EP1168006A2 - Method for bonding a plurality of optical elements to a base - Google Patents
Method for bonding a plurality of optical elements to a base Download PDFInfo
- Publication number
- EP1168006A2 EP1168006A2 EP01112204A EP01112204A EP1168006A2 EP 1168006 A2 EP1168006 A2 EP 1168006A2 EP 01112204 A EP01112204 A EP 01112204A EP 01112204 A EP01112204 A EP 01112204A EP 1168006 A2 EP1168006 A2 EP 1168006A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- base body
- mirror
- optical elements
- elements
- supporting structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70808—Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
- G03F7/70825—Mounting of individual elements, e.g. mounts, holders or supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0643—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K28/00—Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
- B23K28/006—Welding metals by means of an electrolyte
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/02—Electroplating of selected surface areas
- C25D5/022—Electroplating of selected surface areas using masking means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/09—Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/702—Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S359/00—Optical: systems and elements
- Y10S359/90—Methods
Definitions
- the invention relates to a method for connecting a plurality of optical elements with a base body, in particular for making a faceted mirror.
- the invention relates also a facet mirror produced by the process.
- a method is known from US Pat. No. 4,277,141, according to which a Multifaceted mirror is manufactured in several steps, namely, in a first step, individual mirrors are created, the individual mirrors are then fixed and aligned and connected to a support body via an adhesive.
- a facet mirror is described in US Pat. No. 4,195,913 a large number of individual mirrors on a spherical support structure is glued or screwed on.
- the object of the present invention is a method for connecting a variety of optical elements of the to create the type mentioned, the variety of optical Elements with high accuracy, especially with regard to Position and angularity on which the base body is arranged can so that e.g. Jet mixtures and field images with high precision can be done.
- the present invention is also based on the object a faceted mirror with a variety of individual optical To form mirror elements of a homogeneous lighting distribution or homogeneous illumination and a very exact Beam mixing and field mapping generated.
- the object is characterized by Part of claim 1 mentioned method solved.
- the method according to the invention allows a large number of individual optical elements that are completely identical can be done in a relatively simple way and very precisely the galvanizing process with each other and with a basic body get connected. Because exactly through the electroplating process understandable relationships can be created this way e.g. form a faceted mirror that reflects the homogeneous Illumination of a field enables, with which a corresponding good beam mixing and exact field mapping are possible.
- a jet mixture can be mixed with the method according to the invention or achieve lighting that is disadvantageous higher light intensity in the middle area eliminated. This is especially in optical lithography with an EUV lighting system advantageous, e.g. on the reticle (Mask) have the largest possible homogeneously illuminated area would like to.
- the process according to the invention practically turns it into a monolithic one Body formed by good heat transfer of the individual optical elements to the basic body an efficient Allows cooling of the optical element.
- the following is a method for making a faceted mirror and a facet mirror made by the method described for example.
- the procedure is basically but also for connecting or assembling other optical Elements such as Lenses and lens arrays, suitable.
- In 1 shows the use of a facet mirror 1 in one Illumination system shown for EUV lithography.
- the light from a source 2, e.g. of a laser, is over a Collector mirror 3 thrown on the facet mirror 1 where it is with the desired uniform illumination via a deflecting mirror 4 a reticle (mask) 5 is supplied.
- the pattern of the reticle 5 is a not shown
- Projection lens 6 a wafer 7 for imaging the image fed from reticle 5.
- the production of the faceted mirror 1 with a correspondingly high level Precision and homogeneous or desired illumination takes place 2 on a base body 8.
- the base body 8 can e.g. be galvanically molded, with its functional surface in terms of curvature, position and location of the requirements corresponds to that are placed on the finished facet mirror 1. Only the surface quality is still missing. The surface quality is now by individual mirror elements 9 as optical Elements realized.
- the Making a faceted mirror also easier, simplified and inexpensive.
- Bad qualities of mirror elements can be discarded beforehand or one can make a selection of mirror elements 9 that are identical or are almost identical, especially with regard to their optical Characteristics.
- Galvanizing processes are well known, which is why here is not discussed in more detail. Basically, this is done in that the mirror elements 9 on the base body 8 in their position will be brought and the whole then in an electrolytic Bad is switched cathodically and as the anode desired material, e.g. Cu or Ni is used so that the parts can grow together into one unit. To this Way you can e.g. the growth of a copper layer with any Reach thickness.
- anode desired material e.g. Cu or Ni
- the mirror elements 9 placed on the base body 8 become connected to the base body 8 by a galvanoplastic joining, like this through an intermediate layer 10 between mirror elements 9 and the base body 8 is indicated.
- an auxiliary structure 11 can be used according to FIG Positioning of the mirror elements 9 can be provided.
- the Auxiliary structure can consist of several individual stamps for more precise adjustment 12a, 12b, 12c ... be put together, that together a surface in negative form for the facet mirror to be produced form and correspondingly with a spherical surface are at a distance from each other or gaps for reasons of space provide.
- the mirror elements are e.g. through an adhesive or a Resin 13, with its mirrored side on the auxiliary structure 11 fixed.
- an adhesive or a Resin 13 With its mirrored side on the auxiliary structure 11 fixed.
- lens arrays When lens arrays are formed, the individual also become Lenses each with one of the optical surfaces on the Auxiliary structure 11 fixed.
- the second optical surfaces must then be protected separately from contamination. lenses or non-conductive mirror elements must first be replaced by a appropriate coating can be made electrically conductive.
- FIG. 14 After completion of a sufficiently strong supporting structure 14, can subsequently or in parallel with growing up Stiffening structures are installed by galvanic means or you let them grow up accordingly.
- 4 is a honeycomb structure 15 (without Mirror elements) shown.
- FIG can be seen that the support structure 14 with a cooling system in Form of cooling channels 16 may be provided.
- the cooling channels 16 can during the electroplating process be molded. All that is required is that corresponding snake-shaped wax inserts are provided, which then be melted out.
- Another solution can be to use a copper pipe hangs in a snake shape and this then during the galvanizing process ingrows. This way you get one very good heat transfer due to a metallic connection.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Environmental & Geological Engineering (AREA)
- Plasma & Fusion (AREA)
- Optical Elements Other Than Lenses (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Laser Beam Processing (AREA)
- Mounting And Adjusting Of Optical Elements (AREA)
- Microscoopes, Condenser (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Verbinden einer Vielzahl von optischen Elementen mit einem Grundkörper, insbesondere zum Herstellen eines Facettenspiegels. Die Erfindung betrifft auch einen nach dem Verfahren hergestellten Facettenspiegel.The invention relates to a method for connecting a plurality of optical elements with a base body, in particular for making a faceted mirror. The invention relates also a facet mirror produced by the process.
Aus der US-PS 4 277 141 ist ein Verfahren bekannt, wonach ein Multifacettenspiegel in mehreren Schritten hergestellt wird, nämlich in einem ersten Schritt werden Einzelspiegel geschaffen, anschließend werden die Einzelspiegel fixiert und ausgerichtet und über einen Klebstoff mit einem Tragkörper verbunden.A method is known from US Pat. No. 4,277,141, according to which a Multifaceted mirror is manufactured in several steps, namely, in a first step, individual mirrors are created, the individual mirrors are then fixed and aligned and connected to a support body via an adhesive.
In der US-PS 4 195 913 ist ein Facettenspiegel beschrieben, bei dem eine Vielzahl von Einzelspiegeln auf einer sphärischen Trägerstruktur angeklebt oder angeschraubt wird.A facet mirror is described in US Pat. No. 4,195,913 a large number of individual mirrors on a spherical support structure is glued or screwed on.
In der DE 197 35 831 A1 ist eine Optikfassung für ein Optikbauteil beschrieben, wobei ein Innenteil mit einem Außenrahmen durch eine Mehrzahl von Federgelenkbalken verbunden ist. Die Federgelenkbalken sind galvanoplastisch hergestellt.DE 197 35 831 A1 describes an optical mount for an optical component described, wherein an inner part with an outer frame is connected by a plurality of spring joint beams. The Spring joint beams are made of galvanoplastic.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Verbinden einer Vielzahl von optischen Elementen der eingangs erwähnten Art zu schaffen, wobei die Vielzahl der optischen Elemente mit hoher Genauigkeit, insbesondere bezüglich Position und Winkligkeit, auf dem Grundkörper angeordnet werden können, so daß z.B. Strahlmischungen und Feldabbildungen mit hoher Präzision erfolgen können.The object of the present invention is a method for connecting a variety of optical elements of the to create the type mentioned, the variety of optical Elements with high accuracy, especially with regard to Position and angularity on which the base body is arranged can so that e.g. Jet mixtures and field images with high precision can be done.
Der vorliegenden Erfindung liegt auch die Aufgabe zugrunde, einen Facettenspiegel mit einer Vielzahl von einzelnen optischen Spiegelelementen zu bilden, der eine homogene Beleuchtungsverteilung bzw. homogene Ausleuchtung und eine sehr exakte Strahlmischung und Feldabbildung erzeugt.The present invention is also based on the object a faceted mirror with a variety of individual optical To form mirror elements of a homogeneous lighting distribution or homogeneous illumination and a very exact Beam mixing and field mapping generated.
Erfindungsgemäß wird die Aufgabe durch das im kennzeichnenden Teil von Anspruch 1 genannte Verfahren gelöst. Ein nach dem erfindungsgemäßen Verfahren hergestellter Facettenspiegel ist in Anspruch 12 beschrieben.According to the invention, the object is characterized by Part of claim 1 mentioned method solved. One after the Faceted mirror produced according to the method of the invention described in claim 12.
Durch das erfindungsgemäße Verfahren können eine Vielzahl einzelner optischer Elemente, die völlig identisch ausgebildet sein können, auf relativ einfache Weise und sehr präzise durch den Galvanisierungsprozeß miteinander und mit einem Grundkörper verbunden werden. Da durch den Galvanisierungsprozeß exakt nachvollziehbare Verhältnisse geschaffen werden, läßt sich auf diese Weise z.B. ein Facettenspiegel bilden, der die homogene Ausleuchtung eines Feldes ermöglicht, womit eine entsprechend gute Strahlmischung und eine exakte Feldabbildung möglich werden.The method according to the invention allows a large number of individual optical elements that are completely identical can be done in a relatively simple way and very precisely the galvanizing process with each other and with a basic body get connected. Because exactly through the electroplating process understandable relationships can be created this way e.g. form a faceted mirror that reflects the homogeneous Illumination of a field enables, with which a corresponding good beam mixing and exact field mapping are possible.
Mit dem erfindungsgemäßen Verfahren lassen sich eine Strahlmischung bzw. eine Beleuchtung erreichen, die die nachteilige höhere Lichtintensität im mittleren Bereich beseitigt. Dies ist insbesondere in der optischen Lithographie mit einem EUV-Beleuch-tungssystem von Vorteil, wobei man z.B. auf dem Reticle (Maske) eine möglichst große homogen ausgeleuchtete Fläche haben möchte.A jet mixture can be mixed with the method according to the invention or achieve lighting that is disadvantageous higher light intensity in the middle area eliminated. This is especially in optical lithography with an EUV lighting system advantageous, e.g. on the reticle (Mask) have the largest possible homogeneously illuminated area would like to.
Die Realisierung des erfindungsgemäßen Verfahrens ist durch
zwei Fertigungsprinzipien möglich:
In vorteilhaften Weiterbildungen der Erfindung kann vorgesehen sein, daß in den aufwachsenden Körper während des Galvanisierungsprozesses noch Kühl- und/oder Versteifungseinrichtungen eingebaut werden. In advantageous developments of the invention can be provided be that in the growing body during the electroplating process nor cooling and / or stiffening devices to be built in.
Durch das erfindungsgemäße Verfahren wird praktisch ein monolithischer Körper gebildet, der durch einen guten Wärmeübergang der einzelnen optischen Elemente zum Grundkörper eine effiziente Kühlung des optischen Elements ermöglicht.The process according to the invention practically turns it into a monolithic one Body formed by good heat transfer of the individual optical elements to the basic body an efficient Allows cooling of the optical element.
Weitere vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und aus den nachfolgend anhand der Zeichnung prinzipmäßig beschriebenen Ausführungsbeispielen.Further advantageous refinements and developments of Invention result from the dependent claims and from the described in principle below with reference to the drawing Embodiments.
Es zeigt:
- Figur 1
- Prinzipdarstellung eines in einem EUV-Beleuchtungssystem für die Mikrolithographie angeordneten erfindungsgemäßen Facettenspiegels,
Figur 2- ein erstes Herstellungsverfahren für einen Facettenspiegel,
Figur 3- ein zweites Herstellungsverfahren für einen Facettenspiegel, und
- Figur 4
- einen Grundkörper für einen Facettenspiegel mit Versteifungen in Wabenstruktur und mit Kühlkanälen.
- Figure 1
- Schematic representation of a facet mirror according to the invention arranged in an EUV illumination system for microlithography,
- Figure 2
- a first manufacturing process for a facet mirror,
- Figure 3
- a second manufacturing process for a facet mirror, and
- Figure 4
- a basic body for a faceted mirror with stiffeners in a honeycomb structure and with cooling channels.
Nachfolgend wird ein Verfahren zur Herstellung eines Facettenspiegels
und ein nach dem Verfahren hergestellter Facettenspiegel
beispielsweise beschrieben. Grundsätzlich ist das Verfahren
jedoch auch zum Verbinden bzw. Zusammenfügen von anderen optischen
Elementen, wie z.B. Linsen und Linsenarrays, geeignet. In
der Figur 1 ist die Verwendung eines Facettenspiegels 1 in einem
Beleuchtungssystem für die EUV-Lithographie dargestellt.
Das Licht einer Quelle 2, z.B. eines Lasers, wird über einen
Kollektorspiegel 3 auf den Facettenspiegel 1 geworfen, wo es
mit der gewünschten gleichmäßigen Ausleuchtung über einen Umlenkspiegel
4 einem Reticle (Maske) 5 zugeführt wird. Das Muster
des Reticles 5 wird über ein nicht näher dargestelltes
Projektionsobjektiv 6 einem Wafer 7 zur Abbildung des Bildes
vom Reticle 5 zugeleitet.The following is a method for making a faceted mirror
and a facet mirror made by the method
described for example. The procedure is basically
but also for connecting or assembling other optical
Elements such as Lenses and lens arrays, suitable. In
1 shows the use of a facet mirror 1 in one
Illumination system shown for EUV lithography.
The light from a
Die Herstellung des Facettenspiegles 1 mit entsprechend hoher
Präzision und homogener bzw. wunschgemäßer Ausleuchtung erfolgt
gemäß Figur 2 auf einem Grundkörper 8. Der Grundkörper 8 kann
z.B. auf galvanische Weise abgeformt sein, wobei dessen Funktionsfläche
bezüglich Krümmung, Position und Lage den Forderungen
entspricht, die an den fertigen Facettenspiegel 1 gestellt werden.
Lediglich die Oberflächengüte fehlt noch. Die Oberflächengüte
wird nun durch einzelne Spiegelelemente 9 als optische
Elemente realisiert.The production of the faceted mirror 1 with a correspondingly high level
Precision and homogeneous or desired illumination takes
Bei der vorliegenden Erfindung werden in Abwandlung einer normalen
Galvanoformung eine Vielzahl von Spiegelelementen, z.B.
200 bis 300 Stück, vorab durch einen herkömmlichen Fertigungsprozeß,
wie z.B. fräsen, schleifen, polieren, hergestellt. Eine
Vielzahl von gleichen Spiegelelementen wird anschließend auf
dem Grundkörper 8 in Position und Ausrichtung gebracht und dann
durch einen folgenden Galvanisierungsprozeß miteinander verbunden.
Auf diese Weise ergibt sich am Ende ein Facettenspiegel
als praktisch ein einziges monolithisches Teil in äußerst präziser
Ausgestaltung.In the present invention, in a modification of a normal one
Electroforming a variety of mirror elements, e.g.
200 to 300 pieces, in advance through a conventional manufacturing process,
such as. milling, grinding, polishing, manufactured. A
A large number of identical mirror elements are then displayed
brought the
Durch die Herstellung vieler gleicher Spiegelelemente wird die
Herstellung eines Facettenspiegels weiterhin auch erleichtert,
vereinfacht und kostengünstig gestaltet. Schlechte Qualitäten
von Spiegelelementen können vorher ausgesondert werden bzw. man
kann eine Auswahl von Spiegelelementen 9 treffen, die identisch
oder nahezu identisch sind, insbesondere bezüglich ihrer optischen
Eigenschaften.By producing many identical mirror elements, the
Making a faceted mirror also easier,
simplified and inexpensive. Bad qualities
of mirror elements can be discarded beforehand or one
can make a selection of
Galvanisierungsprozesse sind allgemein bekannt, weshalb hier
nicht näher darauf eingegangen wird. Grundsätzlich erfolgt dies
dadurch, daß die Spiegelelemente 9 auf dem Grundkörper 8 in
ihre Position gebracht werden und das ganze dann in einem elektrolytischen
Bad kathodisch geschaltet wird und als Anode das
gewünschte Material, z.B. Cu oder Ni, verwendet wird, so daß
die Teile zu einer Einheit zusammenwachsen können. Auf diese
Weise kann man z.B. das Anwachsen einer Kupferschicht mit beliebiger
Dicke erreichen.Galvanizing processes are well known, which is why here
is not discussed in more detail. Basically, this is done
in that the
Als Materialien für die Spiegel kommen prinzipiell alle leitenden Materialien oder Materialien, die durch Beschichtung leitend gemacht werden können, in Frage. Für EUV-Beleuchtungssysteme sollte außerdem noch die Polierbarkeit auf die geforderte Oberflächengüte (0,2 bis 0,3 nm RMS) gewährleistet sein. Außerdem sollte das Material gute Wärmeleitfähigkeiten besitzen. Aus den vorstehend genannten Gründen wird man im allgemeinen Kupfer mit Nickel beschichtet als Facettenmaterial verwenden.In principle, all conductive materials are used for the mirrors Materials or materials that are conductive by coating can be made into question. For EUV lighting systems should also polishability to the required Surface quality (0.2 to 0.3 nm RMS) can be guaranteed. The material should also have good thermal conductivity. For the reasons given above, one will generally Use copper coated with nickel as the facet material.
Die auf den Grundkörper 8 aufgelegten Spiegelelemente 9 werden
durch ein galvanoplastisches Fügen mit dem Grundkörper 8 verbunden,
wie dies durch eine Zwischenschicht 10 zwischen Spiegelelementen
9 und dem Grundkörper 8 angedeutet ist.The
Alternativ dazu kann gemäß Figur 3 eine Hilfsstruktur 11 zur
Positionierung der Spiegelelemente 9 vorgesehen werden. Die
Hilfsstruktur kann zur genaueren Anpassung aus mehreren Einzelstempeln
12a, 12b, 12c ... zusammengesetzt sein, die zusammen
eine Oberfläche in Negativform für den herzustellenden Facettenspiegel
bilden und bei einer sphärischen Fläche entsprechend
auf Abstand zueinander liegen bzw. Zwischenräume aus Platzgründen
vorsehen.As an alternative to this, an
Die Spiegelelemente werden, z.B. durch einen Kleber oder ein
Harz 13, mit ihrer verspiegelten Seite auf der Hilfsstruktur 11
fixiert. Durch diese Art von Ausrichtung und der Fixierung werden
die Spiegelflächen der Spiegelelemente 9 beim nachfolgenden
Galvanisierungsprozeß vor Verunreinigungen geschützt. Sind alle
Spiegelelemente 9 in Position und Lage gebracht, wird die komplette
Vorrichtung in einem elektrolytischen Bad kathodisch
geschaltet und die Elemente werden in einem aufwachsenden Körper,
der damit eine Tragstruktur 14 für die einzelnen Spiegelelemente
9 bildet, miteinander verbunden bzw. in den entstehenden
Körper eingebunden.The mirror elements are e.g. through an adhesive or a
Bei einer Bildung von Linsenarrays werden ebenfalls die einzelnen
Linsen jeweils mit einer der optischen Flächen auf der
Hilfsstruktur 11 fixiert. Die zweiten optischen Flächen müssen
dann noch separat vor Verunreinigungen geschützt werden. Linsen
oder nicht leitende Spiegelelemente müssen vorher durch eine
entsprechende Beschichtung elektrisch leitend gemacht werden.When lens arrays are formed, the individual also become
Lenses each with one of the optical surfaces on the
Nach Fertigstellung einer genügend starken Tragstruktur 14,
können anschließend noch oder auch parallel mit dem Aufwachsen
Versteifungsstrukturen auf galvanischem Wege eingebaut werden
oder man läßt sie entsprechend aufwachsen. In der Figur 4 ist
zur Versteifung der Tragstruktur 14 eine Wabenstruktur 15 (ohne
Spiegelelemente) dargestellt. Zusätzlich ist aus der Figur 4
ersichtlich, daß die Tragstruktur 14 mit einem Kühlsystem in
Form von Kühlkanälen 16 versehen sein kann.After completion of a sufficiently strong supporting
Die Kühlkanäle 16 können während des Galvanisierungsprozesses
eingeformt werden. Hierzu ist es lediglich erforderlich, daß
man entsprechende Wachseinlagen in Schlangenform vorsieht, welche
anschließend ausgeschmolzen werden.The cooling
Eine weitere Lösung kann darin bestehen, daß man ein Kupferrohr schlangenförmig auflegt und dieses dann beim Galvanisierungsprozeß einwachsen läßt. Auf diese Weise erhält man dann einen sehr guten Wärmeübergang aufgrund einer metallischen Verbindung.Another solution can be to use a copper pipe hangs in a snake shape and this then during the galvanizing process ingrows. This way you get one very good heat transfer due to a metallic connection.
Selbstverständlich sind auch Kombinationen möglich. Gleiches
gilt z.B. für die Ausbildung der Tragstruktur 14 mit der Wabenstruktur
15, in die ebenfalls Kühlkanäle 16 eingeformt sein
können bzw. wobei auch die Waben selbst zur Kühlung dienen können.Combinations are of course also possible. The same
applies e.g. for the formation of the
Claims (17)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10030495 | 2000-06-21 | ||
DE10030495A DE10030495A1 (en) | 2000-06-21 | 2000-06-21 | Method for connecting a plurality of optical elements to a base body |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1168006A2 true EP1168006A2 (en) | 2002-01-02 |
EP1168006A3 EP1168006A3 (en) | 2004-03-10 |
EP1168006B1 EP1168006B1 (en) | 2006-07-05 |
Family
ID=7646455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01112204A Expired - Lifetime EP1168006B1 (en) | 2000-06-21 | 2001-05-18 | Method for bonding a plurality of optical elements to a base |
Country Status (4)
Country | Link |
---|---|
US (1) | US7034998B2 (en) |
EP (1) | EP1168006B1 (en) |
JP (1) | JP2002071922A (en) |
DE (2) | DE10030495A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107976793A (en) * | 2017-12-13 | 2018-05-01 | 东方宏海新能源科技发展有限公司 | The manufacture craft of light-collecting lens |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10030495A1 (en) | 2000-06-21 | 2002-01-03 | Zeiss Carl | Method for connecting a plurality of optical elements to a base body |
US7246909B2 (en) | 2003-01-24 | 2007-07-24 | Carl Zeiss Smt Ag | Method for the production of a facetted mirror |
DE10302664A1 (en) * | 2003-01-24 | 2004-07-29 | Carl Zeiss Smt Ag | Facetted mirror and holder and production process for a microlithographic projection unit in extreme ultraviolet determines and corrects deviations in mounting |
DE10317667A1 (en) * | 2003-04-17 | 2004-11-18 | Carl Zeiss Smt Ag | Optical element for a lighting system |
EP1642173A1 (en) * | 2003-07-09 | 2006-04-05 | Carl Zeiss SMT AG | Facet mirrors and a method for producing mirror facets |
DE102005057325A1 (en) * | 2005-12-01 | 2007-06-06 | Carl Zeiss Smt Ag | Mirror`s image characteristics variation device, has bar or rod-shaped units variable in their length independent of each other during activation of actuators, such that changes lead to local deformations on mirror surface |
DE102006031654A1 (en) * | 2006-04-24 | 2007-10-25 | Carl Zeiss Smt Ag | Facet mirror e.g. field facet mirror, for projection illumination system, has mirror segments provided with reflective surfaces, arranged on mirror carrier, and formed with individually formed angle of inclination in two different planes |
US8441747B2 (en) | 2006-09-14 | 2013-05-14 | Carl Zeiss Smt Gmbh | Optical module with minimized overrun of the optical element |
DE102007008448A1 (en) * | 2007-02-19 | 2008-08-21 | Carl Zeiss Smt Ag | Method of producing mirror facets for a facet mirror |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1146667B (en) * | 1957-07-02 | 1963-04-04 | Hensoldt & Soehne M | Polygon mirror |
DE2637735A1 (en) * | 1976-08-21 | 1978-02-23 | Hughes Aircraft Co | Stabilised viewing platform for e.g. vehicle - has Cardan-suspended rotor carrying multi-faced scanning mirror directing incident light from objective lens system |
GB2010523A (en) * | 1977-10-12 | 1979-06-27 | Crosfield Electronics Ltd | Production of Reflective Surfaces |
US4277141A (en) * | 1979-03-28 | 1981-07-07 | Tropel, Inc. | Multifaceted mirror and assembly fixture and method of making such mirror |
DD204320A1 (en) * | 1981-10-30 | 1983-11-23 | Volker Eberhardt | ARRANGEMENT OF OPTICAL COMPONENTS IN MECHANICAL GUIDES |
EP0143014A1 (en) * | 1983-09-23 | 1985-05-29 | Jean Leteurtre | Precision machining method, application to the machining of the reflecting surface of a mirror and mirror machined according to this method |
EP0624807A1 (en) * | 1993-05-10 | 1994-11-17 | AEROSPATIALE Société Nationale Industrielle | Process of fabrication of a reflector with a metal matrix composite support, and reflector produced this way |
DE19649993A1 (en) * | 1996-11-22 | 1998-05-28 | Berliner Inst Fuer Optik Gmbh | Method of producing ultra-light precision polygonal mirror with high reflectivity |
DE19735831A1 (en) * | 1997-08-18 | 1999-02-25 | Zeiss Carl Fa | Galvanoplastic optics frame |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH371906A (en) | 1958-08-11 | 1963-09-15 | Optische Ind De Oude Delft Nv | Holder for optical elements |
US3378469A (en) * | 1964-04-03 | 1968-04-16 | Electro Optical Systems Inc | Electroforming technique and structure for reflecting mirrors |
US3837125A (en) * | 1973-09-04 | 1974-09-24 | Celestron Pacific | Method and system for making schmidt corrector lenses |
US3917385A (en) * | 1973-09-19 | 1975-11-04 | Rockwell International Corp | Simplified micropositioner |
FI52440C (en) | 1975-09-04 | 1977-09-12 | Pekema Oy | A method and apparatus for extruding a molten thermoplastic coating material onto a web of base material such that the coating material is detached from the base material at certain points. |
US4038971A (en) * | 1975-10-22 | 1977-08-02 | Bezborodko Joseph A I B | Concave, mirrored solar collector |
DD128439A1 (en) * | 1976-10-13 | 1977-11-16 | Wolfgang Schaefer | METHOD FOR PRODUCING OPTICAL COMPONENTS FROM PLASTICS |
US4195913A (en) * | 1977-11-09 | 1980-04-01 | Spawr Optical Research, Inc. | Optical integration with screw supports |
US4236296A (en) * | 1978-10-13 | 1980-12-02 | Exxon Research & Engineering Co. | Etch method of cleaving semiconductor diode laser wafers |
US4338165A (en) * | 1978-11-13 | 1982-07-06 | National Association Of Theatre Owners, Inc. | Method of making a high-gain projection screen |
DE3030549C2 (en) * | 1980-08-13 | 1983-01-20 | Fa. Carl Zeiss, 7920 Heidenheim | Device for adjusting two parts with no play in thread engagement |
JPS5790607A (en) * | 1980-11-28 | 1982-06-05 | Fujitsu Ltd | Optical glass fitting device |
US4389115A (en) | 1981-08-06 | 1983-06-21 | Richter Thomas A | Optical system |
DD215407A1 (en) | 1983-04-04 | 1984-11-07 | Zeiss Jena Veb Carl | RINGFUL LENS MOUNTING FOR OPTICAL SYSTEMS HIGH PERFORMANCE |
DE3544429A1 (en) | 1985-12-16 | 1987-06-19 | Juwedor Gmbh | METHOD FOR THE GALVANOPLASTIC PRODUCTION OF JEWELERY |
US4733945A (en) | 1986-01-15 | 1988-03-29 | The Perkin-Elmer Corporation | Precision lens mounting |
US4740276A (en) * | 1987-05-08 | 1988-04-26 | The United States Of America As Represented By The Secretary Of The Air Force | Fabrication of cooled faceplate segmented aperture mirrors (SAM) by electroforming |
US5428482A (en) | 1991-11-04 | 1995-06-27 | General Signal Corporation | Decoupled mount for optical element and stacked annuli assembly |
DE4136580A1 (en) | 1991-11-07 | 1993-05-13 | Zeiss Carl Fa | Adjusting system for optical instrument - has tubular member moved axially by adjusting ring with ball screw thread |
DE4237775C1 (en) | 1992-11-09 | 1994-01-20 | Rodenstock Optik G | Optical system with a lens system and a light source |
US5537262A (en) * | 1993-10-19 | 1996-07-16 | Asahi Kogaku Kogyo Kabushiki Kaisha | Rotational torque setting apparatus for screw mechanism |
US5482482A (en) * | 1994-06-21 | 1996-01-09 | Davis; Grover W. | Air encircling marine propeller apparatus |
DE19537137A1 (en) | 1995-10-05 | 1997-04-10 | Zeiss Carl Fa | Metal matrix hollow ball composite material |
US5891317A (en) * | 1997-02-04 | 1999-04-06 | Avon Products, Inc. | Electroformed hollow jewelry |
DE19807120A1 (en) * | 1998-02-20 | 1999-08-26 | Zeiss Carl Fa | Optical system with polarization compensator |
DE19825716A1 (en) | 1998-06-09 | 1999-12-16 | Zeiss Carl Fa | Optical element and socket assembly |
US6118577A (en) * | 1998-08-06 | 2000-09-12 | Euv, L.L.C | Diffractive element in extreme-UV lithography condenser |
DE19859634A1 (en) * | 1998-12-23 | 2000-06-29 | Zeiss Carl Fa | Optical system, in particular projection exposure system for microlithography |
US6373552B1 (en) * | 1999-01-20 | 2002-04-16 | Asm Lithography B.V. | Optical correction plate, and its application in a lithographic projection apparatus |
DE19908554A1 (en) | 1999-02-27 | 2000-08-31 | Zeiss Carl Fa | Adjustable assembly |
DE19910947A1 (en) * | 1999-03-12 | 2000-09-14 | Zeiss Carl Fa | Device for moving an optical element along the optical axis |
DE19930643C2 (en) * | 1999-07-02 | 2002-01-24 | Zeiss Carl | Assembly of an optical element and a socket |
US6155868A (en) * | 1999-08-24 | 2000-12-05 | Hon Hai Precision Ind. Co., Ltd. | Electrical connector |
DE10026541A1 (en) * | 2000-05-27 | 2001-11-29 | Zeiss Carl | Device for the precise positioning of a component, in particular an optical component |
DE10030005A1 (en) * | 2000-06-17 | 2001-12-20 | Zeiss Carl | Objective, in particular a projection objective in semiconductor lithography |
DE10030495A1 (en) | 2000-06-21 | 2002-01-03 | Zeiss Carl | Method for connecting a plurality of optical elements to a base body |
DE10051706A1 (en) * | 2000-10-18 | 2002-05-02 | Zeiss Carl | Device for supporting optical element, has approximately T-shaped joints with connection points between holders at outer ends of T-bearer and manipulators engaging T-support |
DE10053899A1 (en) | 2000-10-31 | 2002-05-08 | Zeiss Carl | Bearing system for precision optical system minimises distortion from dynamic forces |
DE10107674C2 (en) | 2001-02-19 | 2003-04-30 | Fraunhofer Ges Forschung | Encapsulated, multi-stage process reactor in electroplating |
DE10109031A1 (en) | 2001-02-24 | 2002-09-05 | Zeiss Carl | Optical beam guidance system and method for preventing contamination of optical components thereof |
DE10123585C1 (en) | 2001-05-15 | 2002-12-05 | Fraunhofer Ges Forschung | Production of metals which foam on heat treatment or metal foams comprises suspending a propellant which splits gas on heat treatment in a galvanic electrolyte, and galvanically depositing the metal with the electrolyte on a substrate |
DE10132408C2 (en) | 2001-07-04 | 2003-08-21 | Fraunhofer Ges Forschung | Variable shape electrode |
DE10134559B4 (en) | 2001-07-16 | 2008-10-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Process for coating components, processable dispersible coatings and use |
DE10153541B4 (en) | 2001-10-30 | 2008-05-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Blood vessel adapter |
DE10153542B4 (en) | 2001-10-30 | 2006-11-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for making adapters for blood vessels |
DE10302771B4 (en) | 2003-01-24 | 2006-07-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | System and method for manufacturing microcomponents |
-
2000
- 2000-06-21 DE DE10030495A patent/DE10030495A1/en not_active Withdrawn
-
2001
- 2001-05-18 EP EP01112204A patent/EP1168006B1/en not_active Expired - Lifetime
- 2001-05-18 DE DE50110380T patent/DE50110380D1/en not_active Expired - Fee Related
- 2001-06-15 JP JP2001181684A patent/JP2002071922A/en not_active Withdrawn
- 2001-06-21 US US09/888,214 patent/US7034998B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1146667B (en) * | 1957-07-02 | 1963-04-04 | Hensoldt & Soehne M | Polygon mirror |
DE2637735A1 (en) * | 1976-08-21 | 1978-02-23 | Hughes Aircraft Co | Stabilised viewing platform for e.g. vehicle - has Cardan-suspended rotor carrying multi-faced scanning mirror directing incident light from objective lens system |
GB2010523A (en) * | 1977-10-12 | 1979-06-27 | Crosfield Electronics Ltd | Production of Reflective Surfaces |
US4277141A (en) * | 1979-03-28 | 1981-07-07 | Tropel, Inc. | Multifaceted mirror and assembly fixture and method of making such mirror |
DD204320A1 (en) * | 1981-10-30 | 1983-11-23 | Volker Eberhardt | ARRANGEMENT OF OPTICAL COMPONENTS IN MECHANICAL GUIDES |
EP0143014A1 (en) * | 1983-09-23 | 1985-05-29 | Jean Leteurtre | Precision machining method, application to the machining of the reflecting surface of a mirror and mirror machined according to this method |
EP0624807A1 (en) * | 1993-05-10 | 1994-11-17 | AEROSPATIALE Société Nationale Industrielle | Process of fabrication of a reflector with a metal matrix composite support, and reflector produced this way |
DE19649993A1 (en) * | 1996-11-22 | 1998-05-28 | Berliner Inst Fuer Optik Gmbh | Method of producing ultra-light precision polygonal mirror with high reflectivity |
DE19735831A1 (en) * | 1997-08-18 | 1999-02-25 | Zeiss Carl Fa | Galvanoplastic optics frame |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107976793A (en) * | 2017-12-13 | 2018-05-01 | 东方宏海新能源科技发展有限公司 | The manufacture craft of light-collecting lens |
Also Published As
Publication number | Publication date |
---|---|
DE10030495A1 (en) | 2002-01-03 |
US7034998B2 (en) | 2006-04-25 |
EP1168006B1 (en) | 2006-07-05 |
DE50110380D1 (en) | 2006-08-17 |
US20020021507A1 (en) | 2002-02-21 |
JP2002071922A (en) | 2002-03-12 |
EP1168006A3 (en) | 2004-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3332460C2 (en) | Flexible embossing tool and method for its manufacture | |
DE19735831A1 (en) | Galvanoplastic optics frame | |
DE3244869C2 (en) | ||
DE102007008448A1 (en) | Method of producing mirror facets for a facet mirror | |
EP1168006B1 (en) | Method for bonding a plurality of optical elements to a base | |
DE69215585T2 (en) | Lens drive device in an optical read head and method of manufacturing the same | |
EP0006459B1 (en) | Application of an electroforming process to the preparation of precise flat pack components | |
EP0922983A1 (en) | Connection technique for lenses and mountings suitable for VUV light | |
DE102006031654A1 (en) | Facet mirror e.g. field facet mirror, for projection illumination system, has mirror segments provided with reflective surfaces, arranged on mirror carrier, and formed with individually formed angle of inclination in two different planes | |
DE69724331T2 (en) | Method for producing a nozzle body and working device | |
WO2016116387A1 (en) | Method for producing a reflective optical element, reflective optical element, and use of a reflective optical element | |
DE4429080C1 (en) | Process for the production of prisms, in particular microprisms | |
EP0667450B1 (en) | Method of manufacturing a nozzle plate | |
DE69315566T2 (en) | Led recording head | |
WO2002015286A1 (en) | Semiconductor chip and method for production thereof | |
DE69602951T2 (en) | OPTICAL DEVICE FOR HOMOGENIZING A LASER BEAM | |
DE69009625T2 (en) | Assembly of parts with a mutual angle and method of manufacture. | |
DE69216271T2 (en) | Roll-shaped embossing stamp for producing a substrate for a recording medium | |
DE60319271T2 (en) | INK JET PRINT HEAD AND METHOD FOR THE PRODUCTION THEREOF | |
DE69722739T2 (en) | Inkjet printing device and inkjet printing method | |
DE102012200732A1 (en) | Mirror assembly for optical system of microlithography projection exposure apparatus used for manufacture of LCD, has fixing elements and solid-portion joints that are arranged on opposite sides of carrier | |
WO1997037060A1 (en) | Galvanic deposition cell with a substrate holder | |
EP0913500B1 (en) | Electroforming cell with adjusting device | |
EP0241684A2 (en) | Procedure and arrangement for the adjusted assembly of optical components | |
DE69112001T2 (en) | Device for aligning an optical component. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7G 02B 7/18 B Ipc: 7C 25C 1/00 B Ipc: 7G 02B 5/09 A Ipc: 7B 29D 11/00 B Ipc: 7G 02B 7/182 B |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20040629 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CARL ZEISS SMT AG |
|
17Q | First examination report despatched |
Effective date: 20040916 |
|
AKX | Designation fees paid |
Designated state(s): DE NL |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE NL |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CARL ZEISS SMT AG |
|
REF | Corresponds to: |
Ref document number: 50110380 Country of ref document: DE Date of ref document: 20060817 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070410 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080523 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20080515 Year of fee payment: 8 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20091201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091201 |