[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1197644B1 - Système et procédé de refroidissement pour véhicule à propulsion hybride - Google Patents

Système et procédé de refroidissement pour véhicule à propulsion hybride Download PDF

Info

Publication number
EP1197644B1
EP1197644B1 EP20010402641 EP01402641A EP1197644B1 EP 1197644 B1 EP1197644 B1 EP 1197644B1 EP 20010402641 EP20010402641 EP 20010402641 EP 01402641 A EP01402641 A EP 01402641A EP 1197644 B1 EP1197644 B1 EP 1197644B1
Authority
EP
European Patent Office
Prior art keywords
heat
branch
electric motor
radiator
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010402641
Other languages
German (de)
English (en)
Other versions
EP1197644A1 (fr
Inventor
Robert Yu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP1197644A1 publication Critical patent/EP1197644A1/fr
Application granted granted Critical
Publication of EP1197644B1 publication Critical patent/EP1197644B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/30Engine incoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/24Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/30Circuit boards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • F01P2060/045Lubricant cooler for transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • F28D2021/0094Radiators for recooling the engine coolant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • F28D2021/0096Radiators for space heating

Definitions

  • the present invention relates to a cooling system for a hybrid-propulsion vehicle.
  • Hybrid-propulsion vehicles generally include a heat engine, one or two electric motors, a voltage generator, and an electronic power converter assembly that powers the one or more electric motors, or charges the batteries, all of which must be cooled. in order to function under the conditions for which they are intended. We seek to take advantage of this dual engine to minimize consumption and polluting emissions, so as to remain below the authorized levels.
  • the coolant of an electric motor has a flow rate of the order of 100 to 500 l / hour at a temperature of 50 to 70 °.
  • the coolant of a heat engine has a flow rate that can be twenty times higher, at a temperature of the order of 100 to 110 ° maximum.
  • Document FR 2 748 428 describes a cooling system for a hybrid-propulsion vehicle comprising a heat engine and an electric motor, comprising a coolant circulating in the engines and in a radiator, and means for the engine to be stop and the electric motor being running, the liquid heat transfer circulates in a first part of the radiator only, and so that, with both engines running, the coolant circulates in both parts of the radiator.
  • JP-2000-073763 A there is described a system with a first cooling circuit for a motor cylinder head connected to a second engine cooling circuit. A separate cooling circuit is provided for an electronic power unit.
  • the present invention proposes to overcome the limitations of conventional techniques by providing a cooling system operating optimally in all cases and reducing energy consumption and polluting emissions.
  • the present invention proposes to reduce the operating time of a coolant circulation pump in the electric motor.
  • the present invention proposes to keep the electric motor and the power electronics at a low temperature.
  • the cooling system is intended for a hybrid propulsion vehicle comprising a heat engine and at least one electric motor.
  • the system is of the type comprising a heat transfer fluid capable of cooling the thermal and electrical engines, a radiator comprising a plurality of cooling channels and capable of cooling the heat transfer liquid by heat exchange with a stream of air, a first pipe between said radiator and the heat engine in the direction of flow of the heat transfer fluid and a second pipe between said heat engine and said radiator in the direction of flow of the coolant.
  • the system comprises a bypass line comprising a first branch connected to the first pipe and a second pipe connected to a pipe upstream of the heat engine, said bypass pipe being able to cool the electric motor.
  • the system is characterized in that the first branch goes through an electronic power unit and the electric motor.
  • the first branch is equipped with a peddler fluid circulation pump.
  • said pump circulation of the coolant is driven by the electric motor.
  • said coolant circulation pump is driven independently of the electric motor.
  • the bypass line comprises a third branch connected to the second conduit.
  • the second branch is connected to an output pipe of a heating radiator of a vehicle passenger compartment.
  • the bypass line comprises a fourth branch connected to the output of the heat engine upstream of a thermostat.
  • the branches of the bypass line are interconnected by a multi-way valve.
  • a thermostat is integrated in said multi-way valve.
  • the multi-way valve comprises a rotary control core.
  • the invention also relates to a vehicle comprising a cooling system as above.
  • the invention also proposes a cooling method for a hybrid-propulsion vehicle comprising a heat engine and at least one electric motor cooled by the circulation of a coolant in said engines, a heat exchange means, a first pipe between said means heat exchange and the heat engine in the direction of flow of the heat transfer fluid and a second pipe between said heat engine and said heat exchange means in the direction of flow of the coolant, in which process, the heat transfer fluid in a bypass line connected firstly to the first pipe and secondly to a pipe upstream of the heat engine, for cooling the electric motor and the electronic power unit.
  • the cooling is thus carried out in series, the heat transfer fluid passing through the bypass pipe then passing into the heat engine, which is preferable in the case of high temperature. output of the heat exchange means.
  • the coolant flow rate in the bypass pipe is varied as a function of the temperature at the outlet of the heat exchange means.
  • the heat transfer fluid in the event of a temperature of the coolant insufficient to cause the opening of a thermostat disposed at the output of the heat engine, the heat transfer fluid is circulated in the bypass line connected thirdly to the second pipe, for cooling the electric motor in the absence of circulation of heat transfer fluid in the engine.
  • This mode of operation can also be adopted when the heat engine is stopped.
  • the heat transfer fluid in the event of a temperature of the coolant significantly lower than the opening temperature of a thermostat disposed at the output of the heat engine, the heat transfer fluid is circulated in the fourth connected branch line. part at the output of the engine upstream of the thermostat, to cool the electric motor while warming the engine. It is thus possible to obtain a faster temperature rise of the engine during its start and reduce the formation of pollutants.
  • This mode of operation can also be adopted when the heat engine is stopped, if the pump associated with the heat engine is electrically driven or if said pump can be bypassed. It can thus preheat the engine.
  • the term “electric motor” defines all machines that convert electrical energy into mechanical energy, or mechanical energy into electrical energy
  • the term “power electronics” defines all electronics that convert alternating current into direct current, direct current into alternating current, high voltage current into low voltage current, or low voltage current into high voltage current.
  • the cooling system is associated with a heat engine 1 and with an electric motor 2 provided with an electronic power unit 3.
  • This electronic power unit 3 is placed generally before the electric motor 2 because its operating temperature is lower than the electric motor.
  • a heating radiator 4 for heating the passenger compartment of the vehicle in which the cooling system is installed
  • an exchanger 5 for cooling any fluid, for example the lubricating oil, the oil gearbox, ... or any other device, for example a turbocharger bearing, ...
  • the cooling system comprises a radiator 6 whose output is connected to a pipe 7 and whose input is connected to a pipe 8.
  • the pipe 7 is connected to a pump 9 whose output is connected to the heat engine 1.
  • the pump 9 can be driven by the heat engine 1 or by an electric motor dedicated thereto and which has not been shown.
  • the output of the engine 1 is provided with a thermostat 10, itself connected to the pipe 8.
  • the radiator 6 is generally provided with a motorized fan 11, able to accelerate the flow of air through said radiator 6 .
  • the cooling system comprises a temperature sensor 12 disposed at the output of the engine 1, immediately upstream of the thermostat 10, a temperature sensor 13 mounted on the pipe 7 at the outlet of the radiator 6, and a control unit 14 receiving temperature information from the sensors 12 and 13.
  • the connection between the control unit 14 and the sensors 12 and 13 can be effected by dedicated electrical wires or via a communication bus.
  • the inlet of the heating radiator 4 is connected to an output of the heat engine 1 and the output of the radiator 4 is connected to the pipe 7.
  • the inlet of the heat exchanger 5 is connected to an output of the heat engine 1 and its output is connected to line 7.
  • the cooling system further comprises a generally referenced branch line 15 provided with a plurality of branches, and a multi-way valve 16 to which said branches are connected.
  • a first branch 17 is connected on the one hand to the pipe 7 downstream of the temperature sensor 13 and on the other hand to the multi-way valve 16.
  • the branch 17 passes through the electric motor 2 and through the electronic power unit 3.
  • the circulation of the cooling fluid in said branch 17 keeps the electric motor 2 and the electronic power unit 3 at a normal operating temperature, if possible low enough for common industrial components both electrical and electronic can be used in the construction of these elements.
  • a second branch 18 is connected at one end to the first pipe 7 to near the pump 9 and at the end opposite the multi-way valve 16.
  • a third branch 19 is connected, on the one hand to the pipe 8 and on the other hand to the multi-way valve 16.
  • a fourth branch 20 is connected, on the one hand, to an output of the heat engine 1 upstream of the thermostat 10 and on the other hand to the multi-way valve 16.
  • the multi-way valve 16 is adapted to put in communication the branches 17 and 18 by closing the branches 19 and 20, to put in communication the branches 17 and 19 closing the other branches and put in communication the branches 17 and 20 by closing the other branches, by order of the control unit 14 to which it is connected.
  • the multi-way valve 16 which is here four-way, has the function of ensuring the selective passage of the cooling fluid between the branch 17 and one of the other three branches 18, 19 or 20 .
  • the operation of the cooling system is as follows. If the temperature of the water as measured by the sensor 12, is lower than a predetermined temperature T c1 and which is less than or equal to the temperature T ot of the thermostat opening 10, generally between 83 and 89 ° C, the multi-way valve 16 communicates the branches 17 and 20 and allows to pass the fluid from the branch 20 to the branch 17, when the heat engine 1 is in operation. Indeed, the cooling fluid which is in the heat engine 1 is subjected to a high pressure because of the pump 9, higher pressure than that prevailing in the branch 17, the pump 21 being kept at a standstill.
  • the multi-way valve 16 communicates the branches 17 and 19.
  • the pump 21 is started at low speed, for example with a low supply voltage U 1 .
  • the electric motor 2 and the electronic power unit 3 are then cooled by means of the radiator 6 whose heat exchange capacity is much greater, for example by a factor of the order of 3 to 5, with heat susceptible to be released by the electric motor 2 and the electronic power unit 3.
  • the pipe 8, the radiator 6 and the pipe 7 being dimensioned for the high flow rates of cooling fluid required by the heat engine 1, the pressure losses are low.
  • the energy consumed by the pump 21 is therefore also low. Its wear is too.
  • the multi-way valve 16 communicates the branches 17 and 18.
  • the pump 21 is turned on. In other words, a part of the output flow of the radiator 6 is diverted by the branches 17 and 18.
  • the electric motor 2 and the electronic power unit 3 are cooled by the radiator output coolant 6, and therefore at low temperature.
  • the pump 21 operates at a low flow rate, for example with the low power supply.
  • U 1 and that against if the sensor 13 indicates a temperature greater than the temperature T c2 , the pump 21 operates at a high rate, for example powered by a voltage U 2 greater than U 1 to obtain a higher rate in the branch 17.
  • T c2 is greater than T ot .
  • control unit 14 of the cooling system can control the operation of the fan 11 as a function of the temperature measured by the sensor 13.
  • the multi-way valve 16 communicates the branches 17 and 19.
  • the pump 21 is started at low flow, for example powered by the voltage U 1 .
  • the radiator 6 then provides cooling of the electric motor 2 and the electronic power unit 3, which can operate at the low temperatures that are required by the large series components, at low cost, that it is desired to use.
  • the water temperature at the inlet of the electric motor 2 and the electronic power unit 3 remains very low in all cases of operation. Measurements made on a prototype show that even in the case where the heat engine 1 is in operation and the engine outlet water temperature is higher than the thermostat opening temperature T ot , the temperature at the outlet of the engine Radiator 6 remains below 85 ° C for 85% of the time of use of the vehicle. For cases where the temperature measured by the sensor 13 is greater than T c2 , increasing the flow rate of the pump 21 and / or triggering the fan 11 can maintain this temperature within the desired limits.
  • the pump 21 needs a low power, runs slower and less frequently.
  • the pump 18 is at a standstill.
  • the heat exchange capacity of the radiator 6, sized for thermal losses of the heat engine 1 is largely in excess of the thermal losses of the electric motor 2 and the electronic unit. of power 3 and thus allows the pump 21 to operate at low flow.
  • the branches 17, 18 and 19 are connected to pipes 7 and 8 of large diameter, which minimizes the pressure drop experienced by the fluid driven by the pump 21.
  • valve 16 comprises a cylindrical housing 22 and a rotary core 23 which can rotate about the axis 24 under the action of an electric motor 25.
  • the housing 22 is provided with a bore in which opens the branch 17.
  • the casing 22 is provided with three holes in each of which open respectively the branches 18, 19 and 20.
  • the core 23 comprises a passage of Z-shaped fluid 26 and an outer annular cavity 27.
  • the annular cavity 27 is in communication with the branch 17, regardless of the angular position of the core 23.
  • the annular cavity 27 is in communication with the passage 26.
  • the fluid passage 26 is C-shaped or other shapes with a smoother change in direction of flow to reduce the loss of fluid pressure.
  • the core 23 can be positioned in three angular positions, such that the passage 26 is in front of one of the branches 18, 19 or 20, respectively to allow the communication of the branches 17 and 18, 17 and 19 or 17 and 20. From any initial state of the core 23, one can go directly to another state without going through an intermediate state other than a total state of shutter. The transition from one state to another is done by a simple 120 ° rotation of the core 23 in one direction or the other.
  • FIG. 4 illustrates a particularly compact variant in which it is proposed to integrate the valve 16 with the thermostat 10.
  • the thermostat 10 comprises a fixing plate 28 on the motor, so that the inlet 29 of the thermostat 10 is connected at a cooling fluid outlet of the heat engine 1 of FIG. 1.
  • the thermostat 10 comprises an outlet 30 intended to be connected to the pipe 8 of FIG. 1, and an outlet 31 intended to be connected to the radiator 4 and to the exchanger 5 of FIG. 1.
  • the inlet 29 and the outlet 31 are in free communication.
  • a valve 32 actuated by a spring 33.
  • the spring 33 holds the valve 32 in the closed position, the circulation of cooling fluid of the engine 1 to the radiator 6 of Figure 1 being cut.
  • the valve 32 is fixed on a rod 34 whose free end is immersed in a mixture of waxes and copper particles enclosed in a small tank called “bulb", referenced 35, fixed to the frame of the thermostat 10.
  • the bulb 35 is permanently bathed by the cooling fluid which passes from the heat engine to the outlet 31. At a temperature below T ot , the mixture in the bulb 35 is in the solid state. When the temperature of the cooling fluid increases, the mixture contained in the bulb 35 liquefies and expands until pushing the valve 32 and cause the opening of the passage from the inlet 29 to the outlet 30.
  • branch 19 of the valve 16 opens directly into the outlet 30 and that the branch 20 opens near the bulb 35, in the space in which it is housed and in which circulates the cooling fluid between the inlet 29 and the exit 31.
  • FIG 5 there is illustrated a cooling system comprising a thermostat 10 and a valve 16 integrated.
  • the branch 18 is connected at its end opposite the valve 16 to the pipe portion 36 connecting the radiator 4 and the pipe 7. It can thus reduce the length of the branch 18, which is economical.
  • the pump 21 is driven by an independent electric motor. It is also conceivable that the pump 21 is driven by the electric traction motor 2. This is advantageous for the cost and the lifetime of the system. Indeed, a conventional electric pump is generally DC. Compared to a mechanical pump, the electric motor is the main additional cost of an electric pump and generally has a life significantly lower than that of the mechanical pump. The operation of the system is then the following.
  • the branches 17 and 19 are put into communication. If the water temperature measured by the sensor 12 is greater than or equal to the temperature T ot , and if the vehicle is in electric traction mode, with the engine 1 stopped, the fluid communication between the branches 17 is maintained. and 19. If the coolant temperature measured by the sensor 12 becomes greater than or equal to the temperature T ot , and if the heat engine is running, the valve 16 places the branches 17 and 18 in communication. In addition, if the sensor 13 measures a temperature above the predetermined temperature T c2 , the fan 11 is actuated, especially if the speed of the vehicle is low, for example less than a value between 60 and 80 km / h.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

  • La présente invention concerne un système de refroidissement pour véhicule à propulsion hybride.
  • Les véhicules à propulsion hybride comprennent en général un moteur thermique, un ou deux moteurs électriques, un générateur de tension électrique, et un ensemble de convertisseur électronique de puissance qui soit alimente le ou les moteurs électriques, soit charge les batteries, tous devant être refroidis afin de fonctionner dans les conditions pour lesquelles ils sont prévus. On cherche à profiter de cette double motorisation pour réduire au maximum la consommation et les émissions polluantes, de façon à rester en dessous des niveaux autorisés.
  • On a constaté que les plages de débit et de température du liquide de refroidissement sont très différentes pour un moteur électrique et pour un moteur thermique. Le liquide de refroidissement d'un moteur électrique a un débit de l'ordre de 100 à 500 l/heure à une température de 50 à 70°. Le liquide de refroidissement d'un moteur thermique a un débit qui peut être vingt fois supérieur, à une température de l'ordre de 100 à 110° maximum. Ces différences de débit et de température rendent difficile l'utilisation d'un seul circuit et d'un seul radiateur fonctionnant dans des conditions optimales sur l'ensemble des situations rencontrées pour un véhicule à propulsion hybride.
  • Le document FR 2 748 428 décrit un système de refroidissement pour véhicule à propulsion hybride comportant un moteur thermique et un moteur électrique, comprenant un liquide caloporteur circulant dans les moteurs et dans un radiateur et des moyens pour que, le moteur thermique étant à l'arrêt et le moteur électrique étant en marche, le liquide caloporteur circule dans une première partie du radiateur seulement, et pour que, les deux moteurs étant en marche, le liquide caloporteur circule dans les deux parties du radiateur.
  • Toutefois, il est nécessaire, en général, de prévoir une pompe électrique pour faire circuler le fluide de refroidissement dans le moteur électrique. Les pompes électriques sont soit très onéreuses, soit à durée de vie insuffisante.
  • Dans le document « Patent abstract of Japan » JP-2000-073763 A, il est décrit un système avec un premier circuit de refroidissement pour une culasse de moteur connecté à un deuxième circuit de refroidissement pour moteur. Un circuit de refroidissement séparé est fournit pour une unité électronique de puissance.
  • La présente invention propose de remédier aux limitations des techniques classiques en proposant un système de refroidissement fonctionnant de façon optimale dans tous les cas de figure et permettant de réduire la consommation d'énergie et les émissions polluantes.
  • La présente invention propose de réduire la durée de fonctionnement d'une pompe de circulation de fluide de refroidissement dans le moteur électrique.
  • La présente invention propose de maintenir le moteur électrique et les électroniques de puissance à faible température.
  • Le système de refroidissement, selon un aspect de l'invention, est destiné à un véhicule à propulsion hybride comprenant un moteur thermique et au moins un moteur électrique. Le système est du type comprenant un fluide caloporteur apte à refroidir les moteurs thermique et électrique, un radiateur comportant une pluralité de canaux de refroidissement et capable de refroidir le liquide caloporteur par échange thermique avec un courant d'air, une première conduite entre ledit radiateur et le moteur thermique dans le sens d'écoulement du fluide caloporteur et une deuxième conduite entre ledit moteur thermique et ledit radiateur dans le sens d'écoulement du fluide caloporteur. Le système comprend une conduite de dérivation comprenant une première branche connectée à la première conduite et une deuxième branche connectée à une conduite en amont du moteur thermique, ladite conduite de dérivation étant apte à refroidir le moteur électrique.
  • Le système est caractérisé par le fait que la première branche passe par une unité électronique de puissance et le moteur électrique.
  • Dans un mode de réalisation de l'invention, la première branche est équipée d'une pompe de circulation du fluide colporteur.
  • Dans un mode de réalisation de l'invention, ladite pompe de circulation du fluide caloporteur est entraînée par le moteur électrique.
  • Dans un autre mode de réalisation de l'invention, ladite pompe de circulation de fluide caloporteur est entraînée indépendamment du moteur électrique.
  • De préférence, la conduite de dérivation comprend une troisième branche connectée à la deuxième conduite.
  • Dans un mode de réalisation de l'invention, la deuxième branche est connectée à une conduite de sortie d'un radiateur de chauffage d'un habitacle de véhicule.
  • De préférence, la conduite de dérivation comprend une quatrième branche connectée à la sortie du moteur thermique en amont d'un thermostat.
  • Avantageusement, les branches de la conduite de dérivation sont connectées entre elles par une vanne multi-voies.
  • Dans un mode de réalisation de l'invention, un thermostat est intégré à ladite vanne multi-voies.
  • Dans un mode de réalisation de l'invention, la vanne multi-voies comprend un noyau de commande rotatif.
  • L'invention concerne également un véhicule comprenant un système de refroidissement tel que ci-dessus.
  • L'invention propose également un procédé de refroidissement pour véhicule à propulsion hybride comprenant un moteur thermique et au moins un moteur électrique refroidis par la circulation d'un fluide caloporteur dans lesdits moteurs, un moyen d'échange thermique, une première conduite entre ledit moyen d'échange thermique et le moteur thermique dans le sens d'écoulement du fluide caloporteur et une deuxième conduite entre ledit moteur thermique et ledit moyen d'échange thermique dans le sens d'écoulement du fluide caloporteur, procédé dans lequel, on fait circuler le fluide caloporteur dans une conduite de dérivation connectée de première part à la première conduite et de deuxième part à une conduite en amont du moteur thermique, pour refroidir le moteur électrique et l'unité de puissance électronique.
  • Le refroidissement est ainsi effectué en série, le fluide caloporteur passant dans la conduite de dérivation passant ensuite dans le moteur thermique ce qui est préférable en cas de température élevée en sortie du moyen d'échange thermique.
  • Avantageusement, on fait varier le débit de fluide caloporteur dans la conduite de dérivation en fonction de la température en sortie du moyen d'échange thermique.
  • Dans un mode de réalisation de l'invention, en cas de température du fluide caloporteur insuffisante pour provoquer l'ouverture d'un thermostat disposé en sortie du moteur thermique, on fait circuler le fluide caloporteur dans la conduite de dérivation connectée de troisième part à la deuxième conduite, pour refroidir le moteur électrique en l'absence de circulation de fluide caloporteur dans le moteur thermique. Ce mode de fonctionnement peut aussi être adopté lorsque le moteur thermique est à l'arrêt.
  • Dans un mode de réalisation de l'invention, en cas de température du fluide caloporteur nettement inférieure à la température d'ouverture d'un thermostat disposé en sortie du moteur thermique, on fait circuler le fluide caloporteur dans la conduite de dérivation connectée de quatrième part à la sortie du moteur thermique en amont du thermostat, pour refroidir le moteur électrique tout en réchauffant le moteur thermique. On peut ainsi obtenir une montée en température plus rapide du moteur thermique lors de son démarrage et réduire la formation d'éléments polluants.
  • Ce mode de fonctionnement peut aussi être adopté lorsque le moteur thermique est à l'arrêt, si la pompe associée au moteur thermique est à entraînement électrique ou si ladite pompe peut être bipassée. On peut ainsi préchauffer le moteur thermique.
  • L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée de quelques modes de réalisation pris à titre d'exemples nullement limitatifs et illustrés par les dessins annexés, sur lesquels :
    • la figure 1 est une vue schématique d'un système de refroidissement selon un premier mode de réalisation de l'invention;
    • la figure 2 est une vue schématique en coupe axiale d'un exemple de vanne multi-voies;
    • la figure 3 est une vue schématique en coupe transversale de la vanne multi-voies de la figure 2;
    • la figure 4 est une vue schématique en coupe transversale d'une vanne multi-voies intégrée à un thermostat; et
    • la figure 5 est une vue schématique d'un autre mode de réalisation du système de refroidissement.
  • Pour simplifier notre description, le terme "moteur électrique" définit toutes les machines qui convertissent l'énergie électrique en énergie mécanique, ou de l'énergie mécanique en énergie électrique, et le terme "électronique de puissance" définit l'ensemble des électroniques qui convertissent du courant alternatif en courant continu, du courant continu en courant alternatif, du courant de haute tension en courant de faible tension, ou encore du courant de faible tension en courant de haute tension.
  • Comme on peut le voir sur la figure 1, le système de refroidissement est associé à un moteur thermique 1 et à un moteur électrique 2 pourvu d'une unité électronique de puissance 3. Cette unité électronique de puissance 3 est placée généralement avant le moteur électrique 2 parce que sa température de fonctionnement est plus faible que le moteur électrique. Il est également prévu un radiateur de chauffage 4 permettant de chauffer l'habitacle du véhicule dans lequel est installé le système de refroidissement, ainsi qu'un échangeur 5 permettant de refroidir un fluide quelconque, par exemple l'huile de lubrification, l'huile de boîte de vitesses, ... ou un organe quelconque, par exemple un palier de turbocompresseur, ...
  • Le système de refroidissement comprend un radiateur 6 dont la sortie est reliée à une conduite 7 et dont l'entrée est reliée à une conduite 8. La conduite 7 est reliée à une pompe 9 dont la sortie est reliée au moteur thermique 1. La pompe 9 peut être entraînée par le moteur thermique 1 ou par un moteur électrique qui lui est dédié et qui n'a pas été représenté. La sortie du moteur 1 est pourvue d'un thermostat 10, lui-même relié à la conduite 8. Le radiateur 6 est généralement pourvu d'un ventilateur 11 motorisé, apte à accélérer l'écoulement de l'air à travers ledit radiateur 6.
  • Le système de refroidissement comprend un capteur de température 12 disposé en sortie du moteur 1, immédiatement en amont du thermostat 10, un capteur de température 13 monté sur la conduite 7 à la sortie du radiateur 6, et une unité de commande 14 recevant des informations de température en provenance des capteurs 12 et 13. La liaison entre l'unité de commande 14 et les capteurs 12 et 13 peut être effectuée par des fils électriques dédiés ou par l'intermédiaire d'un bus de communication.
  • L'entrée du radiateur de chauffage 4 est reliée à une sortie du moteur thermique 1 et la sortie du radiateur 4 est reliée à la conduite 7. De même, l'entrée de l'échangeur 5 est reliée à une sortie du moteur thermique 1 et sa sortie est reliée à la conduite 7.
  • Le système de refroidissement comprend, en outre, une conduite de dérivation référencée 15 dans son ensemble et pourvue de plusieurs branches, et d'une vanne multi-voies 16 à laquelle sont reliées lesdites branches.
  • Plus précisément, une première branche 17 est reliée, d'une part à la conduite 7 en aval du capteur de température 13 et, d'autre part à la vanne multi-voies 16. La branche 17 passe par le moteur électrique 2 et par l'unité électronique de puissance 3. La circulation du fluide de refroidissement dans ladite branche 17 permet de maintenir le moteur électrique 2 et l'unité électronique de puissance 3 à une température de fonctionnement normale, si possible suffisamment basse pour que des composants industriels courants, tant électriques qu'électroniques, puissent être utilisés dans la construction de ces éléments.
  • Il est de plus prévu une pompe électrique 21 disposée sur la branche 7, commandée par l'unité de commande 14 et faisant circuler le fluide de refroidissement dans ladite branche 17. Une deuxième branche 18 est reliée à une extrémité à la première conduite 7 à proximité de la pompe 9 et à l'extrémité opposée à la vanne multi-voies 16.
  • Une troisième branche 19 est reliée, d'une part à la conduite 8 et, d'autre part à la vanne multi-voies 16. Une quatrième branche 20 est reliée, d'une part à une sortie du moteur thermique 1 en amont du thermostat 10 et, d'autre part à la vanne multi-voies 16. La vanne multi-voies 16 est apte à mettre en communication les branches 17 et 18 en obturant les branches 19 et 20, à mettre en communication les branches 17 et 19 en obturant les autres branches et à mettre en communication les branches 17 et 20 en obturant les autres branches, et ce sur ordre de l'unité de commande 14 à laquelle elle est reliée.
  • En d'autres termes, la vanne multi-voies 16, qui est ici à quatre voies, a pour fonction d'assurer le passage sélectif du fluide de refroidissement entre la branche 17 et l'une des trois autres branches 18, 19 ou 20.
  • Le fonctionnement du système de refroidissement est le suivant. Si la température de l'eau telle que mesurée par le capteur 12, est inférieure à une température prédéterminée Tc1 et qui est inférieure ou égale à la température Tot d'ouverture du thermostat 10, généralement comprise entre 83 et 89°C, la vanne multi-voies 16 met en communication les branches 17 et 20 et permet de laisser passer le fluide de la branche 20 vers la branche 17, lorsque le moteur thermique 1 est en fonctionnement. En effet, le fluide de refroidissement qui se trouve dans le moteur thermique 1 est soumis à une forte pression en raison de la pompe 9, pression supérieure à celle régnant dans la branche 17, la pompe 21 étant maintenue à l'arrêt.
  • Dans cet état, qui est celui d'un fonctionnement au démarrage du moteur thermique 1 ou à très faible charge, aucune énergie n'est consommée par la pompe 21 qui se trouve à l'arrêt. La chaleur dégagée par le fonctionnement du moteur électrique 2 et de l'unité électronique de puissance 3 permet d'augmenter la température du moteur thermique 1 et donc de réduire la durée de sa montée en température, ce qui se traduit par la diminution de la quantité d'éléments polluants générée par la combustion du moteur thermique 1. Le maintien à l'arrêt de la pompe 21 réduit sa durée globale de fonctionnement et permet donc une durée de vie globale plus longue.
  • Si le capteur 12 indique une température d'eau supérieure ou égale à la température Tc1 mais inférieure à la température Tot d'ouverture du thermostat 10, la vanne multi-voies 16 met en communication les branches 17 et 19. La pompe 21 est mise en marche à faible vitesse, par exemple avec une faible tension d'alimentation U1. Le moteur électrique 2 et l'unité électronique de puissance 3 sont alors refroidis au moyen du radiateur 6 dont la capacité d'échange thermique est largement supérieure, par exemple d'un facteur de l'ordre de 3 à 5, à la chaleur susceptible d'être dégagée par le moteur électrique 2 et l'unité électronique de puissance 3. La conduite 8, le radiateur 6 et la conduite 7 étant dimensionnés pour les forts débits de fluide de refroidissement nécessités par le moteur thermique 1, les pertes de charge sont faibles. L'énergie consommée par la pompe 21 est donc également faible. Son usure l'est également.
  • Si le capteur 12 indique une température d'eau supérieure ou égale à la température Tot, la vanne multi-voies 16 met en communication les branches 17 et 18. La pompe 21 est mise en marche. En d'autres termes, une partie du débit de sortie du radiateur 6 est dérivée par les branches 17 et 18. Le moteur électrique 2 et l'unité électronique de puissance 3 sont refroidis par du fluide de refroidissement de sortie du radiateur 6, et donc à basse température.
  • De plus, on peut prévoir que si le capteur de température 13 à la sortie du radiateur 6 indique une température de fluide de refroidissement inférieure à une température prédéterminée Tc2, la pompe 21 fonctionne à faible débit, par exemple avec la faible d'alimentation U1, et que par contre si le capteur 13 indique une température supérieure à la température Tc2, la pompe 21 fonctionne à débit élevé, par exemple alimentée par une tension U2 supérieure à U1 pour obtenir un débit plus fort dans la branche 17. On comprendra que Tc2 est supérieure à Tot.
  • Bien entendu, l'unité de commande 14 du système de refroidissement peut commander le fonctionnement du ventilateur 11 en fonction de la température mesurée par le capteur 13.
  • Lorsque le moteur thermique 1 est à l'arrêt, la vanne multi-voies 16 met en communication les branches 17 et 19. La pompe 21 est mise en marche à faible débit, par exemple alimentée par la tension U1. Le radiateur 6 assure alors le refroidissement du moteur électrique 2 et de l'unité électronique de puissance 3, qui peuvent fonctionner aux faibles températures qui sont nécessitées par les composants de grandes séries, à bas coût, que l'on souhaite utiliser.
  • Ainsi, la température d'eau à l'entrée du moteur électrique 2 et de l'unité électronique de puissance 3, reste très basse dans tous les cas de fonctionnement. Des mesures effectuées sur un prototype montrent que même dans le cas où le moteur thermique 1 est en fonctionnement et où la température d'eau en sortie du moteur est supérieure à la température Tot d'ouverture du thermostat, la température à la sortie du radiateur 6 reste inférieure à 85°C pour 85% du temps d'utilisation du véhicule. Pour les cas où la température mesurée par le capteur 13 est supérieure à Tc2, l'augmentation du débit de la pompe 21 et/ou le déclenchement du ventilateur 11 permettent de maintenir cette température dans les limites souhaitées.
  • Grâce à l'invention, la pompe 21 a besoin d'une faible puissance, tourne moins vite et moins fréquemment. Dans un cas de fonctionnement, la pompe 18 est à l'arrêt. Dans deux autres cas de fonctionnement où le thermostat est fermé, la capacité d'échange thermique du radiateur 6, dimensionnée pour les pertes thermiques du moteur thermique 1, est largement excédentaire par rapport aux pertes thermiques du moteur électrique 2 et de l'unité électronique de puissance 3 et permet donc à la pompe 21 de fonctionner à faible débit. Enfin, les branches 17, 18 et 19 sont connectées à des conduites 7 et 8 de fort diamètre, ce qui minimise la perte de charge subie par le fluide entraîné par la pompe 21.
  • Sur les figures 2 et 3, un exemple de vanne 16 est représenté. La vanne 16 comprend un carter cylindrique 22 et un noyau rotatif 23 qui peut tourner autour de l'axe 24 sous l'action d'un moteur électrique 25. A un niveau dit "inférieur", le carter 22 est pourvu d'un perçage dans lequel débouche la branche 17. A un niveau dit "supérieur", décalé par rapport au niveau inférieur, le carter 22 est pourvu de trois perçages dans chacun desquels débouchent respectivement les branches 18, 19 et 20. Le noyau 23 comprend un passage de fluide 26 en forme de Z et une cavité annulaire extérieure 27. La cavité annulaire 27 est en communication avec la branche 17, quelle que soit la position angulaire du noyau 23. La cavité annulaire 27 est en communication avec le passage 26.
  • En variante, on pourrait prévoir que le passage de fluide 26 soit en forme de C ou d'autres formes avec un changement plus doux de la direction de l'écoulement pour réduire la perte de pression de fluide. Par l'action du moteur électrique 25, le noyau 23 peut se positionner sur trois positions angulaires, telles que le passage 26 soit en face de l'une des branches 18, 19 ou 20, pour respectivement autoriser la mise en communication des branches 17 et 18, 17 et 19 ou 17 et 20. A partir de n'importe quel état initial du noyau 23, on peut passer directement à un autre état sans passer par un état intermédiaire autre qu'un état d'obturation total. Le passage d'un état à un autre se fait par une simple rotation de 120° du noyau 23 dans un sens ou dans l'autre.
  • Sur la figure 4, est illustrée une variante particulièrement compacte dans laquelle on propose d'intégrer la vanne 16 au thermostat 10. Le thermostat 10 comprend une plaque de fixation 28 sur le moteur, de façon que l'entrée 29 du thermostat 10 soit reliée à une sortie de fluide de refroidissement du moteur thermique 1 de la figure 1. Le thermostat 10 comprend une sortie 30 prévue pour être reliée à la conduite 8 de la figure 1, et une sortie 31 prévue pour être reliée au radiateur 4 et à l'échangeur 5 de la figure 1. L'entrée 29 et la sortie 31 sont en communication libre. Entre l'entrée 29 et la sortie 30, est prévu un clapet 32 actionné par un ressort 33. A faible température, inférieure à Tot, le ressort 33 maintient le clapet 32 en position fermée, la circulation de fluide de refroidissement du moteur thermique 1 vers le radiateur 6 de la figure 1 étant coupée.
  • Le clapet 32 est fixé sur une tige 34 dont l'extrémité libre est plongée dans un mélange de cires et de particules de cuivre enfermé dans un petit réservoir dénommé "bulbe", référencé 35, fixé au bâti du thermostat 10. Le bulbe 35 est baigné en permanence par le fluide de refroidissement qui passe du moteur thermique vers la sortie 31. A température inférieure à Tot, le mélange contenu dans le bulbe 35 est à l'état solide. Lorsque la température du fluide de refroidissement augmente, le mélange contenu dans le bulbe 35 se liquéfie et se dilate jusqu'à pousser le clapet 32 et provoquer l'ouverture du passage de l'entrée 29 vers la sortie 30.
  • On prévoit que la branche 19 de la vanne 16 débouche directement dans la sortie 30 et que la branche 20 débouche à proximité du bulbe 35, dans l'espace dans lequel il est logé et dans lequel circule le fluide de refroidissement entre l'entrée 29 et la sortie 31.
  • Sur la figure 5, est illustré un système de refroidissement comprenant un thermostat 10 et une vanne 16 intégrés. La branche 18 est reliée à son extrémité opposée à la vanne 16 à la portion de conduite 36 reliant le radiateur 4 et la conduite 7. On peut ainsi réduire la longueur de la branche 18, ce qui est économique.
  • On a supposé ci-dessus que la pompe 21 était entraînée par un moteur électrique indépendant. On peut également concevoir que la pompe 21 est entraînée par le moteur électrique de traction 2. Ceci est avantageux pour le coût et la durée de vie du système. En effet, une pompe électrique classique est généralement à courant continu. Par rapport à une pompe mécanique, le moteur électrique est le principal surcoût d'une pompe électrique et présente en général une durée de vie nettement inférieure à celle de la pompe mécanique. Le fonctionnement du système est alors le suivant.
  • Si la température d'eau mesurée par le capteur 12 est inférieure à la température Tot d'ouverture du thermostat, les branches 17 et 19 sont mises en communication. Si la température d'eau mesurée par le capteur 12 est supérieure ou égale à la température Tot, et si le véhicule est en mode de traction électrique, moteur thermique 1 à l'arrêt, on maintient la communication de fluide entre les branches 17 et 19. Si la température de fluide de refroidissement mesurée par le capteur 12 devient supérieure ou égale à la température Tot, et si le moteur thermique est en fonctionnement, la vanne 16 met en communication les branches 17 et 18. En outre, si le capteur 13 mesure une température supérieure à la température prédéterminée Tc2, le ventilateur 11 est mis en action, notamment si la vitesse du véhicule est faible, par exemple inférieure à une valeur comprise entre 60 et 80 kmh.
  • On remarque dans le cas où la pompe 21 est entraînée par le moteur 2, le passage du fluide de 20 à 17, prévu en mode hybride pour réduire l'usage de la pompe 21, n'est plus nécessaire, et la vanne 16 peut devenir une vanne à 3 voies.

Claims (10)

  1. Système de refroidissement pour véhicule à propulsion hybride comprenant un moteur thermique (1) et au moins un moteur électrique (2), du type comprenant un fluide caloporteur apte à refroidir les moteurs thermique et électrique, un radiateur (6) comportant une pluralité de canaux de refroidissement et capable de refroidir le fluide caloporteur par échange thermique avec un courant d'air, une première conduite (7) entre ledit radiateur et le moteur thermique dans le sens d'écoulement du fluide caloporteur et une deuxième conduite (8) entre ledit moteur thermique et ledit radiateur dans le sens d'écoulement du fluide caloporteur, comprenant, en outre une conduite de dérivation (15) comprenant une première branche (17) connectée à la première conduite et une deuxième branche (18) connectée à une conduite en amont du moteur thermique, ladite conduite de dérivation étant apte à refroidir le moteur électrique (2)
    caractérisé par le fait que la première branche passe par une unité électronique (3) de puissance et le moteur électrique (2).
  2. Système selon la revendication 1, caractérisé par le fait que la première branche est équipée d'une pompe (21) de circulation du fluide caloporteur.
  3. Système selon l'une quelconque des revendications précédentes, caractérisé par le fait que la conduite de dérivation comprend une troisième branche (19) connectée à la deuxième conduite.
  4. Système selon l'une quelconque des revendications précédentes, caractérisé par le fait que la deuxième branche est connectée à une conduite de sortie d'un radiateur (4) de chauffage d'un habitacle de véhicule.
  5. Système selon l'une quelconque des revendications précédentes, caractérisé par le fait que la conduite de dérivation comprend une quatrième branche (20) connectée à la sortie du moteur thermique en amont d'un thermostat (10).
  6. Système selon l'une quelconque des revendications précédentes, caractérisé par le fait que les branches de la conduite de dérivation sont connectées entre elles par une vanne multi-voies (16).
  7. Système selon la revendication 6, caractérisé par le fait qu'un thermostat est intégré à ladite vanne multi-voies.
  8. Système selon la revendication 6 ou 7, caractérisé par le fait que la vanne multi-voies comprend un noyau de commande rotatif (23)
  9. Véhicule comprenant un système selon l'une quelconque des revendications précédentes.
  10. Procédé de refroidissement pour véhicule à propulsion hybride comprenant un moteur thermique et au moins un moteur électrique refroidis par la circulation d'un fluide caloporteur dans lesdits moteurs, un moyen d'échange thermique, une première conduite entre ledit radiateur et le moteur thermique dans le sens d'écoulement du fluide caloporteur et une deuxième conduite entre ledit moteur thermique et ledit radiateur dans le sens d'écoulement du fluide caloporteur, dans lequel, on fait circuler le fluide caloporteur dans une conduite de dérivation connectée de première part à la première conduite et de deuxième part à une conduite en amont du moteur thermique, pour refroidir le moteur électrique, et une unité électronique de puissance (3) étant placée avant le moteur électrique (2) dans ladite conduite de dérivation (15).
EP20010402641 2000-10-13 2001-10-12 Système et procédé de refroidissement pour véhicule à propulsion hybride Expired - Lifetime EP1197644B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0013175A FR2815299B1 (fr) 2000-10-13 2000-10-13 Systeme et procede de refroidissement pour vehicule a propulsion hybride
FR0013175 2000-10-13

Publications (2)

Publication Number Publication Date
EP1197644A1 EP1197644A1 (fr) 2002-04-17
EP1197644B1 true EP1197644B1 (fr) 2006-09-13

Family

ID=8855345

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010402641 Expired - Lifetime EP1197644B1 (fr) 2000-10-13 2001-10-12 Système et procédé de refroidissement pour véhicule à propulsion hybride

Country Status (3)

Country Link
EP (1) EP1197644B1 (fr)
DE (1) DE60122992T2 (fr)
FR (1) FR2815299B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107548432A (zh) * 2015-05-20 2018-01-05 大众汽车有限公司 内燃机和机动车
CN109578126A (zh) * 2018-10-30 2019-04-05 中国北方发动机研究所(天津) 用于混合动力车辆的高低温双循环冷却系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6681805B2 (en) 2001-11-28 2004-01-27 Ranco Incorporated Of Delaware Automotive coolant control valve
FR2849673B1 (fr) * 2003-01-03 2006-08-04 Peugeot Citroen Automobiles Sa Actionneur a barillet pour moteur a refroidissement separe
FR2863680B1 (fr) * 2003-12-12 2006-03-10 Valeo Thermique Moteur Sa Vanne de regulation thermique pour un circuit de fluide, en particulier pour un circuit de refroidissement d'un moteur.
FR2911092B1 (fr) * 2007-01-08 2009-10-09 Peugeot Citroen Automobiles Sa Systeme et procede de gestion thermique multifonction pour vehicule hybride
DE102008007766A1 (de) * 2008-02-06 2009-08-13 Audi Ag Vorrichtung zum Kühlen einer Verbrennungskraftmaschine
DE102008054216A1 (de) * 2008-10-31 2010-05-06 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Einstellung eines elektrischen Antriebs sowie Kraftfahrzeug
DE102009009854B4 (de) * 2009-02-20 2012-05-24 Audi Ag Kühlmittelkreislauf für eine Brennkraftmaschine
DE102010060230B4 (de) 2010-10-28 2024-05-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Temperiersystem für eine Antriebsvorrichtung eines Kraftfahrzeuges, Verfahren zum Betreiben eines derartigen Temperiersystems und Kraftfahrzeug mit einem derartigen Temperiersystem
DE102012217101B4 (de) * 2012-09-24 2016-09-01 Bayerische Motoren Werke Aktiengesellschaft Kühlmittelkreislauf für Fahrzeuge
CA2891753C (fr) 2014-06-05 2022-04-19 Liebherr-Mining Equipment Colmar Sas Machine de travail, en particulier un camion a benne ou un camion
JP6264348B2 (ja) * 2015-09-15 2018-01-24 トヨタ自動車株式会社 エンジン冷却装置
DE102016002518A1 (de) 2016-03-02 2017-09-07 Audi Ag Verfahren zum Betreiben eines Kraftfahrzeugs
CN110332039B (zh) * 2019-07-09 2020-09-22 安徽江淮汽车集团股份有限公司 一种发动机冷却系统及控制方法
CN115263519B (zh) * 2022-08-19 2024-08-13 中国第一汽车股份有限公司 混合动力发动机热管理系统、控制方法、车辆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9116661D0 (en) * 1991-08-01 1991-09-18 The Technology Partnership Ltd Vehicle cooling system
JP3525538B2 (ja) * 1995-03-08 2004-05-10 株式会社デンソー 車両用内燃機関の冷却系装置
FR2748428B1 (fr) 1996-05-07 1998-06-19 Renault Systeme de refroidissement pour vehicule a propulsion hybride
DE19637817A1 (de) * 1996-09-17 1998-03-19 Laengerer & Reich Gmbh & Co Einrichtung und Verfahren zum Kühlen und Vorwärmen
JP2000073763A (ja) * 1998-08-26 2000-03-07 Nissan Motor Co Ltd ハイブリッド車用冷却装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107548432A (zh) * 2015-05-20 2018-01-05 大众汽车有限公司 内燃机和机动车
CN107548432B (zh) * 2015-05-20 2020-09-11 大众汽车有限公司 内燃机和机动车
CN109578126A (zh) * 2018-10-30 2019-04-05 中国北方发动机研究所(天津) 用于混合动力车辆的高低温双循环冷却系统
CN109578126B (zh) * 2018-10-30 2021-05-28 中国北方发动机研究所(天津) 用于混合动力车辆的高低温双循环冷却系统

Also Published As

Publication number Publication date
DE60122992D1 (de) 2006-10-26
EP1197644A1 (fr) 2002-04-17
DE60122992T2 (de) 2007-03-15
FR2815299A1 (fr) 2002-04-19
FR2815299B1 (fr) 2003-01-24

Similar Documents

Publication Publication Date Title
EP1197644B1 (fr) Système et procédé de refroidissement pour véhicule à propulsion hybride
FR2809451A1 (fr) Moteur thermique a circuit de refroidissement et echangeur de chaleur de chauffage, relie a celui-ci
EP1362168B1 (fr) Dispositif, systeme et procede de refroidissement d'un fluide caloporteur
FR2827359A1 (fr) Vanne de commande pour un circuit de refroidissement d'un moteur thermique de vehicule automobile
EP0960756A1 (fr) Dispositif de climatisation de véhicule utilisant un fluide réfrigérant à l'état supercritique
FR2800125A1 (fr) Dispositif de distribution et de regulation d'un liquide de refroidissement dans un circuit de refroidissement d'un moteur a combustion interne et son procede
FR2779025A1 (fr) Dispositif de chauffage et de circulation forcee de fluide
FR2805710A1 (fr) Systeme electrique refroidi par le refrigerant d'une installation de conditionnement d'air, vehicule automobile comprenant un tel systeme electrique, et utilisation du refrigerant d'une installation de conditionnement d'air
FR2554165A1 (fr) Procede de regulation de la temperature du liquide de refroidissement d'un moteur a combustion interne et dispositif pour sa mise en oeuvre
EP3953199A1 (fr) Dispositif de refroidissement et de lubrification d'un groupe motopropulseur électrique d'un véhicule automobile électrique ou hybride
EP2112347B1 (fr) Circuit de refroidissement moteur
EP3559425B1 (fr) Procédé de pilotage d'un système de refroidissement pour un véhicule hybride comportant un circuit de transfert de liquide de refroidissement
FR2748428A1 (fr) Systeme de refroidissement pour vehicule a propulsion hybride
FR2778815A1 (fr) Dispositif de chauffage magnetique
EP3747079A1 (fr) Systeme de regulation thermique d'au moins un dispositif de stockage electrique d'un vehicule automobile
FR2973742A1 (fr) Vehicule hybride muni d'un systeme de regulation thermique d'une boite de vitesses automatique
WO2008129190A1 (fr) Dispositif et procede de recuperation d'energie pour moteur a combustion interne de vehicule automobile
FR2851621A1 (fr) Groupe a double moteur et double pompe electrohydraulique pour un engin automoteur notamment un chariot transporteur
WO2008029029A1 (fr) Dispositif de distribution de liquide de refroidissement dans un moteur de vehicule automobile
FR2815402A1 (fr) Dispositif, systeme et procede de refroidissement d'un fluide caloporteur
FR2815401A1 (fr) Dispositif, systeme et procede de refroidissement d'un fluide caloporteur
FR2891205A1 (fr) Machine a moteur electrique de deplacement, moteur electrique de pompe d'un systeme hydraulque et refroidissement par liquide
EP1977096A2 (fr) Dispositif permettant d'accelerer la montee en temperature d'huile de lubrification d'un moteur a combustion interne a turbocompresseur a gaz d'echappement
EP3575118A1 (fr) Systeme de regulation thermique destine a un vehicule electrique ou hybride
FR2910537A1 (fr) Dispositif et procede de regulation du debit de l'air envoye au travers d'un echangeur de chaleur pour moteur a combustion interne de vehicule automobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): BE DE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S.

17P Request for examination filed

Effective date: 20020904

AKX Designation fees paid

Free format text: BE DE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE

REF Corresponds to:

Ref document number: 60122992

Country of ref document: DE

Date of ref document: 20061026

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070614

BERE Be: lapsed

Owner name: RENAULT S.A.S.

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141022

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60122992

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503