EP1248581A1 - Torsional ultrasonic handpiece - Google Patents
Torsional ultrasonic handpieceInfo
- Publication number
- EP1248581A1 EP1248581A1 EP00986528A EP00986528A EP1248581A1 EP 1248581 A1 EP1248581 A1 EP 1248581A1 EP 00986528 A EP00986528 A EP 00986528A EP 00986528 A EP00986528 A EP 00986528A EP 1248581 A1 EP1248581 A1 EP 1248581A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- handpiece
- crystals
- torsional
- motion
- ultrasound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000002604 ultrasonography Methods 0.000 claims abstract description 15
- 239000013078 crystal Substances 0.000 claims description 32
- 230000010355 oscillation Effects 0.000 abstract description 2
- 230000002262 irrigation Effects 0.000 description 3
- 238000003973 irrigation Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 240000004760 Pimpinella anisum Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 210000002159 anterior chamber Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 210000003786 sclera Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0607—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
- B06B1/0611—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/00736—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
- A61F9/00745—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments using mechanical vibrations, e.g. ultrasonic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320098—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with transverse or torsional motion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/00736—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
- A61F9/00763—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments with rotating or reciprocating cutting elements, e.g. concentric cutting needles
Definitions
- This invention relates to ultrasonic devices and more particularly to an ophthalmic phacoemulsification handpiece.
- a typical ultrasonic surgical device suitable for ophthalmic procedures consists of an ultrasonically driven handpiece, an attached hollow cutting tip, an irrigating sleeve and an electronic control console.
- the handpiece assembly is attached to the control console by an electric cable and flexible tubings. Through the electric cable, the console varies the power level transmitted by the handpiece to the attached cutting tip and the flexible tubings supply irrigation fluid to and draw aspiration fluid from the eye through the handpiece assembly.
- the operative part of the handpiece is a centrally located, hollow resonating bar or horn directly attached to a set of piezoelectric crystals. The crystals supply the required ultrasonic vibration needed to drive both the horn and the attached cutting tip during phacoemulsification and are controlled by the console.
- the crystal/horn assembly is suspended within the hollow body or shell of the handpiece at its nodal points by relatively inflexible mountings.
- the handpiece body terminates in a reduced diameter portion or nosecone at the body's distal end.
- the nosecone is externally threaded to accept the irrigation sleeve.
- the horn bore is internally threaded at its distal end to receive the external threads of the cutting tip.
- the irrigation sleeve also has an internally threaded bore that is screwed onto the external threads of the nosecone.
- the cutting tip is adjusted so that the tip projects only a predetermined amount past the open end of the irrigating sleeve. Ultrasonic handpieces and cutting tips are more fully described in U.S. Pat. Nos.
- the cutting tip is ultrasonically vibrated along its longitudinal axis within the irrigating sleeve by the crystal-driven ultrasonic horn, thereby emulsifying upon contact the selected tissue in situ.
- the hollow bore of the cutting tip communicates with the bore in the horn that in turn communicates with the aspiration line from the handpiece to the console.
- a reduced pressure or vacuum source in the console draws or aspirates the emulsified tissue from the eye through the open end of the cutting tip, the bore of the cutting tip, the horn bore, and the aspiration line and into a collection device.
- the present invention improves upon prior art ultrasonic devices by providing a handpiece having at least one set of piezoelectric elements.
- the piezoelectric elements are constructed of segments that produce both longitudinal and torsional motion.
- An appropriate ultrasound driver drives the set of elements at the respective resonant frequencies to product longitudinal vibration and torsional oscillation.
- FIG. 1 is a cross-sectional view of one embodiment of an ultrasound handpiece of the present invention.
- FIG. 2 a block diagram of a first driving circuit that may be used with the present invention.
- FIG. 3 is a block diagram of a second driving circuit that may be used with the present invention.
- FIG. 4 is a perspective view of a phacoemulsification tip that may be used with the present invention.
- FIG. 5 is a cross-sectional view of the phacoemulsification tip illustrated in FIG. 4 taken at line 5-5 in FIG. 4.
- FIG. 6 is a perspective view of an ultrasonic piezoelectric crystal that may be used with the present invention.
- one embodiment of handpiece 10 suitable for use with the present invention generally has cutting tip 12, handpiece shell 14, ultrasound horn 16, torsional ultrasound crystals 18 and longitudinal ultrasound crystals 20.
- Horn 16 is held within shell 14 by isolator 17.
- Crystals 18 and 20 are held within shell 14 and in contact with horn 16 by back cylinder 22 and bolt 24.
- Crystals 18 and 20 vibrate ultrasonically in response to a signal generated by ultrasound generator 26.
- Crystals 18 are polarized to produce torsional motion.
- Crystals 20 are polarized to produce longitudinal motion.
- crystal 23 may be used to product both longitudinal and torsional motion.
- Crystal 23 is generally ring shaped, resembling a hollow cylinder, and is constructed from a plurality of crystal segments 25.
- Upper portions 27 of segments 25 may be polarized to product clockwise motion while lower portions 29 of segments 25 may be polarized to produce counterclockwise motion or visa versa.
- the polarization of segments 25 cause crystal 23 to twist when excited.
- the twisting motion of crystal 23 will produce longitudinal motion, but such longitudinal motion will resonate at a different resonant frequency than the torsional motion.
- torsional movement in crystal 23 can occur at approximately between 18 kilohertz (Khz) and 25 Khz while longitudinal motion in crystal 23 can occur at approximately between 33 Khz and 43 Khz, with approximately 21 Khz and approximately 38 Khz, respectively, being preferred.
- Handpiece 10 may can any suitable number of pairs of crystals 23, for example a single pair or two pairs.
- ultrasound generator 26 employs a broad-spectrum source to generate at least a component of the signal that drives an ultrasonic handpiece ("the drive signal").
- the broad-spectrum source may be programmable and thus easily adjustable by varying certain input information fed to the source. However, a fixed-spectrum source may also be used without difficulty.
- a fast fourier transform (“FFT”) digital signal processor (“DSP”) may be used to analyze the response of handpiece 10 to the broad- spectrum component of the drive signal. In real-time applications, the output of the FFT
- DSP is used to generate control parameters embodied within an appropriate feedback signal, which is fed to the circuitry generating the drive signal in order to alter aspects of the drive signal.
- ultrasound generator 26 may also use a conventional signal processor to analyze the response of handpiece 10 to the drive signal.
- the term "drive signal” as used here encompasses at least a signal useful solely for powering an ultrasonic handpiece, a signal useful solely for tuning or calibrating a handpiece, and a combination of such a power signal and such a tuning or calibration signal.
- broad spectrum signal source 28 generates drive signal 4 which is combined with drive signals 5 and 6 from torsional single frequency source 30 and longitudinal single frequency source 32, respectively, in amplifier 34.
- Amplifier 34 delivers drive signal 36 to handpiece 10 and to FFT DSP 38.
- FFT DSP 38 also receives feedback signal 40 from handpiece 10.
- FFT DSP 38 processes drive signal 36 and feedback signal 40 in the manner more fully disclosed in commonly owned U.S. Patent Application Serial No. 08/769,257 (corresponding to PCT Patent Application No. PCT/US97/15952), the entire contents of which being incorporated herein by reference, to determine the operating characteristics of handpiece 10.
- FFT DSP 38 determines the electrical response of handpiece 10 on broad spectrum signal 4 and provides signal 42 to
- DSP 39 which generates adjusting signals 60 and 61 to adjust the frequencies and/or output voltage of sources 32 and 30, respectively so as to adjust drive signals 5 and 6.
- source 44 may generate drive signal 45 for torsional crystals 18 and source 46 may generate driving signal 47 for longitudinal crystals 20.
- Drive signals 45 and 47 are combined in amplifier 134 and drive signal 136 delivered to handpiece 110.
- Handpiece feedback signal 140 is filtered through separator 48 to provide adjusting signals 50 and 52 to sources 44 and 46.
- Separator 48 may be any number of commercially available analog or digital devices such low pass or high pass filters or heterodyne receiver.
- tip 12 may be asymmetrically shaped, as seen in FIGS. 4 and 5. This asymmetric shape can be accomplished by cutting spiral thread 13 in tip 12 to increase the hydrodynamic forces on tip 12 in the manner more fully described in U.S. Patent No. 5,676,649, the entire contents of which being incorporated herein by reference.
Landscapes
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Engineering & Computer Science (AREA)
- Vascular Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
Abstract
A handpiece having at least one set of piezoelectric elements. The piezoelectric elements are constructed of segments that produce both longitudinal and torsional motion. An appropriate ultrasound driver drives the set of elements at the respective resonant frequencies to produce longitudinal vibration and torsional oscillation.
Description
TORSIONAL ULTRASONIC HANDPIECE
This invention relates to ultrasonic devices and more particularly to an ophthalmic phacoemulsification handpiece.
Background of the Invention
A typical ultrasonic surgical device suitable for ophthalmic procedures consists of an ultrasonically driven handpiece, an attached hollow cutting tip, an irrigating sleeve and an electronic control console. The handpiece assembly is attached to the control console by an electric cable and flexible tubings. Through the electric cable, the console varies the power level transmitted by the handpiece to the attached cutting tip and the flexible tubings supply irrigation fluid to and draw aspiration fluid from the eye through the handpiece assembly. The operative part of the handpiece is a centrally located, hollow resonating bar or horn directly attached to a set of piezoelectric crystals. The crystals supply the required ultrasonic vibration needed to drive both the horn and the attached cutting tip during phacoemulsification and are controlled by the console. The crystal/horn assembly is suspended within the hollow body or shell of the handpiece at its nodal points by relatively inflexible mountings. The handpiece body terminates in a reduced diameter portion or nosecone at the body's distal end. The nosecone is externally threaded to accept the irrigation sleeve. Likewise, the horn bore is internally threaded at its distal end to receive the external threads of the cutting tip. The irrigation sleeve also has an internally threaded bore that is screwed onto the external threads of the nosecone. The cutting tip is adjusted so that the tip projects only a predetermined amount past the open end of the irrigating sleeve. Ultrasonic handpieces and cutting tips are more fully described in U.S. Pat. Nos. 3,589,363; 4,223,676; 4,246,902; 4,493,694; 4,515,583; 4,589,415; 4,609,368; 4,869,715; and 4,922,902, the entire contents of which are incorporated herein by reference. When used to perform phacoemulsification, the ends of the cutting tip and irrigating sleeve are inserted into a small incision of predetermined width in the cornea, sclera, or other location in the eye tissue in order to gain access to the anterior chamber of the eye. The cutting tip is ultrasonically vibrated along its longitudinal axis within the
irrigating sleeve by the crystal-driven ultrasonic horn, thereby emulsifying upon contact the selected tissue in situ. The hollow bore of the cutting tip communicates with the bore in the horn that in turn communicates with the aspiration line from the handpiece to the console. A reduced pressure or vacuum source in the console draws or aspirates the emulsified tissue from the eye through the open end of the cutting tip, the bore of the cutting tip, the horn bore, and the aspiration line and into a collection device. The aspiration of emulsified tissue is aided by a saline flushing solution or irrigant that is injected into the surgical site through the small annular gap between the inside surface of the irrigating sleeve and the outside surface of the cutting tip. There have been prior attempts to combine ultrasonic longitudinal motion of the cutting tip with rotational or oscillating motion of the tip, see U.S. Patent Nos. 5,222,959 (Anis), 5,722,945 (Anis, et al.) and 4,504,264 (Kelman), the entire contents of which are incorporated herein by reference. These prior attempts have used electric motors to provide the rotation of the tip which require O-ring or other seals that can fail in addition to the added complexity and possible failure of the motors.
Accordingly, a need continues to exist for a reliable ultrasonic handpiece that will vibrate both longitudinally and torsionally.
Brief Summary of the Invention
The present invention improves upon prior art ultrasonic devices by providing a handpiece having at least one set of piezoelectric elements. The piezoelectric elements are constructed of segments that produce both longitudinal and torsional motion. An appropriate ultrasound driver drives the set of elements at the respective resonant frequencies to product longitudinal vibration and torsional oscillation.
It is accordingly an object of the present invention to provide an ultrasound handpiece having both longitudinal and torsional motion.
It is a further object of the present invention to provide an ultrasound handpiece having a pair of piezoelectric elements polarized to produce longitudinal motion and a pair of piezoelectric elements polarized to produce torsional motion.
Other objects, features and advantages of the present invention will become apparent with reference to the drawings, and the following description of the drawings and
claims.
Brief Description of the Drawings
FIG. 1 is a cross-sectional view of one embodiment of an ultrasound handpiece of the present invention.
FIG. 2 a block diagram of a first driving circuit that may be used with the present invention.
FIG. 3 is a block diagram of a second driving circuit that may be used with the present invention.
FIG. 4 is a perspective view of a phacoemulsification tip that may be used with the present invention.
FIG. 5 is a cross-sectional view of the phacoemulsification tip illustrated in FIG. 4 taken at line 5-5 in FIG. 4. FIG. 6 is a perspective view of an ultrasonic piezoelectric crystal that may be used with the present invention.
Detailed Description of the Invention
As best seen in FIG. 1, one embodiment of handpiece 10 suitable for use with the present invention generally has cutting tip 12, handpiece shell 14, ultrasound horn 16, torsional ultrasound crystals 18 and longitudinal ultrasound crystals 20. Horn 16 is held within shell 14 by isolator 17. Crystals 18 and 20 are held within shell 14 and in contact with horn 16 by back cylinder 22 and bolt 24. Crystals 18 and 20 vibrate ultrasonically in response to a signal generated by ultrasound generator 26. Crystals 18 are polarized to produce torsional motion. Crystals 20 are polarized to produce longitudinal motion. Alternatively, as illustrated in FIG. 6, crystal 23 may be used to product both longitudinal and torsional motion. Crystal 23 is generally ring shaped, resembling a hollow cylinder, and is constructed from a plurality of crystal segments 25. Upper portions 27 of segments 25 may be polarized to product clockwise motion while lower portions 29 of segments 25 may be polarized to produce counterclockwise motion or visa versa. When segments 25 are assembled into crystal 23, the polarization of segments 25
cause crystal 23 to twist when excited. In addition, the twisting motion of crystal 23 will produce longitudinal motion, but such longitudinal motion will resonate at a different resonant frequency than the torsional motion. For example, torsional movement in crystal 23 can occur at approximately between 18 kilohertz (Khz) and 25 Khz while longitudinal motion in crystal 23 can occur at approximately between 33 Khz and 43 Khz, with approximately 21 Khz and approximately 38 Khz, respectively, being preferred. This difference is because the forces on crystal 23 resisting such vibrations are different in the torsional direction than in the longitudinal direction. One skilled in the art will recognize that different frequencies may be used depending upon the construction of crystal 23. By subjecting crystal 23 to two drive signals, one at the torsional resonant frequency and one at the longitudinal resonant frequency, both torsional and longitudinal motion can be produced in crystal 23. Handpiece 10 may can any suitable number of pairs of crystals 23, for example a single pair or two pairs.
As seen in FIG. 2, ultrasound generator 26 employs a broad-spectrum source to generate at least a component of the signal that drives an ultrasonic handpiece ("the drive signal"). The broad-spectrum source may be programmable and thus easily adjustable by varying certain input information fed to the source. However, a fixed-spectrum source may also be used without difficulty. A fast fourier transform ("FFT") digital signal processor ("DSP") may be used to analyze the response of handpiece 10 to the broad- spectrum component of the drive signal. In real-time applications, the output of the FFT
DSP is used to generate control parameters embodied within an appropriate feedback signal, which is fed to the circuitry generating the drive signal in order to alter aspects of the drive signal. As seen in FIG. 3, ultrasound generator 26 may also use a conventional signal processor to analyze the response of handpiece 10 to the drive signal. The term "drive signal" as used here encompasses at least a signal useful solely for powering an ultrasonic handpiece, a signal useful solely for tuning or calibrating a handpiece, and a combination of such a power signal and such a tuning or calibration signal.
As shown in FIG. 2, broad spectrum signal source 28 generates drive signal 4 which is combined with drive signals 5 and 6 from torsional single frequency source 30 and longitudinal single frequency source 32, respectively, in amplifier 34. Amplifier 34 delivers drive signal 36 to handpiece 10 and to FFT DSP 38. FFT DSP 38 also receives feedback signal 40 from handpiece 10. FFT DSP 38 processes drive signal 36 and
feedback signal 40 in the manner more fully disclosed in commonly owned U.S. Patent Application Serial No. 08/769,257 (corresponding to PCT Patent Application No. PCT/US97/15952), the entire contents of which being incorporated herein by reference, to determine the operating characteristics of handpiece 10. FFT DSP 38 determines the electrical response of handpiece 10 on broad spectrum signal 4 and provides signal 42 to
DSP 39 which generates adjusting signals 60 and 61 to adjust the frequencies and/or output voltage of sources 32 and 30, respectively so as to adjust drive signals 5 and 6.
As shown in FIG. 3, two conventional drive signal sources, such as those described in U.S. Patent No. 5,431,664, the entire contents of which is incorporated herein by reference, or U.S. Patent Application Serial No. 08/769,257 (corresponding to PCT Patent
Application No. PCT/US97/15952), may be used. For example, source 44 may generate drive signal 45 for torsional crystals 18 and source 46 may generate driving signal 47 for longitudinal crystals 20. Drive signals 45 and 47 are combined in amplifier 134 and drive signal 136 delivered to handpiece 110. Handpiece feedback signal 140 is filtered through separator 48 to provide adjusting signals 50 and 52 to sources 44 and 46. Separator 48 may be any number of commercially available analog or digital devices such low pass or high pass filters or heterodyne receiver.
The torsional motion of horn 16 may cause cutting tip 12 to loosen. In order to reduce the chances of cutting tip 12 becoming loose, tip 12 may be asymmetrically shaped, as seen in FIGS. 4 and 5. This asymmetric shape can be accomplished by cutting spiral thread 13 in tip 12 to increase the hydrodynamic forces on tip 12 in the manner more fully described in U.S. Patent No. 5,676,649, the entire contents of which being incorporated herein by reference.
While certain embodiments of the present invention have been described above, these descriptions are given for purposes of illustration and explanation. Variations, changes, modifications and departures from the systems and methods disclosed above may be adopted without departure from the scope or spirit of the present invention.
Claims
I claim: 1. An ultrasound surgical handpiece, comprising: a) a handpiece shell; b) an ultrasound horn held within the shell; c) at least one pair of ultrasound crystals polarized to produce both longitudinal motion and torsional motion, the crystals held in contact with the ultrasound horn; and d) a cutting tip mounted on the horn opposite the crystals.
2. The handpiece of claim 1, wherein the cutting tip is asymmetrically shaped.
3. The handpiece of claim 1, wherein the crystals produce both longitudinal motion and torsional motion when subjected to a drive signal have two separate frequencies.
4. The handpiece of claim 1 , wherein the crystals are constructed of crystal segments.
5. The handpiece of claim 3, wherein one of the frequencies is approximately between 18 kilohertz and 25 kilohertz and the other frequency is approximately beuveen 33 kilohertz and 43 kilohertz.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/489,093 US6402769B1 (en) | 1998-06-29 | 2000-01-21 | Torsional ultrasound handpiece |
US489093 | 2000-01-21 | ||
PCT/US2000/034352 WO2001052782A1 (en) | 2000-01-21 | 2000-12-18 | Torsional ultrasonic handpiece |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1248581A1 true EP1248581A1 (en) | 2002-10-16 |
Family
ID=23942377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00986528A Withdrawn EP1248581A1 (en) | 2000-01-21 | 2000-12-18 | Torsional ultrasonic handpiece |
Country Status (8)
Country | Link |
---|---|
US (1) | US6402769B1 (en) |
EP (1) | EP1248581A1 (en) |
JP (1) | JP2003526415A (en) |
AU (1) | AU2275201A (en) |
BR (1) | BR0016987A (en) |
CA (1) | CA2397556A1 (en) |
MX (1) | MXPA02006606A (en) |
WO (1) | WO2001052782A1 (en) |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1255495B1 (en) * | 2000-02-03 | 2011-10-19 | Sound Surgical Technologies LLC | Ultrasonic cutting and coagulation knife using transverse vibrations |
US6662127B2 (en) * | 2000-10-20 | 2003-12-09 | Ethicon Endo-Surgery, Inc. | Method for detecting presence of a blade in an ultrasonic system |
US6626926B2 (en) * | 2000-10-20 | 2003-09-30 | Ethicon Endo-Surgery, Inc. | Method for driving an ultrasonic system to improve acquisition of blade resonance frequency at startup |
US7229455B2 (en) * | 2001-09-03 | 2007-06-12 | Olympus Corporation | Ultrasonic calculus treatment apparatus |
JP2005040222A (en) * | 2003-07-24 | 2005-02-17 | Olympus Corp | Ultrasonic treatment apparatus |
US6939317B2 (en) * | 2003-08-10 | 2005-09-06 | Jaime Zacharias | Repetitive progressive axial displacement pattern for phacoemulsifier needle tip |
US7625388B2 (en) | 2004-03-22 | 2009-12-01 | Alcon, Inc. | Method of controlling a surgical system based on a load on the cutting tip of a handpiece |
US7811255B2 (en) | 2004-03-22 | 2010-10-12 | Alcon, Inc. | Method of controlling a surgical system based on a rate of change of an operating parameter |
US7645255B2 (en) | 2004-03-22 | 2010-01-12 | Alcon, Inc. | Method of controlling a surgical system based on irrigation flow |
US7645256B2 (en) * | 2004-08-12 | 2010-01-12 | Alcon, Inc. | Ultrasound handpiece |
US7572242B2 (en) * | 2004-03-22 | 2009-08-11 | Alcon, Inc. | Method of operating an ultrasound handpiece |
US7651490B2 (en) * | 2004-08-12 | 2010-01-26 | Alcon, Inc. | Ultrasonic handpiece |
US7297137B2 (en) * | 2004-03-22 | 2007-11-20 | Alcon, Inc. | Method of detecting surgical events |
WO2006014318A2 (en) * | 2004-07-02 | 2006-02-09 | Easley James C | Torsional pineapple dissection tip |
US20060189948A1 (en) * | 2005-02-18 | 2006-08-24 | Alcon, Inc. | Phacoemulsification tip |
US20080058708A1 (en) * | 2005-08-02 | 2008-03-06 | Takayuki Akahoshi | Phacoemulsification Needle |
US20070056596A1 (en) | 2005-08-31 | 2007-03-15 | Alcon, Inc. | Pulse manipulation for controlling a phacoemulsification surgical system |
US20070249941A1 (en) * | 2006-04-21 | 2007-10-25 | Alcon, Inc. | Method for driving an ultrasonic handpiece with a class D amplifier |
US20070249942A1 (en) * | 2006-04-21 | 2007-10-25 | Alcon, Inc. | System for driving an ultrasonic handpiece with a class D amplifier |
GB2438679A (en) * | 2006-05-31 | 2007-12-05 | Sra Dev Ltd | Ultrasonic surgical tool having two modes of vibration |
US20080172076A1 (en) * | 2006-11-01 | 2008-07-17 | Alcon, Inc. | Ultrasound apparatus and method of use |
US20090099536A1 (en) * | 2006-11-06 | 2009-04-16 | Takayuki Akahoshi Akahoshi | Bidirectional Phacoemulsification Needle Tips for Torsional and Longitudinal Motion |
US8579929B2 (en) * | 2006-12-08 | 2013-11-12 | Alcon Research, Ltd. | Torsional ultrasound hand piece that eliminates chatter |
US20080139994A1 (en) * | 2006-12-08 | 2008-06-12 | Alcon, Inc. | Torsional Ultrasound at Resonant Frequencies That Eliminate Chatter |
US8303530B2 (en) * | 2007-05-10 | 2012-11-06 | Novartis Ag | Method of operating an ultrasound handpiece |
US10219832B2 (en) | 2007-06-29 | 2019-03-05 | Actuated Medical, Inc. | Device and method for less forceful tissue puncture |
US8043229B2 (en) * | 2007-06-29 | 2011-10-25 | Actuated Medical, Inc. | Medical tool for reduced penetration force |
US9987468B2 (en) | 2007-06-29 | 2018-06-05 | Actuated Medical, Inc. | Reduced force device for intravascular access and guidewire placement |
US9132033B2 (en) * | 2007-11-01 | 2015-09-15 | Art, Limited | Phacoemulsification needle |
US9402766B2 (en) * | 2007-11-01 | 2016-08-02 | Art, Limited | Apparatus and method for phacoemulsification |
JP2011505919A (en) * | 2007-12-07 | 2011-03-03 | ゼヴェクス・インコーポレーテッド | Method for inducing lateral motion in Langevin type vibrators using split electrodes of ceramic elements |
EP2244642A4 (en) * | 2008-02-20 | 2011-07-20 | Mayo Foundation | Systems, devices and methods for accessing body tissue |
CN102065775B (en) * | 2008-02-20 | 2015-01-07 | 梅约医学教育与研究基金会 | Ultrasound guided systems and methods |
GB0809243D0 (en) | 2008-05-21 | 2008-06-25 | Sra Dev Ltd | Improved torsional mode tissue dissector |
AU2015221532B2 (en) * | 2008-05-21 | 2018-03-15 | Sra Developments Limited | Ultrasonic tissue dissector |
US20100036256A1 (en) * | 2008-08-08 | 2010-02-11 | Mikhail Boukhny | Offset ultrasonic hand piece |
US20100094321A1 (en) * | 2008-10-10 | 2010-04-15 | Takayuki Akahoshi | Ultrasound Handpiece |
US8992459B2 (en) * | 2009-02-13 | 2015-03-31 | Art, Limited | Apparatus and method for phacoemulsification |
CA2742979C (en) | 2008-11-07 | 2018-10-23 | Abbott Medical Optics Inc. | Multiple frequency phacoemulsification needle driver |
US8623040B2 (en) * | 2009-07-01 | 2014-01-07 | Alcon Research, Ltd. | Phacoemulsification hook tip |
US8070711B2 (en) * | 2009-12-09 | 2011-12-06 | Alcon Research, Ltd. | Thermal management algorithm for phacoemulsification system |
US9795404B2 (en) | 2009-12-31 | 2017-10-24 | Tenex Health, Inc. | System and method for minimally invasive ultrasonic musculoskeletal tissue treatment |
US8784357B2 (en) | 2010-09-15 | 2014-07-22 | Alcon Research, Ltd. | Phacoemulsification hand piece with two independent transducers |
US10258505B2 (en) | 2010-09-17 | 2019-04-16 | Alcon Research, Ltd. | Balanced phacoemulsification tip |
JP2014513564A (en) | 2011-02-10 | 2014-06-05 | アクチュエイテッド メディカル インコーポレイテッド | Medical tools with electromechanical control and feedback |
US8414605B2 (en) * | 2011-07-08 | 2013-04-09 | Alcon Research, Ltd. | Vacuum level control of power for phacoemulsification hand piece |
US20130090576A1 (en) * | 2011-10-10 | 2013-04-11 | Foster B. Stulen | Surgical instrument with ultrasonic waveguide defining a fluid lumen |
US9149291B2 (en) | 2012-06-11 | 2015-10-06 | Tenex Health, Inc. | Systems and methods for tissue treatment |
US11406415B2 (en) | 2012-06-11 | 2022-08-09 | Tenex Health, Inc. | Systems and methods for tissue treatment |
JP6311099B2 (en) * | 2013-11-29 | 2018-04-18 | 学校法人日本大学 | Ultrasonic composite vibrator |
US9283113B2 (en) | 2014-05-22 | 2016-03-15 | Novartis Ag | Ultrasonic hand piece |
US9962181B2 (en) | 2014-09-02 | 2018-05-08 | Tenex Health, Inc. | Subcutaneous wound debridement |
CN104161619A (en) * | 2014-09-10 | 2014-11-26 | 以诺康医疗科技(苏州)有限公司 | Ultrasonic handle generating twisting vibration |
US9763689B2 (en) | 2015-05-12 | 2017-09-19 | Tenex Health, Inc. | Elongated needles for ultrasonic applications |
US10940292B2 (en) | 2015-07-08 | 2021-03-09 | Actuated Medical, Inc. | Reduced force device for intravascular access and guidewire placement |
US11793543B2 (en) | 2015-09-18 | 2023-10-24 | Obvius Robotics, Inc. | Device and method for automated insertion of penetrating member |
WO2017058696A1 (en) * | 2015-09-30 | 2017-04-06 | Ethicon Endo-Surgery, Llc | Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments |
JP6667612B2 (en) | 2016-03-28 | 2020-03-18 | オリンパス株式会社 | Ultrasonic treatment system for joint and ultrasonic treatment instrument for joint |
US20190008680A1 (en) | 2017-07-06 | 2019-01-10 | Novartis Ag | Port features for ultrasonic vitrectomy tip |
US11166845B2 (en) | 2018-04-03 | 2021-11-09 | Alcon Inc. | Ultrasonic vitreous cutting tip |
IT201900014556A1 (en) | 2019-08-09 | 2021-02-09 | Mectron S P A | ASSEMBLY INSERT WITH RADIOFREQUENCY IDENTIFIER FOR MEDICAL DEVICE |
IT201900014559A1 (en) | 2019-08-09 | 2021-02-09 | Mectron S P A | ASSEMBLY INSERT WITH RADIOFREQUENCY IDENTIFIER |
IT201900014565A1 (en) | 2019-08-09 | 2021-02-09 | Mectron S P A | ASSEMBLY HANDPIECE FOR MEDICAL DEVICE |
US11877953B2 (en) | 2019-12-26 | 2024-01-23 | Johnson & Johnson Surgical Vision, Inc. | Phacoemulsification apparatus |
US20210361481A1 (en) | 2020-05-21 | 2021-11-25 | Johnson & Johnson Surgical Vision, Inc. | Phacoemulsification probe comprising magnetic sensors and/or multiple independent piezoelectric vibrators |
CN111557784B (en) * | 2020-07-15 | 2020-11-13 | 微创视神医疗科技(上海)有限公司 | Ultrasonic vibrator, ultrasonic emulsification handle and ultrasonic emulsification system |
IT202100014489A1 (en) | 2021-06-04 | 2022-12-04 | Caliano Giosue | Axial-precessional vibrating element for ultrasonic handpieces |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3526219A (en) * | 1967-07-21 | 1970-09-01 | Ultrasonic Systems | Method and apparatus for ultrasonically removing tissue from a biological organism |
NL145136C (en) | 1967-07-25 | 1900-01-01 | ||
US3518766A (en) * | 1969-01-30 | 1970-07-07 | Emanuel Burt | Piezoelectric cleaning device with removable workpiece |
US4223676A (en) | 1977-12-19 | 1980-09-23 | Cavitron Corporation | Ultrasonic aspirator |
US4246902A (en) | 1978-03-10 | 1981-01-27 | Miguel Martinez | Surgical cutting instrument |
US4493694A (en) | 1980-10-17 | 1985-01-15 | Cooper Lasersonics, Inc. | Surgical pre-aspirator |
US4504264A (en) | 1982-09-24 | 1985-03-12 | Kelman Charles D | Apparatus for and method of removal of material using ultrasonic vibraton |
US4515583A (en) | 1983-10-17 | 1985-05-07 | Coopervision, Inc. | Operative elliptical probe for ultrasonic surgical instrument and method of its use |
US4609368A (en) | 1984-08-22 | 1986-09-02 | Dotson Robert S Jun | Pneumatic ultrasonic surgical handpiece |
US4589415A (en) | 1984-08-31 | 1986-05-20 | Haaga John R | Method and system for fragmenting kidney stones |
US4922902A (en) | 1986-05-19 | 1990-05-08 | Valleylab, Inc. | Method for removing cellular material with endoscopic ultrasonic aspirator |
US4869715A (en) | 1988-04-21 | 1989-09-26 | Sherburne Fred S | Ultrasonic cone and method of construction |
US5722945A (en) | 1990-07-17 | 1998-03-03 | Aziz Yehia Anis | Removal of tissue |
US5222959A (en) | 1990-07-17 | 1993-06-29 | Anis Aziz Y | Removal of tissue |
US5431664A (en) | 1994-04-28 | 1995-07-11 | Alcon Laboratories, Inc. | Method of tuning ultrasonic devices |
US5984889A (en) * | 1996-02-23 | 1999-11-16 | Allergan Sales, Inc. | Apparatus and method for delivering viscoelastic material to an eye |
US5676649A (en) | 1996-10-04 | 1997-10-14 | Alcon Laboratories, Inc. | Phacoemulsification cutting tip |
US6028387A (en) | 1998-06-29 | 2000-02-22 | Alcon Laboratories, Inc. | Ultrasonic handpiece tuning and controlling device |
-
2000
- 2000-01-21 US US09/489,093 patent/US6402769B1/en not_active Expired - Fee Related
- 2000-12-18 MX MXPA02006606A patent/MXPA02006606A/en unknown
- 2000-12-18 BR BR0016987-0A patent/BR0016987A/en not_active IP Right Cessation
- 2000-12-18 WO PCT/US2000/034352 patent/WO2001052782A1/en not_active Application Discontinuation
- 2000-12-18 CA CA002397556A patent/CA2397556A1/en not_active Abandoned
- 2000-12-18 JP JP2001552833A patent/JP2003526415A/en active Pending
- 2000-12-18 AU AU22752/01A patent/AU2275201A/en not_active Abandoned
- 2000-12-18 EP EP00986528A patent/EP1248581A1/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO0152782A1 * |
Also Published As
Publication number | Publication date |
---|---|
BR0016987A (en) | 2004-01-13 |
MXPA02006606A (en) | 2004-09-10 |
US6402769B1 (en) | 2002-06-11 |
WO2001052782A1 (en) | 2001-07-26 |
JP2003526415A (en) | 2003-09-09 |
AU2275201A (en) | 2001-07-31 |
CA2397556A1 (en) | 2001-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6402769B1 (en) | Torsional ultrasound handpiece | |
US6077285A (en) | Torsional ultrasound handpiece | |
US6028387A (en) | Ultrasonic handpiece tuning and controlling device | |
US20010011176A1 (en) | Torsional ultrasound tip | |
US8771301B2 (en) | Ultrasonic handpiece | |
US8814894B2 (en) | Ultrasound handpiece | |
US8303530B2 (en) | Method of operating an ultrasound handpiece | |
US20100094321A1 (en) | Ultrasound Handpiece | |
CA2597169C (en) | Ultrasound apparatus and method of use | |
KR20240158887A (en) | Dual mode ultrasonic handpiece system | |
MXPA00010015A (en) | Torsional ultrasound handpiece |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020628 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BOUKHNY, MIKHAIL |
|
17Q | First examination report despatched |
Effective date: 20021023 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20040122 |