EP1119324A1 - Method and device for completely correcting visual defects of the human eye - Google Patents
Method and device for completely correcting visual defects of the human eyeInfo
- Publication number
- EP1119324A1 EP1119324A1 EP00954622A EP00954622A EP1119324A1 EP 1119324 A1 EP1119324 A1 EP 1119324A1 EP 00954622 A EP00954622 A EP 00954622A EP 00954622 A EP00954622 A EP 00954622A EP 1119324 A1 EP1119324 A1 EP 1119324A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- eye
- optical system
- lens
- elements
- wavefront
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 230000007547 defect Effects 0.000 title claims abstract description 34
- 230000000007 visual effect Effects 0.000 title claims abstract description 27
- 238000012937 correction Methods 0.000 claims abstract description 34
- 238000012876 topography Methods 0.000 claims abstract description 16
- 230000003287 optical effect Effects 0.000 claims description 70
- 238000004458 analytical method Methods 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 13
- 238000012986 modification Methods 0.000 claims description 13
- 230000004048 modification Effects 0.000 claims description 13
- 230000004438 eyesight Effects 0.000 claims description 11
- 230000001427 coherent effect Effects 0.000 claims description 9
- 239000011521 glass Substances 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 6
- 238000007493 shaping process Methods 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- 239000000853 adhesive Substances 0.000 claims 1
- 230000001070 adhesive effect Effects 0.000 claims 1
- 230000004075 alteration Effects 0.000 abstract description 25
- 210000004087 cornea Anatomy 0.000 abstract description 7
- 238000005259 measurement Methods 0.000 abstract description 4
- 208000002177 Cataract Diseases 0.000 abstract description 3
- 238000004364 calculation method Methods 0.000 abstract description 3
- 210000001525 retina Anatomy 0.000 abstract description 3
- 238000011156 evaluation Methods 0.000 abstract description 2
- 208000029091 Refraction disease Diseases 0.000 description 7
- 238000002679 ablation Methods 0.000 description 7
- 230000004430 ametropia Effects 0.000 description 7
- 208000014733 refractive error Diseases 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000002950 deficient Effects 0.000 description 4
- 230000036040 emmetropia Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 230000004304 visual acuity Effects 0.000 description 3
- 206010010071 Coma Diseases 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 2
- 201000009310 astigmatism Diseases 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 206010036346 Posterior capsule opacification Diseases 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007516 diamond turning Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 230000004305 hyperopia Effects 0.000 description 1
- 201000006318 hyperopia Diseases 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000004379 myopia Effects 0.000 description 1
- 208000001491 myopia Diseases 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000003945 visual behavior Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J9/00—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/1015—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F9/00802—Methods or devices for eye surgery using laser for photoablation
- A61F9/00804—Refractive treatments
- A61F9/00806—Correction of higher orders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F9/00802—Methods or devices for eye surgery using laser for photoablation
- A61F9/00812—Inlays; Onlays; Intraocular lenses [IOL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/013—Instruments for compensation of ocular refraction ; Instruments for use in cornea removal, for reshaping or performing incisions in the cornea
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0648—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/107—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/117—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F2009/00861—Methods or devices for eye surgery using laser adapted for treatment at a particular location
- A61F2009/00872—Cornea
Definitions
- the invention relates to a method and a device for correcting visual defects in the human eye.
- AI describes a method for improving a Shack-Hartmann sensor with which wave fronts in the field of astronomy can be measured to measure stars.
- the object of the present invention was therefore to provide a method and a device which allow a complete correction of all refractive visual defects, including the aberrations of the beam path in the defective eye.
- the object is achieved by a device for correcting visual defects in an eye, comprising a coherent light source, a beam modification device for shaping and deflecting a beam from the coherent light source, a wavefront analysis device being provided for analyzing a wavefront of the beam path in the eye.
- This device makes it possible to incorporate the data obtained from the analysis of the intraocular aberration into the correction of an existing optical system of an eye to be corrected. This makes the correction of the optical system of the eye even more precise.
- a human eye is particularly suitable as an eye, but correction of the eyes of other living beings is also conceivable.
- Visual defects are, in particular, refractive visual defects such as myopia or farsightedness, irregularities in the corneal surface or aberrations in the beam path
- a laser particularly preferably a refractive laser, particularly preferably a spot scanning excimer laser system, is preferably provided as the coherent light source.
- a spot scanner with laser light in other areas of the spectrum can also be thought of, such as a frequency-quintupled YAG laser, an IR laser at 3 ⁇ m, such as an erbium: YAG laser that emits at 2.94 ⁇ m, or a Femto second laser (FS laser).
- a spot scanner with laser light in other areas of the spectrum can also be thought of, such as a frequency-quintupled YAG laser, an IR laser at 3 ⁇ m, such as an erbium: YAG laser that emits at 2.94 ⁇ m, or a Femto second laser (FS laser).
- the beam modification device preferably consists of a device for shaping a beam and a device for deflecting and aligning the beam.
- Lens systems, diffractive structures and refractive elements are preferably used as the device for shaping the beam.
- Scanner arrangements, prisms and mirrors are preferably used as the device for deflecting and aligning the beam.
- a Shack-Hartmann sensor can preferably be used as the wavefront analysis device. This is a sensor that is based on a method to analyze wave fronts. It is used particularly in astronomy (see above). Through this wavefront analysis device, the entire one emerging from the eye Wavefront are measured and information about the visual defects including the intraocular aberration of the beam path can also be obtained in the eye.
- a device in which a topography analysis unit is additionally provided for analyzing the surface of the eye.
- This analysis provides information about the curvature and contour of the surface of the eye - in particular the comea.
- This provides the system with complete data on the refractive visual defects of the eye.
- Both the possibly non-ideal surface contour of the eye - or the comea - and the intraocular aberration can now be analyzed and are available to the system when correcting the optical system of the eye. This makes it possible to completely correct the visual defects of the eye and even achieve vision that is above that of the normal human eye. It is also possible to only partially correct aberrations and thus only to produce a comprehensive correction in combination with other visual aids. It is also preferably possible to generate aberrations in a targeted manner in order to enable visual properties which are not or only rarely created by nature. These aberrations can then be used specifically for certain skills (e.g. spatial vision, accommodation, etc.).
- a device in which a control unit for processing signals from the wavefront analysis unit and / or for processing signals from the topography analysis unit, and / or for controlling the coherent light source and / or is provided to control the beam modification device.
- the data determined by the analysis units can be evaluated by these control units. It is possible to process and evaluate the signals of the wavefront analysis unit and the signals of the topography analysis unit separately in the control unit or to process both amounts of data in one step.
- the control unit preferably consists of several individual control units.
- the parameters required for beam modification are determined from this data. These parameters can preferably be used in a further step to control the coherent light source, for example to predetermine the amplitude, pulse duration and energy of the beam. These parameters are also preferably used to control the beam modification device, in order to determine the target location and the geometry of the beam in the target via the deflection of the beam.
- the shot positions for the production of the individual elements can be calculated.
- a device in which the beam modification device is designed such that an intraocular lens and / or an eye lens and / or the comea of the eye and / or a contact lens and / or an implantable contact is formed with the beam lens (ICL) and / or an eyeglass lens can be processed.
- An element or workpiece of the lens system can now be processed by the beam, which is preferably controlled by the control unit, that the vision defect or aberration is completely corrected.
- Such an element is preferably an intraocular lens (IOL) which is prefabricated before an appropriate operation. It is particularly preferably an ICL (implantable contact lens) that is placed on the lens.
- This IOL or ICL can then be shaped on the basis of the entire information available about the visual defects, including the aberration of the eye, in such a way that it corrects all existing visual defects. It is also conceivable to carry out the correction by means of the beam on the eye lens itself, which is preferably controlled by the control device.
- the object is further achieved by a method according to the invention for correcting visual defects in an eye, the beam path of the eye being determined by means of a wavefront analysis and an ideal lens system being calculated which would lead to a correction of the visual defects in the eye.
- This method is particularly preferably used using a device according to the invention. With this method, the intraocular aberration of the beam path is available for the calculation of the correction of the optical system for conversion into an ideal optical system.
- the topography of the eye is particularly preferably additionally analyzed.
- This method provides additional information on the ametropia of the eye, in particular about aberrations, asymmetrical cylinders and corneal irregularities.
- the ideal optical system is provided on the basis of the data determined from the wavefront analysis and / or from the topography analysis. Only one element from this optical system is particularly preferably provided for this.
- the correcting element or elements are produced in this way on the basis of the complete data of the ametropia. This procedure leads to the complete correction of the ametropia.
- shot positions for producing the ideal optical system are obtained from the wavefront analysis and / or from the Topography analysis calculated data calculated.
- the laser spot excimer method can advantageously be used to produce the individual elements of the optical system.
- the shot positions are optimized depending on the materials to be used and taking the production time into account.
- the old optical system of the eye is transformed into the calculated ideal optical system.
- elements of the old optical system are either processed directly, correspondingly corrected elements are produced and used, or old elements are replaced by new elements.
- This process enables the old (defective) optical system of the eye to be converted into a (new) ideal optical system.
- a new lens or an ICL according to the spot scanning principle is particularly preferably produced with an excimer laser.
- the optical system preferably comprises as elements the eye lens and / or an intraocular lens and / or the comea of the eye and / or a contact lens and / or an ICL and / or at least one spectacle lens.
- the cornea of the eye can be reshaped in order to correct the existing ametropia (e.g. the surface of the comea via photorefractive keratectomy, PRK, or by ablation of the inner tissue layers of the comea by laser assisted in situ keratomileusis, LASIK ).
- These elements not only have rotational geometry corrections, but individual structures to correct the patient's ametropia.
- intraocular lenses or contact lenses which - once inserted into the lens system - not only As before, roughly correct the ametropia of the eye, but also correct all irregularities, asymmetries and beam distortions. So that a visual acuity that is above that of the normal human eye can hardly be achieved. With this method it is also possible to manufacture spectacle lenses that also correct all irregularities, asymmetries and beam distortions of the defective eye or the old optical system.
- individual optical elements, in particular lenses, of the ideal optical system are produced in a first step for checking the ideal optical system, and in a second step these individual elements are removed and other elements, in particular the comea, are correspondingly removed reshaped.
- this lens can then be removed from the ideal optical system and the cornea can then be ideally shaped in order to provide the corresponding corrected visual acuity.
- the provisional optical element is preferably a lens which the viewer can then insert into the optical system on a provisional spectacle frame.
- the material that the shot pattern is initially applied to is particularly preferably a moist contact lens. It is particularly advantageous to select this contact lens in such a way that the sphero-cylindrical aberrations of the patient to be treated are already corrected with this lens. Only the previously measured higher aberrations on this contact lens can then be corrected with the treatment laser.
- the soft contact lens particularly advantageously has a refractive power and ablation property which largely corresponds to that of the comea.
- the shot positions of the provisional optical element will later correspond to the own optical element, in particular the Co ea.
- the provisional optical element in particular the contact lens, is advantageously aligned centrally and the reference axes of the wavefront measurement and the axis of the eye match.
- the use of materials such as PMMA as the ablation material of the provisional optical element is preferred.
- the different refractive index of both media is also taken into account, in addition to the differing depth of cut. Since these are constant factors, they can be mathematically very well recorded and transformed.
- a lens is preferably provided on a frame, so that no contact of this lens with the eye is required.
- the (provisional) lens is particularly preferably produced during the measurement of the wavefront in the optical system.
- the provisional lens is preferably processed iteratively and then the wavefront is measured again until no aberration of the overall system can be determined.
- One is particularly preferred such a procedure fixes the patient's eye, for example with a crosshair.
- glasses are produced for this purpose, which have outer and inner spherical surfaces, with at least one of these surfaces additionally having patterns applied, the transfer function of which is phase-conjugated with the uneven distortions of the wavefront which have been caused by the optical system or the eye. This makes it possible to make these specially determined corrections with such glasses.
- the average values of the emmetropia and the wavefront of the eye are determined, the radii of the outer and inner surfaces are calculated, which represent a correction of these average values of the emmetropia, and at least one of the surfaces with radii of curvature is produced have been changed in the order of the maximum deviation of the wavefront from the emmetropia corrected by the previous step and then this deviation of the surface will correspond to Patterns of the irregular distortions of the wavefront of the optical system or the eye are used.
- these surface irregularities are applied to the surface either by material removal or material application.
- This removal can be done by laser radiation, thermal or athermal processes, e.g. done by ablation.
- the application to the surface can be done in layers.
- the surfaces in the different sectors are particularly preferably adapted precisely to the eye, so that, for example, two areas can arise in which the compensation can be selected as a function of the accommodation state of the eye if the eye uses the corresponding area.
- the surfaces are particularly preferably changed such that the geometric shift of the plane of the glasses is also compensated for by the basic plane of the optical system of the eye.
- the object is achieved by an ideal optical system which was produced by a method according to the invention and / or by means of a device according to the invention, the optical system comprising elements made of materials suitable for implantation and / or adhesion and / or suitable for ablation, in particular plastic or glass.
- the optical system comprising elements made of materials suitable for implantation and / or adhesion and / or suitable for ablation, in particular plastic or glass.
- an ideal optical system which comprises elements which comprise refractive and / or diffractive structures.
- Refractive and / or diffractive structures have so far only been used in beam shaping.
- a mini lens system directs and shapes the incoming beam in order to achieve a special beam distribution in the target plane.
- refractive and or diffractive stem structures on individual elements of an optical system allows the targeted correction of poor eyesight in an unusually ideal manner.
- the use of these structures makes it possible to correct individual non-continuous aberrations or to give the optical systems properties that a normal human eye does not have.
- the object of the invention is further achieved by an element of an (ideal) lens system which has refractive and / or diffractive structures.
- Such elements can be intraocular lenses, modified corneas, contact lenses, ICL's or spectacle lenses.
- FIG. 1 is a block diagram for an embodiment of an inventive
- Fig. 2 is a schematic representation of an arrangement for separate
- FIG. 1 shows a block diagram for an exemplary embodiment of a device according to the invention for correcting vision defects in an eye.
- a wavefront analysis unit 2 and a topography analysis unit 2 ′ are connected to a control unit 3.
- the control unit 3 is connected to a laser 4 and a beam modification device 5 via a bus.
- a lens 6 is shown behind the beam modification device 5.
- An eye 1 is shown in front of the wavefront analysis unit 2 and the topography analysis unit 2 '.
- the rays of the wavefront analysis unit 2 and the topography analysis unit 2 ′ scan the eye 1 and transmit the signals obtained to the control unit 3.
- the signals are processed in the control unit 3 and the ideal optical system for this eye 1 is calculated.
- an ideal lens 6 is calculated here as an element of the optical system.
- all shot positions that are required for the laser 4 for producing the ideal lens 6 are calculated in the control unit 3 based on the data obtained from the signals, taking into account the laser-relevant data.
- the control unit 3 then controls the laser 4 and determines the energy and pulse rate of the beam 7 Beam 7 is passed through beam modification device 5.
- the beam 7 is shaped and deflected according to the calculated shot positions by the specifications of the control unit 3 via scanners and lens systems, so that the customized laser lens 7 is produced by the controlled laser beam 7 by ablation of material on the raw lens.
- the control unit 3 can also preferably be embodied in a plurality of sub-control units which can be connected to individual components of the device.
- the possibility preferably using a spot scanning excimer laser system, to produce a patient-specific lens with topography and / or to shape the cornea in an ideal corrective manner.
- the correction can be made by modifying an element of the optical system.
- an element of the optical system To improve the eyesight of a patient with cataracts and ametropia, it is sufficient to completely close the intraocular lens correct. In such a case, it is no longer necessary to perform a refractive surgery in addition to the cataract surgery.
- FIG. 2 shows a schematic representation of an arrangement for separate visual defect detection (FIG. 2 a) and an arrangement with superposition of all defects (FIG. 2 b).
- the optical system is shown with the eye and four optical elements. With these optical elements, individual visual defects can now be corrected by using the individual optical elements specifically for correcting individual ones
- spherical aberration can be corrected with the first optical element and one with the second optical element
- Astigmatism can be compensated and a coma can be compensated with the third optical element.
- the individual optical elements can be processed one after the other with the shot positions determined by the correction parameters and individually reshaped.
- a vision test is preferably carried out after each (partial) correction so that the change can also be subjectively checked.
- FIG. 2 b shows how a superposition of all errors on an optical element would work and how the compensation indicated above in the lower case would have to be transferred to an optical element or would be transferred at the end.
- a device and a method for correcting visual defects in the human eye which elegantly allow a complete correction of all refractive visual defects, including the aberrations of the beam path in the defective eye, the individual errors also being preferred by iterative correction can be carried out in advance on one or more provisional optical elements and can be assessed by the viewer without any intervention on the eye.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Ophthalmology & Optometry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Mechanical Engineering (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Prostheses (AREA)
- Eye Examination Apparatus (AREA)
- Eyeglasses (AREA)
- Lasers (AREA)
Abstract
Description
Verfahren und Vorrichtung zur vollständigen Korrektur von Sehfehlern des menschlichen Auges Method and device for the complete correction of visual defects in the human eye
Die Erfindung betrifft ein Verfahren und eine Vorichtung zur Korrektur von Sehfehlern des menschlichen Auges.The invention relates to a method and a device for correcting visual defects in the human eye.
In der Ophthalmologie ist es bekannt, die Hornhaut bei Sehschwäche durch Ablation von Gewebe zu formen. Die Daten über die Aberration im Strahlengang des Auges werden dabei über eine Befragung des Patienten aufgrund von Korrekturen über standardisierte Korrekturlinsen vor dem Auge des Patienten nach seinem subjektiven Eindruck des Sehvermögens gewonnen. Daneben existieren Verfahren zur Vermessung der äußeren Kontur des Auges mittels Streifen- oder Ringprojektionssystemen, wie sie beispielsweise von den Firmen Qrbtek, Tomey oder Technomed hergestellt werden.It is known in ophthalmology to shape the cornea in the case of poor eyesight by ablation of tissue. The data on the aberration in the beam path of the eye are obtained by questioning the patient on the basis of corrections via standardized correction lenses in front of the patient's eye according to his subjective impression of vision. In addition, there are methods for measuring the outer contour of the eye using stripe or ring projection systems, such as those produced by the companies Qrbtek, Tomey or Technomed.
In der DE 197 05 119 AI wird ein Verfahren zur Verbesserung eines Shack-Hartmann- Sensors beschrieben, mit dem Wellenfronten im Bereich der Astronomie zur Vermessung von Sternen gemessen werden können.DE 197 05 119 AI describes a method for improving a Shack-Hartmann sensor with which wave fronts in the field of astronomy can be measured to measure stars.
In der DE 197 27 573 Cl wird in einem wertvollen Beitrag zum Stand der Technik eine Vorrichtung und ein Verfahren zur Formgebung von Oberflächen, insbesondere von Linsen, vermittels einer Laserabtragung der Oberflächen angegeben. Nachteilig am Stand der Technik wird die Tatsache empfunden, daß die Korrektur der Linsen nur aufgrund suboptimaler Daten über die Ursachen der Sehfehler wie Irregularitäten der Hornhautoberfläche oder Aberration im Strahlengang stattfindet. Es werden folglich nur Korrekturen entsprechend den Standardlinsenformeln der geometrischen Optik ausgeführt.DE 197 27 573 C1 provides a valuable contribution to the prior art of a device and a method for shaping surfaces, in particular lenses, by means of laser ablation of the surfaces. A disadvantage of the prior art is the fact that the correction of the lenses takes place only on the basis of suboptimal data on the causes of the visual defects such as irregularities in the corneal surface or aberration in the beam path. As a result, corrections are only carried out in accordance with the standard lens formulas of geometric optics.
Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren und eine Vorrichtung bereitzustellen, die eine vollständige Korrektur aller refraktiven Sehfehler einschließlich der Aberrationen des Strahlenganges im fehlsichtigen Auge erlauben.The object of the present invention was therefore to provide a method and a device which allow a complete correction of all refractive visual defects, including the aberrations of the beam path in the defective eye.
Diese Aufgabe wird durch die Vorrichtung und das Verfahren nach den unabhängigen Ansprüchen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.This object is achieved by the device and the method according to the independent claims. Advantageous embodiments of the invention are specified in the subclaims.
Insbesondere wird die Aufgabe durch eine Vorrichtung zur Korrektur von Sehfehlem eines Auges gelöst, umfassend eine kohärente Lichtquelle, eine Strahlmodifikationseinrichtung zur Formung und Ablenkung eines Strahles der kohärenten Lichtquelle, wobei eine Wellenfrontanalyseeinrichtung zur Analyse einer Wellenfront des Strahlenganges im Auge vorgesehen ist. Durch diese Vorrichtung ist es möglich, die aus der Analyse der intraokularen Aberration gewonnenen Daten in die Korrektur eines bestehenden optischen Systems eines zu korrigierenden Auges einfließen zu lassen. Damit wird die Korrektur des optischen Systems des Auges nochmals präziser möglich. Als Auge kommt insbesondere ein menschliches Auge in Betracht, denkbar ist aber auch die Korrektur von Augen anderer Lebewesen. Sehfehler sind insbesondere refraktive Sehfehler wie die Kurz- oder Weitsichtigkeit, Irregularitäten der Hornhautoberfläche oder Aberrationen im StrahlengangIn particular, the object is achieved by a device for correcting visual defects in an eye, comprising a coherent light source, a beam modification device for shaping and deflecting a beam from the coherent light source, a wavefront analysis device being provided for analyzing a wavefront of the beam path in the eye. This device makes it possible to incorporate the data obtained from the analysis of the intraocular aberration into the correction of an existing optical system of an eye to be corrected. This makes the correction of the optical system of the eye even more precise. A human eye is particularly suitable as an eye, but correction of the eyes of other living beings is also conceivable. Visual defects are, in particular, refractive visual defects such as myopia or farsightedness, irregularities in the corneal surface or aberrations in the beam path
Als kohärente Lichtquelle ist bevorzugt ein Laser, besonders bevorzugt ein refraktiver Laser, insbesondere bevorzugt ein Spot-Scanning-Excimerlasersystem, vorgesehen. Daneben kann auch an ein Spot Scanner mit Laserlicht in anderen Bereichen des Spektrums gedacht werden wie ein frequenzverfünffachter YAG-Laser, ein IR-Laser bei 3μm, wie bspw. einen Erbium: YAG-Laser, der bei 2,94 um emittiert, oder ein femto- Sekundenlaser (FS-Laser).A laser, particularly preferably a refractive laser, particularly preferably a spot scanning excimer laser system, is preferably provided as the coherent light source. In addition, a spot scanner with laser light in other areas of the spectrum can also be thought of, such as a frequency-quintupled YAG laser, an IR laser at 3 μm, such as an erbium: YAG laser that emits at 2.94 μm, or a Femto second laser (FS laser).
Die Strahlenmodifikationseinrichtung besteht bevorzugt aus einer Einrichtung zur Formung eines Strahles und einer Einrichtung zur Ablenkung und Ausrichtung des Strahles. Als Einrichtung zur Formung des Strahles werden bevorzugt Linsensysteme, diffraktive Strukturen und refraktive Elemente eingesetzt. Als Einrichtung zur Ablenkung und Ausrichtung des Strahles werden bevorzugt Scanneranordnungen, Prismen und Spiegel verwendet.The beam modification device preferably consists of a device for shaping a beam and a device for deflecting and aligning the beam. Lens systems, diffractive structures and refractive elements are preferably used as the device for shaping the beam. Scanner arrangements, prisms and mirrors are preferably used as the device for deflecting and aligning the beam.
Als Wellenfrontanalyseeinrichtung kann bevorzugt ein Shack-Hartmann-Sensor verwendet werden. Hierbei handelt es sich um einen Sensor, der auf einem Verfahren beruht, um Wellenfronten zu analysieren. Er wird insbesondere in der Astronomie eingesetzt (s.o.). Durch diese Wellenfrontanalyseeinrichtung kann die gesamte aus dem Auge austretende Wellenfront gemessen werden und so Informationen über die Sehfehler einschließlich der intraokularen Aberration des Strahlenganges auch im Auge gewonnen werden.A Shack-Hartmann sensor can preferably be used as the wavefront analysis device. This is a sensor that is based on a method to analyze wave fronts. It is used particularly in astronomy (see above). Through this wavefront analysis device, the entire one emerging from the eye Wavefront are measured and information about the visual defects including the intraocular aberration of the beam path can also be obtained in the eye.
Bei einem weiteren Ausführungsbeispiel der vorliegenden Erfindung ist eine Vorrichtung vorgesehen, bei der zusätzlich eine Topographieanalyseeinheit zur Analyse der Oberfläche des Auges vorgesehen ist. Diese Analyse liefert die Information, welche Krümmung und Kontur die Augenoberfläche - also insbesondere die Comea - aufweist. Dadurch stehen dem System die vollständigen Daten über die refraktiven Sehfehler des Auges zur Verfügung. Sowohl die gegebenenfalls nicht ideale Oberflächenkontur des Auges - bzw. der Comea - als auch die intraokulare Aberration kann nun analysiert werden und stehen dem System bei der Korrektur des optischen Systemes des Auges zur Verfügung. Dadurch ist es möglich, die Sehfehler des Auges vollständig zu korrigieren und sogar ein Sehvermögen zu erreichen, das über dem des normalen menschlichen Auges liegt. Genauso ist es möglich, Aberrationen nur teilweise zu korrigieren und so erst in Kombination mit anderen Sehhilfen eine umfassende Korrektur zu erzeugen. Bevorzugt ist es auch möglich, gezielt Aberrationen zu erzeugen, um Seheigenschaften zu ermöglichen, die von der Natur nicht oder nur selten erschaffen werden. Diese Aberrationen können dann für bestimmte Fähigkeiten (zB. Räumliches Sehen, Akkomodation, etc.) gezielt genutzt werden.In a further exemplary embodiment of the present invention, a device is provided in which a topography analysis unit is additionally provided for analyzing the surface of the eye. This analysis provides information about the curvature and contour of the surface of the eye - in particular the comea. This provides the system with complete data on the refractive visual defects of the eye. Both the possibly non-ideal surface contour of the eye - or the comea - and the intraocular aberration can now be analyzed and are available to the system when correcting the optical system of the eye. This makes it possible to completely correct the visual defects of the eye and even achieve vision that is above that of the normal human eye. It is also possible to only partially correct aberrations and thus only to produce a comprehensive correction in combination with other visual aids. It is also preferably possible to generate aberrations in a targeted manner in order to enable visual properties which are not or only rarely created by nature. These aberrations can then be used specifically for certain skills (e.g. spatial vision, accommodation, etc.).
Bei einem weiteren Ausführungsbeispiel der Erfindung ist eine Vorrichtung vorgesehen, bei der weiterhin eine Steuereinheit zur Verarbeitung von Signalen der Wellenfrontanalyseneinheit und/ oder zur Verarbeitung von Signalen der Topographieanalyseeinheit, und/ oder zur Steuerung der kohärenten Lichtquelle und/ oder zur Steuerung der Strahlmodifikationseinrichtung vorgesehen ist. Durch diese Steuereinheiten können die durch die Analyseeinheiten ermittelten Daten ausgewertet werden. Es ist möglich, die Signale der Wellenfrontanalyseneinheit und der Signale der Topographieanalyseeinheit in der Steuereinheit getrennt zu verarbeiten und auszuwerten oder beide Datenmengen in einem Schritt zu verarbeiten. Die Steuereinheit besteht bevorzugt aus mehreren einzelnen Steuereinheiten.In a further exemplary embodiment of the invention, a device is provided in which a control unit for processing signals from the wavefront analysis unit and / or for processing signals from the topography analysis unit, and / or for controlling the coherent light source and / or is provided to control the beam modification device. The data determined by the analysis units can be evaluated by these control units. It is possible to process and evaluate the signals of the wavefront analysis unit and the signals of the topography analysis unit separately in the control unit or to process both amounts of data in one step. The control unit preferably consists of several individual control units.
Diese Daten dienen bevorzugt der Bereitstellung eines idealen optischen Systemes. Aus diesen Daten werden die für die Strahlmodifikation erforderlichen Parameter bestimmt. Diese Parameter können bevorzugt in einem weiteren Schritt zur Steuerung der kohärenten Lichtquelle benutzt werden, um beispielsweise Amplitude, Pulsdauer und Energie des Strahles vorzubestimmen. Weiterhin bevorzugt werden diese Parameter auch zur Steuerung der Strahlmodifikationseinrichtung eingesetzt, um hier über die Ablenkung des Strahles den Zielort und die Geometrie des Strahles im Ziel festzulegen.These data are preferably used to provide an ideal optical system. The parameters required for beam modification are determined from this data. These parameters can preferably be used in a further step to control the coherent light source, for example to predetermine the amplitude, pulse duration and energy of the beam. These parameters are also preferably used to control the beam modification device, in order to determine the target location and the geometry of the beam in the target via the deflection of the beam.
Dadurch können bei einem bevorzugten Ausführungsbeispiel insbesondere die Schußpositionen für die Herstellung der einzelnen Elemente berechnet werden.In this way, in a preferred embodiment, in particular the shot positions for the production of the individual elements can be calculated.
Bei einem weiteren bevorzugten Ausführungsbeispiel der vorliegenden Erfindung ist eine Vorrichtung vorgesehen, bei der die Strahlmodifikationseinrichtung so ausgebildet ist, daß mit dem Strahl eine Intraokularlinse und/ oder eine Augenlinse und/ oder die Comea des Auges und/ oder eine Kontaktlinse und/oder eine implantable Contact lens (ICL) und/ oder ein Brillenglas bearbeitbar ist. Durch den bevorzugt von der Steuereinheit gesteuerten Strahl kann nun ein Element bzw. Werkstück des Linsensystems derart bearbeitet werden, daß die Sehfehler bzw. Aberration vollständig korrigiert wird. Ein solches Element ist bevorzugt eine Intraokularlinse (IOL), die vor einer entsprechenden Operation vorgefertigt wird. Besonders bevorzugt handelt es sich um eine ICL (implantable contact lens), die auf die Linse aufgesetzt wird. Diese IOL bzw. ICL kann dann aufgrund der gesamten vorliegenden Information über die Sehfehler einschl. der Aberration des Auges so geformt werden, daß sie alle vorhandenen Sehfehler korrigiert. Denkbar ist auch, die Korrektur mittels des bevorzugt durch die Steuereinrichtung gesteuerten Strahles an der Augenlinse selbst vorzunehmen.In a further preferred exemplary embodiment of the present invention, a device is provided in which the beam modification device is designed such that an intraocular lens and / or an eye lens and / or the comea of the eye and / or a contact lens and / or an implantable contact is formed with the beam lens (ICL) and / or an eyeglass lens can be processed. An element or workpiece of the lens system can now be processed by the beam, which is preferably controlled by the control unit, that the vision defect or aberration is completely corrected. Such an element is preferably an intraocular lens (IOL) which is prefabricated before an appropriate operation. It is particularly preferably an ICL (implantable contact lens) that is placed on the lens. This IOL or ICL can then be shaped on the basis of the entire information available about the visual defects, including the aberration of the eye, in such a way that it corrects all existing visual defects. It is also conceivable to carry out the correction by means of the beam on the eye lens itself, which is preferably controlled by the control device.
Weiterhin ist es denkbar, eine Korrektur durch die Bearbeitung der Comea vorzunehmen. Bevorzugt werden auch Kontaktlinsen gefertigt, die patientenspezifisch sämtliche individuellen über dem refraktiven Augenfehler hinausgehende Fehler wie Aberrationen, unsymmetrische Zylinder und Hornhaut-Irregularitäten korrigieren. Daneben ist es möglich, individuelle Brillengläser herzustellen. Hierfür können neben der Excimer-Spot- Bearbeitung auch Methoden der Optikindustrie wie beispielsweise das Single point diamond turning Verfahren eingesetzt werden. Hierdurch können sämtliche Elemente des betroffenen optischen Systemes zur Korrektur der Augenfehler verwendet werden.It is also conceivable to make a correction by editing the comea. Contact lenses are also preferably produced, which correct all patient-specific errors such as aberrations, asymmetrical cylinders and corneal irregularities that go beyond refractive eye defects. In addition, it is possible to manufacture individual glasses. In addition to excimer spot machining, methods from the optics industry such as the single point diamond turning process can also be used for this. As a result, all elements of the optical system concerned can be used to correct the eye defects.
Es ist ebenfalls möglich, eine Kombination der einzelnen (teil-) korrigierten Elemente einzusetzen. Dies ist insbesondere dann vorteilhaft, wenn die theoretisch mögliche Korrektur über ein Element zu einer hohen Beanspruchung dieses Elements führen würde und eine solche Beanspruchung insbesondere aus medizinischer Sicht nicht angezeigt erscheint. Die Aufgabe wird weiterhin gelöst durch ein erfindungsgemäßes Verfahren zur Korrektur von Sehfehlern eines Auges, wobei der Strahlengang des Auges mittels einer Wellenfrontanalyse ermittelt wird und ein ideales Linsensystem berechnet wird, das zu einer Korrektur der Sehfehler des Auges führen würde. Besonders bevorzugt wird dieses Verfahren unter Einsatz einer erfindungsgemäßen Vorrichtung angewandt. Bei diesem Verfahren steht für die Berechnung der Korrektur des optischen Systemes zur Überführung in ein ideales optisches System die intraokulare Aberration des Strahlenganges zur Verfügung.It is also possible to use a combination of the individual (partially) corrected elements. This is particularly advantageous if the theoretically possible correction via an element would lead to a high stress on this element and such stress does not appear to be indicated, in particular from a medical point of view. The object is further achieved by a method according to the invention for correcting visual defects in an eye, the beam path of the eye being determined by means of a wavefront analysis and an ideal lens system being calculated which would lead to a correction of the visual defects in the eye. This method is particularly preferably used using a device according to the invention. With this method, the intraocular aberration of the beam path is available for the calculation of the correction of the optical system for conversion into an ideal optical system.
Besonders bevorzugt wird bei einem weiteren erfindungsgemäßen Verfahren zusätzlich die Topographie des Auges analysiert. Damit stehen in diesem Verfahren noch weitere Informationen über die Fehlsichtigkeit des Auges zur Verfügung, insbesondere über Aberrationen, unsymmetrische Zylinder und Hornhaut-Irregularitäten. j Bei einem weiteren bevorzugten Verfahren wird das ideale optischen System auf der Basis der aus der Wellenfrontanalyse und/ oder der aus der Topographieanalyse ermittelten Daten bereitgestellt. Besonders bevorzugt wird dafür nur ein Element aus diesem optischen System bereitgstellt. Auf diese Weise wird in einem weiteren Schritt das korrigierende Element oder die korrigierenden Elemente auf der Basis der kompletten Daten der Fehlsichtigkeit hergestellt. Dieses Vorgehen führt so zur vollständigen Korrektur der Fehlsichtigkeit.In a further method according to the invention, the topography of the eye is particularly preferably additionally analyzed. This method provides additional information on the ametropia of the eye, in particular about aberrations, asymmetrical cylinders and corneal irregularities. j In a further preferred method, the ideal optical system is provided on the basis of the data determined from the wavefront analysis and / or from the topography analysis. Only one element from this optical system is particularly preferably provided for this. In a further step, the correcting element or elements are produced in this way on the basis of the complete data of the ametropia. This procedure leads to the complete correction of the ametropia.
Bei einem weiteren bevorzugten Verfahren werden Schußpositionen zur Herstellung des idealen optischen Systems mittels der aus der Wellenfrontanalyse und/ oder aus der Topographieanalyse ermittelten Daten berechnet. Auf diese Weise kann vorteilhaft das Laser-Spot-Excimer- Verfahren zur Herstellung der einzelnen Elemente des optischen Systems genutzt werden. Die Schußpositionen werden je nach einzusetzenden Materialien und unter Berücksichtigung des Fertigungszeitaufwandes optimiert.In a further preferred method, shot positions for producing the ideal optical system are obtained from the wavefront analysis and / or from the Topography analysis calculated data calculated. In this way, the laser spot excimer method can advantageously be used to produce the individual elements of the optical system. The shot positions are optimized depending on the materials to be used and taking the production time into account.
Bei einem weiteren Verfahren der vorliegenden Erfindung wird das alte optischen System des Auges zu dem berechneten idealen optischen System umgeformt. Hierzu werden entweder Elemente des alten optischen Systems direkt bearbeitet oder entsprechend korrigierte Elemente hergestellt und eingesetzt bzw. alte Elemente gegen neue Elemente ausgetauscht. Durch dieses Verfahren ist die Überführung des alten (fehlsichtigen) optischen Systems des Auges in ein (neues) ideales optischen System möglich. Besonders bevorzugt wird eine neue Linse bzw. eine ICL nach dem Spot-Scanning-Prinzip mit einem Excimerlaser hergestellt.In another method of the present invention, the old optical system of the eye is transformed into the calculated ideal optical system. For this purpose, elements of the old optical system are either processed directly, correspondingly corrected elements are produced and used, or old elements are replaced by new elements. This process enables the old (defective) optical system of the eye to be converted into a (new) ideal optical system. A new lens or an ICL according to the spot scanning principle is particularly preferably produced with an excimer laser.
j Bevorzugt umfaßt das optischen System als Elemente die Augenlinse und/ oder eine Intraokularlinse und/ oder die Comea des Auges und/ oder eine Kontaktlinse und/ oder eine ICL und/oder mindestens ein Brillenglas. Mittels refraktiver Chirurgie kann beispielsweise die Cornea des Auges umgeformt werden, um die bestehende Fehlsichtigkeit zu korrigieren (z.Bsp. die Oberfläche der Comea über die Photorefraktive Keratektomie, PRK, oder durch Ablation innerer Gewebeschichten der Comea durch die Laser assisted in situ Keratomileusis, LASIK). Diese Elemente weisen nicht nur rotationsgeometrische Korrekturen auf, sondern individuelle Strukturen zur Korrektur der Fehlsichtigkeit der Patienten. So ist es möglich, Intraokularlinsen oder Kontaktlinsen, insbesondere ICL'S, herzustellen, die - einmal in das Linsensystem eingebracht - nicht nur wie bisher die Fehlsichtigkeit des Auges grob korrigieren, sondern darüber hinaus alle Irregularitäten, Unsymmetrien und Strahlverzerrungen mitkorrigieren. Damit kaum ein visus erreicht werden, der über dem des normalen menschlichen Auge liegt. Außerdem ist es mit diesem Verfahren möglich, Brillengläser herzustellen, die ebenfalls alle Irregularitäten, Unsymmetrien und Strahlverzerrungen des fehlsichtigen Auges bzw. des alten optischen Systemes mitkorrigieren.j The optical system preferably comprises as elements the eye lens and / or an intraocular lens and / or the comea of the eye and / or a contact lens and / or an ICL and / or at least one spectacle lens. Using refractive surgery, for example, the cornea of the eye can be reshaped in order to correct the existing ametropia (e.g. the surface of the comea via photorefractive keratectomy, PRK, or by ablation of the inner tissue layers of the comea by laser assisted in situ keratomileusis, LASIK ). These elements not only have rotational geometry corrections, but individual structures to correct the patient's ametropia. It is thus possible to manufacture intraocular lenses or contact lenses, in particular ICL'S, which - once inserted into the lens system - not only As before, roughly correct the ametropia of the eye, but also correct all irregularities, asymmetries and beam distortions. So that a visual acuity that is above that of the normal human eye can hardly be achieved. With this method it is also possible to manufacture spectacle lenses that also correct all irregularities, asymmetries and beam distortions of the defective eye or the old optical system.
In einem besonders bevorzugten Verfahren der vorliegenden Erfindung werden einzelne optische Elemente, insbesondere Linsen, des idealen optischen Systems in einem ersten Schritt zur Überprüfung des idealen optischen Systems hergestellt und in einem zweiten Schritt werden diese einzelnen Elemente entfernt und andere Elemente, insbesondere die Comea, entsprechend umgeformt. Durch dieses Verfahren kann die Akzeptanz erhöht werden, da die einmal ermittelten Schußpositionen nun auf ein optisches Element wie bspw. eine Linse^ aufgebracht werden können und diese (geplante) Korrektur sofort den Eindruck vermittelt, wie das vollständig korrigierte Auge später sehen würde. Der Betrachter ist nun in der Lage, die Wirkung eines entsprechenden korrigierten optischen Systems subjektiv zu überprüfen und das korrigierte Sehverhalten bzw. sogar einen Supervisus noch vor einem Eingriff an der Comea zu bewerten. In einem zweiten Schritt kann dann diese Linse aus dem idealen optischen System entfernt werden und bevorzugt die Cornea dann ideal geformt werden, um den entsprechenden korrigierten Visus bereitzustellen. Bevorzugt handelt es sich bei dem provisorischen optischen Element um eine Linse, die dem Betrachter dann auf einem provisorischen Brillengestell in das optische System eingefügt werden kann. Besonders bevorzugt handelt es sich bei dem Material, das das Schußmuster vorerst aufgebracht wird, um eine feuchte Kontaktlinse. Dabei ist es besonders günstig, diese Kontaktlinse so auszuwählen, dass die sphärozylindrischen Aberrationen des zu behandelnden Patienten bereits mit dieser Linse korrigiert werden. Mit dem Behandlungslaser sind dann nur die vorher gemessenen höheren Aberrationen auf dieser Kontaktlinse zu korrigieren. Besonders vorteilhaft weist die weiche Kontaktlinse eine Brechkraft und Ablationseigenschaft auf, die weitgehend der der Comea entspricht. Dadurch werden die Schußpositionen des provisorischen optischen Elements später dem eigenen optischen Element, insbesondere der Co ea, entsprechen. Vorteilhafterweise wird das provisorische optische Element, insbesondere die Kontaktlinse, zentrisch ausgerichtet und Referenzachsen der Wavefront-Messung, sowie die Achse des Auges stimmen überein. Die Verwendung von Materialien wie bspw. PMMA als Ablationsmaterial des provisorischen optischen Elements wird bevorzugt. Hierbei wird insbesondere auch im Vergleich dieses Materials zur Comea neben der differierenden Abtragstiefe auch die unterschiedliche Brechzahl beider Medien berücksichtigt. Da dies konstante Faktoren sind, können diese mathematisch sehr gut erfasst und transformiert werden.In a particularly preferred method of the present invention, individual optical elements, in particular lenses, of the ideal optical system are produced in a first step for checking the ideal optical system, and in a second step these individual elements are removed and other elements, in particular the comea, are correspondingly removed reshaped. With this method, the acceptance can be increased since the shot positions once determined can now be applied to an optical element such as a lens and this (planned) correction immediately gives the impression of how the completely corrected eye would see later. The viewer is now able to subjectively check the effect of a corresponding corrected optical system and to evaluate the corrected visual behavior or even a supervisor even before an intervention on the comea. In a second step, this lens can then be removed from the ideal optical system and the cornea can then be ideally shaped in order to provide the corresponding corrected visual acuity. The provisional optical element is preferably a lens which the viewer can then insert into the optical system on a provisional spectacle frame. The material that the shot pattern is initially applied to is particularly preferably a moist contact lens. It is particularly advantageous to select this contact lens in such a way that the sphero-cylindrical aberrations of the patient to be treated are already corrected with this lens. Only the previously measured higher aberrations on this contact lens can then be corrected with the treatment laser. The soft contact lens particularly advantageously has a refractive power and ablation property which largely corresponds to that of the comea. As a result, the shot positions of the provisional optical element will later correspond to the own optical element, in particular the Co ea. The provisional optical element, in particular the contact lens, is advantageously aligned centrally and the reference axes of the wavefront measurement and the axis of the eye match. The use of materials such as PMMA as the ablation material of the provisional optical element is preferred. When comparing this material to the comea, the different refractive index of both media is also taken into account, in addition to the differing depth of cut. Since these are constant factors, they can be mathematically very well recorded and transformed.
Durch dieses Verfahren ist es möglich, eine provisorische Linse mit den Daten zu schiessen, die dieselbe Wellenfrontkorrektur erzeugt, wie eine etwaige beabsichtigte spätere Umformung der Comea. Hierzu wird bevorzugt eine Linse auf einem Gestell bereitgestellt, so daß kein Kontakt dieser Linse mit dem Auge erforderlich ist. Besonders bevorzugt erfolgt die Herstellung der (provisorischen) Linse während der Messung der Wellenfront im optischen System. Hierbei wird bevorzugt iterativ die provisorische Linse bearbeitet und dann nochmals die Wellenfront nachgemessen, bis keine Aberration des Gesamtsystems mehr festgestellt werden kann. Besonders bevorzugt wird bei einem solchen Vorgehen das Auge des Pateienten fixiert, beispielsweise durch ein Fadenkreuz. Denkbar ist es auch, den Abstand der provisorischen Linse zur Comea auf Null zu führen und mit einer Kontaktlinse auf dem Auge zu arbeiten, die dann besonders bevorzugt iterativ bearbeitet wird, während sie auf dem Auge liegt. Bevorzugt wird die Bearbeitung nach Durchführung entsprechender Teilbearbeitungsschritte unterbrochen, um einen Sehtest durchzuführen. Damit ist ein iteratives Annähern an den besten Visus mit unmittelbarer Hilfe des Patienten und der Benutzung des Excimerlasers möglich. Besonders bevorzugt werden die Aberrationen verschiedener Ordnung einzeln verbessert: 1. Astigmatismus, 2. Koma, 3With this method it is possible to shoot a temporary lens with the data, which produces the same wavefront correction as a possible later reshaping of the comea. For this purpose, a lens is preferably provided on a frame, so that no contact of this lens with the eye is required. The (provisional) lens is particularly preferably produced during the measurement of the wavefront in the optical system. In this case, the provisional lens is preferably processed iteratively and then the wavefront is measured again until no aberration of the overall system can be determined. One is particularly preferred such a procedure fixes the patient's eye, for example with a crosshair. It is also conceivable to bring the distance of the provisional lens to the comea to zero and to work with a contact lens on the eye, which is then particularly preferably processed iteratively while it lies on the eye. The processing is preferably interrupted after the corresponding partial processing steps have been carried out in order to carry out an eye test. This enables iterative approximation to the best visual acuity with the immediate help of the patient and the use of the excimer laser. The aberrations of different orders are particularly preferably improved individually: 1. astigmatism, 2. coma, 3
Besonders bevorzugt werden hierfür Brillen hergestellt, die äußere und innere sphärische Flächen aufweisen, wobei zumindest auf einer dieser Flächen zusätzlich Muster aufgebracht sind, deren Transferfunktion phasenkonjugiert mit den ungleichmäßigen Verzerrungen der Wellenfront sind, die durch das optische System bzw. dem Auge verursacht worden sind. Dadurch ist es möglich, mit einer solchen Brille diese speziell ermittelten Korrekturen vorzunehmen.Specifically, glasses are produced for this purpose, which have outer and inner spherical surfaces, with at least one of these surfaces additionally having patterns applied, the transfer function of which is phase-conjugated with the uneven distortions of the wavefront which have been caused by the optical system or the eye. This makes it possible to make these specially determined corrections with such glasses.
In einem bevorzugten Verfahren werden zur Herstellung einer solchen Brille die durchschnittlichen Werte der Emmetropie und der Wellenfront des Auges ermittelt, die Radien der äußeren und inneren Flächen berechnet, die eine Korrektur dieser durchschnittlichen Werte der Emmetropie darstellen, mindestens eine der Fläche mit Krümmungsradien hergestellt, die in der Größenordnung der maximalen Abweichung der Wellenfront von der Emmetropie, die durch den vorherigen Schritt korrigiert wurden, geändert wurden und dann wird diese Abweichungen der Oberfläche entsprechend dem Muster der unregelmäßigen Verzerrungen der Wellenfront des optischen Systems bzw. des Auges eingesetzt.In a preferred method for producing such glasses, the average values of the emmetropia and the wavefront of the eye are determined, the radii of the outer and inner surfaces are calculated, which represent a correction of these average values of the emmetropia, and at least one of the surfaces with radii of curvature is produced have been changed in the order of the maximum deviation of the wavefront from the emmetropia corrected by the previous step and then this deviation of the surface will correspond to Patterns of the irregular distortions of the wavefront of the optical system or the eye are used.
In einem weiteren bevorzugten Verfahren werden diese Unregelmäßigkeiten der Oberfläche entweder durch Materialabtrag oder Materialauftrag auf die Oberfläche appliziert. Dieser Abtrag kann durch Laserbestrahlung, thermische oder athermische Prozesse, z.B. durch Ablation erfolgen.In a further preferred method, these surface irregularities are applied to the surface either by material removal or material application. This removal can be done by laser radiation, thermal or athermal processes, e.g. done by ablation.
Der Auftrag auf die Oberfläche kann lagen weise erfolgen.The application to the surface can be done in layers.
Besonders bevorzugt werden die Oberflächen in den verschiedenen Sektoren genau an das Auge angepaßt, so daß beispielsweise zwei Bereiche entstehen können, bei denen die Kompensation in Abhängigkeit des Akkomodationszustandes des Auges gewählt werden kann, wenn dieses den entsprechenden Bereich nutzt.The surfaces in the different sectors are particularly preferably adapted precisely to the eye, so that, for example, two areas can arise in which the compensation can be selected as a function of the accommodation state of the eye if the eye uses the corresponding area.
Besonders bevorzug werden die Oberflächen so geändert, daß auch die geometrische Verschiebung der Ebene der Brille von der grundsätzlichen Ebene des optischen Systems des Auges kompensiert wird.The surfaces are particularly preferably changed such that the geometric shift of the plane of the glasses is also compensated for by the basic plane of the optical system of the eye.
Weiterhin wird die Aufgabe gelöst durch ein ideales optischen System, das nach einem erfindungsgemäßen Verfahren und/ oder mittels einer erfindungsgemäßen Vorrichtungen hergestellt wurde, wobei das optischen System Elemente aus implantationsgerechten und/ oder adhäsionsgerechten und/ oder ablationsgeeigneten Werkstoffen, insbesondere Kunststoff oder Glas, umfaßt. Durch die Wahl dieser Werkstoffe des erfindungsgemäßen Linsensystems ist die Verträglichkeit beim Einsatz dieser Elemente gewährleistet. Solche Werkstoffe sind beispielsweise PMMA, Acryl, Silikon oder eine Kombination dieser Werkstoffe.Furthermore, the object is achieved by an ideal optical system which was produced by a method according to the invention and / or by means of a device according to the invention, the optical system comprising elements made of materials suitable for implantation and / or adhesion and / or suitable for ablation, in particular plastic or glass. By choosing these materials of the invention Compatibility is guaranteed when using these elements. Such materials are, for example, PMMA, acrylic, silicone or a combination of these materials.
Bei einem weiteren Ausführungsbeispiel der vorliegenden Erfindung ist ein ideales optischen System vorgesehen, das Elemente umfaßt, die refraktive und/oder diffraktive Strukturen umfassen. Refraktive und/oder diffraktive Strukturen werden bisher nur in der Strahlformung verwendet. Ein Minilinsensystem lenkt und formt den eintretenden Strahl, um eine spezielle Strahlverteilung in der Zielebene zu erreichen. Der Einsatz derartiger refraktiver und oder diffraktiver Stmkturen auf einzelnen Elementen eines optischen Systems erlaubt die gezielte Korrektur von Sehschwächen in ungewöhnlich idealer Weise. So ist es durch den Einsatz dieser Strukturen möglich, einzelne nicht stetige Aberrationen zu korrigieren oder aber auch den optischen Systemen Eigenschaften zu verleihen, die ein normales menschliches Auge nicht aufweist.In a further exemplary embodiment of the present invention, an ideal optical system is provided which comprises elements which comprise refractive and / or diffractive structures. Refractive and / or diffractive structures have so far only been used in beam shaping. A mini lens system directs and shapes the incoming beam in order to achieve a special beam distribution in the target plane. The use of such refractive and or diffractive stem structures on individual elements of an optical system allows the targeted correction of poor eyesight in an unusually ideal manner. The use of these structures makes it possible to correct individual non-continuous aberrations or to give the optical systems properties that a normal human eye does not have.
Die Aufgabe der Erfindung wird weiterhin durch ein Element eines (idealen) Linsensystemes gelöst, das refraktive und/oder diffraktive Strukturen aufweist. Solche Elemente können Intraokularlinsen, modifizierte Cornea, Kontaktlinsen, ICL's oder Brillengläser sein.The object of the invention is further achieved by an element of an (ideal) lens system which has refractive and / or diffractive structures. Such elements can be intraocular lenses, modified corneas, contact lenses, ICL's or spectacle lenses.
Ausführungsbeispiele der Erfindung und vorteilhafte Ausgestaltungen sollen im Folgenden anhand von Zeichnungen näher erläutert werden. Dabei zeigen: Fig. 1 ein Blockschaltbild für ein Ausführungsbeispiel einer erfindungsgemäßenExemplary embodiments of the invention and advantageous refinements are to be explained in more detail below with reference to drawings. Show: Fig. 1 is a block diagram for an embodiment of an inventive
Vorrichtung zur Korrektur einer Aberration im Strahlengang eines Auges.Device for correcting an aberration in the beam path of an eye.
Fig. 2 eine schematische Darstellung einer Anordnung zur separatenFig. 2 is a schematic representation of an arrangement for separate
Sehfehlererfassung (Fig. 2 a) und einer Anordnung bei Superposition aller Fehler (Fig. 2 b).Visual defect detection (Fig. 2 a) and an arrangement with superposition of all defects (Fig. 2 b).
In Figur 1 ist ein Blockschaltbild für ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung zur Korrektur von Sehfehlern eines Auges dargestellt. Eine Wellenfrontanalyseeinheit 2 und eine Topographieanalyseeinheit 2' sind mit einer Steuereinheit 3 verbunden. Die Steuereinheit 3 ist über einen Bus mit einem Laser 4 und einer Strahlmodifikationseinrichtung 5 verbunden. Hinter der Strahlmodifikationseinrichtung 5 ist eine Linse 6 dargestellt. Vor der Wellenfrontanalyseeinheit 2 und der Topographieanalyseeinheit 2' ist ein Auge 1 dargestellt.FIG. 1 shows a block diagram for an exemplary embodiment of a device according to the invention for correcting vision defects in an eye. A wavefront analysis unit 2 and a topography analysis unit 2 ′ are connected to a control unit 3. The control unit 3 is connected to a laser 4 and a beam modification device 5 via a bus. A lens 6 is shown behind the beam modification device 5. An eye 1 is shown in front of the wavefront analysis unit 2 and the topography analysis unit 2 '.
Im Betriebszustand tasten die Strahlen der Wellenfrontanalyseeinheit 2 und der Topographieanalyseeinheit 2' das Auge 1 ab und übermitteln die gewonnenen Signale an die Steuereinheit 3. In der Steuereinheit 3 werden die Signale verarbeitet und das ideale optischen System für dieses Auge 1 berechnet. Im dargestellten Fall wird hier als Element des optischen Systems eine ideale Linse 6 berechnet. Insbesondere werden in der Steuereinheit 3 ausgehend von den aus den Signalen gewonnenen Daten unter Berücksichtigung der laserrelevanten Daten sämtliche Schußpositionen berechnet, die für den Laser 4 zur Herstellung der idealen Linse 6 benötigt werden. Die Steuereinheit 3 steuert daraufhin den Laser 4 an und bestimmt Energie und Pulsrate des Strahles 7. Der Strahl 7 wird durch die Strahlmodifikationseinrichtung 5 geleitet. In der Strahlmodifikationseinrichtung 5 wird der Strahl 7 gemäß den berechneten Schußpositionenen durch die Vorgaben der Steuereinheit 3 über Scanner und Linsensysteme geformt und abgelenkt, so daß durch Ablation von Material auf der Rohlinse durch den gesteuerten Laserstrahl 7 die kundenspezifische Linse 6 hergestellt wird. Die Steuereinheit 3 kann auch bevorzugt in mehreren Teilsteuereinheiten ausgeführt sein, die mit einzelnen Bauteilen der Vorrichtung verbunden sein können.In the operating state, the rays of the wavefront analysis unit 2 and the topography analysis unit 2 ′ scan the eye 1 and transmit the signals obtained to the control unit 3. The signals are processed in the control unit 3 and the ideal optical system for this eye 1 is calculated. In the case shown, an ideal lens 6 is calculated here as an element of the optical system. In particular, all shot positions that are required for the laser 4 for producing the ideal lens 6 are calculated in the control unit 3 based on the data obtained from the signals, taking into account the laser-relevant data. The control unit 3 then controls the laser 4 and determines the energy and pulse rate of the beam 7 Beam 7 is passed through beam modification device 5. In the beam modification device 5, the beam 7 is shaped and deflected according to the calculated shot positions by the specifications of the control unit 3 via scanners and lens systems, so that the customized laser lens 7 is produced by the controlled laser beam 7 by ablation of material on the raw lens. The control unit 3 can also preferably be embodied in a plurality of sub-control units which can be connected to individual components of the device.
Auf diese Weise ist ein neues und vorteilhaftes Verfahren und eine Vorrichtung zur vollständigen Korrektur von Sehfehlem des menschlichen Auges angegeben worden. Es wurden Kombinationen von Meß- und Bearbeitungsverfahren angegeben, welche in ihrer erfindungsgemäßen Anwendung die vollständige Korrektur des menschlichen Auges ermöglichen. Dabei werden Meßverfahren eingesetzt, welche die Oberfläche der Comea präzise erfassen; können und auch die im weiteren Strahlengang bis zur Netzhaut entstehenden Abbildungsfehler registrieren. Die rechnergestützte Auswertung dieserIn this way, a new and advantageous method and a device for the complete correction of visual defects in the human eye have been specified. Combinations of measuring and processing methods have been specified which, in their application according to the invention, enable the human eye to be completely corrected. Measuring methods are used which precisely record the surface of the comea; can also register the imaging errors that arise in the further beam path up to the retina. The computer-aided evaluation of this
Meßergebnisse ergibt in Verbindung mit der Berechnung ideal korrigierter AugenlinsenMeasurement results in connection with the calculation of ideally corrected eye lenses
(beispielsweise nach Katarakt-Operationen) oder ideal korrigierneder Corneaoberflächen die Möglichkeit, bevorzugt mit einem Spot-Scanning-Excimerlasersystem topographiegestützt eine patientenspezifische Linse herzustellen und/ oder die Hornhaut ideal korrigierend zu formen.(for example after cataract operations) or ideally correcting the corneal surfaces, the possibility, preferably using a spot scanning excimer laser system, to produce a patient-specific lens with topography and / or to shape the cornea in an ideal corrective manner.
Insbesondere kann die Korrektur über die Modifikation eines Elements des optischen Systems erfolgen. So reicht es zur Verbesserung des Sehvermögens eines Patienten mit grauem Star und einer Fehlsichtigkeit aus, die intraokulare Linse vollständig zu korrigieren. In einem solchen Fall ist es nicht mehr erforderlich, neben der Katarakt- Operation noch eine refraktive Operation durchzuführen.In particular, the correction can be made by modifying an element of the optical system. To improve the eyesight of a patient with cataracts and ametropia, it is sufficient to completely close the intraocular lens correct. In such a case, it is no longer necessary to perform a refractive surgery in addition to the cataract surgery.
In Figur 2 eine schematische Darstellung einer Anordnung zur separaten Sehfehlererfassung (Fig. 2 a) und einer Anordnung bei Superposition aller Fehler (Fig. 2 b) dargestellt. Hierbei ist das optische System mit dem Auge und vier optischen Elementen dargestellt. Mit diesen optischen Elementen können nun einzelne Sehfehler korrigiert werden, indem die einzelnen optischen Elemente spezifisch zur Korrektur einzelnerFIG. 2 shows a schematic representation of an arrangement for separate visual defect detection (FIG. 2 a) and an arrangement with superposition of all defects (FIG. 2 b). The optical system is shown with the eye and four optical elements. With these optical elements, individual visual defects can now be corrected by using the individual optical elements specifically for correcting individual ones
Sehfehler eingesetzt werden. So kann beispielsweise mit dem ersten optischen Element eine sphärische Aberration korrigiert werden, mit dem zweiten optischen Element einVisual defects are used. For example, spherical aberration can be corrected with the first optical element and one with the second optical element
Astigmatismus kompensiert werden und mit dem dritten optischen Element eine Koma ausgeglichen werden. Hierzu können die einzelnen optischen Elemente nacheinander mit den durch die Korrekturparameter ermittelten Schußpositionen bearbeitet und indiviuell umgeformt werden. Bevorzugt wird nach jeder (Teil-)Korrektur ein Sehtest durchgeführt, um die Veränderung auch subjektiv überprüfen zu können.Astigmatism can be compensated and a coma can be compensated with the third optical element. For this purpose, the individual optical elements can be processed one after the other with the shot positions determined by the correction parameters and individually reshaped. A vision test is preferably carried out after each (partial) correction so that the change can also be subjectively checked.
In Fig. 2 b ist hingegen dargestellt, wie eine Superposition aller Fehler auf einem optischen Element wirken würde und wie die oben angedeutete Kompensation im unteren Fall auf das eine optische Element übertragen werden müßte bzw. am Ende übertragen wird. Nachdem nämlich die einzelnen Korrekturen der einzelnen optischen Elemente festgelegt wurden, lassen sich diese auf ein provisorisches optisches Element übertragen. Die Schußpositionen, die dieser Korrektur zugrunde liegen, können dann in einem weiteren Schritt auf beispielsweise die Comea übertragen werden - auf das provisorische optische Element kann dann verzichtet werden. Auf diese Weise ist eine Vorrichtung und ein Verfahren zur Korrektur von Sehfehlem des menschlichen Auges bereitgestellt worden, die bzw. das elegant eine vollständige Korrektur aller refraktiven Sehfehler einschließlich der Aberrationen des Strahlenganges im fehlsichtigen Auge erlauben, wobei die einzelnen Fehler auch durch iterative Korrektur, bevorzugt auf einem oder mehreren provisorischen optischen Elementen vorab durchgeführt und von dem Betrachter beurteilt werden können, ohne daß bereits ein Eingriff am Auge stattgefunden hat. In contrast, FIG. 2 b shows how a superposition of all errors on an optical element would work and how the compensation indicated above in the lower case would have to be transferred to an optical element or would be transferred at the end. After the individual corrections of the individual optical elements have been determined, they can be transferred to a provisional optical element. The shot positions on which this correction is based can then be transferred in a further step to the comea, for example - the provisional optical element can then be dispensed with. In this way, a device and a method for correcting visual defects in the human eye have been provided which elegantly allow a complete correction of all refractive visual defects, including the aberrations of the beam path in the defective eye, the individual errors also being preferred by iterative correction can be carried out in advance on one or more provisional optical elements and can be assessed by the viewer without any intervention on the eye.
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19938203 | 1999-08-11 | ||
DE19938203A DE19938203A1 (en) | 1999-08-11 | 1999-08-11 | Method and device for correcting visual defects in the human eye |
DE2000124080 DE10024080A1 (en) | 2000-05-17 | 2000-05-17 | Method and device for complete correction of sight defects in human eye uses rays from wave front and topography analyzers to scan eye and send signals to controller for processing into ideal optical system for that eye |
DE10024080 | 2000-05-17 | ||
PCT/EP2000/007822 WO2001012114A1 (en) | 1999-08-11 | 2000-08-11 | Method and device for completely correcting visual defects of the human eye |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1119324A1 true EP1119324A1 (en) | 2001-08-01 |
Family
ID=26005704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00954622A Ceased EP1119324A1 (en) | 1999-08-11 | 2000-08-11 | Method and device for completely correcting visual defects of the human eye |
Country Status (7)
Country | Link |
---|---|
US (1) | US6616275B1 (en) |
EP (1) | EP1119324A1 (en) |
JP (1) | JP5026647B2 (en) |
CN (1) | CN100473371C (en) |
AU (1) | AU6701400A (en) |
CA (1) | CA2346982C (en) |
WO (1) | WO2001012114A1 (en) |
Families Citing this family (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6857741B2 (en) * | 2002-01-16 | 2005-02-22 | E-Vision, Llc | Electro-active multi-focal spectacle lens |
US7023594B2 (en) * | 2000-06-23 | 2006-04-04 | E-Vision, Llc | Electro-optic lens with integrated components |
US6871951B2 (en) * | 2000-06-23 | 2005-03-29 | E-Vision, Llc | Electro-optic lens with integrated components |
US6986579B2 (en) * | 1999-07-02 | 2006-01-17 | E-Vision, Llc | Method of manufacturing an electro-active lens |
US6619799B1 (en) | 1999-07-02 | 2003-09-16 | E-Vision, Llc | Optical lens system with electro-active lens having alterably different focal lengths |
US7264354B2 (en) * | 1999-07-02 | 2007-09-04 | E-Vision, Llc | Method and apparatus for correcting vision using an electro-active phoropter |
US6851805B2 (en) | 1999-07-02 | 2005-02-08 | E-Vision, Llc | Stabilized electro-active contact lens |
US7775660B2 (en) | 1999-07-02 | 2010-08-17 | E-Vision Llc | Electro-active ophthalmic lens having an optical power blending region |
US7988286B2 (en) | 1999-07-02 | 2011-08-02 | E-Vision Llc | Static progressive surface region in optical communication with a dynamic optic |
US6566627B2 (en) * | 2000-08-11 | 2003-05-20 | Westar Photonics, Inc. | Laser method for shaping of optical lenses |
AU2001296271A1 (en) * | 2000-09-21 | 2002-04-02 | Visx, Inc | Enhanced wavefront ablation system |
IL143503A0 (en) * | 2001-05-31 | 2002-04-21 | Visionix Ltd | Aberration correction spectacle lens |
JP2005505789A (en) * | 2001-10-05 | 2005-02-24 | イー・ビジョン・エルエルシー | Hybrid electroactive lens |
CA2475389C (en) * | 2002-02-11 | 2009-07-14 | Visx, Inc. | Closed loop system and method for ablating lenses with aberrations |
AU2003249884B2 (en) * | 2002-06-27 | 2008-08-14 | Technolas Gmbh Ophthalmologishe Systeme | Myopia correction enhancing biodynamic ablation |
US6786603B2 (en) * | 2002-09-25 | 2004-09-07 | Bausch & Lomb Incorporated | Wavefront-generated custom ophthalmic surfaces |
DE10245081A1 (en) * | 2002-09-27 | 2004-04-01 | Carl Zeiss | Process for processing a prefabricated or semi-finished product |
WO2004034129A1 (en) * | 2002-10-04 | 2004-04-22 | Carl Zeiss Ag | Method for production of a lens and lens produced thus |
US7896916B2 (en) * | 2002-11-29 | 2011-03-01 | Amo Groningen B.V. | Multifocal ophthalmic lens |
SE0203564D0 (en) * | 2002-11-29 | 2002-11-29 | Pharmacia Groningen Bv | Multifocal opthalmic lens |
DE10333770A1 (en) | 2003-07-22 | 2005-02-17 | Carl Zeiss Meditec Ag | Method for material processing with laser pulses of large spectral bandwidth and apparatus for carrying out the method |
DE10333562A1 (en) | 2003-07-23 | 2005-02-17 | Carl Zeiss Meditec Ag | Method, device and system for determining a system parameter of a laser beam treatment system |
TW200532278A (en) * | 2003-08-15 | 2005-10-01 | E Vision Llc | Enhanced electro-active lens system |
US20080269731A1 (en) * | 2003-11-19 | 2008-10-30 | Casimir Andrew Swinger | Method and apparatus applying patient-verified prescription of high order aberrations |
US20050261752A1 (en) * | 2004-05-18 | 2005-11-24 | Visx, Incorporated | Binocular optical treatment for presbyopia |
BRPI0517017A (en) * | 2004-10-25 | 2008-09-30 | Advanced Medical Optics Inc | ophthalmic lens with multiple phase plates |
US7922326B2 (en) | 2005-10-25 | 2011-04-12 | Abbott Medical Optics Inc. | Ophthalmic lens with multiple phase plates |
US9801709B2 (en) | 2004-11-02 | 2017-10-31 | E-Vision Smart Optics, Inc. | Electro-active intraocular lenses |
US8915588B2 (en) | 2004-11-02 | 2014-12-23 | E-Vision Smart Optics, Inc. | Eyewear including a heads up display |
US8778022B2 (en) | 2004-11-02 | 2014-07-15 | E-Vision Smart Optics Inc. | Electro-active intraocular lenses |
US20090112321A1 (en) * | 2005-08-04 | 2009-04-30 | Kitchen Michael S | Spinal stabilization device and method |
US20080273166A1 (en) | 2007-05-04 | 2008-11-06 | William Kokonaski | Electronic eyeglass frame |
US7656509B2 (en) | 2006-05-24 | 2010-02-02 | Pixeloptics, Inc. | Optical rangefinder for an electro-active lens |
CN102520530A (en) | 2006-06-23 | 2012-06-27 | 像素光学公司 | Electronic adapter for electro-active spectacle lenses |
AR064985A1 (en) | 2007-01-22 | 2009-05-06 | E Vision Llc | FLEXIBLE ELECTROACTIVE LENS |
EP2115519A4 (en) | 2007-02-23 | 2012-12-05 | Pixeloptics Inc | Ophthalmic dynamic aperture |
US20080273169A1 (en) | 2007-03-29 | 2008-11-06 | Blum Ronald D | Multifocal Lens Having a Progressive Optical Power Region and a Discontinuity |
EP2130090A4 (en) | 2007-03-07 | 2011-11-02 | Pixeloptics Inc | Multifocal lens having a progressive optical power region and a discontinuity |
US7883207B2 (en) | 2007-12-14 | 2011-02-08 | Pixeloptics, Inc. | Refractive-diffractive multifocal lens |
US10613355B2 (en) | 2007-05-04 | 2020-04-07 | E-Vision, Llc | Moisture-resistant eye wear |
US11061252B2 (en) | 2007-05-04 | 2021-07-13 | E-Vision, Llc | Hinge for electronic spectacles |
US8585687B2 (en) | 2007-05-11 | 2013-11-19 | Amo Development, Llc | Combined wavefront and topography systems and methods |
US7976163B2 (en) * | 2007-06-27 | 2011-07-12 | Amo Wavefront Sciences Llc | System and method for measuring corneal topography |
US7988290B2 (en) | 2007-06-27 | 2011-08-02 | AMO Wavefront Sciences LLC. | Systems and methods for measuring the shape and location of an object |
US8317321B2 (en) | 2007-07-03 | 2012-11-27 | Pixeloptics, Inc. | Multifocal lens with a diffractive optical power region |
US7905594B2 (en) * | 2007-08-21 | 2011-03-15 | Johnson & Johnson Vision Care, Inc. | Free form ophthalmic lens |
US8313828B2 (en) | 2008-08-20 | 2012-11-20 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens precursor and lens |
US8317505B2 (en) | 2007-08-21 | 2012-11-27 | Johnson & Johnson Vision Care, Inc. | Apparatus for formation of an ophthalmic lens precursor and lens |
US8318055B2 (en) | 2007-08-21 | 2012-11-27 | Johnson & Johnson Vision Care, Inc. | Methods for formation of an ophthalmic lens precursor and lens |
BRPI0908992A2 (en) | 2008-03-18 | 2015-11-24 | Pixeloptics Inc | advanced electro-active optical device |
US8154804B2 (en) | 2008-03-25 | 2012-04-10 | E-Vision Smart Optics, Inc. | Electro-optic lenses for correction of higher order aberrations |
US9417464B2 (en) | 2008-08-20 | 2016-08-16 | Johnson & Johnson Vision Care, Inc. | Method and apparatus of forming a translating multifocal contact lens having a lower-lid contact surface |
US7988293B2 (en) | 2008-11-14 | 2011-08-02 | AMO Wavefront Sciences LLC. | Method of qualifying light spots for optical measurements and measurement instrument employing method of qualifying light spots |
US20100217247A1 (en) * | 2009-02-20 | 2010-08-26 | Bille Josef F | System and Methods for Minimizing Higher Order Aberrations Introduced During Refractive Surgery |
US8240849B2 (en) * | 2009-03-31 | 2012-08-14 | Johnson & Johnson Vision Care, Inc. | Free form lens with refractive index variations |
US8807076B2 (en) | 2010-03-12 | 2014-08-19 | Johnson & Johnson Vision Care, Inc. | Apparatus for vapor phase processing ophthalmic devices |
EP3797743A3 (en) * | 2010-05-10 | 2021-07-21 | Ramot at Tel Aviv University, Ltd. | System and method for treating an eye |
US8128221B2 (en) | 2010-06-04 | 2012-03-06 | Grant Alan H | Method for correcting vision problems |
US8622546B2 (en) | 2011-06-08 | 2014-01-07 | Amo Wavefront Sciences, Llc | Method of locating valid light spots for optical measurement and optical measurement instrument employing method of locating valid light spots |
EP2800993A2 (en) | 2012-01-06 | 2014-11-12 | HPO Assets LLC | Eyewear docking station and electronic module |
EP3824798A1 (en) | 2012-08-31 | 2021-05-26 | Amo Groningen B.V. | Multi-ring lens, systems and methods for extended depth of focus |
JP6402116B2 (en) | 2013-02-26 | 2018-10-10 | ベルキン レーザー リミテッド | Glaucoma treatment system |
US9645412B2 (en) | 2014-11-05 | 2017-05-09 | Johnson & Johnson Vision Care Inc. | Customized lens device and method |
US10359643B2 (en) | 2015-12-18 | 2019-07-23 | Johnson & Johnson Vision Care, Inc. | Methods for incorporating lens features and lenses having such features |
EP3413840A1 (en) | 2016-02-09 | 2018-12-19 | AMO Groningen B.V. | Progressive power intraocular lens, and methods of use and manufacture |
ES2861520T3 (en) | 2016-04-12 | 2021-10-06 | E Vision Smart Optics Inc | Electroactive lenses with high resistive bridges |
US10599006B2 (en) | 2016-04-12 | 2020-03-24 | E-Vision Smart Optics, Inc. | Electro-active lenses with raised resistive bridges |
CA3056707A1 (en) | 2017-03-17 | 2018-09-20 | Amo Groningen B.V. | Diffractive intraocular lenses for extended range of vision |
RU2660302C1 (en) * | 2017-04-24 | 2018-07-05 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) | Sensor for continuous monitoring of wire insulation |
US11523897B2 (en) | 2017-06-23 | 2022-12-13 | Amo Groningen B.V. | Intraocular lenses for presbyopia treatment |
WO2019002390A1 (en) | 2017-06-28 | 2019-01-03 | Amo Groningen B.V. | Extended range and related intraocular lenses for presbyopia treatment |
EP4487816A2 (en) | 2017-06-28 | 2025-01-08 | Amo Groningen B.V. | Diffractive lenses and related intraocular lenses for presbyopia treatment |
US11327210B2 (en) | 2017-06-30 | 2022-05-10 | Amo Groningen B.V. | Non-repeating echelettes and related intraocular lenses for presbyopia treatment |
CN112292631B (en) | 2018-12-06 | 2024-07-26 | 阿莫格罗宁根私营有限公司 | Diffraction lens for presbyopia treatment |
EP4085292A1 (en) | 2019-12-30 | 2022-11-09 | AMO Groningen B.V. | Lenses having diffractive profiles with irregular width for vision treatment |
US11364696B2 (en) | 2020-09-18 | 2022-06-21 | Johnson & Johnson Vision Care, Inc | Apparatus for forming an ophthalmic lens |
CN112415774A (en) * | 2020-12-14 | 2021-02-26 | 上海美沃精密仪器股份有限公司 | Design method of corneal contact lens |
US11684799B2 (en) | 2021-08-28 | 2023-06-27 | Cutera, Inc. | Image guided laser therapy |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4002029A1 (en) * | 1990-01-24 | 1991-07-25 | Peter Hoefer | METHOD FOR THE PRODUCTION OF CONTACT LENSES AND CONTACT LENS PRODUCTION SYSTEM |
WO1992001417A1 (en) * | 1990-07-19 | 1992-02-06 | Horwitz Larry S | Vision measurement and correction |
US5740815A (en) * | 1995-06-07 | 1998-04-21 | Alpins; Noel A. | Method for surgically achieving minimum astigmatism measured refractively and topographically |
US6063072A (en) * | 1994-12-08 | 2000-05-16 | Summit Technology, Inc. | Methods and systems for correction of hyperopia and/or astigmatism using ablative radiation |
US5782822A (en) * | 1995-10-27 | 1998-07-21 | Ir Vision, Inc. | Method and apparatus for removing corneal tissue with infrared laser radiation |
EP0921764A1 (en) * | 1996-05-10 | 1999-06-16 | California Institute Of Technology | Conoscopic system for real-time corneal topography |
DE19727573C1 (en) | 1996-10-26 | 1998-05-20 | Aesculap Meditec Gmbh | Device and method for shaping surfaces, in particular lenses |
US6271914B1 (en) * | 1996-11-25 | 2001-08-07 | Autonomous Technologies Corporation | Objective measurement and correction of optical systems using wavefront analysis |
US5777719A (en) * | 1996-12-23 | 1998-07-07 | University Of Rochester | Method and apparatus for improving vision and the resolution of retinal images |
DE19705119A1 (en) | 1997-02-11 | 1998-08-13 | Johannes Prof Dr Schwider | Dynamic range increasing method for measurement through Shack-Hartmann sensor |
WO1999027334A1 (en) * | 1997-11-21 | 1999-06-03 | Autonomous Technologies Corporation | Objective measurement and correction of optical systems using wavefront analysis |
US6050687A (en) | 1999-06-11 | 2000-04-18 | 20/10 Perfect Vision Optische Geraete Gmbh | Method and apparatus for measurement of the refractive properties of the human eye |
-
2000
- 2000-08-11 CN CNB008016690A patent/CN100473371C/en not_active Expired - Lifetime
- 2000-08-11 AU AU67014/00A patent/AU6701400A/en not_active Abandoned
- 2000-08-11 EP EP00954622A patent/EP1119324A1/en not_active Ceased
- 2000-08-11 CA CA2346982A patent/CA2346982C/en not_active Expired - Lifetime
- 2000-08-11 US US09/807,133 patent/US6616275B1/en not_active Expired - Fee Related
- 2000-08-11 WO PCT/EP2000/007822 patent/WO2001012114A1/en active Application Filing
- 2000-08-11 JP JP2001516461A patent/JP5026647B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO0112114A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP5026647B2 (en) | 2012-09-12 |
US6616275B1 (en) | 2003-09-09 |
JP2003506196A (en) | 2003-02-18 |
CN100473371C (en) | 2009-04-01 |
CN1320026A (en) | 2001-10-31 |
AU6701400A (en) | 2001-03-13 |
CA2346982A1 (en) | 2001-02-22 |
CA2346982C (en) | 2013-10-15 |
WO2001012114A1 (en) | 2001-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001012114A1 (en) | Method and device for completely correcting visual defects of the human eye | |
DE19938203A1 (en) | Method and device for correcting visual defects in the human eye | |
DE102008017293B4 (en) | A method of generating control data for ophthalmic surgery and ophthalmic surgical apparatus and methods | |
EP2389147B1 (en) | Device and method for producing control data for the surgical correction of defective eye vision | |
EP1171024A1 (en) | Method for producing an artificial ocular lens | |
EP4342436B1 (en) | Laser-based treatment device for surgical correction of poor eyesight | |
EP1069877A1 (en) | Device for photorefractive cornea surgery in higher-order visual disorders | |
EP3454802B1 (en) | Planning device and method for generating control data for an ophthalmic surgery device | |
WO2009124695A1 (en) | System for refractive ophthalmologic surgery | |
DE102005013558A1 (en) | Method and device for increasing the depth of focus of an optical system | |
DE102012018421A1 (en) | Planning device for producing control data for treating device for myopia correction with and without astigmatism of visually impaired patient, has calculating unit determining cornea-cut surface so that surface is formed from partial areas | |
DE102013218415A1 (en) | Eye surgery procedure | |
DE102016116267A1 (en) | An apparatus for operative vision correction of an eye and method for generating control data therefor | |
DE102017207529A1 (en) | Aftercare for eye surgery refraction correction | |
WO2005011544A1 (en) | Method, device and system for determining a system parameter of a laser beam treatment system | |
DE102006053119A1 (en) | Treatment device for vision correction has control device inserting allowance dependent on target points before correction of focusing position error | |
DE10024080A1 (en) | Method and device for complete correction of sight defects in human eye uses rays from wave front and topography analyzers to scan eye and send signals to controller for processing into ideal optical system for that eye | |
EP1154742A2 (en) | Device used for the photorefractive keratectomy of the eye using a centering method | |
EP3906903B1 (en) | Method for providing control data for an ophthalmic laser, control device, treatment device, computer program, computer readable medium | |
DE102004033819B4 (en) | Method for generating control data of a laser system for ophthalmological procedures | |
WO2008055705A1 (en) | Treatment device for operatively correcting defective vision of an eye, method for producing control data and method for operatively correcting defective vision | |
WO2001037031A1 (en) | Method for surface treatment of a contact lens for individual adjustment to the eye system | |
DE10241211B4 (en) | Device and method for manufacturing customized soft contact lenses | |
WO2021023799A1 (en) | Planning methods and devices for precisely changing a refractive index | |
DE102019135609B4 (en) | Method for controlling an ophthalmic surgical laser and treatment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20010822 |
|
17Q | First examination report despatched |
Effective date: 20060427 |
|
APBN | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2E |
|
APBR | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3E |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20110809 |