EP1271440B1 - Régulateur haute-tension comprenant un dispositif externe de regulation - Google Patents
Régulateur haute-tension comprenant un dispositif externe de regulation Download PDFInfo
- Publication number
- EP1271440B1 EP1271440B1 EP01202429A EP01202429A EP1271440B1 EP 1271440 B1 EP1271440 B1 EP 1271440B1 EP 01202429 A EP01202429 A EP 01202429A EP 01202429 A EP01202429 A EP 01202429A EP 1271440 B1 EP1271440 B1 EP 1271440B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage
- output
- terminal
- transistor
- differential amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000001105 regulatory effect Effects 0.000 claims abstract description 64
- 230000033228 biological regulation Effects 0.000 claims description 35
- 230000001276 controlling effect Effects 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 description 13
- 102100023882 Endoribonuclease ZC3H12A Human genes 0.000 description 9
- 101710112715 Endoribonuclease ZC3H12A Proteins 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- QGVYYLZOAMMKAH-UHFFFAOYSA-N pegnivacogin Chemical compound COCCOC(=O)NCCCCC(NC(=O)OCCOC)C(=O)NCCCCCCOP(=O)(O)O QGVYYLZOAMMKAH-UHFFFAOYSA-N 0.000 description 9
- 239000000779 smoke Substances 0.000 description 9
- 108700012361 REG2 Proteins 0.000 description 8
- 101150108637 REG2 gene Proteins 0.000 description 8
- 101100120298 Rattus norvegicus Flot1 gene Proteins 0.000 description 8
- 101100412403 Rattus norvegicus Reg3b gene Proteins 0.000 description 8
- 238000001514 detection method Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 102100029055 Exostosin-1 Human genes 0.000 description 1
- 102100029074 Exostosin-2 Human genes 0.000 description 1
- 101000918311 Homo sapiens Exostosin-1 Proteins 0.000 description 1
- 101000918275 Homo sapiens Exostosin-2 Proteins 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is DC
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
- G05F1/575—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
Definitions
- the present invention generally relates to a regulator circuit high voltage for delivering at least a first regulated output voltage from a high input voltage, in particular of the order of a few tens of volts. More particularly, the present invention relates to such a high-voltage regulator in the form of an integrated circuit controlling an external device of regulation.
- FIG. 1 shows a control circuit generally designated by the numerical reference 1 comprising an external regulation device 2, consisting of a JFET transistor, and a control circuit 10 of this external regulation device 2.
- This regulator circuit 1 is designed to to deliver a regulated output voltage V REG allowing the supply of an associated device, not shown.
- This regulated output voltage V REG is derived from a high level input voltage V HV of the order of a few tens of volts, typically ranging between 15 and 30 volts.
- Such a voltage regulator circuit is notably used in devices smoke detection, as described for example in the document EP-A1-0 759 602, for deriving a low level regulated voltage (e.g. volts) necessary inter alia to power a microprocessor of the device of smoke detection.
- a low level regulated voltage e.g. volts
- the line voltage supplying the smoke detection devices is for example of the order of 15 to 30 volts.
- the regulator circuit 1 of FIG. 1 typically comprises a differential amplifier 4 whose input is connected to the output of a voltage divider circuit 5, formed in this example of two resistors 51, 52 connected in series, the other input of the differential amplifier 4 being connected to a reference cell 6 delivering a reference voltage V REF .
- This reference cell 6 is typically a cell delivering a reference voltage stable in temperature called "bandgap".
- the output of the differential amplifier 4 is directly connected to the gate of the transistor JFET forming the regulation device 2.
- the arrangement illustrated in FIG. 1 thus ensures that the voltage present at the output node of the voltage divider circuit 5, namely the connection node between the resistors 51 and 52, is substantially equal to the reference voltage V REF .
- values R1, R2 of the resistors 51 and 52 being chosen so that the regulated output voltage V REG of the regulator circuit 1 has a determined value, for example of the order of 5 volts.
- This regulated voltage V REG feeds in particular the differential amplifier 4 and the reference cell 6 of the regulator 1 as illustrated in FIG.
- a disadvantage of the regulator circuit of FIG. 1 resides notably in the choice of the external regulation device 2 and the costs of this regulation device.
- the JFET transistor must be chosen to withstand relatively high drain-source voltages (in the example of the order of 25 volts), this drain-source voltage being in particular a function of the high input voltage V HV and the regulated voltage V REG that it is desired to deliver at the output of the regulator.
- the cost of this JFET transistor increases with the maximum drain-source voltage at which this regulating element can be subjected. It is therefore desirable, particularly with a view to reducing costs, to propose an alternative solution to the solution presented in FIG.
- a serious disadvantage of the solution of Figure 1 lies in the fact that its application is limited by the high input voltage likely to be applied to the regulator input as well as through the regulated output voltage that one wants to deliver.
- the limits imposed by the technology would make use of the regulator circuit of Figure 1 too expensive or even impossible, especially when you want to make this regulator in a technology below the micron.
- This regulator circuit includes a voltage divider circuit outputting a divided voltage, a cell of reference outputting a determined reference voltage, an amplifier differential receiving as input the divided voltage and the reference voltage and a VDMOS transistor whose gate is connected to the output of the amplifier.
- the present invention therefore aims to propose a solution allowing to overcome the aforementioned drawbacks, and in particular to propose a solution allowing the use of a less expensive external control device as well as a solution that can be used with higher high input voltages.
- Another object of the present invention is to propose a solution that can be made and manufactured in less than one micron CMOS technology, particularly in 0.5 ⁇ m CMOS technology.
- the present invention thus relates to a high-voltage regulator whose features are set forth in claim 1.
- the regulating device external is advantageously controlled via a MOSFET transistor high-specific voltage likely to see at its terminals a drain-source voltage of the order of a few tens of volts.
- a MOSFET transistor high-specific voltage likely to see at its terminals a drain-source voltage of the order of a few tens of volts.
- the present invention requires the use of additional elements, additional costs caused by the addition of these elements are nevertheless less than the economy that can be expected from the costs of external regulation.
- the high-voltage MOSFET transistors used in the of the present invention are perfectly compatible with the technology Standard CMOS and do not require or few masks and / or implantation additional for their manufacture.
- the circuit regulator is arranged to deliver a first regulated output voltage, so-called intermediate and a second regulated output voltage certain components of the regulator circuit, such as the differential amplifier and the reference cell of the regulator, as well as the possible power supply of the electronics associated device, such as, for example, the microprocessor responsible for the operations of a smoke detection device.
- the voltage regulated intermediate is used for example in the context of the application to a smoke detection device, to provide the current required for the generation of the infrared pulse by the infrared diode which these are typically equipped with detection devices.
- this preferred embodiment of the present invention allows the displacement of the infrared diode of the input on the output of the regulator circuit where the intermediate regulated voltage is delivered.
- Voltage necessary for the generation of the infrared pulse in a detection device of smoke is typically of the order of ten volts, that is to say much higher at the voltage levels used to power the device electronics.
- this intermediate regulated voltage is of one level. lower than the input voltage of the regulator circuit, thus enabling a reduction in losses during the generation of the infrared pulse, and yet greater than the supply voltage of the electronics to ensure a power level adequate for the generation of this infrared pulse.
- the circuit regulator is arranged so that the differential amplifier controlling the device external regulation has a hysteresis, this ensuring in particular a stability increased operation of the regulator.
- FIG. 2 shows a general block diagram of a high-voltage regulator circuit for delivering a regulated output voltage designated V REG1 .
- this regulator circuit is denoted globally by the reference numeral 1 and comprises in particular an external regulation device 2, constituted in this example by a single n-channel JFET transistor, as well as an integrated circuit. command generally designated by the reference numeral 10, for example realized in the form of an ASIC.
- the high input voltage V HV may vary in this example from about 15 to about 50 volts.
- the regulated output voltage V REG1 is in this example of the order of ten volts.
- the external regulation device 2 comprises an input terminal 21 (the drain of the JFET transistor) connected to the high input voltage V HV , an output terminal 22 (the source of the JFET transistor) on which the voltage is supplied. regulated output V REG1 , and a control terminal 23 (the gate of the JFET transistor) through which the conduction state of the external regulating device 2 is controlled.
- the control terminals 23 and output terminals 22 are respectively connected to terminals 11 and 12 of the integrated circuit 10.
- a terminal 13 of the integrated circuit 10 is connected to the ground V SS of the circuit.
- Figure 8 which will be discussed in detail later, for example has another external control device comprising an arrangement of two complementary bipolar transistors and a resistor.
- the integrated circuit 10 essentially comprises a differential amplifier 4, a voltage divider circuit 5, a reference cell 6, and a high-voltage control element 3.
- the voltage divider circuit 5 is formed in this example of two resistors 51, 52 connected in series between the terminal 12 of the integrated circuit 10, namely the output terminal of the external regulating device 2, and the ground V SS of the circuit. It will of course be understood that other voltage divider circuits could be used by those skilled in the art.
- the regulator circuit 1 furthermore typically comprises an external capacitive element C EXT1 forming a buffer connected to the output terminal 22.
- connection node between the two resistors 51, 52 is connected to a first input terminal of the differential amplifier 4. It will be easily understood that the voltage applied to this first input terminal of the differential amplifier 4 as well as the regulated voltage V REG1 are proportional in a ratio determined by the values R1 and R2 of the resistors 51, 52.
- the second input terminal of the differential amplifier 4 is connected to the reference cell 6 producing a voltage of designated reference REF , this reference cell 6 is typically a cell of the "bandgap" type delivering a reference voltage for example of the order of about 1.2 volts.
- the output of the differential amplifier 4 is applied to the gate of a High-voltage MOSFET transistor 3 of a specific type.
- This MOSFET transistor high-voltage 3 here of the n-channel type, is already known to those skilled in the art.
- the particularity of this high-voltage transistor lies in particular in the structure specificity of the gate oxide which has a greater thickness on the side drain that on the source side as well as in the presence of a buffer zone on the drain side consisting of an n-type well (or p for a high-voltage MOSFET transistor p-channel).
- FIGS. 3a and 3b respectively show the diagrams of a transistor HIGH VOLTAGE N-CHANNEL MOSFET, OR HVNMOS, AND A P-CHANNEL MOSFET high-voltage, or HVPMOS.
- the HVNMOS transistors notably present the advantage of a high breakdown voltage typically greater than 30 volts.
- a another advantage of this type of transistor lies in the fact that their manufacture is perfectly compatible with standard CMOS technology.
- the high-voltage MOSFET transistor 3 is connected on the drain side to the control terminal 23 of the external regulation device 2 via the terminal 11, and on the source side to the ground V SS via the terminal 13.
- a resistor 30 of value R0 is connected between the terminals 11 and 12 of the integrated circuit 10, namely between the control terminals 23 and output 22 of the external regulating device 2. It will be noted that this resistor 30 is only necessary in the case where the external regulating device 2 consists of a JFET transistor as illustrated. In the event that the external regulating device were constructed as an arrangement of bipolar transistors as illustrated in FIG. 8, this resistor 30 is no longer necessary.
- the differential amplifier 4 as well as the reference cell 6 are powered by a supply voltage V DD , for example of the order of 3 volts.
- V DD a supply voltage
- this supply voltage V DD is advantageously also delivered by the regulator circuit 1 itself.
- the only elements that must support high voltages at their terminals are the transistor 3 and the resistors 30, 51 and 52, these the latter being advantageously integrated in the form of diffusion regions of type n or "n-well" resistors.
- the differential amplifier 4 is itself a conventional differential amplifier only supporting low voltages at its terminals.
- FIG. 4 shows a regulator circuit according to the invention in which the integrated circuit 10 further comprises means, indicated generally by the reference numeral 100, for delivering a second regulated output voltage V REG2 advantageously for supplying various electronic components of the control circuit, such as in particular the differential amplifier 4 and the reference cell 6, or other electronic components associated with the regulator.
- V REG2 is used as the supply voltage V DD for the differential amplifier 4 and the reference cell 6.
- the means 100 preferably comprise, as illustrated, a second high-voltage n-channel MOSFET transistor designated by the numeral 101, a control element 102 constituted in this example of a p-MOS transistor, a differential amplifier 104 and a voltage divider circuit 105.
- the high-voltage MOSFET 101 is analogous to transistor 3 and is connected by its drain terminal to the output terminal 22 of the external device of regulation 2, and, by its source terminal at the source terminal of the p-MOS transistor 102.
- the gate of the high-voltage MOSFET transistor 101 is connected to the divider circuit of voltage 5 at the connection node between resistors 53 and 54.
- These resistors 53 and 54 in series replace the resistor 51 of Figure 2 and the sum of the R11 values and R12 of these resistors 53 and 54 is equivalent to the value R1 of the resistor 51 of FIG. 2.
- the division ratio of the voltage divider circuit 5 thus remains unchanged with respect to the voltage applied to the amplifier input differential 4.
- the ratio of the resistors R11, R12 and R2 is chosen so that the voltage applied to the gate of the high-voltage transistor 101 causes a determined potential drop between drain and source of this transistor 101, the voltage present on the source of this transistor 101 being then representative of the output voltage V REG1 minus the determined potential drop across the terminals of the transistor 101. It will therefore be understood that the essential role of the high-voltage transistor 101 is to lower the output voltage V REG1 to a level tolerable for downstream circuits.
- the voltage divider circuit 105 is constituted, between the drain terminal of the p-MOS transistor 102 and the ground V SS , of two resistors 151 and 152, the division ratio of this divider circuit 105. being determined by the values R3 and R4 of these resistances.
- the second regulated output voltage V REG2 is delivered to a terminal 14 of the integrated circuit 10 on the drain terminal of the p-MOS transistor 102 across the voltage divider circuit 105, a second capacitive capacitor C EXT2 element typically being connected to the this marker 14.
- connection node between the two resistors 151 and 152 is connected to a first input terminal of the differential amplifier 104.
- the voltage applied to this first input terminal of the differential amplifier 104 as well as the second output voltage Regulated V REG2 are proportional in a ratio determined by the values R3 and R4 of the resistors 151, 152.
- the second input terminal of the differential amplifier 104 is connected, analogously to the differential amplifier 4, to the control cell. reference 6 producing the reference voltage V REF .
- the output of the differential amplifier 104 is applied to the gate of the p-MOS transistor 102. It will again be understood that the arrangement of the differential amplifier 104 illustrated in FIG. 4 imposes that the voltage present at the output node of the circuit voltage divider 105, namely the connection node between the resistors 151 and 152, is substantially equal to the reference voltage V REF , the values R3 and R4 of the resistors being chosen so that the second regulated output voltage V REG2 of the Regulator circuit 1 has a determined value, for example of the order of 3 volts.
- This regulated voltage V REG2 supplies, in particular, the differential amplifier 4 and the reference cell 6 of the regulator 1 as already mentioned.
- the supply of the differential amplifier 104 is provided, on the one hand, by the mass V SS and, on the other hand, by the voltage present at the source terminal of the transistor p
- a capacitive element 106 is disposed on the output of the differential amplifier 104 between the gate and drain terminals of the p-MOS transistor 102. This capacitive element 106 provides a stability of the regulated output voltage V REG2 .
- the regulator circuit allows the displacement of the infrared diode of the detector, necessary for the generation of the infrared pulse, from the input to the output of the circuit.
- regulator on the terminal 12 of the circuit where the regulated output voltage V REG1 is delivered.
- Figure 4 schematically shows the arrangement of this infrared diode indicated by the reference numeral 200 and control means 210 connected in series with the diode 200, here a bipolar transistor, for triggering the infrared pulse.
- the present invention makes it possible thus a reduction of the losses during the generation of the infrared pulse, especially because the regulated voltage used for this generation is less than the input voltage.
- the infrared diode and its control means are placed at the high voltage input 21, the regulated output voltage is not sufficient to supply this diode infrared and allow the generation of the required pulse.
- the differential amplifier 4 used in the circuit controller of Figure 2 or 4 is a conventional type differential amplifier an exemplary embodiment of which is illustrated in Figure 6.
- the differential amplifier 4 illustrated in FIG. 6 comprises a differential pair of transistors M1, M2 (in the occurrence of two identical p-MOS transistors), the gates of which form the differential amplifier inputs 4.
- Each transistor M1, M2 is connected in series in the reference branch of a current mirror 41, 42, each mirror of current 41, 42 conventionally comprising two n-MOS transistors M11, M12 and M21, M22 connected grid grid grid.
- M12 and M22 transistors of the branches of current mirrors 41 and 42 are themselves connected respectively to the reference and exit branches of another designated current mirror globally by the reference numeral 43 and comprising two p-MOS transistors M13 and M23.
- the output of the differential amplifier 4 is formed of the node of connection between the p-MOS transistors M23 and n-MOS M22 of the output branch of the current mirror 43.
- a p-MOS transistor M3 connected between the power supply terminal V DD and the connection node of the p-MOS transistors M1, M2 of the input differential pair ensures adequate polarization of the transistors, a determined bias voltage V BIAS being applied to the gate of this p-MOS transistor M3.
- the differential amplifier 4 further comprises an additional output stage comprising p-MOS transistors M5 and n-MOS M6 forming an inverter arrangement for delivering the output signal designated OUT and its inverse OUT_B, a p-MOS transistor M4 controlled by the bias voltage V BIAS being connected in series with these transistors M5, M6 to ensure proper polarization of the latter.
- the differential amplifier 4 forms a comparator outputting logic level signals.
- the differential amplifier 104 used in the regulator circuit of FIG. must be designed to tolerate higher voltages at its terminals and may be realized on the basis of a diagram similar to the differential amplifier 4 of FIG. by employing cascode montages well known to those skilled in the art, that is to say assemblies of two or more transistors in series.
- Figure 7 shows a example of realization of such a differential amplifier using cascode editing.
- the transistors Q1, Q2, Q11, Q12, Q21, Q22, Q13, Q23 and Q3 essentially fulfill the same roles as the transistors M1, M2, M11, M12, M21, M22, M13, M23 and M3 of the circuit of FIG. Cascode assemblies are used in order to limit the voltages likely to occur across the transistors of this differential amplifier 104, in particular the transistors connected between the supply voltages V P and Vss. It will be noted that the voltage V P is taken from the source of the high voltage MOSFET transistor 101.
- transistors Q12 and Q22 are each connected in series respectively with a second n-MOS transistor Q51 arranged between the transistors Q12 and Q13 and a second n-MOS transistor Q52 disposed between transistors Q22 and Q23.
- transistors Q3 and Q23 are each connected in series with a second p-MOS transistor Q41 disposed between transistor Q3 and the connection node of the differential pair and a second p-MOS transistor Q42 disposed between transistors Q22 and Q23.
- the output terminal of the differential amplifier 104 is formed of the connection node between the transistors Q42 and Q52.
- n-MOS transistor Q50 conventionally forms a current mirror with transistors Q51 and Q52.
- a p-MOS transistor additional Q40 form conventionally a current mirror with the transistors Q41 and Q42.
- Each of these transistors Q40 and Q50 is connected in series with a cascode arrangement of two transistors respectively p-MOS Q43, Q44 and n-MOS Q53, Q54.
- the n-MOS transistor Q54 still forms a current mirror with a another n-MOS transistor Q55 connected in series in the branch comprising the p-MOS transistors Q40, Q43 and Q44.
- the polarization of the transistors is fixed by a bias current I BIAS applied in the current path of a p-MOS transistor Q31 connected in current mirror with the transistor Q3, this polarization current I BIAS being itself mirrored in the branch comprising the n-MOS transistors Q50, Q53 and Q54 by means of a p-MOS transistor Q32.
- the assembly illustrated in FIG. 7 assures that none of the transistors of this differential amplifier 104 does not see at its terminals a too high voltage susceptible to cause a breakdown of this transistor.
- the configuration of FIG. 7 is given by way of example only, the person skilled in the art can make many modifications to the diagram presented, or even choose a alternative configuration.
- the differential amplifier 104 must basically meet higher constraints than the differential amplifier 4 because it is powered by a higher voltage, in this example typically of the order of 4 to 7 volts.
- FIG. 5 shows another advantageous variant of the regulator circuit according to the invention substantially similar to the variant of FIG. 4.
- the differential amplifier 4 of the regulator circuit 1 is arranged to present a hysteresis.
- This hysteresis has the advantage of making the stability of the regulator less critical and consequently a periodic variation of the first regulated voltage V REG1 .
- the regulator of FIG. 5 thus forms a "bang-bang" type regulator delivering a regulated voltage varying between two determined voltage levels.
- the differential amplifier 4 forms in this example a comparator, that is to say it provides output signals OUT and OUT_B logic levels.
- the hysteresis of the differential amplifier can be generated from various ways. One of them is illustrated schematically in Figure 5 and call to two transmission gates 7, 8 connected to the input on which is applied the output voltage of the voltage divider circuit 5, and an inverter 9 connected to the output of the differential amplifier 4.
- the divider circuit 5 is furthermore slightly modified so that the resistor 54 is subdivided into two resistors 55 and 56 whose sum of the values R121 and R122 is equivalent to the value R12 of the resistor 54 of Figure 4.
- the hysteresis is determined by the ratio of the values R11, R121, R122 and R2 of the resistors 53, 55, 56 and 52.
- connection node between the resistors 55 and 56 is connected to the input of the first transmission gate 7 and the connection node between the resistors 56 and 52 is connected to the input of the second transmission gate 8.
- the state of the transmission doors 7 and 8 is controlled according to the output of the amplifier differential 4, the transmission gates 7 and 8 being respectively passing and non-passing when the output signal (not inverted) of the differential amplifier 4 is at the high state, and, on the opposite, respectively non-passing and passing when the signal output of the differential amplifier 4 is low.
- the exit inverted OUT_B of the differential amplifier 4 is connected to the inverting terminal of the door 7 and the non-inverting terminal of the door 8, this inverted output OUT_B being also applied, via the inverter 9, to the non-inverting terminal of the door 7 and the inverting terminal of the door 8.
- the JFET transistor used as an external regulating device 2 in the embodiments described above could be replaced by another suitable device.
- the JFET transistor can advantageously be replaced by the device illustrated in FIG. Figure 8 consists of an assembly conventionally named "pseudo-Darlington" comprising two complementary bipolar transistors, namely a transistor bipolar pnp type B1 and a bipolar transistor type npn B2.
- Darlingtion assembly comprising two bipolar transistors of the same type could alternatively be used in place of the pseudo-Darlingtion montage of the figure 8.
- the emitter and the collector of the transistor B1 respectively form the input 21 on which the high input voltage V HV is applied and the output 22 on which the regulated output voltage V is delivered.
- REG1 the base of this transistor B1 being connected to the collector of the bipolar transistor B2, the emitter of this transistor B2 being connected to the collector of the transistor B1.
- the base of the transistor B2 forms the control terminal 23 of the external control device.
- this external regulation device 2 further comprises a resistor 25 connected in parallel between the input terminal 21 and the control terminal 23.
- the device shown in Figure 8 includes a higher number components, the costs of this device are nevertheless lower than the costs associated with to the use of a JFET transistor, thus constituting an advantage in the optical a reduction in the manufacturing costs of the regulator circuit.
- the regulator circuit according to the invention is in no way limited by the type of external control device used in the modes aforementioned embodiments, namely a JFET transistor.
- other suitable arrangements such as the arrangement of FIG. 8, may be used by the skilled person.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
- Details Of Television Scanning (AREA)
- Electrophonic Musical Instruments (AREA)
Description
- la figure 1, déjà présentée, est un schéma bloc d'un circuit régulateur haute-tension de l'art antérieur comprenant un dispositif externe de régulation constitué d'un transistor JFET à canal n ;
- la figure 2 est un schéma bloc général d'un circuit régulateur haute-tension comprenant un dispositif externe de régulation constitué d'un transistor JFET à canal n ;
- les figures 3a et 3b sont des vues en coupe schématiques de transistors MOSFET à haute tension, respectivement à canal n et à canal p, réalisés selon une technologie CMOS standard ;
- la figure 4 montre une première variante de réalisation du circuit régulateur haute-tension selon l'invention permettant de délivrer une première tension de sortie régulée de niveau intermédiaire et une seconde tension de sortie régulée de niveau bas ou nominal permettant l'alimentation de composants électroniques ;
- la figure 5 montre une seconde variante de réalisation du circuit régulateur haute-tension selon l'invention dans laquelle l'amplificateur différentiel commandant le dispositif externe de régulation présente en outre une hystérèse ;
- la figure 6 est un schéma détaillé d'un exemple de réalisation de l'amplificateur différentiel commandant le dispositif externe de régulation ;
- la figure 7 est un schéma détaillé d'un exemple de réalisation de l'amplificateur différentiel du circuit régulateur des figures 4 et 5 utilisé pour produire la seconde tension de sortie régulée de niveau bas ; et
- la figure 8 est un schéma d'un dispositif externe de régulation susceptible de remplacer le transistor JFET utilisé comme dispositif externe de régulation dans les circuits régulateurs des figures 2, 4 et 5.
Claims (9)
- Circuit régulateur haute-tension (1) permettant de délivrer au moins une première tension de sortie régulée (VREG1) à partir d'une haute tension d'entrée (VHV) de valeur supérieure à la première tension de sortie régulée, ce circuit régulateur comprenant un dispositif de régulation (2) comprenant un terminal d'entrée (21) sur lequel est appliquée ladite haute tension d'entrée, un terminal de sortie (22) sur lequel est délivrée ladite première tension de sortie régulée, et un terminal de commande (23) relié à un circuit intégré de commande (10) dudit dispositif de régulation, ce circuit de commande (10) comprenant :un premier circuit diviseur de tension (5) connecté entre ledit terminal de sortie (22) et un potentiel de référence ou masse (VSS), et délivrant en sortie une première tension divisée proportionnelle, dans un rapport déterminé, à ladite première tension de sortie régulée (VREG1) ;une cellule de référence (6) délivrant en sortie une tension de référence déterminée (VREF),un premier amplificateur différentiel (4) comprenant des première et seconde entrées sur lesquelles sont respectivement appliquées ladite première tension divisée délivrée par le premier circuit diviseur de tension (5) et ladite tension de référence (VREF) délivrée par la cellule de référence (6), la sortie de ce premier amplificateur différentiel commandant l'état de conduction dudit dispositif de régulation (2), etun premier transistor MOSFET haute-tension (3) comprenant des terminaux de drain, de source et de grille respectivement connectés au terminal de commande (23) du dispositif de régulation (2), à la masse (VSS), et à la sortie dudit premier amplificateur différentiel (4),
en ce que le circuit de commande (10) comprend des moyens (100) permettant de délivrer une seconde tension de sortie régulée (VREG2) assurant au moins l'alimentation dudit premier amplificateur différentiel (4) et de ladite cellule de référence (6), et
en ce que les moyens (100) pour délivrer une seconde tension régulée comprennent :un second transistor MOSFET haute-tension (101) comprenant des terminaux de drain, de source et de grille, les terminaux de drain et de grille de ce transistor MOSFET haute-tension (101) étant respectivement connectés au terminal de sortie (22) du dispositif de régulation (2) et à une seconde sortie du premier circuit diviseur de tension (5) délivrant une seconde tension divisée proportionnelle, dans un rapport déterminé, à ladite première tension de sortie régulée (VREG1) ;un élément de régulation (102) comprenant un premier terminal relié au terminal de source du second transistor MOSFET haute-tension (101), ladite seconde tension de sortie régulée (VREG2) étant délivrée sur un second terminal de l'élément de régulation,un second circuit diviseur de tension (105) connecté entre le second terminal de l'élément de régulation (102) et la masse (VSS), et délivrant en sortie une tension divisée proportionnelle, dans un rapport déterminé, à ladite seconde tension de sortie régulée (VREG2) ; etun second amplificateur différentiel (104) comprenant des première et seconde entrées sur lesquelles sont respectivement appliquées ladite tension divisée délivrée par ledit second circuit diviseur de tension (105), et ladite tension de référence (VREF) délivrée par la cellule de référence (6), la sortie de ce second amplificateur différentiel (104) étant reliée à un troisième terminal de l'élément de régulation (102), ce second amplificateur différentiel étant alimenté par la tension présente au noeud de connexion entre le terminal de source dudit second transistor MOSFET haute-tension (101) et le premier terminal dudit élément de régulation (102). - Circuit régulateur selon la revendication 1, caractérisé en ce que l'élément de régulation (102) est un transistor MOSFET à canal p comprenant des terminaux de drain, de source et de grille, le terminal de source de ce transistor MOSFET à canal p (102) étant relié au terminal de source du second transistor MOSFET haute-tension (101), le terminal de drain dudit transistor MOSFET à canal p délivrant ladite seconde tension de sortie régulée (VREG2) et le terminal de grille étant relié à la sortie du second amplificateur différentiel (104).
- Circuit régulateur selon la revendication 1, caractérisé en ce que ledit premier amplificateur différentiel (4) commandant l'état de conduction du dispositif de régulation (2) est agencé pour présenter une hystérèse de sorte que ladite première tension régulée (VREG1) varie entre des premier et second niveaux de tension déterminés.
- Circuit régulateur selon la revendication 3, caractérisé en ce que ledit circuit de commande (10) comporte un transistor MOSFET haute-tension additionnel (3*) comprenant des terminaux de drain, de source et de grille, ce transistor MOSFET haute-tension additionnel (3*) formant, avec ledit premier transistor MOSFET haute-tension (3), un miroir de courant, les terminaux de drain et de grille du transistor MOSFET haute-tension additionnel (3*) étant reliés ensemble au terminal de grille du premier transistor MOSFET haute-tension (3) et le terminal de source du transistor MOSFET haute-tension additionnel (3*) étant relié à la masse (VSS).
- Circuit régulateur selon l'une quelconque des revendications précédentes, caractérisé en ce que le ou lesdits transistors MOSFET haute-tension (3 ; 3* ; 102) sont des transistors MOSFET à canal n comprenant un oxyde de grille présentant une épaisseur plus importante du côté drain que du côté source et une zone tampon du côté drain constituée d'un caisson de type n.
- Circuit régulateur selon l'une quelconque des revendications précédentes, caractérisé en ce que le ou lesdits circuits diviseurs de tension (5, 105) sont des circuits diviseurs résistifs.
- Circuit régulateur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit dispositif de régulation (2) est un transistor JFET comprenant des terminaux de drain, de source et de grille formant respectivement les terminaux d'entrée, de sortie et de commande dudit dispositif de régulation,
et en ce que ledit circuit de commande (10) comprend en outre un élément résistif (30) connecté entre les terminaux de commande (23) et de sortie (22) dudit dispositif de régulation (2). - Circuit régulateur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit dispositif de régulation (2) comporte un montage Darlington ou pseudo-Darlington de deux transistors bipolaires (B1, B2).
- Circuit régulateur selon la revendication 8, caractérisé en ce que ledit dispositif de régulation (2) comporte un transistor bipolaire pnp (B1) et un transistor bipolaire npn (B2) agencé en montage pseudo-Darlington,
la base et le collecteur du transistor bipolaire pnp (B1) étant respectivement relié au collecteur et à l'émetteur du transistor bipolaire npn (B2),
l'émetteur du transistor bipolaire pnp (B1), le collecteur du transistor bipolaire pnp (B1) et la base du transistor bipolaire npn (B2) formant respectivement les terminaux d'entrée, de sortie et de commande dudit dispositif de régulation,
une résistance (25) étant en outre montée entre l'émetteur du transistor bipolaire pnp (B1) et la base du transistor bipolaire npn (B2).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT01202429T ATE311644T1 (de) | 2001-06-25 | 2001-06-25 | Hochspannungsregler mit externer steuerung |
DE60115408T DE60115408T2 (de) | 2001-06-25 | 2001-06-25 | Hochspannungsregler mit externer Steuerung |
EP01202429A EP1271440B1 (fr) | 2001-06-25 | 2001-06-25 | Régulateur haute-tension comprenant un dispositif externe de regulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01202429A EP1271440B1 (fr) | 2001-06-25 | 2001-06-25 | Régulateur haute-tension comprenant un dispositif externe de regulation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1271440A1 EP1271440A1 (fr) | 2003-01-02 |
EP1271440B1 true EP1271440B1 (fr) | 2005-11-30 |
Family
ID=8180531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01202429A Expired - Lifetime EP1271440B1 (fr) | 2001-06-25 | 2001-06-25 | Régulateur haute-tension comprenant un dispositif externe de regulation |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1271440B1 (fr) |
AT (1) | ATE311644T1 (fr) |
DE (1) | DE60115408T2 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3011146B1 (fr) | 2013-09-23 | 2015-10-23 | Commissariat Energie Atomique | Circuit de pompe de charge de generation d'une tension negative |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3611335A (en) * | 1968-11-13 | 1971-10-05 | Bbk Electronics Inc | Multiple combustion sensing device with false alarm prevention |
US3913082A (en) * | 1973-02-02 | 1975-10-14 | Jenson Robert S | Ionization aerosol detector |
JPH0715410B2 (ja) * | 1987-03-06 | 1995-02-22 | 能美防災株式会社 | 輻射式火災検知器 |
-
2001
- 2001-06-25 DE DE60115408T patent/DE60115408T2/de not_active Expired - Lifetime
- 2001-06-25 EP EP01202429A patent/EP1271440B1/fr not_active Expired - Lifetime
- 2001-06-25 AT AT01202429T patent/ATE311644T1/de not_active IP Right Cessation
Non-Patent Citations (2)
Title |
---|
"Unitrode Integrated Circuits - Product and Applications Handbook", 1995, UNITRODE INTEGRATED CIRCUITS CORPORATION, MERRIMACK, NH * |
MURARI B. ET AL: "Smart Power ICs - Technologies and Applications", 1996, SPRINGER VERLAG, BERLIN * |
Also Published As
Publication number | Publication date |
---|---|
ATE311644T1 (de) | 2005-12-15 |
DE60115408T2 (de) | 2006-08-24 |
DE60115408D1 (de) | 2006-01-05 |
EP1271440A1 (fr) | 2003-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0733961B1 (fr) | Générateur de courant de référence en technologie CMOS | |
EP0594834A1 (fr) | Circuit intermediaire entre un circuit logique a basse tension et un etage de sortie a haute tension realises dans une technologie cmos standard | |
CH697322B1 (fr) | Procédé de génération d'un courant sensiblement indépendent de la température et dispositif permettant de mettre en oeuvre ce procédé. | |
FR2890259A1 (fr) | Circuit de generation d'un courant de reference et circuit de polarisation | |
EP0838745A1 (fr) | Régulateur de tension à sélection automatique d'une tension d'alimentation la plus élevée | |
EP0788047B1 (fr) | Dispositif de référence de courant en circuit intégré | |
EP0756223B1 (fr) | Générateur de référence de tension et/ou de courant en circuit intégré | |
EP0700141B1 (fr) | Détecteur de température sur circuit intégré | |
EP0619647B1 (fr) | Architecture d'amplificateur et application à un générateur de tension de bande interdite | |
EP2067090A1 (fr) | Circuit electronique de reference de tension | |
EP0649079B1 (fr) | Circuit générateur de tension stabilisée du type bandgap | |
JP2003067061A (ja) | 外部レギュレーティング・デバイスを含む高電圧レギュレータ | |
FR2822309A1 (fr) | Circuit de translation de signaux de commutation | |
EP0687967B1 (fr) | Source de courant stable en température | |
EP1271440B1 (fr) | Régulateur haute-tension comprenant un dispositif externe de regulation | |
EP0690573B1 (fr) | Circuit de commande de mise en veille partielle d'une source de polarisation | |
FR2809834A1 (fr) | Source de courant a faible tension d'alimentation et a faible sensibilite en tension | |
FR2797118A1 (fr) | Dispositif de commande d'un commutateur haute tension de type translateur | |
FR3102580A1 (fr) | Régulateur de tension | |
EP1835373B1 (fr) | Génération d'une tension de référence | |
EP0738038A1 (fr) | Amplificateur de courant | |
FR2969328A1 (fr) | Circuit de generation d'une tension de reference sous une faible tension d'alimentation | |
EP1102148B1 (fr) | Dispositif générateur de tension corrigé à basse température. | |
EP0923014B1 (fr) | Dispositif de génération d'une tension continue de référence | |
EP1315062B1 (fr) | Circuit de génération de courant pour applications haute-tension |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20030702 |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17Q | First examination report despatched |
Effective date: 20040305 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051130 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051130 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051130 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051130 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051130 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60115408 Country of ref document: DE Date of ref document: 20060105 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060228 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060228 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060313 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060502 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060630 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060630 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060831 |
|
BERE | Be: lapsed |
Owner name: EM MICROELECTRONIC-MARIN SA Effective date: 20060630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051130 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110606 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120625 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200519 Year of fee payment: 20 Ref country code: FR Payment date: 20200520 Year of fee payment: 20 Ref country code: CH Payment date: 20200525 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60115408 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |