EP1111230B1 - Hydraulische Vorrichtung zum Übertragen einer Aktorbewegung - Google Patents
Hydraulische Vorrichtung zum Übertragen einer Aktorbewegung Download PDFInfo
- Publication number
- EP1111230B1 EP1111230B1 EP00127847A EP00127847A EP1111230B1 EP 1111230 B1 EP1111230 B1 EP 1111230B1 EP 00127847 A EP00127847 A EP 00127847A EP 00127847 A EP00127847 A EP 00127847A EP 1111230 B1 EP1111230 B1 EP 1111230B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- storage chamber
- area
- actuator
- piston element
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005540 biological transmission Effects 0.000 claims description 42
- 239000002184 metal Substances 0.000 claims description 28
- 239000012530 fluid Substances 0.000 claims description 25
- 238000013461 design Methods 0.000 claims description 9
- 230000007704 transition Effects 0.000 claims description 2
- 239000013536 elastomeric material Substances 0.000 claims 1
- 238000002347 injection Methods 0.000 description 36
- 239000007924 injection Substances 0.000 description 36
- 239000000446 fuel Substances 0.000 description 28
- 230000006835 compression Effects 0.000 description 12
- 238000007906 compression Methods 0.000 description 12
- 238000002485 combustion reaction Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/0603—Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/04—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
- F02M61/08—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/167—Means for compensating clearance or thermal expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0003—Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
- F02M63/0007—Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using electrically actuated valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/16—Sealing of fuel injection apparatus not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/30—Fuel-injection apparatus having mechanical parts, the movement of which is damped
- F02M2200/304—Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/70—Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
- F02M2200/703—Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
Definitions
- the invention relates to a hydraulic device for Transferring a movement of an actuator to an actuator according to the preamble of claim 1, in particular for use in a fluid dispenser.
- a hydraulic device for Transferring a movement of an actuator to an actuator according to the preamble of claim 1, in particular for use in a fluid dispenser.
- Such a device hereinafter also referred to as a transmission element, is from DE 197 08 304 A1 and known from US 4858439.
- valve needle should either be unloaded in the injection valve be arranged or loaded with a pressure-dependent force become. If an increasing fuel pressure at the Valve needle is in contact with the valve needle to ensure sufficient tightness with increasing Fuel pressure pressed ever more firmly onto the valve seat becomes.
- the injection valve is said to be insensitive to thermal or pressure-induced elongations. Also supposed to the functionality of the injector Setting effects that e.g. B. by aging processes of the actuator can be triggered, impaired. To changes in length in the injection valve caused by thermal, pressure or set effects are prevented usually the valve needle or the other components in the Injector made from special steels, but very are expensive. Furthermore, it is also when using such expensive special steels necessary between the individual Provide sufficient clearance between components to prevent any To be able to absorb elongations between the components. This necessary safety distance of 3 ⁇ m to 5 ⁇ m however, is lost as a usable stroke of the actuator, which in particular when using a piezo actuator that is only a small one Causes problems when opening the valve needle can lead.
- DE 197 08 304 A1 proposed a hydraulic transmission element that the Deflection of the actuator in the injection valve on a drive stamp of the servo valve or a guide shaft of the Valve needle transmits.
- the hydraulic transmission element is essentially cylindrical and has a hydraulic chamber made by a flexible membrane is limited.
- the drive stamp is located on the flexible membrane the servo valve or the guide shaft of the Valve needle on.
- a connecting hole leads from the hydraulic chamber with throttling effect to a storage chamber, the is provided inside the transmission element and by a preloaded spring plate is completed.
- About the Spring plate is a rigid cover plate in the hydraulic chamber arranged, which rests on the actuator of the injection valve.
- the hydraulic chamber and the storage chamber are equipped with a hydraulic Medium filled.
- the in the Storage chamber prevailing pressure of the hydraulic medium transferred to the hydraulic chamber so that the flexible membrane always on the drive stamp of the servo valve or on the guide shaft the valve needle is in contact, even if due to thermal effects or aging processes Arrangement of the individual components in the fuel injector result.
- the actuator When the actuator is actuated, the deflection this actuator via the transmission element essentially unchanged on the drive stamp of the servo valve or transfer the guide shaft of the valve needle.
- the connecting hole between the hydraulic chamber and the storage chamber is designed so that due to the in the area of control times in milliseconds essentially no hydraulic medium from the hydraulic chamber into the Storage chamber can drain.
- the transmission element known from DE 197 08 304 A1 is characterized by a complicated structure. Furthermore, it is with this known transmission element difficult, temperature compensation over the entire working area of the fuel injection valve from approx. -40 ° C to Ensure + 150 ° C. In this wide temperature range there may be a change in the volume of the transfer element hydraulic medium of up to 20% come. Such a large fluctuation in volume can, however very difficult of that chosen in DE 197 08 304 A1 Cope with construction.
- the object of the present invention is to ensure that there is no play hydraulic device for transmitting a movement of a Provide actuator on an actuator, which is characterized by a great reliability with high permanent loads and strong ones Temperature fluctuations.
- the device according to the invention is characterized by Transmission element, which is a first piston element, the is firmly connected to an actuator, and a second piston element, which is firmly connected to an actuator, being between the first piston element and the second Piston element is a hydraulic chamber, and one with the hydraulic chamber via a throttle gap connected storage chamber comprises a pressure-loaded area, whose range limits are elastic.
- This structure reliably ensures an automatic Compensation for large changes in distance between the actuator and the actuator caused by thermal pressure or setting effects can be caused.
- the ensures elastic design of a storage chamber area, that the transmission element over a wide temperature range, especially the entire work area of a Functional fuel injector from approx. -40 ° C to + 150 ° C remains.
- the transmission element according to the invention can also be both inward and inward outside opening fuel injector used become. Furthermore, the transmission element is characterized by a very compact design, a very high hydromechanical Transmission efficiency and excellent dynamic Transmission properties from, since only a very small hydraulic chamber between the first and the second piston element is needed.
- the elastic Storage chamber area by a bellows arrangement preferably consisting of metal bellows, limited.
- metal bellows are very stiff radially, but very stiff in the axial direction soft design and can therefore reliably change volume in the hydraulic fluid contained in the transmission element take up.
- the actuator biased by a spring element that is fixed to the first Piston element of the transmission element is connected.
- the fuel injector shown in Figure 1 which opens out into a combustion chamber of an internal combustion engine, is operated with fuel under high pressure.
- This injector is in the upper part of a housing 1 installed a drive unit that is essential Component a piezoelectric multilayer actuator 8 in low voltage technology having.
- This piezoelectric multilayer actuator 8 is surrounded by a tube spring 9, which is between a head plate 10 and a base plate 11 is welded, the Bourdon tube 9 is biased so that the piezoelectric multilayer actuator 8 under a mechanical pressure preload stands.
- the housing 1 is also with a base plate 11 of the Drive unit as stiff as possible, preferably via a Weld 12, connected.
- the piezoelectric multilayer actuator 8 acts when it is electrical is controlled via its feed lines 19, via a hydraulic transmission element on the rear end of a Valve needle 3 on.
- the valve needle 3 is in the front part of the Housing 1 of the injection valve in a continuous inner bore 30 arranged and closes with one at rest at the front end of the valve needle 3 arranged valve plate 4 a valve seat 2 on the housing 1.
- the closed one The initial state in the injection valve is prestressed Nozzle spring 5 ensures that with the valve needle 3 is connected via a snap ring 6 and the valve plate 4 presses on valve seat 2.
- valve needle 3 Between the connector 16 on the valve needle 3 and the annular circumferential Paragraph 14 in the housing 1 is parallel to the valve needle 3 running metal bellows 15 welded to the hermetic Sealing the fuel chamber 13 against the other housing areas in which the drive unit and the transmission element is used. Will continue the valve needle 3 secured by the metal bellows 15 against rotation. This can be particularly advantageous if a stroke-limiting stop for the valve needle 3 in the Fuel injector is installed.
- the use of the metal bellows 15 enables the passage of needles a perfect, permanent and reliable seal the high pressure area in the injection valve compared to the rest Areas.
- the metal bellows 15 holds, like calculations and Tests have shown, despite small wall thicknesses of e.g. 50 ⁇ m to 500 ⁇ m due to its high radial rigidity very high pressures without being irreversibly deformed.
- the metal bellows 15 can also be designed that by a sufficient number of waves a high one axial compliance, d. H. low spring rate in the direction of movement the valve needle 3 is reached to the deflection not to affect the valve needle 3 and by the temperature-related changes in length of the needle guide in the valve needle 3 forces introduced as low as possible to keep.
- Fuel leakage can be prevented.
- the needle feed-through from annular shoulder 14, metal bellows 15 and connector 16 can also be designed such that the pressure-related acting on the valve needle 3 Forces compensate each other so that the valve needle 3 is kept force-free overall. This enables the Design the injector so that one of the fuel pressure almost independent switching behavior is possible because the opening and closing forces then only from the piezoelectric Multilayer actuator 8 and the force of the preloaded nozzle spring 5 can be determined.
- valve needle bushing can also be designed so that one with increasing fuel pressure in the fuel chamber 13 increasing Force results with which the valve plate 4 in the Valve seat 2 is pressed.
- the metal bellows 15 and the connector 16 is fixed, there is thus the possibility the valve needle 3 of the injector in the desired Wise pressure, d. H. completely free of pressure forces, overcompensated or keep undercompensated.
- the metal bellows 15 still has due to its metallic Material over a wide working temperature range with constant functionality.
- the thermal changes in length of the metal bellows 15 lead due to the low axial spring constant of the metal bellows 15 only to a negligible introduction of force into the valve needle 3 in the axial direction.
- the metal bellows 15 can over it addition due to its mechanical spring action in Axial direction, the nozzle spring 5 partially or completely replace.
- the transmission element is between the drive unit and the valve needle 3 are provided.
- This transmission element serves primarily as a hydraulic one Game balancing element to prevent any game between the piezoelectric multilayer actuator 8 and the valve needle 3 excluded. Furthermore, with the transmission element a stroke translation take place.
- the transmission element has a primary piston 21 and one Secondary piston 23, which in a to the annular shoulder 14 arranged in the housing 1 adjacent bore section are.
- This bore section is of two stages, with a first, following the drive unit wider bore section 31 in which the primary piston 21 sits and a second narrower bore section 32, which is adjacent to the stop 14 in the housing 1 and in which the secondary piston 23 is arranged.
- the primary piston 21 is essentially cylindrical and on the top plate 10 attached to the drive unit or preferably fixed over a weld connected to this. Preferably exist the head plate 10 and the primary piston from one part.
- the secondary piston 23 is designed as a hollow cylinder and plugged onto the rear end of the valve needle 3, the the end face of the secondary piston facing the primary piston 21 23 essentially flat to the end surface of the valve needle 3 is arranged.
- the valve needle 3 and the secondary piston 23 are also preferably fixed via a weld, at least but without play and mechanically as stiff as possible connected.
- the primary piston 21 and the secondary piston 23 are still spaced from each other so that between the opposite End faces in the area of the transition from the first Bore section 31 to the second bore section 32 a Hydraulic chamber 22 is formed. Furthermore is in the transmission element a two-part storage chamber 24 is provided, a first storage chamber area 241 in the inner bore 30 has that through the lower end face of the secondary piston 23 and through the connector 16 of the metal bellows 15 is limited to the valve needle 3.
- This first storage chamber area 241 is formed in the housing 1 unthrottled connection bore 223 to a second storage chamber area 242 connected in the first bore section 31 adjacent housing area 34 around the drive unit is arranged around.
- the second storage chamber area 242 is arranged by two concentric to each other Bellows 25, 26 and a pressure ring 27 limited, which in turn is held by a compression spring 28 which a perforated plate 29 is supported in the housing area 34.
- the Inner bellows 25 is between the inside of the pressure ring 27 and the rear face of the primary piston 21, which protrudes from the first bore section 31, shrink wrapped.
- the outer bellows 26 is on the outside of the pressure ring 27 and to one of the first bore section 31 adjacent housing stage 30 welded. In the housing stage 30 between the two bellows 25, 26 opens the connection bore 223.
- the hydraulic chamber 22 and the storage chamber 24 protrude a throttle gap 36 which between the peripheral wall of the Secondary piston 23 and the inner wall of the second bore section 32 is formed, and via a throttle gap 37, the between the peripheral wall of the primary piston 21 and the Inner wall of the first bore section 31 is formed is in communication with each other. Furthermore, the entire interior the transmission element with a hydraulic fluid filled, which is under a slight positive pressure, the is generated by the compression spring 28, which over the pressure ring 27 acts on the second storage chamber area 242. In front filling the interior of the transmission element with hydraulic fluid this hydraulic fluid is degassed, to dissolve any gas bubbles in the liquid.
- the injection valve with the transmission element works like follows:
- the piezoelectric is used to initiate the injection process Multilayer actuator 8 via the electrical feed lines 19 loaded. This causes the piezoelectric multilayer actuator 8 deflects axially and via the top plate 10 Primary piston 21 down into the first bore section 31 pushes in.
- the spring constant c of the hydraulic chamber 22 is greater, the lower its height and the larger its effective cross-sectional area. Simulation calculations have also shown that thermal and pressure-induced expansion of a maximum of 50 ⁇ m can be expected.
- the spring constant c of the hydraulic chamber 22 should be in the range of 10 8 N / m or higher. This means that, assuming that the compressibility of the hydraulic fluid ⁇ is approximately 10 * 10 -10 m 2 / N, which corresponds to a typical value for a hydraulic fluid, the desired value for the spring constant c z. B. can be achieved with a cross-sectional area of 1 cm 2 and a height of 0.1 cm.
- the exact design of the height and cross-sectional area of the hydraulic chamber 22 can, however, be adapted to the conditions in the injection valve in order to achieve a compact design.
- the hydraulic chamber 22 By designing the hydraulic chamber 22 as a rigid piston is the movement of the primary piston 21 by the piezoelectric Multilayer actuator 8 is triggered, low loss directly on transfer the secondary piston 23.
- the movement of the secondary piston 23 is only slightly different from that in the first Hydraulic fluid storage chamber area 241 damped because of the excess hydraulic fluid the rapid rise in pressure in the first storage chamber area 241 via the unthrottled connecting bore 223 in the second storage chamber area 242 is pushed away.
- the two Bellows 25, 26 arranged concentrically to one another that delimit the second storage chamber region 242 are radial very stiff, but very soft in the axial direction.
- Metal bellows are preferably used as spring bellows, which essentially the metal bellows 15 of the needle feedthrough correspond.
- the movement of the secondary piston triggered by the primary piston 21 23 moves the one connected to the secondary piston 23 Valve needle 3 against the restoring force of the nozzle spring 5 after below, so that the valve plate 4 lifts off the valve seat 2 and the injector opens.
- the elongation of the piezoelectric Multilayer actuator 8 is in a shift of the secondary piston 23 and thus the valve needle 3, the the ratio of the pressure-effective areas of the primary piston 21 and the secondary piston 23 in the hydraulic chamber 22 corresponds.
- suitable adjustment of the primary piston surface to the secondary piston surface can be z. Legs Extension of the stroke of the piezoelectric multilayer actuator 8 in relation to the stroke of valve needle 3. hereby can be reliably guaranteed that the extreme short stroke of the piezoelectric multilayer actuator 8 in all Operating conditions of the injection valve are sufficient, the valve needle 3 to open.
- the injection process is ended by the piezoelectric Multilayer actuator 8 over the electrical leads 19 again is discharged.
- There the primary piston 21 is fixed to the drive unit via the head plate 10 is connected by the contraction of the piezoelectric multilayer actuator 8 also the primary piston 21 withdrawn from the first bore section 31. hereby there is a brief drop in pressure in the hydraulic chamber 22, which due to the extremely short switching times of the piezoelectric Multilayer actuator 8 and the small size Throttle gap 36 on secondary piston 23 is not caused by reflow hydraulic fluid from the storage chamber 24 can be compensated immediately via the throttle column 36, 37 can.
- the inventive design of the transmission element it is still possible to automatically switch all thermal, by setting effects of the drive unit or caused to compensate for pressure-related changes in length in the injection valve.
- the throttle gap 36 on the secondary piston 23 is also designed so that during the thermal processes, which are in the time range of a few seconds to minutes, hydraulic fluid via the throttle column 36, 37 between the storage chamber 24 and the hydraulic chamber 22 can be replaced.
- the transmission element especially a hermetic seal of the hydraulic fluid opposite the fuel chamber or the drive unit required.
- the requirements are so high the bellows 25, 26, which are therefore preferably as metal bellows are trained. These metal bellows are wavy formed, as a result of which a very small axial spring constant can be achieved.
- the axial deformation of the metal bellows by a pressure load is not at all low, but stands out, just like that on the individual Bellows waves acting forces, in total over the entire length of the metal bellows almost on.
- the shape for the bellows shaft has been considered, in longitudinal section, from joined semicircle segments with straight Intermediate pieces existing geometry proved. Across from the semicircular segments have a sinusoidal wave shape existing walls lower mechanical stresses in the axial direction with higher axial compliance on.
- the hydraulic fluid in the hydraulic chamber 22 and the Storage chamber 24 is, as shown, under a small Overpressure generated by the compression spring 28, the acts on the pressure ring 27 of the second storage chamber area 242. Because of this slight overpressure at the same time bubble-free filling of the hydraulic fluid into the transmission element ensures that the fast Switching operations of the piezoelectric multilayer actuator 8 are not lead to cavitation in the hydraulic fluid.
- the Compression spring 28 can alternatively also partially or completely a spring action of the bellows 25, 26 to be replaced.
- throttling gaps 36, 37 each to be provided only on the secondary piston 23 or on the primary piston 21, so an exchange of hydraulic fluid between one of the storage chamber areas 241, 242 and the hydraulic chamber 22 takes place.
- throttle gaps can also be used be provided on the primary piston 21 and on the secondary piston 23.
- FIG 1 is an outwardly opening injection valve shown.
- Transmission element with one inside opening injector.
- FIG 2 is then the valve needle 3 by the nozzle spring 5 instead under tensile stress under compressive stress so that the Valve needle 3 at rest with a conical needle tip 104 on a conical valve seat 102 in the injection valve sits below which an injection hole 103 for injection of fuel is formed in the internal combustion engine.
- the injection valve shown in Figure 2 is exactly the opposite operated to the injection valve shown in Figure 1.
- the injection valve is designed so that when the piezoelectric multilayer actuator is not controlled 8 the injector is closed, d. H. the Needle tip 102 is pressed against the valve seat 104.
- the piezoelectric multilayer actuator 8 controlled. This is long and thereby pushes the primary piston 21 into the first Bore section 31.
- the resulting pressure increase in the hydraulic chamber 22 is via the throttle gap 36 Secondary piston 23 and the throttle gap 37 on the primary piston 21, for an exchange of hydraulic fluid with the Storage chamber 24 worry, balanced. This poses then a state of equilibrium again within fractions of a second a, at which the injector continues to be closed remains.
- the injection valve is operated in such a way that the valve needle 3 always opens when the piezoelectric Multilayer actuator 8 is discharged and thereby the Primary piston 21 and thus also the secondary piston 23 on which the valve needle 3 is attached, withdraw.
- Figure 3 shows a further embodiment of a outside opening injection valve, with the base pressure on the hydraulic fluid in the transmission element through a Compression spring 128 arranged centrally in the primary piston 121 is generated becomes.
- the primary piston 121 is cup-shaped, being between the head plate 10 and a bottom surface of the primary piston 121 an additional third storage chamber area 243 is formed.
- the primary piston 121 is arranged so that it is in with its bottom surface extends the first bore portion 31.
- the sidewalls the primary piston 21, on the other hand, are essentially located in the Housing area 34 in which the drive unit is arranged.
- the compression spring arranged in the third storage chamber area 243 128 is between the head plate 10 of the drive unit and a pressure plate 127 located in the third storage chamber area 243 is provided, welded.
- the compression spring 128 becomes the third storage chamber area 243 from protected by a metal bellows 125.
- the second storage chamber area 242 is between the top plate 10 of the piezoelectric multilayer actuator 8 and Housing stage 35 around the wall of the primary piston 121 educated. This second storage chamber area 242 is over a connection bore 136 with the third storage chamber area 243 connected in the primary piston 121. How it works of the transmission element shown in Figure 3 corresponds to that shown in Figure 1 transmission element. By providing an internal compression spring 128 can, however, be a higher one Base pressure and a possibly more compact design of the transmission element can be achieved.
- the metal bellows 125 and the top plate 10 limited gas-tight volume also be pressurized with a pressurized gas, so that instead the mechanical compression spring 128 a gas pressure spring for maintaining the basic pressure in the storage chamber areas 241, 242, 243.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
- Actuator (AREA)
Description
- Figur 1
- ein nach außen sich öffnendes Kraftstoffeinspritzventil mit einem erfindungsgemäßen hydraulischen Übertragungselement in einer ersten Ausführungsform;
- Figur 2
- ein nach innen sich öffnendes Kraftstoffeinspritzventil mit einem erfindungsgemäßen hydraulischen Übertragungselement in der ersten Ausführungsform; und
- Figur 3
- ein nach außen sich öffnendes Kraftstoffeinspritzventil mit einem erfindungsgemäßen hydraulischen Übertragungselement in einer zweiten Ausführungsform.
- κ:
- Kompressibilität der Hydraulikflüssigkeit
- V:
- Volumen der Hydraulikkammer
- P:
- Druck
- A:
- Querschnittsfläche der Hydraulikkammer
- h:
- Höhe der Hydraulikkammer
ergibt sich
Claims (11)
- Vorrichtung zum Übertragen einer Bewegung eines Aktors (8) auf ein Stellglied (3) mit
einem Übertragungselement, dass eine Wirkverbindung zwischen dem Aktor (8) und dem Stellglied (3) herstellt und eine Hydraulikkammer (22) und eine Speicherkammer (24) festlegt, die mit einer Hydraulikflüssigkeit gefüllt sind und über mindestens einen Drosselspalt (36, 37) miteinander in Verbindung stehen, wobei
das Übertragungselement ein erstes und ein zweites Kolbenelement (21, 23; 121) aufweist, wobei das erste Kolbenelement (21; 121) fest mit dem Aktor (8) und das zweite Kolbenelement (23) fest mit dem Stellglied (3) verbunden ist, wobei zwischen dem ersten Kolbenelement (21; 121) und dem zweiten Kolbenelement (23) die Hydraulikkammer (22) ausgebildet ist und
wobei die Speicherkammer (24) einen druckbelasteten Speicherkammerbereich (242, 243) umfasst, welcher durch Metallbälge begrenzt ist, dadurch gekennzeichnet, dass die Metallbälge eine Federbalganordnung (25, 26, 125) bilden und durch ein Federelement derart vorgespannt sind, dass der Speicherkammerbereich druckbelastet ist und dessen Druck annähernd konstant ist. - Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass der druckbeaufschlagte Speicherkammerbereich (242, 243) von einer Druckfeder (28) über eine Druckplatte (27; 127) beaufschlagt wird.
- Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass der druckbeaufschlagte Speicherkammerbereich (242, 243) von einer Gasdruckfeder beaufschlagt wird.
- Vorrichtung gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das erste Kolbenelement (21; 121) und das zweite Kolbenelement (23) in einem zweistufig ausgebildeten Innenbohrungsbereich eines Gehäuses (1) angeordnet sind, wobei das erste Kolbenelement (21; 121) und das zweite Kolbenelement (23) so voreinander beabstandet sind, dass zwischen den sich gegenüberliegenden Stirnflächen im Bereich des Übergangs von einem ersten Bohrungsabschnitt (31) zu einem zweiten Bohrungsabschnitt (32) die Hydraulikkammer (22) ausgebildet ist, wobei der Hub des ersten Kolbenelements (21; 121) entsprechend dem Verhältnis der Stirnflächen auf das zweite Kolbenelement (23) übersetzt wird.
- Vorrichtung gemäß Anspruch 4, dadurch gekennzeichnet, dass die Speicherkammer (24) zweiteilig ausgebildet ist, mit einem ersten Speicherkammerbereich (241), der durch die untere Stirnfläche des zweiten Kolbenelements (23) und eine Durchführung (14, 15, 16) an dem Stellglied (3) begrenzt wird, und einem zweiten Speicherkammerbereich (242), der in einem den Aktor aufnehmenden Gehäusebereich (34) angeordnet und über eine Verbindungsbohrung (223) an den ersten Speicherkammerbereich (241) angeschlossen ist, wobei der zweite Speicherkammerbereich (242) durch zwei konzentrisch zueinander angeordnete Federbälge (25, 26) und einem Druckring (27) begrenzt wird, auf dem eine Druckfeder (28) lastet.
- Vorrichtung gemäß Anspruch 4, dadurch gekennzeichnet, dass das erste Kolbenelement (121) topfförmig ausgebildet und die Speicherkammer (24) dreiteilig ausgelegt ist, mit einem ersten Speicherkammerbereich (241), der von einer unteren Stirnfläche des zweiten Kolbenelements (23) und einer Durchführung (14, 15, 16) am Stellglied (3) begrenzt wird, einem zweiten Speicherkammerbereich (242), der in einem den Aktor (8) aufnehmenden Gehäusebereich (34) um das erste Kolbenelement (121) herum ausgebildet ist, und einem dritten Speicherkammerbereich (243), der im ersten Kolbenelement (121) ausgebildet ist, wobei der erste Speicherkammerbereich (241) mit dem zweiten Speicherkammerbereich (242) über eine erste Verbindungsbohrung (223) im Gehäuse (1) und der zweite Speicherkammerbereich (242) mit dem dritten Speicherkammerbereich (243) über eine zweite Verbindungsbohrung (136) im ersten Kolbenelement (121) verbunden sind und wobei im dritten Speicherkammerbereich (243) eine Druckfeder (128), die zwischen einer Kopfplatte (10) des Aktors (8) und einer Druckplatte (127) eingespannt ist und von einem Federbalg (125) begrenzt wird, oder eine Gasdruckfeder angeordnet ist.
- Vorrichtung gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Aktor (8) ein piezoelektrischer Multilayeraktor ist, der von einen Federelement (9) vorgespannt wird, und dass das erste Kolbenelement (21; 121) fest an eine Kopfplatte (10) des Multilayeraktors (8) angebracht ist.
- Vorrichtung gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Aktor nach dem elektrostriktiven oder magnetostriktiven Prinzip arbeitet.
- Vorrichtung gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Federbälge (25, 26; 125) Metallbälge sind, die sich vorzugsweise aus Halbkreissegmenten mit jeweils dazwischen liegenden geraden Teilstücken zusammensetzen.
- Vorrichtung gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Federbälge (25, 26; 125) aus einem elastomeren Werkstoff hergestellt sind.
- Vorrichtung gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Hydraulikkammer (22) so ausgelegt ist, dass die Federkonstante der Hydraulikkammer (22) mindestens 108 N/m beträgt.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19962177 | 1999-12-22 | ||
DE19962177A DE19962177A1 (de) | 1999-12-22 | 1999-12-22 | Hydraulische Vorrichtung zum Übertragen einer Aktorbewegung |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1111230A2 EP1111230A2 (de) | 2001-06-27 |
EP1111230A3 EP1111230A3 (de) | 2002-05-08 |
EP1111230B1 true EP1111230B1 (de) | 2004-11-24 |
Family
ID=7933914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00127847A Expired - Lifetime EP1111230B1 (de) | 1999-12-22 | 2000-12-19 | Hydraulische Vorrichtung zum Übertragen einer Aktorbewegung |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1111230B1 (de) |
DE (2) | DE19962177A1 (de) |
ES (1) | ES2228394T3 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2739150C1 (ru) * | 2020-03-07 | 2020-12-21 | Максим Николаевич Карпов | Ультразвуковой пьезоэлектрический преобразователь |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10136807A1 (de) * | 2001-07-27 | 2003-02-13 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
DE10137210B4 (de) * | 2001-07-30 | 2011-04-07 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
WO2003016702A2 (de) * | 2001-08-17 | 2003-02-27 | Siemens Aktiengesellschaft | Aktor als antriebseinheit für einen injektor sowie verfahren zur herstellung des injektors |
DE10148594A1 (de) * | 2001-10-02 | 2003-04-10 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
DE10159750A1 (de) | 2001-12-05 | 2003-06-12 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
DE10159749A1 (de) * | 2001-12-05 | 2003-06-12 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
DE10162045B4 (de) * | 2001-12-17 | 2005-06-23 | Siemens Ag | Vorrichtung zum Übersetzen einer Auslenkung eines Aktors, insbesondere für ein Einspritzventil |
DE10203655A1 (de) * | 2002-01-30 | 2004-01-22 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
WO2003089781A1 (de) * | 2002-04-22 | 2003-10-30 | Siemens Aktiengesellschaft | Dosiervorrichtung für fluide, insbesondere kraftfahrzeug-einspritzventil |
DE10225686B4 (de) | 2002-06-10 | 2005-08-04 | Siemens Ag | Hubübertragungselement für ein Einspritzventil |
DE10232193A1 (de) * | 2002-07-16 | 2004-02-05 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
EP1445470A1 (de) | 2003-01-24 | 2004-08-11 | Siemens VDO Automotive S.p.A. | Dosiervorrichtung mit Steckanschluss |
EP1445472B1 (de) * | 2003-02-04 | 2008-04-09 | Siemens VDO Automotive S.p.A. | Dosiervorrichtung mit dynamischer Dichtung |
EP1445473B1 (de) * | 2003-02-04 | 2008-01-09 | Siemens VDO Automotive S.p.A. | Dosiervorrichtung mit dynamischer Dichtung |
DE10308915A1 (de) * | 2003-02-28 | 2004-09-09 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
DE10310499A1 (de) * | 2003-03-11 | 2004-09-23 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
DE10321693A1 (de) * | 2003-05-14 | 2004-12-02 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
DE10328573A1 (de) * | 2003-06-25 | 2005-01-13 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
DE10332874A1 (de) * | 2003-07-19 | 2005-02-10 | Robert Bosch Gmbh | Hydraulischer Koppler und Kraftstoffeinspritzventil |
JP4649136B2 (ja) * | 2003-07-31 | 2011-03-09 | キヤノン株式会社 | アクチュエータ、露光装置及びデバイス製造方法 |
WO2005026528A1 (de) * | 2003-09-12 | 2005-03-24 | Siemens Aktiengesellschaft | Hydraulisches kompensationselement |
EP1526275B1 (de) * | 2003-10-21 | 2007-01-10 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
DE10353639A1 (de) † | 2003-11-17 | 2005-06-16 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
DE10357454A1 (de) * | 2003-12-03 | 2005-07-07 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
DE10357189A1 (de) * | 2003-12-08 | 2005-07-07 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
DE10358723A1 (de) * | 2003-12-15 | 2005-07-07 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
EP1555427B1 (de) * | 2004-01-13 | 2007-10-10 | Delphi Technologies, Inc. | Kraftstoffeinspritzventil |
JP4167230B2 (ja) | 2004-01-13 | 2008-10-15 | デルファイ・テクノロジーズ・インコーポレイテッド | 燃料噴射装置 |
DE102004010183A1 (de) | 2004-03-02 | 2005-09-29 | Siemens Ag | Einspritzventil |
DE102004026172A1 (de) | 2004-05-28 | 2005-12-22 | Siemens Ag | Einspritzventil und Verfahren zum Herstellen eines Einspritzventils |
DE102004026171B4 (de) * | 2004-05-28 | 2010-05-20 | Continental Automotive Gmbh | Einspritzventil |
DE102004031790A1 (de) | 2004-07-01 | 2006-01-26 | Robert Bosch Gmbh | Common-Rail-Injektor |
DE102004037124A1 (de) * | 2004-07-30 | 2006-03-23 | Robert Bosch Gmbh | Common-Rail-Injektor |
DE102005015997A1 (de) * | 2004-12-23 | 2006-07-13 | Robert Bosch Gmbh | Kraftstoffinjektor mit direkter Steuerung des Einspritzventilgliedes |
DE102005046778B4 (de) * | 2005-09-29 | 2011-07-21 | Siemens AG, 80333 | Dosiervorrichtung für Fluide, insbesondere Kraftfahrzeug-Einspritzventil |
DE102006013510B4 (de) * | 2006-03-23 | 2008-08-14 | Siemens Ag | Drucktransfervorrichtung |
DE102006014251A1 (de) * | 2006-03-28 | 2007-10-04 | Robert Bosch Gmbh | Kraftstoffinjektor |
US7942349B1 (en) | 2009-03-24 | 2011-05-17 | Meyer Andrew E | Fuel injector |
DE102009015738B4 (de) | 2009-03-31 | 2016-02-11 | Siemens Aktiengesellschaft | Hydraulischer Hubübersetzer und Injektor zur Dossierung von Fluiden |
WO2011045298A1 (de) * | 2009-10-12 | 2011-04-21 | Ulrich Stieler Kunststoff Service E.K. | Fluid-injektor |
DE102010040612A1 (de) | 2010-09-13 | 2012-03-15 | Siemens Aktiengesellschaft | Hydraulischer Temperaturkompensator und hydraulischer Hubübertrager |
CN103534476B (zh) * | 2011-05-13 | 2016-12-28 | 安德鲁·E·迈耶 | 燃料喷射器 |
DE102011087005A1 (de) | 2011-11-24 | 2013-05-29 | Robert Bosch Gmbh | Ventil zum Zumessen eines strömenden Mediums |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0656162B2 (ja) * | 1987-03-03 | 1994-07-27 | トヨタ自動車株式会社 | ストロ−ク可変装置 |
DE19708304C2 (de) * | 1997-02-28 | 1999-09-30 | Siemens Ag | Vorrichtung zur Übertragung einer Bewegung und Einspritzventil mit einer Vorrichtung zur Übertragung einer Bewegung |
DE29708546U1 (de) * | 1997-05-14 | 1998-09-10 | FEV Motorentechnik GmbH & Co. KG, 52078 Aachen | Elektrischer Festkörperaktuator mit hydraulischer Übersetzung |
DE19744235A1 (de) * | 1997-10-07 | 1999-04-08 | Fev Motorentech Gmbh & Co Kg | Einspritzdüse mit piezoelektrischem Aktuator |
-
1999
- 1999-12-22 DE DE19962177A patent/DE19962177A1/de not_active Ceased
-
2000
- 2000-12-19 EP EP00127847A patent/EP1111230B1/de not_active Expired - Lifetime
- 2000-12-19 ES ES00127847T patent/ES2228394T3/es not_active Expired - Lifetime
- 2000-12-19 DE DE50008741T patent/DE50008741D1/de not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2739150C1 (ru) * | 2020-03-07 | 2020-12-21 | Максим Николаевич Карпов | Ультразвуковой пьезоэлектрический преобразователь |
Also Published As
Publication number | Publication date |
---|---|
EP1111230A2 (de) | 2001-06-27 |
DE19962177A1 (de) | 2001-07-12 |
EP1111230A3 (de) | 2002-05-08 |
ES2228394T3 (es) | 2005-04-16 |
DE50008741D1 (de) | 2004-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1111230B1 (de) | Hydraulische Vorrichtung zum Übertragen einer Aktorbewegung | |
EP1434937B1 (de) | Brennstoffeinspritzventil | |
EP1497553B1 (de) | Dosiervorrichtung für fluide, insbesondere kraftfahrzeug-einspritzventil | |
DE60121352T2 (de) | Ausgleichvorrichtung mit einer flexiblen membran für ein kraftstoffeinspritzventil und verfahren dafür | |
EP1046809B1 (de) | Fluiddosiervorrichtung | |
DE19958704C2 (de) | Vorrichtung zum Übertragen einer Aktorbewegung und Fluiddosierer mit einer solchen Vorrichtung | |
WO2000017507A1 (de) | Brennstoffeinspritzventil | |
EP1079099B1 (de) | Einspritzventil | |
EP2414662B1 (de) | Hydraulischer hubübertrager bzw. hubübersetzer | |
EP1421271B1 (de) | Brennstoffeinspritzventil | |
DE10162045B4 (de) | Vorrichtung zum Übersetzen einer Auslenkung eines Aktors, insbesondere für ein Einspritzventil | |
EP1378657B1 (de) | Brennstoffeinspritzventil | |
DE10217594A1 (de) | Brennstoffeinspritzventil | |
EP1519036B1 (de) | Brennstoffeinspritzventil | |
EP1144845B1 (de) | Vorrichtung zum übertragen einer aktorauslenkung auf ein stellglied und einspritzventil mit einer solchen vorrichtung | |
DE102005028400A1 (de) | Kraftstoffeinspritzvorrichtung für ein Kraftstoffeinspritzsystem | |
EP1488096B1 (de) | Brennstoffeinspritzventil | |
WO2004076845A1 (de) | sRENNSTOFFEINSPRITZVENTIL | |
EP2317117B1 (de) | Aktormodul und Brennstoffeinspritzventil | |
EP1544454B1 (de) | Brennstoffeinspritzventil | |
DE10343488A1 (de) | Hydrauliksystem mit Ausgleichsspeicher | |
WO2004085831A1 (de) | Dosierventil mit längenkompensationseinheit | |
DE19914715A1 (de) | Vorrichtung zum Übertragen einer Aktorbewegung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20020916 |
|
AKX | Designation fees paid |
Designated state(s): DE ES FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20030207 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50008741 Country of ref document: DE Date of ref document: 20041230 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2228394 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
ET | Fr: translation filed | ||
26N | No opposition filed |
Effective date: 20050825 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070222 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20071219 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20080122 Year of fee payment: 8 Ref country code: FR Payment date: 20071219 Year of fee payment: 8 Ref country code: GB Payment date: 20071213 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20081219 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081219 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20081220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081231 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081219 |