EP1113145B1 - Blade for gas turbines with metering section at the trailing edge - Google Patents
Blade for gas turbines with metering section at the trailing edge Download PDFInfo
- Publication number
- EP1113145B1 EP1113145B1 EP00811043A EP00811043A EP1113145B1 EP 1113145 B1 EP1113145 B1 EP 1113145B1 EP 00811043 A EP00811043 A EP 00811043A EP 00811043 A EP00811043 A EP 00811043A EP 1113145 B1 EP1113145 B1 EP 1113145B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- trailing edge
- ribs
- guide element
- walls
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/0405—Rotating moulds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/122—Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/304—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
Definitions
- the present invention relates to the field of guide elements used in gas turbines, such as guide vanes or turbine blades. It relates to a guide element according to the preamble of claim 1.
- a gas turbine comprises a plurality of elements, which are impinged by hot working air. Since the working air has a temperature which, for many of the materials from which such flow-around components are built, leads to severe wear and tear, especially with longer operating times, it is necessary to cool many of these components.
- the cooling can be designed as internal cooling, in which the elements are designed as hollow profiles or simply provided with internal cooling channels through which a cooling air flow is passed.
- Modern gas turbine blades usually use a combination of the above methods, i.
- An internal convective cooling system is used, which additionally has openings for film blowing at critical points.
- the amount of cooling air used must be minimized. This means that even for large components only a small cooling air mass flow is available.
- the flow cross sections In order to realize and control the low cooling mass flows with simultaneously required efficient internal heat transfer, the flow cross sections must be correspondingly reduced resp. Throttling cross sections are introduced.
- the throttling of the cooling mass flow takes place in the region of the cast blade trailing edge, in the vicinity of the cooling air outlet.
- the end of the ribs connecting the pressure and suction side walls is reset in the axial direction, i.e. the ribs already end inside the blade and do not reach the trailing edge.
- Figure 1 shows a section through a prior art vane often used in gas turbines. It is an axial section to the main axis of the turbine and perpendicular to the blade plane extending through a vane, as they are typically used immediately after the combustion chamber and before the first run of the gas turbine for optimum flow of the blades.
- the blade is designed as a hollow profile, which is bounded on the suction side by a wall 10, and on the pressure side by a further wall 11. In the inflow region, the blade is widened, the walls 10 and 11 are connected in a rounding, and between the walls 10 and 11 is a central, radially extending insert 12, around which the cooling channel leads around.
- the central insert 12 is surrounded by approximately axially extending ribs in whole or in part. These ribs converge at the rear end of the insert (16 in Fig. 1) and connect from there to the suction and pressure side vane walls. Approximately axial channels are formed between the ribs, in which the cooling air is guided.
- the ribbed bench can be interrupted in order to produce a radial plenum 18.
- the subsequent ribbed bench 17 can be arranged both "in line" or offset from the previous ribbed bench.
- the pressure- and suction-side walls are connected by very short ribs or so-called pin rows.
- the state of the art is now to let these internals (ribs, pins, etc.) inside the blade ends. This avoids that the core required for casting production has a large jump in the cross-sectional area exactly at the trailing edge.
- the above method has the considerable disadvantage that the outlet cross section of the cooling air and thus the cooling air mass flow can only be controlled insufficiently.
- the walls also mostly have film cooling holes 13-15, through which cooling air can flow to the outside.
- the invention is therefore based on the object to improve a guide element of the type mentioned so that the cooling air flow can be changed by the guide element even after its preparation in a simple manner, and to provide a method for its preparation
- the essence of the invention is that the cooling air flow between the arranged at the trailing edge ribs can be much easier post-processing and maintenance due to good accessibility and maintenance, with the throttling causes the cooling air flow through the arranged at the trailing edge throttle ribs is, and the throttling from the outside easily by drilling or similar. set or can be measured.
- An embodiment of the invention is characterized in that the thickness of the guide element at the trailing edge in the range of 0.5 to 5 mm, particularly preferably in the range of 1.0 to 2.5 mm, and that the slot thickness of the cooling air channels between the walls at the outlet in the range of 0.3 to 2 mm, in particular in the range of 0.8 to 1.5 mm.
- the guide element is designed as a guide blade arranged in front of a turbine rotor and if air is used as the cooling medium, the arrangement according to the invention and these dimensions prove to be particularly advantageous.
- the casting core is shaped in such a way that the rib geometry is modeled beyond the trailing edge of the blade in the casting core. Only after a length of about 0.5 to 5, preferably 1 to 3 core thicknesses, the rib geometry is hidden.
- This method makes the simple production of a guide element according to the invention possible in the first place. In fact, in a normal casting process, the effective throat area can not simply be placed directly against the trailing edge. The erratic cross-sectional widening at the outlet in the Gusskem leads to a sharp increase in the core fractures during production. This can be avoided by leaving a supernatant in the casting process.
- Figure 2 a shows a section through a vane with immediately adjacent to the trailing edge ribs 24 between the walls 10 and 11. It is a figure 2 corresponding, axially to the main axis of the turbine and perpendicular to the blade plane extending section through a vane.
- the blade is again designed as a hollow profile, which is bounded on the suction side by a wall 10, and on the pressure side by a further wall 11.
- the guide vane is limited only by the two walls 10 and 11 connected to one another with ribs interrupted in the radial direction, cooling channels run in between.
- FIG. 2c) shows a section along the line XX in FIG. 2a), ie substantially parallel to the plane of the page.
- first ribs 16 Immediately adjacent to the insert 12 are first ribs 16.
- Behind the first row of ribs 16 is a front radial plenum 18, which allows a flow and pressure equalization of the cooling air in the radial direction.
- the individual ribs of the rows 16 and 17 advantageously have a so-called division ratio, the ratio of the radial width e normal to the plane of the sheet to the radial spacing f, in the range from 0.25 to 0.75.
- pins 20 i. Formed as simple webs rows of ribs, which allow a uniform distribution of the cooling air flow at the trailing edge 21 as possible.
- the division ratio (diameter g to radial spacing h) of the pins 20 is in the range of 0.25 to 0.7.
- FIG. 2b shows the edge region of an element which is extended over the trailing edge by the length b. In the region of the supernatant advantageously no ribs are arranged more.
- the transition from the throttle geometry then does not coincide with the core holder, but initially takes place within the extended component, a transition from the throttle geometry to a continuous radial channel, which can then be used without risk of broken core as a core holder.
- This transition can be optimally designed in different ways depending on the method to core holder, ie it is not mandatory that the two walls as shown in Figure 2b) are extended backwards evenly, for example, there are also a gradual protruding widening, or Rejuvenations resp. Thickening of the walls in the region of the supernatant conceivable.
- the projecting geometry is reworked after casting to the desired length of the trailing edge, ie removed, so that the throttle points coincide with the trailing edge. This can eg together with the usually subsequently necessary Post-processing such as erosion and laser drilling of the film cooling holes 13-15 happen.
- the trailing edge usually has a thickness d in the range of 0.5 to 5 mm, preferably in the range of 1.0 to 2.5 mm.
- the slot thickness c of the cooling air channel is usually in the range of 0.3 to 2.0 mm, preferably in the range of 0.8 to 1.5 mm.
- the supernatant b beyond the trailing edge should be 0.5 to 5 times, preferably 1 to 3 times, the length a of the throttle ribs 24, especially if the supernatant b is equal to the length a of the throttle ribs.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Die vorliegende Erfindung bezieht sich auf das Gebiet der in Gasturbinen verwendeten Leitelemente wie Leit- oder Turbinenschaufeln. Sie betrifft ein Leitelement gemäss dem Oberbegriff des Anspruchs 1.The present invention relates to the field of guide elements used in gas turbines, such as guide vanes or turbine blades. It relates to a guide element according to the preamble of claim 1.
Eine Gasturbine umfasst eine Vielzahl von Elementen, welche von heisser Arbeitsluft angeströmt werden. Da die Arbeitsluft eine Temperatur aufweist, welche für viele der Materialien, aus denen solche umströmten Komponenten gebaut sind, insbesondere bei längerer Betriebsdauer zu starken Abnützungserscheinungen führt, ist es nötig, viele dieser Komponenten zu kühlen. Die Kühlung kann dabei als lnnenkühlung gestaltet werden, bei der die Elemente als Hohlprofile gestaltet oder einfach mit inneren Kühlkanälen versehen werden, durch welche ein Kühlluftstrom geleitet wird.A gas turbine comprises a plurality of elements, which are impinged by hot working air. Since the working air has a temperature which, for many of the materials from which such flow-around components are built, leads to severe wear and tear, especially with longer operating times, it is necessary to cool many of these components. The cooling can be designed as internal cooling, in which the elements are designed as hollow profiles or simply provided with internal cooling channels through which a cooling air flow is passed.
Alternativ oder ergänzend ist es auch möglich, eine sogenannte Filmkühlung vorzusehen, bei welcher die Elemente mit einem aussenseitigen Kühlluftflim beaufschlagt werden.Alternatively or additionally, it is also possible to provide a so-called film cooling, in which the elements are subjected to an outside Kühlluftflim.
Moderne Gasturbinenschaufeln verwenden meist eine Kombination der obigen Methoden, d.h. es findet ein internes konvektives Kühlsystem Anwendung, welches an kritischen Stellen zusätzlich Öffnungen zur Filmausblasung aufweist. Um den Wirkungsgrad und die Leistung der Gasturbine zu steigern, sowie um die Emissionen zu reduzieren, muss die Menge an verwendeter Kühlluft minimiert werden. Dies bedeutet, dass selbst für grosse Komponenten nur ein kleiner Kühlluftmassenstrom zur Verfügung steht. Um die geringen Kühlmassenströme bei gleichzeitig benötigtem effizientem internem Wärmeübergang zu realisieren und zu kontrollieren, müssen die Strömungsquerschnitte entsprechend verkleinert resp. Drosselquerschnitte eingeführt werden.Modern gas turbine blades usually use a combination of the above methods, i. An internal convective cooling system is used, which additionally has openings for film blowing at critical points. In order to increase the efficiency and performance of the gas turbine, as well as to reduce emissions, the amount of cooling air used must be minimized. This means that even for large components only a small cooling air mass flow is available. In order to realize and control the low cooling mass flows with simultaneously required efficient internal heat transfer, the flow cross sections must be correspondingly reduced resp. Throttling cross sections are introduced.
Bei vielen der bekannten Schaufelauslegungen findet die Drosselung des Kühlmassenstromes im Bereich der gegossenen Schaufelhinterkante, in der Nähe des Kühlluftaustrittes statt. Insbesondere aus herstellungstechnischen Gründen, um Kernbrüche zu vermeiden, wird das Ende der Rippen, welche die druck- und saugseitige Wand verbinden, in axialer Richtung zurückgesetzt, d.h., die Rippen enden bereits im Inneren der Schaufel und reichen nicht bis zur Hinterkante.In many of the known blade designs, the throttling of the cooling mass flow takes place in the region of the cast blade trailing edge, in the vicinity of the cooling air outlet. In particular, for manufacturing reasons, in order to avoid core fractures, the end of the ribs connecting the pressure and suction side walls is reset in the axial direction, i.e. the ribs already end inside the blade and do not reach the trailing edge.
Figur 1 zeigt einen Schnitt durch eine Leitschaufel nach dem Stand der Technik, wie sie häufig in Gasturbinen verwendet wird. Es handelt sich um einen axial zur Hauptachse der Turbine und senkrecht zur Schaufelblattebene verlaufenden Schnitt durch eine Leitschaufel, wie sie typischerweise unmittelbar nach der Brennkammer und vor der ersten Laufreihe der Gasturbine zur optimalen Anströmung der Laufschaufeln verwendet werden. Die Schaufel ist als Hohlprofil ausgebildet, welches saugseitig von einer Wand 10, und druckseitig von einer weiteren Wand 11 begrenzt wird. Im Anströmbereich ist die Schaufel verbreitert, die Wände 10 und 11 sind in einer Rundung miteinander verbunden, und zwischen den Wänden 10 und 11 befindet sich ein zentraler, radial verlaufender Einsatz 12, um welchen der Kühlkanal herumführt. Im hinteren Bereich ist die Leitschaufel 30 nur von den zwei mit in axialer Richtung verlaufenden, unterbrochenen Rippen miteinander verbundenen Wänden 10 und 11 begrenzt, dazwischen verlaufen Kühlkanäle. Häufig wird der zentrale Einsatz 12 von annähernd axial verlaufenden Rippen ganz oder teilweise umschlossen. Diese Rippen laufen am hinteren Ende des Einsatzes zusammen (16 in Fig. 1) und verbinden von dort an die saug- und druckseitigen Schaufelwände. Zwischen den Rippen bilden sich annähernd axiale Kanäle aus, in denen die Kühlluft geführt wird.Figure 1 shows a section through a prior art vane often used in gas turbines. It is an axial section to the main axis of the turbine and perpendicular to the blade plane extending through a vane, as they are typically used immediately after the combustion chamber and before the first run of the gas turbine for optimum flow of the blades. The blade is designed as a hollow profile, which is bounded on the suction side by a
Im weiteren Verlauf kann die Rippenbank unterbrochen sein, um ein in radialer Richtung verlaufendes Plenum 18 zu erzeugen. Die nachfolgende Rippenbank 17 kann sowohl "in line" oder versetzt zur vorherigen Rippenbank angeordnet werden. Im Bereich der Hinterkante werden die druck- und saugseitigen Wände von sehr kurzen Rippen oder sog. Pinreihen miteinander verbunden. Stand der Technik ist nun, diese Einbauten (Rippen, Pins, etc.) im Inneren der Schaufelenden zu lassen. Damit wird vermieden, dass der zur gusstechnischen Herstellung benötigte Kern exakt an der Hinterkante einen grossen Sprung in der Querschnittsfläche aufweist. Diese starke Unstetigkeit im Kemquerschnittsverlauf führt bei der Herstellung nämlich zu einer hohen Anzahl von Kernbrüchen. Obiges Verfahren hat jedoch den erheblichen Nachteil, dass der Austrittsquerschnitt der Kühlluft und somit der Kühlluftmassenstrom nur unzureichend kontrolliert werden können.In the further course, the ribbed bench can be interrupted in order to produce a
Die Wände weisen ausserdem meist noch Filmkühlbohrungen 13-15 auf, durch welche Kühlluft auf die Aussenseite strömen kann.The walls also mostly have film cooling holes 13-15, through which cooling air can flow to the outside.
Diese Gestaltung des internen konvektiven Kühlsystems hat eine Reihe von Nachteilen:
- ◆ Da der Querschnitt klein ist, wirken sich selbst kleine Toleranzen bei der Herstellung (Guss) auf den Kühlluftmassendurchsatz der Schaufel aus.
- ◆ Da die Drosselstelle im Inneren des Leitelements liegt, lässt sich der wirksame Drosselquerschnitt nur schwer messen und kontrollieren.
- ◆ Da die Drosselkante im Inneren des Leitelements liegt, kann der wirksame Drosselquerschnitt nachträglich nur schwer modifiziert werden.
- ◆ Die beiden meist recht dünnen Wände sind äusserst anfällig auf Beschädigungen, welche von Fremdkörpern im Heissgas verursacht werden, und welche u.U. sogar zu einer Veränderung der Drosselquerschnitte führen können.
- ◆ Durch die stufenweise Expansion der Kühlluft (1) am Ende der Rippen und (2) an der Schaufelhinterkante lässt sich der Kühlluftmassenstrom nur schwer kontrollieren und justieren.
- ◆ Since the cross section is small, even small manufacturing tolerances (casting) affect the cooling air mass flow rate of the blade.
- ◆ Since the throttle is located inside the baffle, it is difficult to measure and control the effective throttle area.
- ◆ Since the throttle edge is located inside the guide, the effective throttle area can be difficult to modify later.
- ◆ The two usually very thin walls are extremely susceptible to damage caused by foreign bodies in the hot gas, and which may even lead to a change in the throttle cross sections.
- ◆ The stepwise expansion of the cooling air (1) at the end of the ribs and (2) at the blade trailing edge make it difficult to control and adjust the cooling air mass flow.
In den Druckschriften US-A-4,835,958, EP-A-0 924 383 und US-A-4,292,008 sind bereits bis an die Hinterkante reichende Rippen offenbart. In der US-A-4,835,958 werden die Verhältnisse der Kühldampfströmung dabei durch im Inneren liegende Düsen (128 in Fig. 6; 138 in Fig. 7) bestimmt, die nachträglich von aussen nicht veränderbar sind. Dasselbe gilt für die innenliegenden Prallkühlungslöcher 58, 59 in Fig. 1 der EP-A-0 924 383. In der US-A-4,292,008 werden über die Strömungsverhältnisse bezüglich der dort vorgesehenen Hinterkantenschlitze 246 (Fig. 8) und deren nachträgliche Veränderung keinerlei Aussagen gemacht.In documents US-A-4,835,958, EP-A-0 924 383 and US-A-4,292,008, ribs reaching to the trailing edge are disclosed. In US-A-4,835,958, the ratios of the cooling steam flow are determined by internally located nozzles (128 in Fig. 6, 138 in Fig. 7), which are subsequently not changeable from the outside. The same applies to the internal impingement cooling holes 58, 59 in FIG. 1 of EP-A-0 924 383. In US-A-4,292,008, there are no statements as to the flow conditions with respect to the trailing edge slots 246 provided there (FIG. 8) and their subsequent change made.
In einer weiteren Druckschrift US-A-5,243,759 schliesslich wird ein Verfahren zur Änderung der Kühlstromverhältnisse angegeben, dass sich auf weiter innen liegende Teile (40, 44, 48) einer Schaufel bezieht und eine aufwändige Änderung des Gusskerns vorschlägt, die sich erst beim nächsten Herstellungsvorgang auswirkt (siehe z.B. den Abstract).In a further document US Pat. No. 5,243,759, finally, a method for changing the cooling flow conditions is specified, which refers to further inner parts (40, 44, 48) of a blade and proposes a complex change of the casting core, which only takes place during the next production process effects (see eg the abstract).
Der Erfindung liegt demnach die Aufgabe zugrunde, ein Leitelement der eingangs genannten Art so zu verbessern, dass die Kühlluftströmung durch das Leitelement auch nach seiner Herstellung auf einfache Weise verändert werden kann, sowie ein Verfahren zu seiner Herstellung anzugebenThe invention is therefore based on the object to improve a guide element of the type mentioned so that the cooling air flow can be changed by the guide element even after its preparation in a simple manner, and to provide a method for its preparation
Diese Aufgabe wird durch die Gesamtheit der Merkmale der Ansprüche 1 und 6 gelöst. Der Kern der Erfindung besteht darin, dass der Kühlluftdurchsatz zwischen den an der Hinterkante angeordneten Rippen hindurch nach dem Herstellungsverfahren und bei Wartungen infolge der guten Zugänglichkeit wesentlich einfacher nachbearbeitet bzw. angepasst werden kann, wobei die Drosselung der Kühlluftführung durch die an der Hinterkante angeordneten Drosselrippen bewirkt wird, und die Drosselung von aussen leicht durch Ausbohren o.ä. eingestellt oder auch gemessen werden kann.This object is solved by the entirety of the features of claims 1 and 6. The essence of the invention is that the cooling air flow between the arranged at the trailing edge ribs can be much easier post-processing and maintenance due to good accessibility and maintenance, with the throttling causes the cooling air flow through the arranged at the trailing edge throttle ribs is, and the throttling from the outside easily by drilling or similar. set or can be measured.
Eine Ausführungsform der Erfindung zeichnet sich dadurch aus, dass die Dicke des Leitelements an der Hinterkante im Bereich von 0.5 bis 5 mm, insbesondere bevorzugt im Bereich von 1.0 bis 2.5 mm liegt, und dass die Schlitzdicke der Kühlluftkanäle zwischen den Wänden beim Austritt im Bereich von 0.3 bis 2 mm, insbesondere im Bereich von 0.8 bis 1.5 mm beträgt. Unter anderem wenn das Leitelement als vor einem Turbinenrotor angeordnete Leitschaufel ausgebildet ist und wenn als Kühlmedium Luft verwendet wird, erweisen sich die erfindungsgemässe Anordnung und diese Dimensionierungen als besonders vorteilhaft.An embodiment of the invention is characterized in that the thickness of the guide element at the trailing edge in the range of 0.5 to 5 mm, particularly preferably in the range of 1.0 to 2.5 mm, and that the slot thickness of the cooling air channels between the walls at the outlet in the range of 0.3 to 2 mm, in particular in the range of 0.8 to 1.5 mm. Among other things, if the guide element is designed as a guide blade arranged in front of a turbine rotor and if air is used as the cooling medium, the arrangement according to the invention and these dimensions prove to be particularly advantageous.
Weitere Ausführungsformen des Leitelements ergeben sich aus den abhängigen Ansprüchen.Further embodiments of the guide element emerge from the dependent claims.
Beim erfindungsgemässen Verfahren wird der Gusskern so geformt, dass die Rippengeometrie über die Hinterkante der Schaufel hinaus im Gusskem modelliert wird. Erst nach einer Länge von ca. 0.5 bis 5, vorzugsweise 1 bis 3 Kerndicken wird die Rippengeometrie ausgeblendet. Dieses Verfahren macht die einfache Herstellung eines erfindungsgemässen Leitelements erst möglich. Bei einem normalen Gussverfahren kann nämlich der effektive Drosselquerschnitt nicht einfach direkt an die Austrittskante gelegt werden. Die sprunghafte Querschnittserweiterung am Austritt im Gusskem führt bei der Herstellung zu einem starken Anstieg der Kembrüche. Dies kann bei Belassung eines Überstandes beim Giessverfahren vermieden werden.In the method according to the invention, the casting core is shaped in such a way that the rib geometry is modeled beyond the trailing edge of the blade in the casting core. Only after a length of about 0.5 to 5, preferably 1 to 3 core thicknesses, the rib geometry is hidden. This method makes the simple production of a guide element according to the invention possible in the first place. In fact, in a normal casting process, the effective throat area can not simply be placed directly against the trailing edge. The erratic cross-sectional widening at the outlet in the Gusskem leads to a sharp increase in the core fractures during production. This can be avoided by leaving a supernatant in the casting process.
Wenn im Bereich des Überstandes auf jegliche Rippen verzichtet wird, können beim Gussverfahren, insbesondere beim bevorzugten Pressgussverfahren ("investment casting") Kernbrüche weitgehend vermieden werden. Es zeigt sich des weiteren, dass, insbesondere wenn die Länge des Überstandes im Bereich von 0.5 bis 3 Mal so gross, insbesondere bevorzugt gleich gross, ist wie Schlitzdicke des Kühlluftkanals zwischen den Wänden, derartige Kernbrüche vermieden werden können ohne dass nach der Herstellung eine übermässige Nachbearbeitung notwendig wäre.If any ribs are dispensed with in the region of the supernatant, core fractures can be largely avoided in the casting process, in particular in the case of the preferred investment casting process ("investment casting"). It is further shown that, especially if the length of the supernatant in the range of 0.5 to 3 times as large, particularly preferably the same size as slot thickness of the cooling air channel between the walls, such core fractures can be avoided without an excessive after manufacture Post processing would be necessary.
Weitere bevorzugte Ausführungsformen des Verfahrens ergeben sich aus den abhängigen Ansprüchen.Further preferred embodiments of the method emerge from the dependent claims.
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit den Zeichnungen näher erläutert werden.
- Fig. 1
- zeigt einen Querschnitt durch eine Leitschaufel mit interner Kühlung für eine Gasturbine nach dem Stand der Technik; und
- Fig. 2
- a) zeigt einen Querschnitt durch eine Leitschaufel mit unmittelbar an der Hinterkante der Schaufel angeordneten Drosselrippen, b) eine Detailansicht des Hinterkantenbereichs des Schnittes nach a), und c) einen Schnitt entlang der Linie X-X in Figur 2a), d.h. im wesentlichen parallel zur Ebene der Schaufel durch den internen Kühlkanal.
- Fig. 1
- shows a cross section through a guide vane with internal cooling for a gas turbine according to the prior art; and
- Fig. 2
- a) shows a cross-section through a stator blade with throttle ribs arranged directly at the trailing edge of the blade, b) a detail view of the trailing edge region of the section according to a), and c) a section along the line XX in FIG. 2a), ie substantially parallel to the plane the bucket through the internal cooling channel.
Figur 2 a) zeigt einen Schnitt durch eine Leitschaufel mit unmittelbar an die Hinterkante grenzenden Rippen 24 zwischen den Wänden 10 und 11. Es handelt sich um einen Figur 2 entsprechenden, axial zur Hauptachse der Turbine und senkrecht zur Schaufelblattebene verlaufenden Schnitt durch eine Leitschaufel. Die Schaufel ist wiederum als Hohlprofil ausgebildet, welches saugseitig von einer Wand 10, und druckseitig von einer weiteren Wand 11 begrenzt wird. Im hinteren Bereich ist die Leitschaufel nur von den zwei mit in radialer Richtung unterbrochenen Rippen miteinander verbundenen Wänden 10 und 11 begrenzt, dazwischen verlaufen Kühlkanäle. Figur 2c) zeigt einem Schnitt entlang der Linie X-X in Figur 2a), d.h. im wesentlichen parallel zur Blattebene. Unmittelbar an den Einsatz 12 angrenzend befinden sich erste Rippen 16. Die zwischen Einsatz 12 und den Wänden 10 und 11 strömende Kühlluft strömt im wesentlichen axial in den Kanälen 27 zwischen den Rippen 16 in den hinteren Bereich der Leitschaufel. Hinter der ersten Reihe von Rippen 16 befindet sich ein vorderes radiales Plenum 18, welches einen Strömungs- und Druckausgleich der Kühlluft in radialer Richtung erlaubt. Danach schliesst eine weitere Reihe von Rippen 17 an, welche in diesem Beispiel alternierend als durchgängige Rippen 17b oder als axial unterteilte Rippen 17a ausgebildet sind. Die einzelnen Rippen der Reihen 16 und 17 weisen vorteilhafterweise ein sog. Teilungsverhältnis, das Verhältnis von der radialen Breite e normal zur Ebene des Blattes zur radialen Beabstandung f, im Bereich von 0.25 bis 0.75 auf.Figure 2 a) shows a section through a vane with immediately adjacent to the trailing
Es folgt ein weiteres radiales Plenum 19, gefolgt von sogenannten Pins 20, d.h. als einfache Stege ausgebildete Reihen von Rippen, welche eine möglichst gleichmässige Verteilung des Kühlluftstromes an der Hinterkante 21 erlauben. Das Teilungsverhältnis (Durchmesser g zu radialer Beabstandung h) der Pins 20 liegt dabei im Bereich von 0.25 bis 0.7.This is followed by another
Unmittelbar an der Hinterkante und mit dieser bündig abschliessend befindet sich nun eine weitere Reihe von Rippen 24. Die Reihe der hinteren Rippen ist dabei so dimensioniert, dass die Drosselung der Kühlluftströmung des gesamten effektiven Kühlkanalquerschnitts durch die Kanäle 25 zwischen den sog. Drosselrippen 24 bewirkt wird. Dadurch dass die Drosselung an der Hinterkante 21 und mit einer solchen Reihe von Drosselrippen 24 bewirkt wird, ergeben sich eine Reihe von Vorteilen:
- ◆ Der effektive Drosselquerschnitt kann leicht bei der Austrittskante gemessen werden.
- ◆ Es entsteht nur eine Drosselstelle genau na der Hinterkante anstatt zweier Drosselstellen am Ende der Rippen und der Hinterkante.
- ◆ Gegebenenfalls beim Gussverfahren entstandene Ungenauigkeiten der Drosselregion können leicht nachbearbeitet werden, da die Drosselstellen von aussen zugänglich sind.
- ◆ Der Drosselquerschnitt kann bei Bedarf leicht verändert werden.
- ◆ Die Anordnung der Rippen ganz am Ende der Schaufel führt zu einer erhöhten Stabilität der Abrisskante, so können Fremdkörper im Arbeitsluftstrom die Hinterkante weniger beschädigen und die Kühlung der Komponente kann durch derartige Deformationen weniger beeinträchtigt werden.
- ◆ The effective throttle area can be easily measured at the trailing edge.
- ◆ Only one throttle point is created exactly along the trailing edge instead of two throttle points at the end of the ribs and the trailing edge.
- ◆ Any inaccuracies of the throttle region resulting from the casting process can be easily reworked as the throttle points are accessible from the outside.
- ◆ The throttle area can be easily changed if necessary.
- ◆ The arrangement of the ribs at the very end of the blade leads to increased stability of the spoiler lip, so foreign matter in the working air flow can damage the trailing edge less and the cooling of the component can be less affected by such deformations.
Die Herstellung einer solchen Schaufel erfolgt meist im Gussverfahren, in der Regel einem Pressgussverfahren ("investment casting"). Bei diesen Gussverfahren kann aber bei der Herstellung der effektive Drosselquerschnitt nicht einfach direkt an die Austrittskante gelegt werden. Die sprunghafte Querschnittserweiterung am Austritt im Gusskern führt bei der Herstellung zu einem starken Anstieg der Kembrüche. Dies kann aber bei Belassung eines Überstandes beim Giessverfahren vermieden werden. Die im Kern abgebildete Kühlungsgeometrie wird dabei über die eigentliche Begrenzung der Komponente hinaus verlängert. Figur 2b) zeigt den Kantenbereich eines derart über die Hinterkante um die Länge b hinaus verlängerten Elements. Im Bereich des Überstandes sind vorteilhafterweise keine Rippen mehr angeordnet. Der Übergang von der Drosselgeometrie fällt dann nicht mit der Kernhalterung zusammen, sondern es findet zunächst innerhalb der verlängerten Komponente ein Übergang von der Drosselgeometrie auf einen durchgehenden radialen Kanal statt, welcher dann ohne Risiko von Kembrüchen als Kernhalterung verwendet werden kann. Dieser Übergang kann auf verschiedenste Weise je nach Verfahren optimal zur Kernhalterung gestaltet werden, d.h. es ist nicht zwingend, dass die beiden Wände wie in der in Figur 2b) dargestellt einfach nach hinten gleichmässig verlängert werden, es sind z.B. auch ein graduelles überstehendes Ausweiten, oder Verjüngungen resp. Verdickungen der Wände im Bereich des Überstands denkbar. Die überstehende Geometrie wird nach dem Guss auf die Solllänge der Hinterkante nachbearbeitet, d.h. abgetragen, so dass die Drosselstellen mit der Hinterkante zusammenfallen. Dies kann z.B. zusammen mit den üblicherweise nachträglich notwendigen Nachbearbeitungen wie Erosion und Laserbohren der Filmkühlbohrungen 13-15 geschehen.The production of such a blade is usually done by casting, usually a pressure casting process ("investment casting"). In these casting methods, however, the effective throttle cross-section can not simply be placed directly against the trailing edge during production. The sudden cross-sectional widening at the outlet in the casting core leads to a sharp increase in the core fractures during production. However, this can be avoided by leaving a supernatant in the casting process. The cooling geometry shown in the core is thereby extended beyond the actual limitation of the component. FIG. 2b) shows the edge region of an element which is extended over the trailing edge by the length b. In the region of the supernatant advantageously no ribs are arranged more. The transition from the throttle geometry then does not coincide with the core holder, but initially takes place within the extended component, a transition from the throttle geometry to a continuous radial channel, which can then be used without risk of broken core as a core holder. This transition can be optimally designed in different ways depending on the method to core holder, ie it is not mandatory that the two walls as shown in Figure 2b) are extended backwards evenly, for example, there are also a gradual protruding widening, or Rejuvenations resp. Thickening of the walls in the region of the supernatant conceivable. The projecting geometry is reworked after casting to the desired length of the trailing edge, ie removed, so that the throttle points coincide with the trailing edge. This can eg together with the usually subsequently necessary Post-processing such as erosion and laser drilling of the film cooling holes 13-15 happen.
Im angegebenen Ausführungsbeispiel weist die Hinterkante meist eine Dicke d im Bereich von 0.5 bis 5 mm, bevorzugt im Bereich von 1.0 bis 2.5 mm auf. Die Schlitzdicke c des Kühlluftkanals liegt meist im Bereich von 0.3 bis 2.0 mm, bevorzugt im Bereich von 0.8 bis 1.5 mm. Um beim Gussverfahren Kernbrüche effektiv vermeiden zu können, sollte insbesondere bei den obigen Bemassungen der Überstand b über die Hinterkante hinaus 0.5 bis 5 Mal, vorzugsweise 1 bis 3 Mal, die Länge a der Drosselrippen 24 betragen, besonders vorteilhaft ist es, wenn der Überstand b gleich ist wie die Länge a der Drosselrippen.In the specified embodiment, the trailing edge usually has a thickness d in the range of 0.5 to 5 mm, preferably in the range of 1.0 to 2.5 mm. The slot thickness c of the cooling air channel is usually in the range of 0.3 to 2.0 mm, preferably in the range of 0.8 to 1.5 mm. In order to be able to effectively avoid core fractures in the casting process, the supernatant b beyond the trailing edge should be 0.5 to 5 times, preferably 1 to 3 times, the length a of the
- 1010
- saugseitige Wandsuction-side wall
- 1111
- druckseitige Wandpressure-side wall
- 1212
- Einsatz bzw. KernUse or core
- 1313
- saugseitige Filmbohrungensuction-side film holes
- 1414
- Filmbohrungen an VorderkanteFilm holes at leading edge
- 1515
- druckseitige Filmbohrungenpressure side film holes
- 1616
- am Einsatz anschliessende Rippenon the insert subsequent ribs
- 1717
- Zwischenrippenintercostal
- 1818
- vorderes radiales Plenumfront radial plenum
- 1919
- hinteres radiales Plenumrear radial plenum
- 2020
- Pinspins
- 2121
- Hinterkante des BlattesTrailing edge of the leaf
- 2222
- Austrittsöffnung an der HinterkanteOutlet opening at the rear edge
- 2323
- ArbeitsluftstromWorking air stream
- 2424
- Drosselrippen an HinterkanteThrottling ribs on trailing edge
- 2525
- Kühlluftaustrittsöffnungen an HinterkanteCooling air outlet openings at the rear edge
- 2626
- axiale Kanäle zwischen Rippen 17axial channels between ribs 17th
- 2727
-
axiale Kanäle zwischen Rippen 16axial channels between
ribs 16 - 2828
- eintrittsseitiger Kühlluftstrominlet-side cooling air flow
- 2929
- austrittsseitiger Kühlluftstromexit-side cooling air flow
- 3030
- Leitschaufelvane
- aa
- Länge der DrosselrippenLength of the throttle ribs
- bb
- Länge des Überstandes nach GussLength of the supernatant after casting
- cc
- Schlitzdicke des Kühlluftkanals beim AustrittSlot thickness of the cooling air duct at the exit
- dd
- Dicke der Leitschaufel an der HinterkanteThickness of the vane at the trailing edge
- ee
- Breite der DrosselrippenWidth of the throttle ribs
- ff
- Rippenteilung der DrosselrippenRib division of the throttle ribs
- gG
-
Breite der Pins 20Width of the
pins 20 - hH
-
Teilung der Pins 20Division of the
pins 20
Claims (10)
- Gas-turbine guide element (30) around which a hot air flow (23) flows and which, at least in a trailing edge region (21), in which the air flow (23) separates from the guide element (30), comprises at least two walls (10, 11) arranged essentially in parallel and connected to one another by ribs (16, 17, 20), whereby internal cooling passages (18, 19, 25, 26, 27) are designed with an effective cooling passage cross-section, and which is cooled on the inside with cooling medium (28, 29) flowing through the cooling passages (18, 19, 25, 26, 27), the cooling medium discharging from the guide element (30) at the trailing edge (21) essentially parallel to and between the walls (10, 11), at least some of the ribs (24) being arranged so as to terminate essentially flush with the trailing edge (21) characterized in that a choke point for choking the cooling-medium flow of the entire effective cooling-passage cross section is provided at the trailing edge (21), and in that the row of ribs (24) terminating essentially flush with the trailing edge (21) is in this case dimensioned as choke ribs in such a way that the choking of the cooling-medium flow is effected by the cooling passages (25) between the ribs (24).
- Guide element (30) according to Claim 1, characterized in that the choke ribs (24) have a width (e) parallel to the trailing edge (21) and are arranged at a distance apart by in each case a rib spacing (f), and in that the ratio of width (e) to rib spacing (f) is within a range of 0.25 to 0.75.
- Guide element (30) according to one of the preceding claims, characterized in that the thickness (d) of the guide element (30) at the trailing edge (21) is within a range of 0.5 to 5 mm, in particular preferably within a range of 1.0 to 2.5 mm, and in that the slot thickness (c) of the cooling-air passages (25) between the walls (10, 11) at the outlet (21) is within a range of 0.3 to 2 mm, in particular within a range of 0.8 to 1.5 mm.
- Guide element (30) according to one of Claims 1 to 3, characterized in that it is designed as a guide blade (30) arranged in front of a turbine rotor, and in that the cooling medium used is air.
- Guide blade (30) according to Claim 4, characterized in that the guide blade is designed to be widened in its incident-flow region, and in the incident-flow region the cooling air flows in suction-side and pressure-side cooling passages around an inner, central, radially running insert (12), and in that the cooling air flows through between ribs (16) adjoining the insert (12), then between intermediate ribs (17), then between pins (20) between the walls (10, 11) before it discharges from the guide blade through outlet openings (25) at the trailing edge.
- Method of producing a gas-turbine guide element (30) around which a hot air flow (23) flows and which, at least in a trailing edge region (21), in which the air flow (23) separates from the guide element (30), comprises at least two walls (10, 11) arranged essentially in parallel and connected to one another by ribs (16, 17, 20) in such a way as to form internal cooling passages (18, 19, 25, 26, 27), and which is cooled on the inside with cooling medium (28, 29) flowing through the cooling passages (18, 19, 25, 26, 27), the cooling medium discharging from the guide element (30) at the trailing edge (21) essentially parallel to and between the walls (10, 11), characterized in that the guide element (30) is produced by a casting process, in that the trailing edge region (21) is in this case cast with a projecting length extending the guide element (30) or its walls (10, 11) in the direction of flow, and in that the projecting length is removed after the casting in such a way that at least some of the ribs are arranged as choke ribs (24) so as to terminate essentially flush with the trailing edge (21).
- Method according to Claim 6, characterized in that a choke point for choking the cooling-air flow of the entire effective cooling-passage cross section is provided at the trailing edge (21), and the row of ribs (24) terminating essentially flush with the trailing edge (21) is in this case dimensioned as choke ribs in such a way that the choking of the cooling-air flow is effected by the cooling passages (25) between the ribs (24) .
- Method according to Claim 6 or 7, characterized in that the casting process is a pressure casting process, in that the projecting length has a value (b) behind the trailing edge (21), in that the walls (10, 11) are kept at a distance apart at the outlet (21) by a slot thickness (c) of the cooling-air passages (25), and in that in particular the projecting length value (b) is 0.5 to 5 times, in particular preferably 1 to 3 times, as large as the slot thickness (c).
- Method according to one of Claims 6 to 8, characterized in that the choke ribs (24) have a width (e) parallel to the trailing edge (21) and are arranged at a distance apart by in each case a rib spacing (f), in that the ratio of width (e) to rib spacing (f) is within a range of 0.25 to 0.75, in that the thickness (d) of the guide element (30) at the trailing edge (21) is within a range of 0.5 to 5 mm, in particular preferably within a range of 1.0 to 2.5 mm, and in that the slot thickness (c) of the cooling-air passages (25) between the walls (10, 11) at the outlet (21) is within a range of 0.3 to 2 mm, in particular within a range of 0.8 to 1.5 mm.
- Method according to one of Claims 6 to 9, characterized in that the guide element is a guide blade (30) arranged in front of a turbine rotor, and in that the cooling medium used is air.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19963349 | 1999-12-27 | ||
DE19963349A DE19963349A1 (en) | 1999-12-27 | 1999-12-27 | Blade for gas turbines with throttle cross section at the rear edge |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1113145A1 EP1113145A1 (en) | 2001-07-04 |
EP1113145B1 true EP1113145B1 (en) | 2006-04-05 |
Family
ID=7934726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00811043A Expired - Lifetime EP1113145B1 (en) | 1999-12-27 | 2000-11-07 | Blade for gas turbines with metering section at the trailing edge |
Country Status (3)
Country | Link |
---|---|
US (1) | US6481966B2 (en) |
EP (1) | EP1113145B1 (en) |
DE (2) | DE19963349A1 (en) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1245785B1 (en) * | 2001-03-26 | 2005-06-01 | Siemens Aktiengesellschaft | Turbine airfoil manufacturing method |
US6974308B2 (en) * | 2001-11-14 | 2005-12-13 | Honeywell International, Inc. | High effectiveness cooled turbine vane or blade |
US6607356B2 (en) * | 2002-01-11 | 2003-08-19 | General Electric Company | Crossover cooled airfoil trailing edge |
US6602047B1 (en) * | 2002-02-28 | 2003-08-05 | General Electric Company | Methods and apparatus for cooling gas turbine nozzles |
US7014424B2 (en) * | 2003-04-08 | 2006-03-21 | United Technologies Corporation | Turbine element |
US6932573B2 (en) | 2003-04-30 | 2005-08-23 | Siemens Westinghouse Power Corporation | Turbine blade having a vortex forming cooling system for a trailing edge |
US6902372B2 (en) * | 2003-09-04 | 2005-06-07 | Siemens Westinghouse Power Corporation | Cooling system for a turbine blade |
US7175386B2 (en) * | 2003-12-17 | 2007-02-13 | United Technologies Corporation | Airfoil with shaped trailing edge pedestals |
US20050235492A1 (en) * | 2004-04-22 | 2005-10-27 | Arness Brian P | Turbine airfoil trailing edge repair and methods therefor |
US7438527B2 (en) * | 2005-04-22 | 2008-10-21 | United Technologies Corporation | Airfoil trailing edge cooling |
US20080031739A1 (en) * | 2006-08-01 | 2008-02-07 | United Technologies Corporation | Airfoil with customized convective cooling |
US7722327B1 (en) | 2007-04-03 | 2010-05-25 | Florida Turbine Technologies, Inc. | Multiple vortex cooling circuit for a thin airfoil |
US8070441B1 (en) | 2007-07-20 | 2011-12-06 | Florida Turbine Technologies, Inc. | Turbine airfoil with trailing edge cooling channels |
US7934906B2 (en) * | 2007-11-14 | 2011-05-03 | Siemens Energy, Inc. | Turbine blade tip cooling system |
US10156143B2 (en) * | 2007-12-06 | 2018-12-18 | United Technologies Corporation | Gas turbine engines and related systems involving air-cooled vanes |
WO2009109462A1 (en) * | 2008-03-07 | 2009-09-11 | Alstom Technology Ltd | Vane for a gas turbine |
CH700321A1 (en) | 2009-01-30 | 2010-07-30 | Alstom Technology Ltd | Cooled vane for a gas turbine. |
US20110135446A1 (en) * | 2009-12-04 | 2011-06-09 | United Technologies Corporation | Castings, Casting Cores, and Methods |
US9249675B2 (en) * | 2011-08-30 | 2016-02-02 | General Electric Company | Pin-fin array |
US20130052036A1 (en) * | 2011-08-30 | 2013-02-28 | General Electric Company | Pin-fin array |
EP2584145A1 (en) | 2011-10-20 | 2013-04-24 | Siemens Aktiengesellschaft | A cooled turbine guide vane or blade for a turbomachine |
US9366144B2 (en) * | 2012-03-20 | 2016-06-14 | United Technologies Corporation | Trailing edge cooling |
US8951004B2 (en) * | 2012-10-23 | 2015-02-10 | Siemens Aktiengesellschaft | Cooling arrangement for a gas turbine component |
US10557354B2 (en) | 2013-08-28 | 2020-02-11 | United Technologies Corporation | Gas turbine engine airfoil crossover and pedestal rib cooling arrangement |
WO2015088821A1 (en) * | 2013-12-12 | 2015-06-18 | United Technologies Corporation | Gas turbine engine component cooling passage with asymmetrical pedestals |
US20150184518A1 (en) * | 2013-12-26 | 2015-07-02 | Ching-Pang Lee | Turbine airfoil cooling system with nonlinear trailing edge exit slots |
WO2016160029A1 (en) | 2015-04-03 | 2016-10-06 | Siemens Aktiengesellschaft | Turbine blade trailing edge with low flow framing channel |
US10323524B2 (en) * | 2015-05-08 | 2019-06-18 | United Technologies Corporation | Axial skin core cooling passage for a turbine engine component |
US10502066B2 (en) | 2015-05-08 | 2019-12-10 | United Technologies Corporation | Turbine engine component including an axially aligned skin core passage interrupted by a pedestal |
US10508554B2 (en) | 2015-10-27 | 2019-12-17 | General Electric Company | Turbine bucket having outlet path in shroud |
US10156145B2 (en) * | 2015-10-27 | 2018-12-18 | General Electric Company | Turbine bucket having cooling passageway |
US9885243B2 (en) | 2015-10-27 | 2018-02-06 | General Electric Company | Turbine bucket having outlet path in shroud |
JP6671149B2 (en) * | 2015-11-05 | 2020-03-25 | 三菱日立パワーシステムズ株式会社 | Turbine blade and gas turbine, intermediate product of turbine blade, and method of manufacturing turbine blade |
US10370979B2 (en) * | 2015-11-23 | 2019-08-06 | United Technologies Corporation | Baffle for a component of a gas turbine engine |
WO2017095438A1 (en) * | 2015-12-04 | 2017-06-08 | Siemens Aktiengesellschaft | Turbine airfoil with biased trailing edge cooling arrangement |
US10598025B2 (en) * | 2016-11-17 | 2020-03-24 | United Technologies Corporation | Airfoil with rods adjacent a core structure |
US10641103B2 (en) * | 2017-01-19 | 2020-05-05 | United Technologies Corporation | Trailing edge configuration with cast slots and drilled filmholes |
US10718217B2 (en) * | 2017-06-14 | 2020-07-21 | General Electric Company | Engine component with cooling passages |
US11415000B2 (en) | 2017-06-30 | 2022-08-16 | Siemens Energy Global GmbH & Co. KG | Turbine airfoil with trailing edge features and casting core |
US10753210B2 (en) * | 2018-05-02 | 2020-08-25 | Raytheon Technologies Corporation | Airfoil having improved cooling scheme |
JP6636668B1 (en) * | 2019-03-29 | 2020-01-29 | 三菱重工業株式会社 | High-temperature component, method for manufacturing high-temperature component, and method for adjusting flow rate |
CN115213379B (en) * | 2022-01-10 | 2023-06-20 | 西北工业大学 | Design method of technological rib of monocrystalline blade regulating flange plate mixed crystal |
US12031724B2 (en) | 2022-05-05 | 2024-07-09 | General Electric Company | Turbine engine combustor having a combustion chamber heat shield |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1605180A (en) * | 1974-05-16 | 1983-01-26 | Lls Royce Ltd | Method for manufacturing a blade for a gas turbine engine |
US4292008A (en) * | 1977-09-09 | 1981-09-29 | International Harvester Company | Gas turbine cooling systems |
US4173120A (en) * | 1977-09-09 | 1979-11-06 | International Harvester Company | Turbine nozzle and rotor cooling systems |
US4286924A (en) * | 1978-01-14 | 1981-09-01 | Rolls-Royce Limited | Rotor blade or stator vane for a gas turbine engine |
US4835958A (en) * | 1978-10-26 | 1989-06-06 | Rice Ivan G | Process for directing a combustion gas stream onto rotatable blades of a gas turbine |
US5243759A (en) * | 1991-10-07 | 1993-09-14 | United Technologies Corporation | Method of casting to control the cooling air flow rate of the airfoil trailing edge |
US5864949A (en) * | 1992-10-27 | 1999-02-02 | United Technologies Corporation | Tip seal and anti-contamination for turbine blades |
US5368441A (en) * | 1992-11-24 | 1994-11-29 | United Technologies Corporation | Turbine airfoil including diffusing trailing edge pedestals |
US5669759A (en) * | 1995-02-03 | 1997-09-23 | United Technologies Corporation | Turbine airfoil with enhanced cooling |
WO1998000627A1 (en) * | 1996-06-28 | 1998-01-08 | United Technologies Corporation | Coolable airfoil for a gas turbine engine |
US6139269A (en) * | 1997-12-17 | 2000-10-31 | United Technologies Corporation | Turbine blade with multi-pass cooling and cooling air addition |
US5975851A (en) * | 1997-12-17 | 1999-11-02 | United Technologies Corporation | Turbine blade with trailing edge root section cooling |
US6179565B1 (en) * | 1999-08-09 | 2001-01-30 | United Technologies Corporation | Coolable airfoil structure |
US6234754B1 (en) * | 1999-08-09 | 2001-05-22 | United Technologies Corporation | Coolable airfoil structure |
-
1999
- 1999-12-27 DE DE19963349A patent/DE19963349A1/en not_active Ceased
-
2000
- 2000-11-07 DE DE50012523T patent/DE50012523D1/en not_active Expired - Lifetime
- 2000-11-07 EP EP00811043A patent/EP1113145B1/en not_active Expired - Lifetime
- 2000-12-19 US US09/739,282 patent/US6481966B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US6481966B2 (en) | 2002-11-19 |
DE19963349A1 (en) | 2001-06-28 |
US20010012484A1 (en) | 2001-08-09 |
EP1113145A1 (en) | 2001-07-04 |
DE50012523D1 (en) | 2006-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1113145B1 (en) | Blade for gas turbines with metering section at the trailing edge | |
EP1223308B1 (en) | Turbomachine component | |
EP2304185B1 (en) | Turbine vane for a gas turbine and casting core for the production of such | |
DE1946535C3 (en) | Component for a gas turbine engine | |
DE3789514T2 (en) | Cooled gas turbine blade. | |
DE69823236T2 (en) | DEVICE FOR COOLING GAS TURBINE SHOVELS AND METHOD FOR THE PRODUCTION THEREOF | |
DE602005000449T2 (en) | Cooling with microchannels for a turbine blade | |
DE10001109B4 (en) | Cooled shovel for a gas turbine | |
DE60015233T2 (en) | Turbine blade with internal cooling | |
EP1201879B1 (en) | Cooled component, casting core and method for the manufacture of the same | |
DE60122050T2 (en) | Turbine vane with insert with areas for impingement cooling and convection cooling | |
DE2241194A1 (en) | FLOW MACHINE SHOVEL WITH A WING-SHAPED CROSS-SECTIONAL PROFILE AND WITH A NUMBER OF COOLING DUCTS RUNNING IN THE LENGTH DIRECTION OF THE SHOVEL | |
CH697919B1 (en) | Turbine blade having a concave cooling flow path and arranged therein opposite swirling currents causing turbulators. | |
EP1126136B1 (en) | Turbine blade with air cooled tip shroud | |
WO2009109462A1 (en) | Vane for a gas turbine | |
WO2011029420A1 (en) | Deflecting device for a leakage flow in a gas turbine, and gas turbine | |
WO2000058606A1 (en) | Cast gas turbine blade that is flown through by a coolant and device and method for producing a distribution chamber for the gas turbine blade | |
EP1895096A1 (en) | Cooled turbine rotor blade | |
DE1601563C3 (en) | Air-cooled blade | |
EP1292760B1 (en) | Configuration of a coolable turbine blade | |
EP3207217B1 (en) | Film-cooled gas turbine component | |
EP1644614B1 (en) | Cooled blade for a gas turbine | |
EP1138878B1 (en) | Gas turbine component | |
WO2010028913A1 (en) | Turbine blade having a modular, stepped trailing edge | |
EP3232001A1 (en) | Rotor blade for a turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM |
|
17P | Request for examination filed |
Effective date: 20011214 |
|
AKX | Designation fees paid |
Free format text: DE GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM TECHNOLOGY LTD |
|
17Q | First examination report despatched |
Effective date: 20040507 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50012523 Country of ref document: DE Date of ref document: 20060518 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060607 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070108 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50012523 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50012523 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 50012523 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50012523 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50012523 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170824 AND 20170830 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20171121 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20171123 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50012523 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181107 |