EP1242653B1 - Electrochemical cell for electrolysers with stand-alone element technology - Google Patents
Electrochemical cell for electrolysers with stand-alone element technology Download PDFInfo
- Publication number
- EP1242653B1 EP1242653B1 EP00976055A EP00976055A EP1242653B1 EP 1242653 B1 EP1242653 B1 EP 1242653B1 EP 00976055 A EP00976055 A EP 00976055A EP 00976055 A EP00976055 A EP 00976055A EP 1242653 B1 EP1242653 B1 EP 1242653B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrochemical cell
- supporting
- cathode
- chamber
- cell according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/60—Constructional parts of cells
- C25B9/63—Holders for electrodes; Positioning of the electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
Definitions
- the invention relates to an electrochemical cell for electrolysers with single element technology for the membrane electrolysis process according to the preamble of Claim 1.
- the cell consists of at least two half-shells, the Anolyteraum and surrounding a cathode compartment with membrane therebetween, an anode in the anolyte compartment, the cathode compartment being equipped with an oxygen-consuming cathode, with several pressure-compensated gas pockets arranged one above the other, a Katholytspalt and optionally a rear space is provided, wherein electrically conductive support elements in the Anolyteraum and supporting elements in the cathode compartment are provided on the same opposite position.
- Electrolyzers e.g. for the NaCl electrolysis are in bipolar mode in two known basic techniques known.
- the cell elements within the frame are half-shelled Back-to-back welded, with anode and cathode each freestanding lie outside and inserted between two elements ion exchange membrane forms the electrochemical cell.
- the flow from cell to cell flows here over the welds between the half-shells.
- the electrochemical cell is separated by two Half shells, between which a membrane is placed, and then to a single element are screwed formed.
- the electrical contact From single element to single element is done here by compressing a Packages of individual elements electrically connected to each other via suitable contact strips get connected.
- the externally acting pressing forces must be within the element structures are forwarded.
- the gas pockets with the oxygen-consuming cathodes usually extend over the entire width of the electrolytic cell.
- the structures for the passage of the clamping forces are like hydrogen-producing electrolysis for hydraulic reasons arranged vertically.
- For the here intersecting functions had to be a pragmatic Simple solution can be found in both new electrolysis elements of be integrated in advance, as well as a retrofit of currently in the Hydrogen operation working electrolysis allows.
- an electrochemical cell for the Membrane electrolysis process consisting of at least 2 half-shells, the one Anolyte space and a cathode space surrounded with membrane arranged between them, an anode in the anolyte compartment, the cathode compartment being equipped with an oxygen-consuming cathode, with a plurality of pressure-compensated gas pockets arranged one above the other, one Katholytspalt and optionally a rear space is provided, characterized electrically conductive support elements in the anolyte space and support elements in the Cathode space are provided on the same opposite position, which support each other, wherein the support in the cathode compartment by means of a multi-part support element is carried out with a support member in Katholytspalt, another Support member in the gas pocket, which at selected locations, especially in the upper and lower portion of the respective gas pocket breakthroughs or passages (has, and in the presence of a back space a third support member in the rear space behind the Gas bags
- the back of the gas pockets is in particular with the vertical support elements for Power and power transmission welded.
- the vertical support elements for Power and power transmission welded are preferred over this Welds, for example, structural beams or other types of vertical Structural bridges welded as support elements, which are so high that they with the surrounding outer edge of the gas pocket have the same level.
- these fixtures must be a horizontal Gas flow through the gas pocket and at the bottom also a horizontal Allow drainage of possible condensate.
- the oxygen-consuming cathodes After installation of the oxygen-consuming cathodes, for example, they lie flat on the Structural beams or bridges and the edge of the gas pockets on and form a level Surface across the full width and the respective height of the gas pocket.
- a support element as a support element of electrolyte and heat-resistant material as a counterpart to the o.g. Structural beams or bridges built on the one hand on the oxygen-consuming cathode and on the other hand the membrane is supported on the anode structure also supported in this area and so allows the passage of power through the electrochemical cell.
- the support member (spacer) is preferably not in one for the following reasons Piece installed in the cell.
- the second support part is particularly preferably either as a solid electrically conductive Ingot or formed as a U-profile, or as a corresponding vertical embossment of Rear side of the gas pocket executed. Out For this reason, it is advantageous to piece the support element and into segments subdivide, which correspond to the height of the respective individual gas pockets.
- the segments The support elements are in particular the top and bottom of the following Scheme attached or guided: at the top they are at the edge of the gas pocket attached. This can either be via a pin or a push-button type either on Spacers or at the top of the gas pocket done, with each opposite part must contain a corresponding hole.
- a preferred variant of the invention is therefore characterized in that the support member in the Katholytspalt of several vertically stacked Ingot is formed, optionally at its upper end with a detachable Connecting means, for example a snap connector attached to cross struts are who carry the electrode.
- the tapered upper end of the underlying next support element encloses and so ensures the horizontal positioning of the support element.
- the gap between these two segments is expediently so chosen that the greater thermal expansion of the support element over the metallic structures is compensated.
- each adjacent ends of the support members formed as a groove-spring combination, wherein the upper end of each lower support member is formed in particular as a spring.
- the Structural beams or bridges with slight vertical bulges either to the right and left or in the middle are provided, which a corresponding shaping of the Support elements corresponds, so that this always when clamping the electrolyzer is centered again on the opposite structure.
- the oxygen-consuming cathode should in particular be electrically conductive on its rear side be.
- the edge of the gas pocket another electrical connection by press contact created the electrically conductive support elements, which to further minimize the ohmic losses leads.
- the use of the support element prevents a large-scale bulging of the oxygen-consuming cathode in the Katholytspalt with the Risk of local blockage of the catholyte through contact with the membrane. This applies in particular to the o.g. Structuring of the supporting elements through which the Oxygen consumption cathode is stretched.
- the supporting elements in the Katholytspalt be particularly in the case of Chloralkalielektrolyse suitably made of ECTFE, FEP, MFA or PFA, while the electrically conductive support elements, for example, structural beams or bridges made of nickel or another non-sag metal alloy, or directly are stamped out of the back wall of the gas pocket.
- the support elements in the catholyte gap on the oxygen-consuming cathode facing side to be metallic over the press contact an improvement of the current distribution into the oxygen-consuming cathode receive.
- the support elements are two-layered constructed, with the membrane-facing side of ECTFE, FEP, MFA or PFA consists, while the metallic part consists of alkali-resistant metal.
- FIG 1 the view of the cathode half-shell with the left upper corner than Section shown in Figure 2 is a horizontal section A-A 'through a gas pocket 15th In the cathode half shell 10, the gas pocket structure with the rear wall 11 and the lateral border 9 carried on the support structure 3.
- the vertical structural beam 2a or, according to one in the same Fig. 2 and 3, respectively shown variant, the vertical structural bridge 2b are welded into the gas pocket 15.
- both structures are broken and do not stand on the horizontal boundary 12 the gas pocket 15 on to drain any accumulating condensate to allow the oxygen-consuming cathode.
- the oxygen-consuming cathode 4 is on and on the lateral border 9 and the horizontal boundary 12 electrically attached conductive and gas-tight and rests on the structural beam or bridges.
- the Katholytspalt 14 between membrane 5 and oxygen-consuming cathode 4 is defined by the spacer elements 1, which in turn via the membrane on the Support anode 6, which defines in the anode half-shell 8 on the support structure 7 is held (see Fig.2).
- Anode half-shell 8 and cathode half-shell 10 are liquid-tight with each other connected and form a single element (electrolysis cell). When squeezing the electrolyzer compresses many such individual elements, wherein the respective next anode half-shell 8 'of adjacent individual elements on the Cathode half-shell 10 and the next cathode half-shell 10 'of an adjacent Single element on the other side of the single element on the anode half-shell 8 Press.
- the spacer elements 1a, 1b themselves are tapered at the top and below provided with a corresponding dovetail structure (Fig. 1). you will be above with a pin or a push-button-like holding device 13 on the horizontal boundary 12 of the gas pocket 15 attached.
- the dovetail of the Spacer 1b engages over the top of the next below Distance element 1a and is so clearly positioned. At the same time allows one defined gap between the spacer elements 1a, 1b whose free thermal Expansion, which, due to the material, is greater than that of the metallic structures.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Automation & Control Theory (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Secondary Cells (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Die Erfindung betrifft eine Elektrochemische Zelle für Elektrolyseure mit Einzelelementtechnik
für das Membranelektrolyseverfahren nach dem Oberbegriff des
Anspruches 1. Die Zelle besteht wenigstens aus 2 Halbschalen, die einen Anolytraum
und einen Kathodenraum mit dazwischen angeordneter Membran umgeben,
einer Anode im Anolytraum, wobei der Kathodenraum mit einer Sauerstoffverzehrkathode,
mit mehreren übereinander angeordneten druckkompensierten Gastaschen,
einem Katholytspalt und gegebenenfalls einem Rückraum versehen ist, wobei
elektrisch leitende Stützelemente im Anolytraum und Stützelemente im Kathodenraum
auf gleicher einander gegenüberliegender Position vorgesehen sind.The invention relates to an electrochemical cell for electrolysers with single element technology
for the membrane electrolysis process according to the preamble of
Elektrolyseure z.B. für die NaCl-Elektrolyse sind für die bipolare Fahrweise in zwei grundsätzlich bekannten Basistechniken bekannt.Electrolyzers e.g. for the NaCl electrolysis are in bipolar mode in two known basic techniques known.
Bei der Filterpressentechnik sind die Zellenelemente innerhalb des Rahmens halbschalig Rücken an Rücken verschweißt angeordnet, wobei Anode und Kathode jeweils freistehend außen liegen und die zwischen zwei Elemente eingelegte Ionenaustauschermembran die elektrochemische Zelle bildet. Der Strom von Zelle zu Zelle fließt hier über die Schweißnähte zwischen den Halbschalen.In filter press technology, the cell elements within the frame are half-shelled Back-to-back welded, with anode and cathode each freestanding lie outside and inserted between two elements ion exchange membrane forms the electrochemical cell. The flow from cell to cell flows here over the welds between the half-shells.
Bei der Einzelelementtechnik wird die elektrochemische Zelle durch zwei einzelne Elektrodenhalbschalen, zwischen die eine Membran gelegt wird, und die dann zu einem Einzelelement verschraubt werden, gebildet. Die elektrische Kontaktierung von Einzelelement zu Einzelelement erfolgt hier durch Zusammenpressen eines Pakets von Einzelelementen, die über geeignete Kontaktstreifen elektrisch mit einander verbunden werden. Die von außen wirkenden Presskräfte müssen hierbei innerhalb der Elementstrukturen weitergeleitet werden.In the single element technique, the electrochemical cell is separated by two Half shells, between which a membrane is placed, and then to a single element are screwed formed. The electrical contact From single element to single element is done here by compressing a Packages of individual elements electrically connected to each other via suitable contact strips get connected. The externally acting pressing forces must be within the element structures are forwarded.
Der Einsatz von Sauerstoffverzehrkathoden im Druckkompensationsbetrieb mit sog. Gastaschen, wie in der Patentschrift US 5 963 202 im Grundprinzip sowie in der Deutschen Offenlegungsschrift DE 196 22 744 A1 für aktiv gasdurchströmte Gastaschen beschrieben, erfolgt mit einem Elektrolytspalt zwischen Sauerstoffverzehrkathode und Membran. Gleichzeitig stellt die Gastasche selbst ein Leervolumen dar. Beide für die Kraftdurchleitung undefinierte Strukturen müssen mit einem für die Durchleitung der Spannkräfte geeigneten System überbrückt werden. Gleichzeitig soll die Spannkraft für eine weitere Verbesserung der Stromverteilung in die Sauerstoffverzehrkathode über Presskontakte genutzt werden. Aus DE-A-196 41 125 ist ein Elektrolyseapparat zur Herstellung von Halogengasen aus wässriger Alkalihalogenidlösung mit mehreren nebeneinander in einem Stapel angeordneten und in elektrischem Kontakt stehenden plattenförmigen Elektrolysezellen bekannt. Mittels metallischer Versteifungen in Form von Stegen, welche mit an der Rückwand des Gehäuses angeordneten Kontaktstreifen fluchten, sind die Anode und Kathode mit der jeweils zugeordneten Rückwand elektrisch leitend verbunden, wodurch eine ungleiche Stromverteilung vermieden werden soll.The use of Sauerstoffverzehrkathoden in pressure compensation mode with so-called. Gas pockets, as in the patent US 5,963,120 in the basic principle and in the German Offenlegungsschrift DE 196 22 744 A1 for actively gas-flowed gas pockets described, carried out with an electrolyte gap between the oxygen-consuming cathode and Membrane. At the same time, the gas pocket itself represents a void volume. Both for the Power transmission undefined structures must be with a for the passage of the Tensioning forces suitable system to be bridged. At the same time, the clamping force for a further improvement of the current distribution in the oxygen-consuming cathode over Press contacts are used. From DE-A-196 41 125 is an electrolysis apparatus for Production of halogen gases from aqueous alkali halide solution with several arranged side by side in a stack and in electrical contact plate-shaped electrolysis cells known. By means of metallic stiffeners in the form of Webs, which with arranged on the rear wall of the housing contact strip aligned, the anode and cathode are electrically connected to the respective associated rear wall conductively connected, whereby an uneven current distribution should be avoided.
Die Gastaschen mit den Sauerstoffverzehrkathoden erstrecken sich üblicherweise über die gesamte Breite der Elektrolysezelle. Die Strukturen zur Durchleitung der Spannkräfte sind wie bei der wasserstoffproduzierenden Elektrolyse aus hydraulischen Gründen vertikal angeordnet. Für die sich hierbei kreuzenden Funktionen musste eine pragmatisch einfache Lösung gefunden werden, die sowohl in neue Elektrolyseelemente von vorneherein integriert werden kann, als auch eine Nachrüstung von derzeit im Wasserstoffbetrieb arbeitenden Elektrolysen ermöglicht.The gas pockets with the oxygen-consuming cathodes usually extend over the entire width of the electrolytic cell. The structures for the passage of the clamping forces are like hydrogen-producing electrolysis for hydraulic reasons arranged vertically. For the here intersecting functions had to be a pragmatic Simple solution can be found in both new electrolysis elements of be integrated in advance, as well as a retrofit of currently in the Hydrogen operation working electrolysis allows.
Die Aufgabe wird erfindungsgemäß gelöst durch eine elektrochemische Zelle für das Membranelektrolyseverfahren, bestehend wenigstens aus 2 Halbschalen, die einen Anolytraum und einen Kathodenraum mit dazwischen angeordneter Membran umgeben, einer Anode im Anolytraum, wobei der Kathodenraum mit einer Sauerstoffverzehrkathode, mit mehreren übereinander angeordneten druckkompensierten Gastaschen, einem Katholytspalt und gegebenenfalls einem Rückraum versehen ist, dadurch gekennzeichnet, dass elektrisch leitende Stützelemente im Anolytraum und Stützelemente im Kathodenraum auf gleicher einander gegenüberliegender Position vorgesehen sind, welche sich gegenseitig abstützen, wobei die Abstützung im Kathodenraum mittels eines mehrteiligen Stützelementes erfolgt mit einem Stützteil im Katholytspalt, einem weiteren Stützteil in der Gastasche, welches an ausgewählten Stellen, insbesondere im oberen und unteren Bereich der jeweiligen Gastasche Durchbrüche oder Durchgänge (aufweist, und bei Anwesenheit eines Rückraums einem dritten Stützteil im Rückraum hinter den Gastaschen. The object is achieved by an electrochemical cell for the Membrane electrolysis process, consisting of at least 2 half-shells, the one Anolyte space and a cathode space surrounded with membrane arranged between them, an anode in the anolyte compartment, the cathode compartment being equipped with an oxygen-consuming cathode, with a plurality of pressure-compensated gas pockets arranged one above the other, one Katholytspalt and optionally a rear space is provided, characterized electrically conductive support elements in the anolyte space and support elements in the Cathode space are provided on the same opposite position, which support each other, wherein the support in the cathode compartment by means of a multi-part support element is carried out with a support member in Katholytspalt, another Support member in the gas pocket, which at selected locations, especially in the upper and lower portion of the respective gas pocket breakthroughs or passages (has, and in the presence of a back space a third support member in the rear space behind the Gas bags.
Die Rückseite der Gastaschen ist insbesondere mit den vertikalen Stützelementen zur Kraft- und Stromdurchleitung verschweißt. In die Gastasche werden bevorzugt über diese Schweißnähte beispielsweise Strukturbalken oder andersartige, vertikal verlaufende Strukturbrücken als Stützelemente eingeschweißt, die so hoch sind, dass sie mit dem umlaufenden Außenrand der Gastasche das gleiche Niveau haben.The back of the gas pockets is in particular with the vertical support elements for Power and power transmission welded. In the gas pocket are preferred over this Welds, for example, structural beams or other types of vertical Structural bridges welded as support elements, which are so high that they with the surrounding outer edge of the gas pocket have the same level.
Ungeachtet der gewählten Ausführungsform müssen diese Einbauten einen horizontalen Gasdurchfluss durch die Gastasche sowie am unteren Rand auch einen horizontalen Abfluss von möglichem Kondensat ermöglichen.Regardless of the chosen embodiment, these fixtures must be a horizontal Gas flow through the gas pocket and at the bottom also a horizontal Allow drainage of possible condensate.
Nach Einbau der Sauerstoffverzehrkathoden liegen diese zum Beispiel flach auf den Strukturbalken bzw. -brücken und dem Rand der Gastaschen auf und bilden eine ebene Fläche über die volle Breite sowie die jeweilige Höhe der Gastasche.After installation of the oxygen-consuming cathodes, for example, they lie flat on the Structural beams or bridges and the edge of the gas pockets on and form a level Surface across the full width and the respective height of the gas pocket.
Zur Überbrückung des Katholytspaltes zwischen Sauerstoffverzehrkathode und Membran wird insbesondere ein Stützelement als Stützelement aus elektrolyt- und wärmebeständigem Material als Gegenstück zu den o.g. Strukturbalken bzw. -brücken eingebaut, der sich einerseits über die Sauerstoffverzehrkathode sowie andererseits über die Membran an der in diesem Bereich ebenfalls unterstützten Anodenstruktur abstützt und so die Kraftdurchleitung durch die elektrochemische Zelle ermöglicht.To bridge the Katholytspaltes between Sauerstoffverzehrkathode and membrane In particular, a support element as a support element of electrolyte and heat-resistant material as a counterpart to the o.g. Structural beams or bridges built on the one hand on the oxygen-consuming cathode and on the other hand the membrane is supported on the anode structure also supported in this area and so allows the passage of power through the electrochemical cell.
Das Stützelement (Abstandshalter) wird aus folgenden Gründen bevorzugt nicht in einem Stück in die Zelle eingebaut. Erstens ist eine sichere Positionierung gegenüber den o.g. Strukturbalken bzw. -brücken über die volle Höhe nicht sichergestellt, wobei schon kleine seitliche Verbiegungen zu einem Abrutschen mit der Gefahr der Zerstörung der Sauerstoffverzehrkathode führen kann und zweitens unterscheiden sich die thermischen Ausdehnungskoeffizienten so sehr, dass ein seitliches Ausbie genThe support member (spacer) is preferably not in one for the following reasons Piece installed in the cell. First, a secure positioning relative to the o.g. Structural beams or bridges over the full height not ensured, with even small lateral bending to slipping with the risk of destroying the Oxygen consumption cathode can lead and secondly, the thermal differ Expansion coefficients so much that a lateral Ausbie conditions
Das zweite Stützteil ist besonders bevorzugt entweder als massiver elektrisch leitender Barren oder als U-Profil ausgebildet, oder aber als entsprechende vertikale Prägung der Rückseite der Gastasche ausgeführt. Aus diesem Grund ist es vorteilhaft, das Stützelement zu stückeln und in Segmente zu unterteilen, die der Höhe der jeweiligen einzelnen Gastaschen entsprechen. Die Segmente der Stützelemente werden insbesondere oben und unten nach folgendem Schema befestigt bzw. geführt: am oberen Ende werden sie am Rand der Gastasche befestigt. Dies kann entweder über einen Stift oder eine Art Druckknopf entweder am Abstandshalter oder aber am oberen Rand der Gastasche erfolgen, wobei das jeweils gegenüberliegende Teil eine entsprechend Bohrung enthalten muss.The second support part is particularly preferably either as a solid electrically conductive Ingot or formed as a U-profile, or as a corresponding vertical embossment of Rear side of the gas pocket executed. Out For this reason, it is advantageous to piece the support element and into segments subdivide, which correspond to the height of the respective individual gas pockets. The segments The support elements are in particular the top and bottom of the following Scheme attached or guided: at the top they are at the edge of the gas pocket attached. This can either be via a pin or a push-button type either on Spacers or at the top of the gas pocket done, with each opposite part must contain a corresponding hole.
Eine bevorzugte Variante der Erfindung ist folglich dadurch gekennzeichnet, dass das Stützteil im Katholytspalt aus mehreren senkrecht übereinander angeordneten Barren gebildet wird, die gegebenenfalls an ihrem oberen Ende mit einem lösbaren Verbindungsmittel, zum Beispiel einem Schnappverbinder an Querstreben befestigt sind, die die Elektrode tragen.A preferred variant of the invention is therefore characterized in that the support member in the Katholytspalt of several vertically stacked Ingot is formed, optionally at its upper end with a detachable Connecting means, for example a snap connector attached to cross struts are who carry the electrode.
Am unteren Ende läuft das Stützelement in eine schwalbenschwanzförmige Struktur aus, die das spitz auslaufende obere Ende des darunterliegenden nächsten Stützelements umschließt und so die horizontale Positionierung des Stützelements sicherstellt. Der Spalt zwischen diesen beiden Segmenten wird zweckmäßigerweise so gewählt, dass die größere thermische Dehnung des Stützelements gegenüber den metallischen Strukturen kompensiert wird.At the lower end of the support element runs in a dovetail-shaped structure from, the tapered upper end of the underlying next support element encloses and so ensures the horizontal positioning of the support element. The gap between these two segments is expediently so chosen that the greater thermal expansion of the support element over the metallic structures is compensated.
In einer bevorzugten Variante der elektrochemischen Zelle sind daher die jeweils angrenzenden Enden der Stützteile als Nut-Federkombination ausgebildet, wobei das obere Ende des jeweils unteren Stützteils insbesondere als Feder ausgebildet ist.In a preferred variant of the electrochemical cell are therefore each adjacent ends of the support members formed as a groove-spring combination, wherein the upper end of each lower support member is formed in particular as a spring.
Eine gute Kraftverteilung ergibt sich in der Zelle, wenn die Stützelemente sich über die gesamte Höhe der Halbschalen ausdehnen. A good distribution of force results in the cell when the support elements over extend the entire height of the half-shells.
Um eine noch sicherere Positionierung des Stützelements zu gewährleisten, können die Strukturbalken bzw. -brücken mit leichten vertikalen Aufwölbungen entweder rechts und links oder aber in der Mitte versehen werden, denen eine entsprechende Formgebung der Stützelemente entspricht, so dass dieser beim Verspannen des Elektrolyseurs immer wieder auf die gegenüberliegende Struktur zentriert wird.To ensure an even safer positioning of the support element, the Structural beams or bridges with slight vertical bulges either to the right and left or in the middle are provided, which a corresponding shaping of the Support elements corresponds, so that this always when clamping the electrolyzer is centered again on the opposite structure.
Die Sauerstoffverzehrkathode sollte auf ihrer Rückseite insbesondere elektrisch leitend sein. Hierdurch wird neben der metallischen Verbindung der Sauerstoffverzehrkathode mit dem Rand der Gastasche eine weitere elektrische Verbindung durch Presskontakt über die elektrisch leitenden Stützelemente geschaffen, die zu einer weiteren Minimierung der ohmschen Verluste führt. Darüber hinaus verhindert der Einsatz des Stützelements ein großflächiges Ausbeulen der Sauerstoffverzehrkathode in den Katholytspalt mit der Gefahr der lokalen Blockade des Katholytdurchflusses durch Kontakt mit der Membran. Dies gilt insbesondere bei der o.g. Strukturierung der Stützelemente, durch die die Sauerstoffverzehrkathode gespannt wird.The oxygen-consuming cathode should in particular be electrically conductive on its rear side be. As a result, in addition to the metallic compound of the oxygen-consuming cathode the edge of the gas pocket another electrical connection by press contact created the electrically conductive support elements, which to further minimize the ohmic losses leads. In addition, the use of the support element prevents a large-scale bulging of the oxygen-consuming cathode in the Katholytspalt with the Risk of local blockage of the catholyte through contact with the membrane. This applies in particular to the o.g. Structuring of the supporting elements through which the Oxygen consumption cathode is stretched.
Die Stützelemente im Katholytspalt werden insbesondere im Fall der Chloralkalielektrolyse zweckmäßigerweise aus ECTFE, FEP, MFA oder PFA gefertigt, während die elektrisch leitenden Stützelemente, zum Beispiel Strukturbalken bzw. -brücken aus Nickel oder einer anderen laugebeständigen Metaillegierung bestehen sollten oder unmittelbar aus der Rückwand der Gastasche herausgeprägt sind. The supporting elements in the Katholytspalt be particularly in the case of Chloralkalielektrolyse suitably made of ECTFE, FEP, MFA or PFA, while the electrically conductive support elements, for example, structural beams or bridges made of nickel or another non-sag metal alloy, or directly are stamped out of the back wall of the gas pocket.
Für den Fall einer auf ihrer Vorderseite metallisch oder elektrisch leitenden Sauerstoffverzehrkathode können die Stützelemente im Katholytspalt auf der der Sauerstoffverzehrkathode zugewandten Seite metallisch sein, um über den Presskontakt eine Verbesserung der Stromverteilung in die Sauerstoffverzehrkathode hinein zu erhalten. Vorzugsweise werden in diesem Fall die Stützelemente zweischichtig aufgebaut, wobei die der Membran zugewandte Seite aus ECTFE, FEP, MFA oder PFA besteht, während der metallische Teil aus laugenbeständigem Metall besteht.In the case of a metallic or electrically conductive oxygen-consuming cathode on its front side For example, the support elements in the catholyte gap on the oxygen-consuming cathode facing side to be metallic over the press contact an improvement of the current distribution into the oxygen-consuming cathode receive. Preferably, in this case, the support elements are two-layered constructed, with the membrane-facing side of ECTFE, FEP, MFA or PFA consists, while the metallic part consists of alkali-resistant metal.
Die Anwendung der beschriebenen Kraftdurchleitung in der Einzelelementtechnik ist nicht nur auf die Chlor-Alkali-Elektrolyse beschränkt, sie ist vielmehr auf alle Elektrolysen mit Gasdiffusionselektroden im direkten Kontakt mit flüssigen Elektrolyten, die eine Druckkompensation benötigen, anwendbar, wie z.B.
- Wasserstoff-Peroxid-Produktion mit Sauerstoffverzehrkathode,
- Natriumdichromatelektrolyse mit Wasserstoff verzehrender Anode und Sauerstoffverzehrelektrode
- Alkalische Brennstoffzellen zur Natronlaugenanreicherung
- Salzsäureelektrolyse mit Sauerstoffverzehrkathode
- Hydrogen peroxide production with oxygen-consuming cathode,
- Sodium dichromate electrolysis with hydrogen-consuming anode and oxygen-consuming electrode
- Alkaline fuel cells for sodium hydroxide enrichment
- Hydrochloric acid electrolysis with oxygen-consuming cathode
Die Erfindung wird nachstehend anhand der Figuren beispielsweise näher erläutert. In den Figuren zeigen:
- Fig. 1
- einen Längsschnitt durch eine Kathodenhalbschale einer erfindungsgemäßen Zelle als Ausschnitt der linken oberen Ecke.
- Fig. 2
- einen Querschnitt entsprechend der Linie A-A' in Fig. 1 durch die elektrochemische Zelle
- Fig. 3
- einen Längsschnitt durch eine Kathodenhalbschale entsprechend der Linie B-B' in Fig. 1
- Fig. 1
- a longitudinal section through a cathode half-shell of a cell according to the invention as a section of the upper left corner.
- Fig. 2
- a cross section along the line AA 'in Fig. 1 by the electrochemical cell
- Fig. 3
- a longitudinal section through a cathode half-shell according to the line BB 'in Fig. 1st
In Figur 1 ist der Blick auf die Kathodenhalbschale mit der linken oberen Ecke als
Ausschnitt gezeigt, in Figur 2 ein horizontaler Schnitt A-A' durch eine Gastasche 15.
In der Kathodenhalbschale 10 wird die Gastaschenstruktur mit der Rückwand 11 und
der seitlichen Umrandung 9 über die Tragestruktur 3 getragen.In Figure 1, the view of the cathode half-shell with the left upper corner than
Section shown in Figure 2 is a horizontal section A-A 'through a gas pocket 15th
In the
Der vertikale Strukturbalken 2a bzw., gemäß einer in derselben Fig. 2 bzw. 3
gezeigten Variante, die vertikale Strukturbrücke 2b sind in die Gastasche 15 eingeschweißt.
Um den Sauerstoffquertransport in der Gastasche 15 sicherzustellen sind
beide Strukturen durchbrochen und stehen nicht auf der horizontalen Begrenzung 12
der Gastasche 15 auf, um ein Abfließen möglicherweise anfallenden Kondensates aus
der Sauerstoffverzehrkathode zu ermöglichen. Die Sauerstoffverzehrkathode 4 ist auf
und an der seitlichen Umrandung 9 sowie der horizontalen Begrenzung 12 elektrisch
leitfähig und gasdicht befestigt und liegt auf den Strukturbalken bzw. -brücken auf.
Der Katholytspalt 14 zwischen Membran 5 und Sauerstoffverzehrkathode 4 wird
durch die Abstandselemente 1 definiert, die sich wiederum über die Membran an der
Anode 6 abstützen, die in der Anodenhalbschale 8 über die Tragestruktur 7 definiert
gehaltert wird (vergl. Fig.2).The vertical
Anodenhalbschale 8 und Kathodenhalbschale 10 werden flüssigkeitsdicht miteinander
verbunden und bilden ein Einzelelement (Elektrolysezelle). Beim Zusammenpressen
des Elektrolyseurs werden viele solcher Einzelelemente zusammengepresst,
wobei die jeweils nächste Anodenhalbschale 8' benachbarter Einzelelemente auf die
Kathodenhalbschale 10 und die nächste Kathodenhalbschale 10' eines benachbarten
Einzelelementes auf der anderen Seite des Einzelelementes auf die Anodenhalbschale
8 drücken. Die Zusammenpressung des Einzelelements belastet über die Kathodenhalbschale
10 die Tragestruktur 3, den vertikalen Strukturbalken 2a bzw. die vertikale
Strukturbrücke 2b und den Abstandshalter 1, der einerseits gegen die Sauerstoffverzehrkathode
4 und andererseits über die Membran 5 gegen die Anode 6
drückt. Diese gibt Spannkräfte über die Tragestruktur 7 an die Anodenhalbschale 8
weiter. Durch Anpressen an die Kontaktstreifen 21a und 21b erfolgt die elektrische
Kontaktierung von Einzelelement zu Einzelelement.Anode half-shell 8 and cathode half-
Die Abstandselemente 1a, 1b selbst sind oben spitz zulaufend ausgebildet und unten
mit einer entsprechenden Schwalbenschwanzstruktur versehen (Fig. 1). Sie werden
oben mit einem Stift oder einer Druckknopf-ähnlichen Haltevorrichtung 13 an der
horizontalen Begrenzung 12 der Gastasche 15 befestigt. Der Schwalbenschwanz des
Abstandselementes 1b greift über die Spitze des darunterliegenden nächsten
Abstandselementes 1a und wird so eindeutig positioniert. Gleichzeitig ermöglicht ein
definierter Spalt zwischen den Abstandselementen 1a, 1b deren freie thermische
Ausdehnung, die, materialbedingt, größer als die der metallischen Strukturen ist.The
Claims (9)
- Electrochemical cell for the membrane electrolysis process, consisting at least of 2 half-shells (8, 10), which surround an anolyte chamber (16) and a cathode chamber (22) with a membrane (5) arranged in between, and an anode (6) in the anolyte chamber (16), with the cathode chamber (22) being provided with an oxygen-consuming cathode (4), with a plurality of pressure-compensated gas pockets (15) arranged one above the other, a catholyte gap (14) and optionally a back chamber (19), characterized in that there are provided electrically conducting supporting elements (7) in the anolyte chamber (16) and supporting elements (3, 2, 1) in the cathode chamber (22) at the same position opposite one another which support each other, the supporting in the cathode chamber (22) being effected by means of a multi-part supporting element (3, 2, 1), with one supporting part (1) in the catholyte gap (14), a further supporting part (2a; 2b) in the gas pocket (15) which has openings (22a, 22b, 23a) or leaves passages (24) open at selected points, in particular in their upper and lower region of the respective gas pocket (15) and, if a back chamber (19) is present, a third supporting part (3) is arranged in the back chamber (19) behind the gas pockets (15).
- Electrochemical cell according to Claim 1, characterized in that the supporting part (1) in the catholyte gap (14) is formed from a plurality of bars (1) arranged one above the other, which are optionally attached at their upper end via a detachable connecting means (13), for example a snap-fit connector (13), to cross-braces (12) which carry the electrode (4).
- Electrochemical cell according to Claim 2, characterized in that the respectively adjoining ends of the supporting parts (1a, 1b) are designed as a tongue-and-groove combination, with the upper end of the respective lower supporting part (1a) being designed, in particular, as the tongue.
- Electrochemical cell according to one of Claims 1 to 3, characterized in that the supporting elements (3, 2, 1) extend over the entire height of the half-shell (10) and are located opposite a continuous supporting element (7) in the second half-shell 8.
- Electrochemical cell according to one of Claims 1 to 4, characterized in that the second supporting part (2) is designed either as a solid electrically conductive bar (2a) or as a U-profile (2b).
- Electrochemical cell according to Claim 5, characterized in that the U-profile (2b) has been embossed out of the back wall of the gas pocket, and the supporting element (3) extends into the base of the embossed U-profile (2b) and thus directly causes the transmission of force.
- Electrochemical cell according to one of Claims 1 to 6, characterized in that the supporting elements (7, 3 and 2) are made of caustic lye-resistant metals or alloys, in particular from nickel, or from acid-resistant metals or alloys, in particular from titanium or alloys of titanium and palladium.
- Electrochemical cell according to one of Claims 1 to 7, characterized in that the supporting elements (1, 1a or 1b) consist of a heat- and electrolyte-resistant plastic.
- Electrochemical cell according to one of Claims 1 to 8, characterized in that the supporting elements (1, 1a, 1b) are made metallically conducting on the side facing the oxygen-consuming cathode (4).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19959079A DE19959079A1 (en) | 1999-12-01 | 1999-12-01 | Electrochemical cell for electrolysers with single element technology |
DE19959079 | 1999-12-01 | ||
PCT/EP2000/011531 WO2001040549A1 (en) | 1999-12-01 | 2000-11-20 | Electrochemical cell for electrolysers with stand-alone element technology |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1242653A1 EP1242653A1 (en) | 2002-09-25 |
EP1242653B1 true EP1242653B1 (en) | 2005-04-06 |
Family
ID=7931798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00976055A Expired - Lifetime EP1242653B1 (en) | 1999-12-01 | 2000-11-20 | Electrochemical cell for electrolysers with stand-alone element technology |
Country Status (22)
Country | Link |
---|---|
US (1) | US6984296B1 (en) |
EP (1) | EP1242653B1 (en) |
JP (1) | JP2003515677A (en) |
KR (1) | KR20020059830A (en) |
CN (1) | CN1258619C (en) |
AT (1) | ATE292695T1 (en) |
AU (1) | AU775645B2 (en) |
BR (1) | BR0015952A (en) |
CA (1) | CA2394835A1 (en) |
CZ (1) | CZ20021886A3 (en) |
DE (2) | DE19959079A1 (en) |
ES (1) | ES2240198T3 (en) |
HK (1) | HK1054412A1 (en) |
HU (1) | HUP0203519A3 (en) |
MX (1) | MXPA02005480A (en) |
NO (1) | NO20022575D0 (en) |
PL (1) | PL355720A1 (en) |
PT (1) | PT1242653E (en) |
RU (1) | RU2002118331A (en) |
WO (1) | WO2001040549A1 (en) |
YU (1) | YU39402A (en) |
ZA (1) | ZA200203202B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20021524A1 (en) * | 2002-07-11 | 2004-01-12 | De Nora Elettrodi Spa | CELL WITH ERUPTION BED ELECTRODE FOR METAL ELECTRODEPOSITION |
JP4899294B2 (en) * | 2004-06-10 | 2012-03-21 | 株式会社日立製作所 | Hydrogen fuel production system, hydrogen fuel production method, and hydrogen fuel production program |
DE102005003527A1 (en) * | 2005-01-25 | 2006-07-27 | Uhdenora S.P.A. | An electrolytic cell for the production of chlorine has an anode and a cathode separated from each other by electrically conductive spacers on either side of the ion exchange membrane |
IT1391774B1 (en) * | 2008-11-17 | 2012-01-27 | Uhdenora Spa | ELEMENTARY CELL AND RELATIVE MODULAR ELECTROLISER FOR ELECTROLYTIC PROCESSES |
DE102020206448A1 (en) | 2020-05-25 | 2021-11-25 | Siemens Aktiengesellschaft | Device for attaching an electrode |
DE102020206449A1 (en) | 2020-05-25 | 2021-11-25 | Siemens Aktiengesellschaft | Method of attaching an electrode |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3655167A (en) * | 1970-08-18 | 1972-04-11 | Peter W Skille | Fence corner |
DE4444114C2 (en) | 1994-12-12 | 1997-01-23 | Bayer Ag | Electrochemical half cell with pressure compensation |
DE19622744C1 (en) | 1996-06-07 | 1997-07-31 | Bayer Ag | Pressure-compensated electrochemical half-cell |
DE19641125A1 (en) | 1996-10-05 | 1998-04-16 | Krupp Uhde Gmbh | Electrolysis apparatus for the production of halogen gases |
DE19715429A1 (en) | 1997-04-14 | 1998-10-15 | Bayer Ag | Electrochemical half cell |
DE19859882A1 (en) | 1998-12-23 | 1999-12-09 | W Strewe | Ion exchange membrane cell used in the production of chlorine gas, hydrogen gas and alkali lye by electrolyzing alkali chloride solutions |
US6283162B1 (en) * | 1999-09-09 | 2001-09-04 | Boyd L. Butler | Thin boom tube exhaust pipes, method of sheet metal construction thereof, and exhaust systems which utilize such exhaust pipes for increased ground clearance on race cars |
-
1999
- 1999-12-01 DE DE19959079A patent/DE19959079A1/en not_active Withdrawn
-
2000
- 2000-11-20 AT AT00976055T patent/ATE292695T1/en not_active IP Right Cessation
- 2000-11-20 CA CA002394835A patent/CA2394835A1/en not_active Abandoned
- 2000-11-20 PT PT00976055T patent/PT1242653E/en unknown
- 2000-11-20 PL PL00355720A patent/PL355720A1/en not_active Application Discontinuation
- 2000-11-20 AU AU13960/01A patent/AU775645B2/en not_active Ceased
- 2000-11-20 CN CNB008166625A patent/CN1258619C/en not_active Expired - Fee Related
- 2000-11-20 US US10/148,138 patent/US6984296B1/en not_active Expired - Fee Related
- 2000-11-20 HU HU0203519A patent/HUP0203519A3/en unknown
- 2000-11-20 JP JP2001542612A patent/JP2003515677A/en not_active Withdrawn
- 2000-11-20 YU YU39402A patent/YU39402A/en unknown
- 2000-11-20 MX MXPA02005480A patent/MXPA02005480A/en unknown
- 2000-11-20 WO PCT/EP2000/011531 patent/WO2001040549A1/en active IP Right Grant
- 2000-11-20 DE DE50010013T patent/DE50010013D1/en not_active Expired - Fee Related
- 2000-11-20 KR KR1020027006974A patent/KR20020059830A/en not_active Application Discontinuation
- 2000-11-20 BR BR0015952-2A patent/BR0015952A/en not_active Application Discontinuation
- 2000-11-20 RU RU2002118331/12A patent/RU2002118331A/en not_active Application Discontinuation
- 2000-11-20 ES ES00976055T patent/ES2240198T3/en not_active Expired - Lifetime
- 2000-11-20 EP EP00976055A patent/EP1242653B1/en not_active Expired - Lifetime
- 2000-11-20 CZ CZ20021886A patent/CZ20021886A3/en unknown
-
2002
- 2002-04-23 ZA ZA200203202A patent/ZA200203202B/en unknown
- 2002-05-30 NO NO20022575A patent/NO20022575D0/en unknown
-
2003
- 2003-09-19 HK HK03106737.2A patent/HK1054412A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
AU1396001A (en) | 2001-06-12 |
NO20022575L (en) | 2002-05-30 |
DE50010013D1 (en) | 2005-05-12 |
ES2240198T3 (en) | 2005-10-16 |
RU2002118331A (en) | 2004-03-27 |
PL355720A1 (en) | 2004-05-17 |
WO2001040549A1 (en) | 2001-06-07 |
DE19959079A1 (en) | 2001-06-07 |
CZ20021886A3 (en) | 2002-10-16 |
YU39402A (en) | 2004-12-31 |
ZA200203202B (en) | 2003-04-23 |
JP2003515677A (en) | 2003-05-07 |
EP1242653A1 (en) | 2002-09-25 |
HK1054412A1 (en) | 2003-11-28 |
CA2394835A1 (en) | 2001-06-07 |
CN1408032A (en) | 2003-04-02 |
MXPA02005480A (en) | 2002-12-13 |
US6984296B1 (en) | 2006-01-10 |
PT1242653E (en) | 2005-08-31 |
BR0015952A (en) | 2002-08-06 |
KR20020059830A (en) | 2002-07-13 |
NO20022575D0 (en) | 2002-05-30 |
HUP0203519A2 (en) | 2003-03-28 |
AU775645B2 (en) | 2004-08-12 |
CN1258619C (en) | 2006-06-07 |
ATE292695T1 (en) | 2005-04-15 |
HUP0203519A3 (en) | 2003-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2930609C2 (en) | ||
EP0717130B1 (en) | Pressure compensated electrochemical cell | |
DE2435185C3 (en) | Electrolytic cell | |
EP0189535B1 (en) | Electrolysis apparatus | |
EP0182114B1 (en) | Electrolysis apparatus with horizontally positioned electrodes | |
DD243516A5 (en) | MONOPOLAR AND BIPOLAR CHLORIN CELLS AND ELECTRODE STRUCTURES FOR THESE | |
DE69015518T2 (en) | Electrode for electrolysis. | |
DE60302610T2 (en) | Ion exchange membrane electrolyzer | |
DD211130A5 (en) | ELECTRODE COMPONENT | |
EP1417356B1 (en) | Electrolysis cell, particularly for electrochemically producing chlorine | |
DE2856882C2 (en) | ||
DE4306889C1 (en) | Electrode arrangement for gas-forming electrolytic processes in membrane cells and their use | |
DE3025662A1 (en) | ELECTROLYTIC CELL | |
DE69007205T2 (en) | Frame for filter press type electrolyzer and filter press type monopolar electrolyzer. | |
EP0095039A2 (en) | Membrane-electrolysis cell | |
EP1242653B1 (en) | Electrochemical cell for electrolysers with stand-alone element technology | |
DE69405047T2 (en) | Electrolyser | |
DE2538000B2 (en) | Bipolar electrode construction for a membrane-free electrolysis cell | |
DE69213362T2 (en) | Electrolyser and manufacture thereof | |
DE2923818A1 (en) | ELECTRODE COMPARTMENT | |
EP1285103B1 (en) | Bipolar multi-purpose electrolytic cell for high current loads | |
DE3808495C2 (en) | ||
DE69004338T2 (en) | Frame for filter press type electrolysers and filter press type electrolyzers. | |
DE69005804T2 (en) | Electrolytic cell for gas production, which contains a stack of vertical frames. | |
DE2818939A1 (en) | FLEXIBLE ELECTRODE ARRANGEMENT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020701 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17Q | First examination report despatched |
Effective date: 20021028 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BAYER MATERIALSCIENCE AG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050406 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050406 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050406 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50010013 Country of ref document: DE Date of ref document: 20050512 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050706 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050706 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050706 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050727 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Effective date: 20050614 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20051014 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2240198 Country of ref document: ES Kind code of ref document: T3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20051116 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051120 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051130 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
ET | Fr: translation filed | ||
26N | No opposition filed |
Effective date: 20060110 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070521 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20070521 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20061120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061120 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20081030 Year of fee payment: 9 Ref country code: NL Payment date: 20081103 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20081216 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20081128 Year of fee payment: 9 Ref country code: BE Payment date: 20081110 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20081112 Year of fee payment: 9 |
|
BERE | Be: lapsed |
Owner name: *BAYER MATERIALSCIENCE A.G. Effective date: 20091130 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20100601 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091130 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100601 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100601 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091121 |