EP1272422A2 - Vacuum package fabrication of microelectromechanical system devices with integrated circuit components - Google Patents
Vacuum package fabrication of microelectromechanical system devices with integrated circuit componentsInfo
- Publication number
- EP1272422A2 EP1272422A2 EP01906897A EP01906897A EP1272422A2 EP 1272422 A2 EP1272422 A2 EP 1272422A2 EP 01906897 A EP01906897 A EP 01906897A EP 01906897 A EP01906897 A EP 01906897A EP 1272422 A2 EP1272422 A2 EP 1272422A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- wafer
- sealing rings
- integrated circuit
- vacuum
- lid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/0032—Packages or encapsulation
- B81B7/0077—Other packages not provided for in groups B81B7/0035 - B81B7/0074
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
Definitions
- This invention relates to integrated circuit fabrication, and more particularly, to a method for vacuum packaging microelectromechanical system devices with integrated circuit components during fabrication.
- MEMS Microelectromechanical systems
- MEMS devices are integrated micro devices or systems combining electrical and mechanical components.
- MEMS devices are fabricated using standard integrated circuit batch processing techniques.
- MEMS devices are used in many ways including sensing, controlling, and actuating on the micro scale.
- MEMS devices function individually or in arrays to generate effects on a macro scale.
- MEMS devices require a vacuum environment in order to attain maximum performance.
- the vacuum package also provides protection and an optimal operating environment for the MEMS device.
- MEMS devices are infrared MEMS such as bolometers and certain inertial MEMS such as gyros and accelerometers .
- MEMS devices are individually packaged in vacuum compatible packages after fabrication and dicing of the MEMS device. Often, packaging costs of MEMS devices is 10 to 100 times the fabrication costs. These high packaging costs make it difficult to develop commercially viable vacuum packaged MEMS devices.
- MEMS devices are fragile especially after dicing. Care must be taken in handling these devices, and traditional integrated circuit fabrication machinery cannot adequately handle and protect MEMS devices. Therefore, special handling techniques have been developed to protect the MEMS devices until vacuum packaging has been completed. These special handling procedures add additional cost to the production of MEMS devices .
- an improved method for vacuum packaging MEMS or similar devices with integrated circuit components during fabrication is provided to substantially reduce disadvantages or problems associated with traditional methods of vacuum packaging MEMS or similar devices with integrated circuit components .
- a method for vacuum packaging MEMS devices that comprises forming a plurality of MEMS devices on a device silicon wafer with each MEMS device and any associated mating pads surrounded by one of a plurality of first sealing rings.
- a plurality of integrated circuit devices are formed on a lid wafer where each of the plurality of integrated circuit devices has one or more mating pads corresponding in position to the associated mating pads coupled to the MEMS device to enable connection of the integrated circuit devices to the MEMS devices providing electrical connections there between.
- a plurality of second sealing rings is formed on the lid wafer where each of the plurality of second sealing rings surrounds one of the plurality of integrated circuit devices and the one or more mating pads coupled to the integrated circuit device.
- Each of the plurality of second sealing rings is positioned between the perimeter of the integrated circuit device and one or more bonding pads coupled to the integrated circuit device.
- a sealing layer is formed on either each of the plurality of first sealing rings or each of the plurality of second sealing rings.
- the device wafer is mated with the lid wafer in a vacuum environment to form a plurality of vacuum packages where each vacuum package encloses one or more of the plurality of MEMS devices and one or more of the integrated circuit devices .
- the present invention provides various advantages over traditional vacuum packaging methods.
- One technical advantage of the present invention is that vacuum packaging is incorporated into the fabrication process of MEMS devices.
- Another technical advantage is the elimination of individual MEMS vacuum packaging and individual die handling.
- Yet another advantage of the present invention is that all MEMS devices on a silicon wafer are vacuum packaged at one time during device fabrication, thereby significantly reducing the costs associated with vacuum packaging MEMS devices. This reduction in costs should result in the development of commercially viable MEMS devices.
- Yet another advantage of the present invention is that MEMS devices are protected at an earlier stage in fabrication. Another advantage is the ability to use traditional methods of handling integrated circuits after a MEMS device is vacuum packaged and diced. Still another advantage of the present invention is the ability to test all MEMS devices after vacuum packaging but before dicing using traditional integrated circuit testing procedures. Other advantages may be readily ascertainable by those skilled in the art .
- FIGURE 1 is a top view of a silicon wafer having MEMS devices formed thereon;
- FIGURE 2 is a top view of the silicon wafer of FIGURE 1 illustrating a sealing ring surrounding each MEMS device on the wafer;
- FIGURE 3 is a top view of a single MEMS device illustrating the MEMS device, associated bonding pads, and the surrounding sealing ring;
- FIGURE 4 is a cross section of a single MEMS device illustrating the various layers of the MEMS device
- FIGURE 5 is a top view of the patterned side of a silicon lid wafer
- FIGURE 6 is a cross section of the silicon lid wafer of FIGURE 5;
- FIGURE 7 is a cross section of the lid wafer and the device wafer illustrating the mating process which results in vacuum packaged MEMS devices;
- FIGURE 8 is a cross section of the lid wafer prior to formation of spacers on each of the lid sealing rings;
- FIGURE 9 is a cross section of a lid wafer after formation of the spacers on each of the lid sealing rings ;
- FIGURE 10 is a schematic diagram of a portion of the lid wafer with a lid sealing ring and spacers formed thereon;
- FIGURE 11 is a top view of the complete device wafer and lid wafer assembly after removal of the lid wafer area to expose bonding pads for testing devices in the wafer assembly;
- FIGURE 12 is a schematic diagram of MEMS devices prepared for mating with another integrated circuit device
- FIGURE 13 is a schematic diagram of a semiconductor device prepared for mating with a MEMS device.
- FIGURE 14 is a flow chart illustrating the basic steps involved in wafer level vacuum packaging of MEMS devices.
- MEMS devices and certain other inertial MEMS devices require a vacuum environment to attain maximum performance.
- infrared microbolometers require an operating pressure of less than 10 millitorr to minimize thermal transfer from the detector elements to the substrate and package walls.
- vacuum compatible materials processes and equipment must be used.
- Infrared devices also require an optically transparent cover.
- the solution to high packaging costs is to eliminate the traditional individual vacuum packaging of a completed die.
- this is achieved by moving the packaging step into the wafer fabrication area.
- a lid wafer is aligned and mounted to the device wafer with an annular seal ring of solder, or other sealing material, forming an enclosed cell at each die location.
- This lid attachment process is completed in a vacuum environment, leaving each MEMS device in a vacuum cell. Interconnects are brought out under the solder seal ring and are isolated by a dielectric layer.
- Silicon device wafer 10 is a standard substrate used for fabrication of integrated circuit devices, MEMS devices or similar devices. However, any suitable substrate material may be used.
- a substrate material with integrated circuit readout devices embedded therein may be used as device wafer 10.
- Silicon device wafers usually have many MEMS devices 12 formed thereon using traditional methods of integrated circuit fabrication.
- the present embodiment of the invention is discussed in terms of vacuum packaging for MEMS devices, the method may be used for vacuum packaging of any integrated circuit device, or similar device, formed on a substrate material and contained within a vacuum package.
- Each MEMS device 12 usually has one or more associated bonding pads 14. Bonding pads 14 provide the electrical connections to MEMS device 12. In FIGURE 1, each MEMS device 12 has two associated bonding pads 14.
- MEMS device 12 could be a MEMS device or other micro-device formed on a suitable substrate and benefitting from a vacuum package.
- micro-device is used herein to refer to these devices including integrated circuit devices, MEMS devices, or similar devices.
- device wafer 10 is illustrated having MEMS devices 12 and associated bonding pads 14.
- sufficient area must be left in order to place a sealing ring 16 around each MEMS device 12.
- Sealing ring 16 defines the vacuum package around a MEMS device 12.
- the present embodiment is discussed in terms of one MEMS device 12, or micro-device, per vacuum package, or vacuum cell, one or more micro-devices may be enclosed in a vacuum cell depending on the requirements, function, and design of the resulting device.
- a single MEMS device 12 is illustrated to more completely show the layout on device wafer 10.
- a lead 18 connects each bonding pad 14 to MEMS device 12.
- a space is left between MEMS device 12 and bonding pad 14 to form the device sealing ring 16.
- lead 18 runs beneath fabrication layers to be built within device sealing ring 16. Since the device sealing ring 16 defines the area of the device wafer 10 within which a vacuum package will be formed, electrical connections are made to bonding pads 14 without affecting the vacuum seal existing around MEMS device 12.
- FIGURE 4 there is illustrated an example of a single MEMS device 12 ready to be enclosed within a vacuum package.
- Device wafer 10 includes a layer of silicon dioxide 20 deposited or grown upon the surface thereof prior to fabrication of MEMS device 12.
- a lead 18 on a side of the MEMS device 12 enables coupling to the bonding pads 14.
- leads 18 could exist on one or more sides of MEMS device 12.
- Sufficient space is provided between MEMS device 12 and bonding pads 14 to allow fabrication of sealing layers for the device sealing ring 16.
- Bonding pad 14 may be comprised of any suitable metal or metals for making subsequent electrical connections.
- the bonding pad 14 is comprised of a first layer of titanium, a second layer of palladium, and a final layer of gold. Since bonding pad 14 is deposited on lead 18, a solder base layer may not be needed for bonding pad 14. Bonding pads are fabricated along with the MEMS device 12 and are discussed here only for completeness. Bonding pads are not part of the vacuum packaging process .
- a dielectric layer 22 is formed as the first step of fabricating a device sealing ring 16 (not expressly shown) using integrated circuit fabrication techniques.
- the dielectric layer 22 is composed of silicon nitride although any suitable dielectric may be used.
- Dielectric layer 22 provides electrical isolation for leads 18.
- solder adhesion surface 24 is fabricated on the dielectric layer 22 as the next step in completing the device sealing ring 16.
- Solder adhesion surface 24 is illustrated to be comprised of a first layer of titanium, a middle layer of palladium, and a third layer of gold. However, there are many suitable metals or combination of metals available for use in fabricating the solder adhesion surface 24. Solder adhesion surface 24 may be deposited at the same time as bonding pads 14.
- a compression seal such as an indium compression seal, may be used. If a compression seal is used, then solder adhesion surface 24 is not formed on top of the dielectric layer 22. At this point, preparation of the sealing ring 16 on the device wafer 10 is complete. Every MEMS device 12 upon device wafer 10 now has a sealing ring 16 prepared to receive a heat activated solder sealed vacuum package lid.
- Lid wafer 30 includes a plurality of lid sealing rings 32 corresponding in number to device sealing rings 16 on device wafer 10. Each of the lid sealing rings 32 is a mirror image of a device sealing ring 16 so that lid wafer 30 mates with device wafer 10.
- Cavities 34 and bonding pad channels 36 are etched in the lid wafer 30 using an appropriate process such as wet or dry etching. The etching process for cavities 34 and bonding pad channels 36 may include depositing a layer of silicon nitride and patterning the silicon nitride layer to form an appropriate etch mask.
- cavities 34 and bonding pad channels 36 are then used to form cavities 34 and bonding pad channels 36.
- the silicon nitride layer may be removed before depositing the seal rings 32.
- Each of the cavities 34 is surrounded by a lid sealing ring 32.
- the function of the cavities 34 is to provide increased volume for a vacuum packaged MEMS device 12. As discussed below, the increased volume for the vacuum packaged MEMS device 12 provides for a higher vacuum level within the vacuum cell. Cavities 34 may be optional m some embodiments of the present invention that do not require a high vacuum.
- the function of the bonding pad channel 36 is to provide clearance over bonding pads 14 so that a dicing saw, etching process, or other suitable process may be used m a later step to open the lid wafer to expose the bonding pads for device testing before dicing of the wafer.
- lid wafer 30 there is illustrated a cross section of a portion of lid wafer 30.
- Lid sealing rings 32 are fabricated on the lid wafer 30 to mate with device sealing rings 16 on the device wafer 10.
- An etching process, or other suitable process, is used to etch the surface of lid wafer 30 creating cavities 34 and bonding pad channels 36.
- the etching process creates a cavity 34 on lid wafer 30 corresponding to each MEMS device 12 on device wafer 10 and a bonding pad channel 36 m lid wafer 30 corresponding to each row of bonding pads 14 on device wafer 10.
- An alternate process of patterning the lid wafer 30 includes forming a window wafer which is then bonded to the lid wafer.
- the window wafer may be formed by completely etching cavities 34 and bonding pad channels 36 through a wafer that is then bonded to an unetched lid wafer 30. This process provides smooth surfaces within cavities 34 and bonding pad channels 36 when bonded to the lid wafer 30.
- lid wafer 30 Another alternate process of patterning lid wafer 30 includes etching the entire surface of the lid wafer leaving lid sealing rings 32 raised above the surface. The complete surface of lid wafer 30 except lid sealing rings 32 would be etched to a predetermined depth.
- An optical coating may be necessary on the surface of the lid wafer 30 for optimal performance of MEMS device 12. If MEMS device 12 is an infrared detector or other optical device, an anti-reflective coating 35 is applied to the outer surface of lid wafer 30. In addition, the cavities 34 m lid wafer 30 may be coated with an anti-reflective coating 37. Cavities 34 represent areas of the lid wafer 30 directly above MEMS device 12 when fabrication is complete thus creating a package for MEMS device 12. Cavities 34 may be on the order of 0.5 to 0.75 millimeter deep. By etching cavities m the lid wafer 30 corresponding to the area above the individual MEMS devices 12, a smaller surface to volume ratio is obtained for the interior of the individual packages created by the mating of lid wafer 30 with device wafer 10.
- solder adhesion surface 38 is deposited to form lid sealing rings 32.
- solder adhesion surface 38 is not needed if an attachment method is used other than heat activated solder. In the preferred embodiment, heat activated solder is used and, therefore, lid solder adhesion surface 38 is deposited to form lid sealing rings 32.
- Lid solder adhesion surface 38 is comprised of any combination of metal or metal alloys that will provide a surface wettable by the solder, and a secure attachment to device wafer 10.
- the lid solder adhesion surface 38 is comprised of a first layer of titanium, followed by a middle layer of palladium, and an outer layer of gold.
- a solder layer 40 is deposited on lid solder adhesion surface 38. If a sealing method other than heat activated solder is used, the solder layer 40 is replaced by a material necessary to obtain a vacuum tight seal. In an alternative embodiment, an indium compression seal is used. However, in the preferred embodiment, a heat activated solder layer 40 is used. Solder layer 40 may be deposited through traditional integrated circuit fabrication techniques or other suitable deposition processes. For example, lid wafer 30 is electroplated resulting in solder layer 40 being deposited upon lid solder adhesion surface 38. Another method of depositing solder layer 40 includes using electroless plating. Another method of depositing solder layer 40 includes using vacuum deposition.
- solder layer 40 includes using a preformed, prepunched solder layer which is aligned over lid solder adhesion surfaces 38 and attached thereto. Any suitable method of attachment may be used including spot welding the preformed, prepunched solder layer to lid solder adhesion surfaces 38.
- a solder ball method could be used to deposit solder layer 40.
- the solder ball method includes creating a template with a plurality of discrete holes where solder would be deposited. The template, with solder balls in the holes, is then aligned and placed on lid wafer 30. The solder balls are then released from the template and attached to lid solder adhesion surfaces 38.
- solder layer 40 may be comprised of any appropriate material such as an indium compression seal, indium solder, metal solder, metal alloy solder, or solder balls. Although the preferred embodiment deposits solder layer 40 on lid solder adhesion surface 38, solder layer 40 could also be deposited on solder adhesion surface 24 on device wafer 10.
- the lid wafer 30 is placed in an assembly holder (not expressly shown) with the solder layer 40 facing up.
- Device wafer 10 is aligned over lid wafer 30 such that device sealing rings 16 are aligned over the corresponding lid sealing rings 32. If solder layer 40 is deposited on solder adhesion surface 24 on device wafer 10, the device wafer is placed in an assembly holder with the solder layer 40 facing up, and the lid wafer 30 is aligned over device wafer 10.
- Lid wafer 30 and device wafer 10 are held in alignment with a gap to allow outgassing of all surface areas.
- the gap may be on the order of two millimeters.
- Assembly 50 thus includes lid wafer 30 and device wafer 10 aligned in an assembly holder with a gap to allow outgassing.
- the gap provides for a more complete evacuation of each vacuum cell and, thus, a higher vacuum level in the resulting vacuum packaged MEMS devices 12.
- Assembly 50 is placed in a vacuum furnace.
- the vacuum furnace is evacuated to a minimum pressure level on the order of 2 x 10 7 torr.
- the vacuum furnace is then heated to a level just below the melting point of the solder layer 40. For example, if the melting point of the solder layer 40 is 280°C, the vacuum furnace is heated to approximately 275°C.
- the vacuum furnace temperature is dependent upon the melting point of solder layer 40.
- Assembly 50 is held in the vacuum furnace for a period sufficient to allow outgassing of all surfaces. This period may be on the order of several hours . The holding period is determined by the final vacuum pressure required within the vacuum packaged MEMS device .
- the vacuum furnace temperature is raised to the melting point of solder layer 40.
- solder layer 40 melts, a short period of time is allowed for outgassing of the solder and then device wafer 10 is brought into contact with lid wafer 30 creating a vacuum seal between lid sealing rings 32 and device sealing rings 16.
- all MEMS devices 12 on device wafer 10 are now enclosed within a vacuum package.
- sealing layer 40 is not heat activated, a vacuum chamber may be used in place of a vacuum furnace to provide the appropriate vacuum environment. In that situation, melting of solder layer 40 would not be necessary. An application of force may then be used to seal the device wafer 10 with the lid wafer 30.
- FIGURES 8, 9, and 10 illustrate solder thickness control for maintaining a uniform solder thickness for all MEMS devices 12 on assembly 50. By maintaining a uniform solder thickness, proper vacuum seals and adequate vacuums will exist for each vacuum packaged MEMS device 12 on device wafer 10. Referring to FIGURE 8, there is illustrated the lid wafer 30 after cavities 34 and bonding pad channels 36 have been etched leaving lid sealing rings 32 surrounding each cavity 34.
- a layer of silicon nitride 102 is deposited on the surface of lid wafer 30 and patterned to form an etch mask.
- An orientation dependent etch, or other suitable process, is used to form cavities 34 and bonding pad channels 36 resulting in the configuration of lid wafer 30 shown in FIGURE 8.
- the lid wafer 30 having spacers 100 formed on the lid sealing rings 32.
- Silicon nitride layer 102 is patterned and etched using any suitable etching process to form small islands of material defining the spacers 100.
- the small islands of silicon nitride 102 may be on the order of 20 microns in diameter.
- the number of islands of silicon nitride 102 formed on lid sealing rings 32 is determined to insure a minimum thickness of the solder layer 40 on all lid sealing rings 32.
- Lid wafer 30 is then exposed to an orientation dependent etch, or any other suitable patterning technique, to form spacers 100 on lid sealing rings 32.
- the nitride on top of each spacer 100 may remain. However, the nitride layer may be removed if necessary.
- lid sealing rings 32 are prepared with a solder adhesion surface 38 and solder layer 40 as discussed with reference to FIGURE 6 and FIGURE 7.
- Spacers 100 are placed in lid sealing ring 32 to produce a uniform thickness of solder. Spacers 100 may be on the order of 5 to 20 microns high. Any suitable process may be used to form spacers 100 including attaching a small dot of material, such as silicon, to the surface of lid sealing ring 32 rather than etching the surface of lid sealing ring 32. Although the process of forming spacers 100 has been discussed in relation to vacuum packaging of MEMS devices 12, spacers 100 may be incorporated into any wafer level packaging process where a lid wafer is mated with a device wafer, regardless of the underlying components or devices.
- probe channels 54 are formed in lid wafer 30 by removing the lid wafer 30 over bonding pad channel 36. After probe channels 54 have been formed in lid wafer 30, bonding pads 14 are accessible through the probe channels.
- Vacuum package areas 52 illustrate the areas between lid wafer 30 and device wafer 10 where a vacuum package exists. Within each vacuum package area 52 is one or more MEMS device 12. Probe channels 54 are preferably formed by sawing a channel through the lid wafer 30 over the previously etched bonding pad channels 36. Probe channels 54 may also be formed by an etching process or other suitable technique.
- bonding pads 14 are exposed. Bonding pads 14 can then be used to test each individual vacuum packaged MEMS device 12 on device wafer 10 using traditional integrated circuit bulk testing procedures which include probing each bonding pad 14.
- An important advantage of the present invention is that the vacuum packaged MEMS devices 12 may be tested at the wafer level thus minimizing the cost of verifying the operational integrity of each individual vacuum packaged MEMS device 12. After testing the MEMS devices 12, the device wafer
- dicing saw is run between all vacuum package areas 52.
- the dicing of assembly 50 may be accomplished by using traditional methods of dicing silicon wafers with completed integrated circuits.
- vacuum packaging MEMS devices 12 at the wafer level traditional methods of handling integrated circuit devices may be used since the vacuum package provides protection to the delicate MEMS device 12.
- the completed die representing a vacuum packaged MEMS device 12 may be mounted by chip-on-board methods or injection molded into a plastic package. In addition, the completed die may be placed in a non-vacuum package with other components.
- FIGURE 12 and FIGURE 13 illustrate an alternate embodiment of the present invention that enables a device wafer with MEMS devices to be mated with a lid wafer containing other semiconductor devices .
- CMOS Complementary Metal Oxide Semiconductor
- IC integrated circuit
- Typical MEMS fabrication techniques cften use temperatures m excess of 400° C.
- One solution to this problem is to separately fabricate the MEMS device and the CMOS device so that the CMOS device is not exposed to temperatures above 400° C.
- MEMS devices are fabricated on a device wafer and the CMOS devices are fabricated on a lid wafer. These wafers are then vacuum sealed together to produce a wafer with many vacuum packaged MEMS/CMOS devices.
- MEMS devices are produced without processing limitations.
- Another advantage is that wafer losses in MEMS device fabrication do not result in the loss of a fully fabricated IC wafer. Since the alternate embodiment uses CMOS or other IC devices formed on a lid wafer, the alternate embodiment may not be suitable for use with MEMS devices requiring an optically transparent lid.
- MEMS device benefitting from the alternate process is a mechanical MEMS device connected to a CMOS or other IC device to form a complete, operating device.
- CMOS complementary metal-oxide-semiconductor
- the alternate embodiment will be discussed with a single MEMS device 12 and a single CMOS device vacuum packaged together, one or more MEMS devices 12 and one or more CMOS devices could be incorporated into a single vacuum packaged die.
- wafer ""fabrication design may not require every MEMS device to be packaged with a CMOS device. For instance, one-half of the resulting dies may be MEMS only vacuum packaged devices and the other half may be MEMS/CMOS vacuum packaged devices .
- FIGURE 12 there is illustrated a portion of device wafer 10 having a MEMS device 12.
- a typical device wafer 10 has many MEMS devices 12.
- One or more device mating pads 70 are coupled to MEMS device 12 through leads 72.
- Device mating pads 70 are used to provide an electrical connection between MEMS device 12 and a CMOS or other integrated circuit (IC) device on a lid wafer.
- Device mating pads 70 may be comprised of a solder adhesion surface as described with reference to bonding pads 14 and are located within the area bounded by device sealing ring 16 and, thus, withm the resulting vacuum package.
- Device sealing ring 16 is prepared for mating with a lid sealing ring on a lid wafer 30 as previously described.
- device sealing ring 16 includes a solder adhesion surface deposited and formed thereon. Since the alternate embodiment does not utilize bonding pads coupled to MEMS device 12 for providing electrical connections to the completed vacuum packaged die, a dielectric layer is not necessary for device sealing ring 16.
- the area bounded by device sealing ring 16 represents the area inside a vacuum package. Note that empty space is left within the vacuum area to accommodate the CMOS or other IC device formed on lid wafer 30.
- lid wafer 30 with a CMOS or other IC device 80 formed thereon.
- Lid wafer 30 may have many CMOS devices 80.
- Lid sealing ring 32 defines the area for forming lid solder adhesion surface 38 as previously described.
- One or more lid mating pads 82 are fabricated on the lid wafer 30. These lid mating pads 82 are a mirror image of device mating pads 70 so that when the device wafer 10 and the lid wafer 30 are properly aligned, device mating pads 70 and lid mating pads 82 will make contact thus providing electrical connections between MEMS device 12 and CMOS device 80. Lid mating pads 82 are connected to CMOS device 80 through leads 84.
- the lid mating pads 82 are comprised of a solder adhesion surface.
- one or more package bonding pads 86 are connected to CMOS device 80 through leads 88. Note that leads 88 pass under the lid sealing ring 32.
- the lid sealing ring 32 has a layer of silicon dioxide providing electrical insulation between leads 88 and the solder seal ring formed by device sealing ring 16 and lid sealing ring 32.
- Package bonding pads 86 provide the electrical connections for the resulting vacuum packaged device.
- lid sealing ring 32 includes a layer of solder deposited on a lid solder adhesion surface.
- solder layer could be deposited on either the properly prepared device sealing ring 16 or the properly prepared lid sealing ring 32.
- a solder layer is also deposited on either device mating pads 70 or lid mating pads 82 so that a permanent electrical connection is made when device wafer 10 is mated with lid wafer 30.
- the solder may be any suitable metal or metal alloy.
- a lower vacuum in vacuum packaged MEMS device 12 may be expected for solder with a higher melting point since a more complete outgassing of package surface areas will occur.
- the vacuum within vacuum packaged MEMS device 12 is enhanced in the case of a solder with a low melting point by applying the solder to the lid wafer 30 and heating the device wafer 10 separately to a higher temperature than the solder melting point so as to obtain a more complete surface outgassing of device wafer 10.
- the desired vacuum level within the completed vacuum packaged MEMS device 12 and the temperature tolerance of lid wafer 30 determine the type of solder to be used, the furnace temperatures, and the furnace vacuum level .
- lid wafer 10 and CMOS devices 80 are fabricated on lid wafer 30, the lid wafer is placed in an assembly holder and device wafer 10 is aligned over the lid wafer. If the mating process utilizes a furnace temperature that will not damage CMOS devices 80 on lid wafer 30, the device wafer 10 and lid wafer 30 assembly are mated using the previously described process. If a furnace temperature will be utilized that may damage CMOS devices 80 on lid wafer 30, device wafer 10 may be separately heated. Device wafer 10 is then brought into alignment with lid wafer 30 followed by contacting the two wafers in a vacuum environment to produce vacuum packaged MEMS devices 12.
- probe access channels are opened above package bonding pads 86 (in this case, through device wafer 10) to allow testing of vacuum packaged MEMS devices 12 utilizing bulk IC testing procedures.
- the completed assembly is diced into individual dies. As in the preferred embodiment, if higher vacuum levels are required in vacuum packaged MEMS device 12, an area in device wafer 10 is etched to provide a cavity to increase the surface-to-volume ratio of the resulting vacuum package .
- FIGURE 14 a flow chart illustrates the steps involved in vacuum packaging integrated circuit components during fabrication. At step 200, a plurality of MEMS devices 12 is formed on device wafer 10.
- step 202 a dielectric layer 22 is formed between the perimeter of each MEMS device 12 and associated bonding pads 14. Dielectric layer 22 forms a continuous ring surrounding MEMS device 12. A dielectric layer inherent m the structure of the MEMS device 12 may also be used.
- step 204 a sealing ring is formed on dielectric layer 22. Sealing ring 16 may include a lid solder adhesion surface to facilitate the mating of the device wafer 10 with a lid wafer 30 using a heat activated solder.
- step 206 a plurality of lid sealing rings 32 is formed corresponding in location and number to device sealing rings 16.
- step 208 a sealing layer is formed on each lid sealing ring 32.
- the sealing layer may be comprised of a heat activated solder, but may be composed of any appropriate sealing material. If MEMS device 12 has a support layer for any moving portions of MEMS device 12, the support layer is removed with an appropriate process, such as an etch process, prior to proceeding to step 210.
- step 210 the device wafer 10 is aligned with the lid wafer 30. After alignment, each device sealing ring 16 is aligned with its corresponding lid sealing ring 32.
- step 212 the device wafer 10 is mated with the lid wafer 30 in a vacuum environment thus creating a plurality of vacuum packaged MEMS devices 12.
- step 214 each vacuum packaged MEMS device 12 is tested using traditional integrated circuit testing procedures. In order to facilitate testing, probe access channels are opened above bonding pads 14 coupled to vacuum packaged MEMS devices 12.
- step 216 the completed assembly 50 is diced using traditional integrated circuit dicing techniques.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Micromachines (AREA)
Abstract
Description
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US496820 | 2000-02-02 | ||
US09/496,826 US6479320B1 (en) | 2000-02-02 | 2000-02-02 | Vacuum package fabrication of microelectromechanical system devices with integrated circuit components |
US496826 | 2000-02-02 | ||
US09/496,820 US6521477B1 (en) | 2000-02-02 | 2000-02-02 | Vacuum package fabrication of integrated circuit components |
PCT/US2001/003371 WO2001056921A2 (en) | 2000-02-02 | 2001-02-01 | Vacuum package fabrication of microelectromechanical system devices with integrated circuit components |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1272422A2 true EP1272422A2 (en) | 2003-01-08 |
Family
ID=27052296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01906897A Withdrawn EP1272422A2 (en) | 2000-02-02 | 2001-02-01 | Vacuum package fabrication of microelectromechanical system devices with integrated circuit components |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1272422A2 (en) |
JP (1) | JP2003531475A (en) |
KR (1) | KR20030023613A (en) |
AU (1) | AU2001234750A1 (en) |
WO (1) | WO2001056921A2 (en) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPR245701A0 (en) | 2001-01-10 | 2001-02-01 | Silverbrook Research Pty Ltd | An apparatus (WSM10) |
AUPR245601A0 (en) | 2001-01-10 | 2001-02-01 | Silverbrook Research Pty Ltd | An apparatus (WSM09) |
AUPR245401A0 (en) * | 2001-01-10 | 2001-02-01 | Silverbrook Research Pty Ltd | An apparatus (WSM07) |
US6744114B2 (en) | 2001-08-29 | 2004-06-01 | Honeywell International Inc. | Package with integrated inductor and/or capacitor |
KR100442830B1 (en) | 2001-12-04 | 2004-08-02 | 삼성전자주식회사 | Low temperature hermetic sealing method having a passivation layer |
US7026223B2 (en) | 2002-03-28 | 2006-04-11 | M/A-Com, Inc | Hermetic electric component package |
DE10214769A1 (en) * | 2002-04-03 | 2003-10-16 | Bosch Gmbh Robert | Device and sensor for recording light signals and manufacturing process |
US6929974B2 (en) * | 2002-10-18 | 2005-08-16 | Motorola, Inc. | Feedthrough design and method for a hermetically sealed microdevice |
EP1460037A1 (en) * | 2003-03-18 | 2004-09-22 | SensoNor asa | A multi-layer device and method for producing the same |
US6897469B2 (en) * | 2003-05-02 | 2005-05-24 | Athanasios J. Syllaios | Sub-wavelength structures for reduction of reflective properties |
US7045868B2 (en) * | 2003-07-31 | 2006-05-16 | Motorola, Inc. | Wafer-level sealed microdevice having trench isolation and methods for making the same |
US6774327B1 (en) * | 2003-09-24 | 2004-08-10 | Agilent Technologies, Inc. | Hermetic seals for electronic components |
US7034393B2 (en) | 2003-12-15 | 2006-04-25 | Analog Devices, Inc. | Semiconductor assembly with conductive rim and method of producing the same |
US7608534B2 (en) | 2004-06-02 | 2009-10-27 | Analog Devices, Inc. | Interconnection of through-wafer vias using bridge structures |
US20070004079A1 (en) * | 2005-06-30 | 2007-01-04 | Geefay Frank S | Method for making contact through via contact to an offset contactor inside a cap for the wafer level packaging of FBAR chips |
US8217473B2 (en) | 2005-07-29 | 2012-07-10 | Hewlett-Packard Development Company, L.P. | Micro electro-mechanical system packaging and interconnect |
US7569926B2 (en) * | 2005-08-26 | 2009-08-04 | Innovative Micro Technology | Wafer level hermetic bond using metal alloy with raised feature |
US7491567B2 (en) * | 2005-11-22 | 2009-02-17 | Honeywell International Inc. | MEMS device packaging methods |
FI119729B (en) * | 2005-11-23 | 2009-02-27 | Vti Technologies Oy | A method of making a microelectromechanical component and a microelectromechanical component |
FI119728B (en) | 2005-11-23 | 2009-02-27 | Vti Technologies Oy | Process for manufacturing microelectromechanical component and microelectromechanical component |
JP4939530B2 (en) | 2006-03-29 | 2012-05-30 | 浜松ホトニクス株式会社 | Method for manufacturing photoelectric conversion device |
CN101421178B (en) | 2006-04-13 | 2012-11-07 | 盛投资有限责任公司 | A method for manufacturing an electronic assembly, electronic assembly, covering piece and substrate |
KR100846569B1 (en) * | 2006-06-14 | 2008-07-15 | 매그나칩 반도체 유한회사 | Package of mems device and method for manufacturing the same |
WO2008086530A2 (en) | 2007-01-11 | 2008-07-17 | Analog Devices, Inc. | Mems sensor with cap electrode |
WO2009104910A2 (en) * | 2008-02-22 | 2009-08-27 | (주)에스엠엘전자 | Joining structure and a substrate-joining method using the same |
US8618670B2 (en) | 2008-08-15 | 2013-12-31 | Qualcomm Incorporated | Corrosion control of stacked integrated circuits |
US8956904B2 (en) | 2008-09-10 | 2015-02-17 | Analog Devices, Inc. | Apparatus and method of wafer bonding using compatible alloy |
US7943411B2 (en) | 2008-09-10 | 2011-05-17 | Analog Devices, Inc. | Apparatus and method of wafer bonding using compatible alloy |
US8809784B2 (en) * | 2010-10-21 | 2014-08-19 | Raytheon Company | Incident radiation detector packaging |
US8742570B2 (en) * | 2011-09-09 | 2014-06-03 | Qualcomm Mems Technologies, Inc. | Backplate interconnect with integrated passives |
KR101471386B1 (en) * | 2012-12-21 | 2014-12-11 | 포항공과대학교 산학협력단 | Wafer Level Hermetic Package and Wafer Level Hermetic Packaging Method |
KR101450012B1 (en) * | 2013-02-12 | 2014-10-15 | 한국과학기술원 | MEMS package having capping member having different thickness, MEMS package having the same, MEMS wafer level package having the same, and method of manufacturing the same |
US10329142B2 (en) * | 2015-12-18 | 2019-06-25 | Samsung Electro-Mechanics Co., Ltd. | Wafer level package and method of manufacturing the same |
JP7292077B2 (en) * | 2018-07-11 | 2023-06-16 | 三菱電機株式会社 | Package element manufacturing method and package element |
JP7542738B2 (en) | 2021-05-12 | 2024-08-30 | 三菱電機株式会社 | Hermetically packaged device and device module |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5798557A (en) * | 1996-08-29 | 1998-08-25 | Harris Corporation | Lid wafer bond packaging and micromachining |
US6359333B1 (en) * | 1998-03-31 | 2002-03-19 | Honeywell International Inc. | Wafer-pair having deposited layer sealed chambers |
EP0951069A1 (en) * | 1998-04-17 | 1999-10-20 | Interuniversitair Microelektronica Centrum Vzw | Method of fabrication of a microstructure having an inside cavity |
FR2780200B1 (en) * | 1998-06-22 | 2003-09-05 | Commissariat Energie Atomique | DEVICE AND METHOD FOR FORMING A DEVICE HAVING A CONTROLLED ATMOSPHERE CAVITY |
-
2001
- 2001-02-01 AU AU2001234750A patent/AU2001234750A1/en not_active Abandoned
- 2001-02-01 EP EP01906897A patent/EP1272422A2/en not_active Withdrawn
- 2001-02-01 WO PCT/US2001/003371 patent/WO2001056921A2/en not_active Application Discontinuation
- 2001-02-01 JP JP2001556778A patent/JP2003531475A/en active Pending
- 2001-02-01 KR KR1020027009867A patent/KR20030023613A/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO0156921A2 * |
Also Published As
Publication number | Publication date |
---|---|
KR20030023613A (en) | 2003-03-19 |
WO2001056921A3 (en) | 2002-03-07 |
AU2001234750A1 (en) | 2001-08-14 |
WO2001056921A2 (en) | 2001-08-09 |
JP2003531475A (en) | 2003-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6479320B1 (en) | Vacuum package fabrication of microelectromechanical system devices with integrated circuit components | |
US6521477B1 (en) | Vacuum package fabrication of integrated circuit components | |
WO2001056921A2 (en) | Vacuum package fabrication of microelectromechanical system devices with integrated circuit components | |
US7015074B2 (en) | Vacuum package fabrication of integrated circuit components | |
JP4486229B2 (en) | Wafer package manufacturing method | |
TWI419832B (en) | Mems device and method of fabricating the same | |
US9187312B2 (en) | Integrated bondline spacers for wafer level packaged circuit devices | |
JP4388210B2 (en) | Manufacturing method of wafer package | |
JP4420538B2 (en) | Wafer package manufacturing method | |
US6710461B2 (en) | Wafer level packaging of micro electromechanical device | |
US6232150B1 (en) | Process for making microstructures and microstructures made thereby | |
JP2004523124A (en) | Method of structuring a flat substrate made of glass-based material | |
US9718674B2 (en) | Thin capping for MEMS devices | |
EP1199744B1 (en) | Microcap wafer-level package | |
EP1216487A1 (en) | Semiconductor wafer level package |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020827 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: L-3 COMMUNICATION CORPORATION |
|
R17C | First examination report despatched (corrected) |
Effective date: 20060720 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20070123 |