disease; gout; osteoarthritis; sleep apnea and respiratory problems; some types of cancer including endometrial, breast, prostate and colon; thrombolic disease; polycystic ovarian syndrome; reduced fertility; complications of pregnancy; menstrual irregularities; hirsutism; stress incontinence and depression.
- obesity/overweight-associated comorbidities including hypertension; type 2 diabetes; coronary artery disease; hyperlipidemia; stroke; gallbladder disease; gout; osteoarthritis; sleep apnea and respiratory problems; some types of cancer including endometrial, breast, prostate and colon; thrombolic disease; polycystic ovarian syndrome; reduced fertility; complications of pregnancy; menstrual irregularities; hirsutism; stress
- Osteoporosis is a disease characterized by low bone mass and microarchitectural deterioration of bone tissue, leading to enhanced bone fragility and a consequent increase in fracture risk. It is the most common human metabolic bone disorder. Established osteoporosis includes the presence of fractures.
- Bone turnover occurs by the action of two major effector cell types within bone: the osteoclast, which is responsible for bone reso ⁇ tion, and the osteoblast, which synthesizes and mineralizes bone matrix.
- the actions of osteoclasts and osteoblasts are highly coordinated. Osteoclast precursors are recruited to the site of turnover; they differentiate and fuse to form mature osteoclasts which then resorb bone. Attached to the bone surface, osteoclasts produce an acidic microenvironment in a tightly defined junction between the specialized osteoclast border membrane and the bone matrix, thus allowing the localized solubilization of bone matrix. This in turn facilitate the proteolysis of demineralized bone collagen. Matrix degradation is thought to release matrix-associated growth factor and cytokines, which recruit osteoblasts in a temporally and spatially controlled fashion. Osteoblasts synthesize and secrete new bone matrix proteins, and subsequently mineralize this new matrix.
- osteoclast itself is the direct or indirect target of all currently available osteoporosis agents with the possible exception of fluoride. Antireso ⁇ tive therapy prevents further bone loss in treated individuals. Osteoblasts are derived from multipotent stem cells which reside in bone marrow and also gives rise to adipocytes, chondrocytes, fibroblasts and muscle cells. Selective enhancement of osteoblast activity is a highly desirable goal for osteoporosis therapy since it would result in an increase in bone mass, rather than a prevention of further bone loss. An effective anabolic therapy would be expected to lead to a significantly greater reduction in fracture risk than currently available treatments.
- the agonists or antagonists to the newly discovered polypeptides may act as antireso ⁇ tive by directly altering the osteoclast differentiation, osteoclast adhesion to the bone matrix or osteoclast function of degrading the bone matrix.
- the agonists or antagonists could indirectly alter the osteoclast function by interfering in the synthesis and/or modification of effector molecules of osteoclast differentiation or function such as cytokines, peptide or steroid hormones, proteases, etc.
- the agonists or antagonists to the newly discovered polypeptides may act as anabolics by directly enhancing the osteoblast differentiation and /or its bone matrix forming function.
- the agonists or antagonists could also indirectly alter the osteoblast function by enhancing the synthesis of growth factors, peptide or steroid hormones or decreasing the synthesis of inhibitory molecules.
- the agonists and antagonists may be used to mimic, augment or inhibit the action of the newly discovered polypeptides which may be useful to treat osteoporosis, Paget's disease, degradation of bone implants particularly dental implants.
- Liver fibrosis pathogenesis involves altered proliferation and gene expression of multiple cell types, such as hepatic stellate cells and cholangiocytes. These changes cause altered collagen content and altered connective tissue deposition, water retention, choleresis, etc. Many ligand-receptor interactions are involved in these changes. Among the ligands are vasopressin, secretin, vasoactive intestinal peptide, etc., all of which use GPCR-mediated signal transduction pathways. Thus, human HM74-like GPCR is a potential target for therapeutic intervention in liver fibrosis. Cardiovascular Disease.
- HM74-like GPCR is a potential target for therapeutic intervention in cardiovascular diseases, such as congestive heart failure, myocardial infarction, ischemic diseases of the heart, all kinds of atrial and ventricular arrhythmias, hypertensive vascular diseases and peripheral vascular diseases.
- Heart failure is defined as a pathophysiologic state in which an abnormality of cardiac function is responsible for the failure of the heart to pump blood at a rate commensurate with the requirement of the metabolizing tissue. It includes all forms of pumping failure such as high-output and low-output, acute and chronic, right- sided or left-sided, systolic or diastolic, independent of the underlying cause.
- MI Myocardial infarction
- Ischemic diseases are conditions in which the coronary flow is restricted resulting in an perfusion which is inadequate to meet the myocardial requirement for oxygen.
- This group of diseases include stable angina, unstable angina and asymptomatic ischemia.
- Arrhythmias include all forms of atrial and ventricular tachyarrhythmias (atrial tachycardia, atrial flutter, atrial fibrillation, atrio-ventricular reentrant tachycardia, preexcitation syndrome, ventricular tachycardia, ventricular flutter, ventricular fibrillation) as well as bradycardic forms of arrhythmias.
- Hypertensive vascular diseases include primary as well as all kinds of secondary arterial hypertension (renal, endocrine, neurogenic, others). The genes may be used as drug targets for the treatment of hypertension as well as for the prevention of all complications.
- Peripheral vascular diseases are defined as vascular diseases in which arterial and/or venous flow is reduced resulting in an imbalance between blood supply and tissue oxygen demand. It includes chronic peripheral arterial occlusive disease (PAOD), acute arterial thrombosis and embolism, inflammatory vascular disorders, Raynaud's phenomenon and venous disorders.
- PAOD peripheral arterial occlusive disease
- acute arterial thrombosis and embolism inflammatory vascular disorders
- Raynaud's phenomenon and venous disorders.
- test compound identified as described herein in an appropriate animal model.
- an agent identified as described herein e.g., a modulating agent, an antisense nucleic acid molecule, a specific antibody, ribozyme, or an HM74-like
- GPCR polypeptide binding molecule can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent.
- an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent.
- this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.
- a reagent which affects HM74-like GPCR activity can be administered to a human cell, either in vitro or in vivo, to reduce HM74-like GPCR activity.
- the reagent preferably binds to an expression product of a human HM74-like GPCR gene. If the expression product is a protein, the reagent is preferably an antibody.
- an antibody can be added to a preparation of stem cells which have been removed from the body. The cells can then be replaced in the same or another human body, with or without clonal propagation, as is known in the art.
- the reagent is delivered using a liposome.
- the liposome is stable in the animal into which it has been administered for at least about 30 minutes, more preferably for at least about 1 hour, and even more preferably for at least about 24 hours.
- a liposome comprises a lipid composition that is capable of targeting a reagent, particularly a polynucleotide, to a particular site in an animal, such as a human.
- the lipid composition of the liposome is capable of targeting to a specific organ of an animal, such as the lung, liver, spleen, heart brain, lymph nodes, and skin.
- a liposome useful in the present invention comprises a lipid composition that is capable of fusing with the plasma membrane of the targeted cell to deliver its contents to the cell.
- the transfection efficiency of a liposome is about 0.5 ⁇ g of DNA per 16 nmole of liposome delivered to about 10 6 cells, more preferably about 1.0 ⁇ g of DNA per 16 nmole of liposome delivered to about 10 6 cells, and even more preferably about 2.0 ⁇ g of DNA per 16 nmol of liposome delivered to about 10 cells.
- a liposome is between about 100 and
- 500 ran, more preferably between about 150 and 450 nm, and even more preferably between about 200 and 400 nm in diameter.
- Suitable liposomes for use in the present invention include those liposomes standardly used in, for example, gene delivery methods known to those of skill in the art. More preferred liposomes include liposomes having a polycationic lipid composition and/or liposomes having a cholesterol backbone conjugated to polyethylene glycol.
- a liposome comprises a compound capable of targeting the liposome to a particular cell types, such as a cell-specific ligand exposed on the outer surface of the liposome.
- a liposome with a reagent such as an antisense oligonucleotide or ribozyme can be achieved using methods which are standard in the art (see, for example, U.S. Patent 5,705,151).
- a reagent such as an antisense oligonucleotide or ribozyme
- from about 0.1 ⁇ g to about 10 ⁇ g of polynucleotide is combined with about 8 nmol of liposomes, more preferably from about 0.5 ⁇ g to about 5 ⁇ g of polynucleotides are combined with about 8 nmol liposomes, and even more preferably about 1.0 ⁇ g of polynucleotides is combined with about 8 nmol liposomes.
- antibodies can be delivered to specific tissues in vivo using receptor-mediated targeted delivery.
- Receptor-mediated DNA delivery techniques are taught in, for example, Findeis et al. Trends in Biotechnoh 11, 202-05 (1993); Chiou et ah, GENE THERAPEUTICS: METHODS AND APPLICATIONS OF DIRECT GENE TRANSFER (J.A. Wolff, ed.) (1994); Wu & Wu, J. Biol. Chem. 263, 621-24 (1988); Wu et ah, J. Biol. Chem. 269, 542-46 (1994); Zenke et ah, Proc. Nath Acad. Sci. U.S.A. 87, 3655-59 (1990); Wu et ah, J. Biol. Chem. 266, 338-42 (1991).
- a therapeutically effective dose refers to that amount of active ingredient which increases or decreases HM74-like GPCR activity relative to the HM74-like GPCR activity which occurs in the absence of the therapeutically effective dose.
- the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually mice, rabbits, dogs, or pigs.
- the animal model also can be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
- Therapeutic efficacy and toxicity e.g., ED 5 Q (the dose therapeutically effective in 50% of the population) and LD 50 (the dose lethal to 50% of the population), can be determined by standard pharmaceutical procedures in cell cultures or experimental animals.
- the dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, L 5 /ED 50 .
- compositions which exhibit large therapeutic indices are preferred.
- the data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use.
- the dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED 50 with little or no toxicity.
- the dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.
- the exact dosage will be determined by the practitioner, in light of factors related to the subject that requires treatment. Dosage and administration are adjusted to provide sufficient levels of the active ingredient or to maintain the desired effect. Factors which can be taken into account include the severity of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drag combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions can be administered every 3 to 4 days, every week, or once every two weeks depending on the half-life and clearance rate of the particular formulation. Normal dosage amounts can vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art.
- nucleotides Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.
- polynucleotides encoding the antibody can be constructed and introduced into a cell either ex vivo or in vivo using well- established techniques including, but not limited to, transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome- mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, "gene gun,” and DEAE- or calcium phosphate-mediated transfection.
- Effective in vivo dosages of an antibody are in the range of about 5 ⁇ g to about
- effective in vivo dosages are in the range of about 100 ng to about 200 ng, 500 ng to about 50 mg, about 1 ⁇ g to about 2 mg, about 5 ⁇ g to about 500 ⁇ g, and about 20 ⁇ g to about 100 ⁇ g of DNA.
- the reagent is preferably an antisense oligonucleotide or a ribozyme.
- Polynucleotides which express antisense oligonucleotides or ribozymes can be introduced into cells by a variety of methods, as described above.
- a reagent reduces expression of an HM74-like GPCR gene or the activity of an HM74-like GPCR polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the reagent.
- the effectiveness of the mechanism chosen to decrease the level of expression of an HM74-like GPCR gene or the activity of an HM74-like GPCR polypeptide can be assessed using methods well known in the art, such as hybridization of nucleotide probes to HM74-like GPCR-specific mRNA, quantitative RT-PCR, immunologic detection of an HM74-like GPCR polypeptide, or measurement of HM74-like GPCR activity.
- any of the pharmaceutical compositions of the invention can be administered in combination with other appropriate therapeutic agents.
- Selection of the appropriate agents for use in combination therapy can be made by one of ordinary skill in the art, according to conventional pharmaceutical principles.
- the combination of therapeutic agents can act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
- any of the therapeutic methods described above can be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans. Diagnostic Methods
- GPCRs also can be used in diagnostic assays for detecting diseases and abnormalities or susceptibility to diseases and abnormalities related to the presence of mutations in the nucleic acid sequences which encode a GPCR.
- diseases are related to cell transformation, such as tumors and cancers, and various cardiovascular disorders, including hypertension and hypotension, as well as diseases arising from abnormal blood flow, abnormal angiotensin-induced aldosterone secretion, and other abnormal control of fluid and electrolyte homeostasis.
- differences can be determined between the cDNA or genomic sequence encoding HM74-like GPCR in individuals afflicted with a disease and in normal individuals. If a mutation is observed in some or all of the afflicted individuals but not in normal individuals, then the mutation is likely to be the causative agent of the disease.
- Sequence differences between a reference gene and a gene having mutations can be revealed by the direct DNA sequencing method.
- cloned DNA segments can be employed as probes to detect specific DNA segments.
- the sensitivity of this method is greatly enhanced when combined with PCR.
- a sequencing primer can be used with a double-stranded PCR product or a single-stranded template molecule generated by a modified PCR.
- the sequence determination is performed by conventional procedures using radiolabeled nucleotides or by automatic sequencing procedures using fluorescent tags.
- DNA sequence differences can be carried out by detection of alteration in electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Small sequence deletions and insertions can be visualized, for example, by high resolution gel electrophoresis. DNA fragments of different sequences can be distinguished on denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures (see, e.g., Myers et ah, Science 230, 1242, 1985). Sequence changes at specific locations can also be revealed by nuclease protection assays, such as RNase and SI protection or the chemical cleavage method (e.g., Cotton et ah, Proc.
- the detection of a specific DNA sequence can be performed by methods such as hybridization, RNase protection, chemical cleavage, direct DNA sequencing or the use of restriction enzymes and Southern blotting of genomic DNA.
- mutations can also be detected by in situ analysis.
- Altered levels of an HM74-like GPCR also can be detected in various tissues.
- Assays used to detect levels of the receptor polypeptides in a body sample, such as blood or a tissue biopsy, derived from a host are well known to those of skill in the art and include radioimmunoassays, competitive binding assays, Western blot analysis, and ELISA assays.
- the polynucleotide of SEQ JD NO. 1 is inserted into the expression vector pCEV4 and the expression vector pCEV4-HM74-like GPCR polypeptide obtained is fransfected into human embryonic kidney 293 cells.
- the cells are scraped from a culture flask into 5 ml of Tris HCl, 5 mM EDTA, pH 7.5, and lysed by sonication. Cell lysates are centrifuged at 1000 rpm for 5 minutes at 4°C. The supernatant is centrifuged at 30,000 x g for 20 minutes at 4°C.
- the pellet is suspended in binding buffer containing 50 mM Tris HCl, 5 mM MgSO 4 , 1 mM EDTA, 100 mM NaCl, pH 7.5, supplemented with 0.1 % BSA, 2 ⁇ g/ml aprotinin, 0.5 mg/ml leupeptin, and 10 ⁇ g/ml phosphoramidon.
- Optimal membrane suspension dilutions defined as the protein concentration required to bind less than 10 % of an added radioligand, i.e. 125 I-labeled HM74, are added to 96-well polypropylene microtiter plates containing ligand, non-labeled peptides, and binding buffer to a final volume of 250 ⁇ l.
- membrane preparations are incubated in the presence of increasing concentrations (0.1 nM to 4 nM) of I ligand.
- Binding reaction mixtures are incubated for one hour at 30°C. The reaction is stopped by filtration through GF/B filters treated with 0.5% polyethyleneimine, using a cell harvester. Radioactivity is measured by scintillation counting, and data are analyzed by a computerized non-linear regression program. Non-specific binding is defined as the amount of radioactivity remaining after incubation of membrane protein in the presence of 100 nM of unlabeled peptide. Protein concentration is measured by the Bradford method using Bio-Rad Reagent, with bovine seram albumin as a standard. The HM74-like GPCR activity of the polypeptide comprising the amino acid sequence of SEQ ID NO. 2 is demonstrated EXAMPLE 2
- the Pichia pastoris expression vector pPICZB (Invitrogen, San Diego, CA) is used to produce large quantities of a human HM74-like GPCR polypeptides in yeast.
- the human HM74-like GPCR polypeptide-encoding DNA sequence is derived from the nucleotide sequence shown in SEQ ID NO. 3. Before insertion into vector pPICZB the DNA sequence is modified by well known methods in such a way that it contains at its 5'-end an initiation codon and at its 3'-end an enterokinase cleavage site, a His6 reporter tag and a termination codon.
- the yeast are cultivated under usual conditions in 5 liter shake flasks and the recombinantly produced protein isolated from the culture by affinity chromatography (Ni-NTA-Resin) in the presence of 8 M urea.
- the bound polypeptide is eluted with buffer, pH 3.5, and neutralized.
- Separation of the HM74-like GPCR polypeptide from the His6 reporter tag is accomplished by site-specific proteolysis using enterokinase (Invitrogen, San Diego, CA) according to manufacturer's instructions. Purified human HM74-like GPCR polypeptide is obtained.
- Human embryonic kidney 293 cells transfected with a polynucleotide which expresses human HM74-like GPCR are scraped from a culture flask into 5 ml of Tris HCl, 5 mM EDTA, pH 7.5, and lysed by sonication. Cell lysates are centrifuged at 1000 ⁇ m for 5 minutes at 4°C. The supernatant is centrifuged at 30,000 x g for 20 minutes at 4°C.
- the pellet is suspended in binding buffer containing 50 mM Tris HCl, 5 mM MgSO 4 , 1 mM EDTA, 100 mM NaCl, pH 7.5, supplemented with 0.1 % BSA, 2 ⁇ g/ml aprotinin, 0.5 mg/ml leupeptin, and 10 ⁇ g/ml phosphoramidon.
- Optimal membrane suspension dilutions defined as the protein concentration required to bind less than 10 % of the added radioligand, i.e. HM74, are added to 96- well polypropylene microtiter plates containing 125 I-labeled ligand or test compound, non-labeled peptides, and binding buffer to a final volume of 250 ⁇ l.
- membrane preparations are incubated in the presence of increasing concentrations (0.1 nM to 4 nM) of 125 I-labeled ligand or test compound (specific activity 2200 Ci/mmol).
- concentrations 0.1 nM to 4 nM
- 125 I-labeled ligand or test compound specific activity 2200 Ci/mmol.
- the binding affinities of different test compounds are determined in equilibrium competition binding assays, using 0.1 nM 125 I- peptide in the presence of twelve different concentrations of each test compound.
- Binding reaction mixtures are incubated for one hour at 30°C.
- the reaction is stopped by filtration through GF/B filters treated with 0.5% polyethyleneimine, using a cell harvester. Radioactivity is measured by scintillation counting, and data are analyzed by a computerized non-linear regression program.
- Non-specific binding is defined as the amount of radioactivity remaining after incubation of membrane protein in the presence of 100 nM of unlabeled peptide. Protein concentration is measured by the Bradford method using Bio-Rad Reagent, with bovine seram albumin as a standard. A test compound which increases the radioactivity of membrane protein by at least 15% relative to radioactivity of membrane protein which was not incubated with a test compound is identified as a compound which binds to a human HM74-like GPCR polypeptide.
- Receptor-mediated inhibition of cAMP formation can be assayed in host cells which express human HM74-like GPCR. Cells are plated in 96-well plates and incubated in
- PBS Dulbecco's phosphate buffered saline
- Radioactivity is quantified using a gamma counter equipped with data reduction software.
- a test compound which decreases radioactivity of the contents of a well relative to radioactivity of the contents of a well in the absence of the test compound is identified as a potential inhibitor of cAMP formation.
- a test compound which increases radioactivity of the contents of a well relative to radioactivity of the contents of a well in the absence of the test compound is identified as a potential enhancer of cAMP formation.
- Intracellular free calcium concentration can be measured by microspectrofluorometry using the fluorescent indicator dye Fura-2/AM (Bush et ah, J. Neurochem. 57, 562- 74, 1991).
- Stably transfected cells are seeded onto a 35 mm culture dish containing a glass coverslip insert. Cells are washed with HBS , incubated with a test compound, and loaded with 100 ⁇ l of Fura-2/AM (10 ⁇ M) for 20-40 minutes. After washing with HBS to remove the Fura-2/AM solution, cells are equilibrated in HBS for 10-20 minutes. Cells are then visualized under the 40X objective of a Leitz Fluovert FS microscope.
- Fluorescence emission is determined at 510 nM, with excitation wavelengths alternating between 340 nM and 380 nM.
- Raw fluorescence data are converted to calcium concentrations using standard calcium concentration curves and software analysis techniques.
- a test compound which increases the fluorescence by at least 15% relative to fluorescence in the absence of a test compound is identified as a compound which mobilizes intracellular calcium.
- Cells which stably express human HM74-like GPCR cDNA are plated in 96-well plates and grown to confluence. The day before the assay, the growth medium is changed to 100 ⁇ l of medium containing 1% seram and 0.5 ⁇ Ci H-myinositol. The plates are incubated overnight in a CO 2 incubator (5% CO 2 at 37°C). Immediately before the assay, the medium is removed and replaced by 200 ⁇ l of PBS containing
- the 3 H-inositol phosphate accumulation from inositol phospholipid metabolism is started by adding 10 ⁇ l of a solution containing a test compound. To the first well 10 ⁇ l are added to measure basal accumulation. Eleven different concentrations of test compound are assayed in the following 11 wells of each plate row. All assays are performed in duplicate by repeating the same additions in two consecutive plate rows. The plates are incubated in a CO 2 incubator for one hour. The reaction is terminated by adding 15 ⁇ l of 50% v/v trichloroacetic acid (TCA), followed by a 40 minute incubation at 4°C.
- TCA 50% v/v trichloroacetic acid
- the content of the wells is transferred to a Multiscreen HV filter plate (Millipore) containing Dowex AG1-X8 (200-400 mesh, formate form).
- the filter plates are prepared by adding
- the 3 H-JJPs are eluted into empty 96-well plates with 200 ⁇ l of 1.2 M ammonium formate/0.1 formic acid. The content of the wells is added to 3 ml of scintillation cocktail, and radioactivity is determined by liquid scintillation counting.
- Binding assays are carried out in a binding buffer containing 50 mM HEPES, pH 7.4, 0.5% BSA, and 5 mM MgCl 2 .
- the standard assay for radioligand (e.g., 125 I- test compound) binding to membrane fragments comprising HM74- like GPCR polypeptides is carried out as follows in 96 well microtiter plates (e.g., Dynatech Immulon II Removawell plates). Radioligand is diluted in binding buffer+ PMSF/Baci to the desired cpm per 50 ⁇ l, then 50 ⁇ l aliquots are added to the wells. For non-specific binding samples, 5 ⁇ l of 40 ⁇ M cold ligand also is added per well. Binding is initiated by adding 150 ⁇ l per well of membrane diluted to the desired concentration (10-30 ⁇ g membrane protein/well) in binding buffer PMSF/Baci. Plates are then covered with Linbro mylar plate sealers
- Binding is allowed to proceed at room temperature for 1-2 hours and is stopped by centrifuging the plate for 15 minutes at 2,000 x g. The supernatants are decanted, and the membrane pellets are washed once by addition of 200 ⁇ l of ice cold binding buffer, brief shaking, and recentrifugation. The individual wells are placed in 12 x 75 mm tubes and counted in an LKB Gammamaster counter (78% efficiency). Specific binding by this method is identical to that measured when free ligand is removed by rapid (3-5 seconds) filtration and washing on polyethyleneimine-coated glass fiber filters.
- binding assays to obtain membrane pellets for studies on solubilization of recepto ⁇ ligand complex and for receptor purification are also carried out. These are identical to the standard assays except that (a) binding is carried out in polypropylene tubes in volumes from 1-250 ml, (b) concentration of membrane protein is always 0.5 mg/ml, and (c) for receptor purification, BSA concentration in the binding buffer is reduced to 0.25%, and the wash step is done with binding buffer without BSA, which reduces
- membrane pellets are resuspended in 200 ⁇ l per microtiter plate well of ice-cold binding buffer without BSA. Then 5 ⁇ l per well of 4 mM N-5-azido-2-nitrobenzoyloxysuccinimide (ANB- NOS, Pierce) in DMSO is added and mixed. The samples are held on ice and UV- irradiated for 10 minutes with a Mineralight R-52G lamp (UVP Inc., San Gabriel, Calif.) at a distance of 5-10 cm.
- ANB- NOS N-5-azido-2-nitrobenzoyloxysuccinimide
- Membrane solubilization is carried out in buffer containing 25 mM Tris , pH 8, 10% glycerol (w/v) and 0.2 mM CaCl 2 (solubilization buffer).
- the highly soluble detergents including Triton X-100, deoxycholate, deoxycholate:lysolecithin, CHAPS, and zwittergent are made up in solubilization buffer at 10% concentrations and stored as frozen aliquots. Lysolecithin is made up fresh because of insolubility upon freeze- thawing and digitonin is made fresh at lower concentrations due to its more limited solubility.
- washed pellets after the binding step are resuspended free of visible particles by pipetting and vortexing in solubilization buffer at 100,000 x g for 30 minutes. The supernatants are removed and held on ice and the pellets are discarded.
- the intact R:L complex can be assayed by four different methods. All are carried out on ice or in a cold room at 4-10°C).
- the samples are rapidly (1-3 seconds) filtered over Whatman GF/B glass fiber filters and washed with 4 ml of the phosphate buffer.
- PEG-precipitated receptor 125 I-ligand complex is determined by gamma counting of the filters.
- GFB PEI filter binding (Brans et ah, Analytical Biochem. 132, 74-81, 1983).
- Whatman GF/B glass fiber filters are soaked in 0.3% polyethyleneimine (PEI, Sigma) for 3 hours. Samples of solubilized membranes (25-100 ⁇ l) are replaced in 12 x 75 mm polypropylene tubes.
- Binding of biotinyl-receptor to GEL Cl membranes is carried out as described above. Incubations are for 1 hour at room temperature. In the standard purification protocol, the binding incubations contain 10 nM Bio-S29. 125 I ligand is added as a tracer at levels of 5,000-100,000 cpm per mg of membrane protein. Control incubations contain 10 ⁇ M cold ligand to saturate the receptor with non-biotinylated ligand.
- Solubilization of receptor: ligand complex also is carried out as described above, with 0.15% deoxycholate:lysolecithin in solubilization buffer containing 0.2 mM MgCl 2 , to obtain 100,000 x g supernatants containing solubilized R:L complex.
- SA-agarose Chemical Co.; "SA-agarose”
- solubilization buffer is added to the solubilized membranes as 1/30 of the final volume. This mixture is incubated with constant stirring by end-over-end rotation for 4-5 hours at 4-10°C. Then the mixture is applied to a column and the non-bound material is washed through. Binding of radioligand to SA-agarose is determined by comparing cpm in the 100,000 x g supernatant with that in the column effluent after adso ⁇ tion to SA-agarose. Finally, the column is washed with 12-15 column volumes of solubilization buffer+0.15% deoxycholate:lysolecithin +1/500 (vol/vol) 100 x 4pase.
- the sfreptavidin column is eluted with solubilization buffer+0.1 mM EDTA+0.1 mM
- Eluates from the sfreptavidin column are incubated overnight (12-15 hours) with immobilized wheat germ agglutinin (WGA agarose, Vector Labs) to adsorb the receptor via interaction of covalently bound carbohydrate with the WGA lectin.
- the ratio (vol/vol) of WGA-agarose to sfreptavidin column eluate is generally 1 :400. A range from 1:1000 to 1:200 also can be used.
- the resin is pelleted by centrifugation, the supernatant is removed and saved, and the resin is washed 3 times (about 2 minutes each) in buffer containing 50 mM HEPES, pH 8, 5 mM MgCl 2; and 0.15% deoxycholate:lysolecithin.
- buffer containing 50 mM HEPES, pH 8, 5 mM MgCl 2; and 0.15% deoxycholate:lysolecithin To elute the WGA-bound receptor, the resin is extracted three times by repeated mixing (vortex mixer on low speed) over a 15-30 minute period on ice, with 3 resin columns each time, of 10 mM
- N-N'-N"-triacetylchitotriose in the same HEPES buffer used to wash the resin. After each elution step, the resin is centrifuged down and the supernatant is carefully removed, free of WGA-agarose pellets. The three, pooled eluates contain the final, purified receptor.
- the material non-bound to WGA contain G protein subunits specifically eluted from the sfreptavidin column, as well as non-specific contami- nants. All these fractions are stored frozen at -90°C.
- HM74-like GPCR polypeptides comprising a glutathione-S-transferase protein and absorbed onto glutathione-derivatized wells of 96-well microtiter plates are contacted with test compounds from a small molecule library at pH 7.0 in a physiological buffer solution.
- HM74-like GPCR polypeptides comprise an amino acid sequence shown in SEQ ID NO. 2.
- the test compounds comprise a fluorescent tag. The samples are incubated for 5 minutes to one hour. Control samples are incubated in the absence of a test compound.
- the buffer solution containing the test compounds is washed from the wells. Binding of a test compound to an HM74-like GPCR polypeptide is detected by fluorescence measurements of the contents of the wells. A test compound which increases the fluorescence in a well by at least 15% relative to fluorescence of a well in which a test compound was not incubated is identified as a compound which binds to an HM74-like GPCR polypeptide.
- test compound is administered to a culture of human gastric cells and incubated at
- RNA is isolated from the two cultures as described in Chirgwin et ah, Biochem. 18, 5294-99, 1979).
- Northern blots are prepared using 20 to 30 ⁇ g total RNA and hybridized with a 32 P-labeled HM74-like GPCR-specific probe at 65°C in Express- hyb (CLONTECH).
- the probe comprises at least 11 contiguous nucleotides selected from the complement of SEQ ID NO. 1.
- a test compound which decreases the HM74-like GPCR-specific signal relative to the signal obtained in the absence of the test compound is identified as an inhibitor of HM74-like GPCR gene expression.
- oligonucleotides comprising at least 11 contiguous nucleotides selected from the complement of SEQ ID NO. 1 are synthesized on a Pharmacia Gene Assembler series synthesizer using the phosphoramidite procedure (Uhlmann et ah, Chem. Rev. 90, 534-83, 1990). Following assembly and deprotection, oligonucleotides are ethanol-precipitated twice, dried, and suspended in phosphate-buffered saline (PBS) at the desired concentration. Purity of these oligonucleotides is tested by capillary gel electrophoreses and ion exchange HPLC. Endotoxin levels in the oligonucleotide preparation are determined using the Luminous Amebocyte Assay (Bang, Biol. Bull. (Woods Hole, Mass.) 105, 361-362, 1953).
- the antisense oligonucleotides are administered intrabronchially to a patient with asthma. The severity of the patient's asthma is decreased.
- Table 1 Expression of HM74-like GPCR in various human tissues quantified by Multiple Tissue Expression Array (MTEA) and reverse transcript (RT-)PCR. Expression levels: -, not detected; (+), low; +, medium; ++, high; +++, very high).
- MTEA Multiple Tissue Expression Array
- RT- reverse transcript
- Tissue Type MTEA RT-PCR brain testis (+) pancreas (+) (+) stomach (+) + cerebellum (+) (+) tracheae (+) + adrenal gland (+) + skeletal muscle - (+) salivary gland - (+) small intestine (+) + prostata (+) + fetal liver (+) ++ placenta (+) (+) fetal brain - (+) uterus (+) (+) mammary gland heart spleen lung
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20891200P | 2000-06-05 | 2000-06-05 | |
US208912P | 2000-06-05 | ||
PCT/EP2001/006380 WO2001094385A2 (en) | 2000-06-05 | 2001-06-05 | Human hm74-like g protein coupled receptor |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1292677A2 true EP1292677A2 (en) | 2003-03-19 |
Family
ID=22776559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01943478A Withdrawn EP1292677A2 (en) | 2000-06-05 | 2001-06-05 | Human hm74-like g protein coupled receptor |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1292677A2 (en) |
AU (1) | AU6604901A (en) |
WO (1) | WO2001094385A2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040254224A1 (en) * | 2001-04-11 | 2004-12-16 | Foord Steven Michael | Medicaments |
US6902902B2 (en) | 2001-11-27 | 2005-06-07 | Arena Pharmaceuticals, Inc. | Human G protein-coupled receptors and modulators thereof for the treatment of metabolic-related disorders |
MXPA04007117A (en) * | 2002-01-23 | 2005-02-25 | Aventis Pharma Inc | A nucleic acid encoding a g-protein-coupled receptor, and uses thereof. |
US7527935B2 (en) | 2002-03-19 | 2009-05-05 | Mitsubishi Tanabe Pharma Corporation | G-protein coupled receptor having eicosanoid as ligand and gene thereof |
AU2003220913A1 (en) * | 2002-03-19 | 2003-09-29 | Tanabe Seiyaku Co., Ltd. | Novel g protein-coupled recepotrs and genes thereof |
US7189524B1 (en) | 2002-11-25 | 2007-03-13 | Amgen, Inc. | Receptor ligands and methods of modulating receptors |
WO2004071394A2 (en) * | 2003-02-13 | 2004-08-26 | Bayer Healthcare Ag | Diagnostics and therapeutics for diseases associated with hm74 |
WO2004073586A2 (en) * | 2003-02-19 | 2004-09-02 | Bayer Healthcare Ag | Diagnostics and therapeutics for diseases associated with g-protein coupled receptor tg1019 (tg1019) |
US7094572B2 (en) | 2003-03-14 | 2006-08-22 | Bristol-Myers Squibb | Polynucleotide encoding a novel human G-protein coupled receptor variant of HM74, HGPRBMY74 |
CN102558075A (en) | 2004-12-03 | 2012-07-11 | 先灵公司 | Substituted piperazines as CB1 antagonists |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5955308A (en) * | 1997-06-18 | 1999-09-21 | Smithkline Beecham Corporation | cDNA clone HEAOD54 that encodes a human 7-transmembrane receptor |
AU1618500A (en) * | 1998-11-12 | 2000-05-29 | Incyte Pharmaceuticals, Inc. | Human cell surface receptor proteins |
AU5143700A (en) * | 1999-05-20 | 2000-12-12 | Human Genome Sciences, Inc. | Seven transmembrane receptor genes |
AU1575601A (en) * | 1999-10-27 | 2001-05-08 | Pharmacia & Upjohn Company | G protein-coupled receptors expressed in brain |
EP1242448A2 (en) * | 1999-11-17 | 2002-09-25 | Arena Pharmaceuticals, Inc. | Endogenous and non-endogenous versions of human g protein-coupled receptors |
CA2395654A1 (en) * | 2000-01-31 | 2001-08-02 | Human Genome Sciences, Inc. | Nucleic acids, proteins, and antibodies |
-
2001
- 2001-06-05 WO PCT/EP2001/006380 patent/WO2001094385A2/en not_active Application Discontinuation
- 2001-06-05 AU AU66049/01A patent/AU6604901A/en not_active Abandoned
- 2001-06-05 EP EP01943478A patent/EP1292677A2/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO0194385A3 * |
Also Published As
Publication number | Publication date |
---|---|
WO2001094385A8 (en) | 2002-06-06 |
WO2001094385A3 (en) | 2002-05-10 |
AU6604901A (en) | 2001-12-17 |
WO2001094385A2 (en) | 2001-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1287133A2 (en) | Regulation of human dopamine-like g protein-coupled receptor | |
EP1292677A2 (en) | Human hm74-like g protein coupled receptor | |
US20040030100A1 (en) | Regulation of human extracellular calcium- sensing g protein-coupled receptor | |
EP1272631A2 (en) | Regulation of human hm74-like g protein coupled receptor | |
US20030139341A1 (en) | Regulation of human lgr4-like g protein -coupled receptor | |
EP1268548A2 (en) | Regulation of human rta-like g protein-coupled receptor | |
US20030109673A1 (en) | Regulation of human hm74-like g protein coupled receptor | |
US20030139343A1 (en) | Regulation of human hm74-like g protein coupled receptor | |
US20030166600A1 (en) | Regulation of human isotocin-like g protein-coupled receptor | |
US20040077041A1 (en) | Regulation of human follicle stimulating hormone-like g protein -coupled receptor | |
US20030143590A1 (en) | Regulation of human dopamine-like g protein- coupled receptor | |
US20030049787A1 (en) | Regulation of human mas oncogene-related g protein-coupled receptor | |
US20060068464A1 (en) | Regulation of human g protein coupled receptor | |
US20010041355A1 (en) | Regulation of human nerve growth factor-related G protein-coupled receptor | |
EP1276867B1 (en) | Use of human latrophilin-like G protein-coupled receptor in screening methods | |
WO2002000699A1 (en) | Regulation of human rta-like g protein-coupled receptor | |
US20040039170A1 (en) | Regulation of human g protein-coupled receptor | |
WO2001092503A2 (en) | Regulation of human calcium-independent alpha-latro-toxin-like g protein-coupled receptor | |
WO2001068701A2 (en) | Regulation of human seven transmembrane - like g protein - coupled receptor (7tm-gpcr) | |
US20060121554A1 (en) | Regulation of human RTA-like GPCR | |
US20030148338A1 (en) | Regulation of human calcium-independent alpha-latro-toxin-like g protein-coupled receptor | |
WO2002000701A2 (en) | Regulation of human gonadotropin releasing hormone receptor-like g protein-coupled receptor | |
US20030032142A1 (en) | Regulation of human seven transmembrane-like g protein-coupled receptor | |
US20030105316A1 (en) | Regulation of human opsin-related g protein-coupled receptor | |
WO2002099106A2 (en) | Regulation of human secretin -type gpcr |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030107 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BAYER HEALTHCARE AG |
|
17Q | First examination report despatched |
Effective date: 20050330 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20050810 |