EP1165607A2 - Protein (tp) that is involved in the development of the nervous system - Google Patents
Protein (tp) that is involved in the development of the nervous systemInfo
- Publication number
- EP1165607A2 EP1165607A2 EP00916770A EP00916770A EP1165607A2 EP 1165607 A2 EP1165607 A2 EP 1165607A2 EP 00916770 A EP00916770 A EP 00916770A EP 00916770 A EP00916770 A EP 00916770A EP 1165607 A2 EP1165607 A2 EP 1165607A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- protein
- gene
- sequence
- dna sequence
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 342
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 215
- 210000000653 nervous system Anatomy 0.000 title claims abstract description 44
- 238000011161 development Methods 0.000 title claims abstract description 25
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 73
- 230000014509 gene expression Effects 0.000 claims abstract description 70
- 241000282414 Homo sapiens Species 0.000 claims abstract description 69
- 239000012634 fragment Substances 0.000 claims abstract description 34
- 239000003814 drug Substances 0.000 claims abstract description 21
- 108090000994 Catalytic RNA Proteins 0.000 claims abstract description 14
- 102000053642 Catalytic RNA Human genes 0.000 claims abstract description 14
- 108091092562 ribozyme Proteins 0.000 claims abstract description 14
- 108020005544 Antisense RNA Proteins 0.000 claims abstract description 12
- 239000003184 complementary RNA Substances 0.000 claims abstract description 7
- 238000002405 diagnostic procedure Methods 0.000 claims abstract description 5
- 210000004027 cell Anatomy 0.000 claims description 68
- 101150050863 T gene Proteins 0.000 claims description 61
- 238000000034 method Methods 0.000 claims description 41
- 108020004414 DNA Proteins 0.000 claims description 40
- 210000001519 tissue Anatomy 0.000 claims description 29
- 150000001413 amino acids Chemical class 0.000 claims description 25
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 25
- 206010028980 Neoplasm Diseases 0.000 claims description 22
- 230000018109 developmental process Effects 0.000 claims description 22
- 210000004492 nuclear pore Anatomy 0.000 claims description 22
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 22
- 239000013598 vector Substances 0.000 claims description 22
- 230000003053 immunization Effects 0.000 claims description 21
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 19
- 238000004458 analytical method Methods 0.000 claims description 19
- 201000010099 disease Diseases 0.000 claims description 19
- 230000008859 change Effects 0.000 claims description 18
- 101150113838 T2 gene Proteins 0.000 claims description 17
- 108020001507 fusion proteins Proteins 0.000 claims description 15
- 102000037865 fusion proteins Human genes 0.000 claims description 15
- 108020004999 messenger RNA Proteins 0.000 claims description 15
- 241000124008 Mammalia Species 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 14
- 108091022875 Microtubule Proteins 0.000 claims description 12
- 102000029749 Microtubule Human genes 0.000 claims description 12
- 108010048367 enhanced green fluorescent protein Proteins 0.000 claims description 12
- 210000004688 microtubule Anatomy 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 11
- 230000000295 complement effect Effects 0.000 claims description 11
- 210000001671 embryonic stem cell Anatomy 0.000 claims description 11
- 239000013604 expression vector Substances 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 10
- 239000003550 marker Substances 0.000 claims description 10
- 238000013518 transcription Methods 0.000 claims description 10
- 230000035897 transcription Effects 0.000 claims description 10
- 108010013381 Porins Proteins 0.000 claims description 9
- 102000017033 Porins Human genes 0.000 claims description 9
- 238000012217 deletion Methods 0.000 claims description 9
- 230000037430 deletion Effects 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 241000251539 Vertebrata <Metazoa> Species 0.000 claims description 8
- 108700008625 Reporter Genes Proteins 0.000 claims description 7
- 230000027455 binding Effects 0.000 claims description 7
- 230000006378 damage Effects 0.000 claims description 7
- 238000011282 treatment Methods 0.000 claims description 7
- 241001465754 Metazoa Species 0.000 claims description 6
- 108010035004 Prephenate Dehydrogenase Proteins 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 6
- 230000002457 bidirectional effect Effects 0.000 claims description 6
- 230000012010 growth Effects 0.000 claims description 6
- 230000002401 inhibitory effect Effects 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 210000004881 tumor cell Anatomy 0.000 claims description 6
- 210000002459 blastocyst Anatomy 0.000 claims description 5
- 239000003623 enhancer Substances 0.000 claims description 5
- 230000001965 increasing effect Effects 0.000 claims description 5
- 238000003780 insertion Methods 0.000 claims description 5
- 230000037431 insertion Effects 0.000 claims description 5
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- 230000001413 cellular effect Effects 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 4
- 230000002068 genetic effect Effects 0.000 claims description 4
- 230000006801 homologous recombination Effects 0.000 claims description 4
- 238000002744 homologous recombination Methods 0.000 claims description 4
- 239000003112 inhibitor Substances 0.000 claims description 4
- 208000015122 neurodegenerative disease Diseases 0.000 claims description 4
- 206010010356 Congenital anomaly Diseases 0.000 claims description 3
- 238000009007 Diagnostic Kit Methods 0.000 claims description 3
- 210000003632 microfilament Anatomy 0.000 claims description 3
- 230000009689 neuronal regeneration Effects 0.000 claims description 3
- 230000002265 prevention Effects 0.000 claims description 3
- 230000004071 biological effect Effects 0.000 claims description 2
- 210000004748 cultured cell Anatomy 0.000 claims description 2
- 230000007850 degeneration Effects 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 6
- 230000009261 transgenic effect Effects 0.000 claims 5
- 230000003247 decreasing effect Effects 0.000 claims 2
- 230000003014 reinforcing effect Effects 0.000 claims 2
- 229930193140 Neomycin Natural products 0.000 claims 1
- 210000001109 blastomere Anatomy 0.000 claims 1
- 230000030609 dephosphorylation Effects 0.000 claims 1
- 238000006209 dephosphorylation reaction Methods 0.000 claims 1
- 239000001963 growth medium Substances 0.000 claims 1
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 230000007257 malfunction Effects 0.000 claims 1
- WIIZEEPFHXAUND-UHFFFAOYSA-N n-[[4-[2-(dimethylamino)ethoxy]phenyl]methyl]-3,4,5-trimethoxybenzamide;hydron;chloride Chemical compound Cl.COC1=C(OC)C(OC)=CC(C(=O)NCC=2C=CC(OCCN(C)C)=CC=2)=C1 WIIZEEPFHXAUND-UHFFFAOYSA-N 0.000 claims 1
- 229960004927 neomycin Drugs 0.000 claims 1
- 230000001537 neural effect Effects 0.000 claims 1
- 210000003169 central nervous system Anatomy 0.000 abstract description 11
- 150000001875 compounds Chemical class 0.000 abstract description 3
- 239000002299 complementary DNA Substances 0.000 description 53
- 241000699666 Mus <mouse, genus> Species 0.000 description 32
- 238000009396 hybridization Methods 0.000 description 30
- 230000006870 function Effects 0.000 description 27
- 239000002953 phosphate buffered saline Substances 0.000 description 27
- 210000004556 brain Anatomy 0.000 description 26
- 239000000243 solution Substances 0.000 description 21
- 238000002649 immunization Methods 0.000 description 20
- 241001529936 Murinae Species 0.000 description 17
- 101001121613 Homo sapiens Nuclear envelope pore membrane protein POM 121 Proteins 0.000 description 15
- 101001095329 Homo sapiens POM121 and ZP3 fusion protein Proteins 0.000 description 15
- 238000000636 Northern blotting Methods 0.000 description 15
- 102100025812 Nuclear envelope pore membrane protein POM 121 Human genes 0.000 description 15
- 239000012528 membrane Substances 0.000 description 15
- 210000004379 membrane Anatomy 0.000 description 14
- 210000002569 neuron Anatomy 0.000 description 14
- 239000002773 nucleotide Substances 0.000 description 14
- 125000003729 nucleotide group Chemical group 0.000 description 14
- 230000036961 partial effect Effects 0.000 description 13
- 241000894006 Bacteria Species 0.000 description 12
- 108700031361 Brachyury Proteins 0.000 description 12
- 239000011148 porous material Substances 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 241000699670 Mus sp. Species 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000002671 adjuvant Substances 0.000 description 10
- 230000001605 fetal effect Effects 0.000 description 10
- 238000001727 in vivo Methods 0.000 description 10
- 210000000633 nuclear envelope Anatomy 0.000 description 10
- 210000004940 nucleus Anatomy 0.000 description 10
- 206010029260 Neuroblastoma Diseases 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 238000013459 approach Methods 0.000 description 9
- 210000001587 telencephalon Anatomy 0.000 description 9
- 229940079593 drug Drugs 0.000 description 8
- 239000004744 fabric Substances 0.000 description 8
- 230000003993 interaction Effects 0.000 description 8
- 238000002955 isolation Methods 0.000 description 8
- 150000007523 nucleic acids Chemical class 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 241000588724 Escherichia coli Species 0.000 description 7
- 108700024394 Exon Proteins 0.000 description 7
- 208000036626 Mental retardation Diseases 0.000 description 7
- 241000283973 Oryctolagus cuniculus Species 0.000 description 7
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 7
- 239000013543 active substance Substances 0.000 description 7
- 238000000376 autoradiography Methods 0.000 description 7
- 201000011510 cancer Diseases 0.000 description 7
- 210000000805 cytoplasm Anatomy 0.000 description 7
- 108010038764 cytoplasmic linker protein 170 Proteins 0.000 description 7
- 238000007901 in situ hybridization Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 210000001259 mesencephalon Anatomy 0.000 description 7
- 230000035772 mutation Effects 0.000 description 7
- 229920001817 Agar Polymers 0.000 description 6
- 229920000936 Agarose Polymers 0.000 description 6
- 108060003951 Immunoglobulin Proteins 0.000 description 6
- 239000008272 agar Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 6
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 102000018358 immunoglobulin Human genes 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 210000000278 spinal cord Anatomy 0.000 description 6
- 210000003594 spinal ganglia Anatomy 0.000 description 6
- 102100028737 CAP-Gly domain-containing linker protein 1 Human genes 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- 238000012300 Sequence Analysis Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 238000002372 labelling Methods 0.000 description 5
- 210000004185 liver Anatomy 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 230000008707 rearrangement Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 206010003805 Autism Diseases 0.000 description 4
- 208000020706 Autistic disease Diseases 0.000 description 4
- 102000004594 DNA Polymerase I Human genes 0.000 description 4
- 108010017826 DNA Polymerase I Proteins 0.000 description 4
- 108010052285 Membrane Proteins Proteins 0.000 description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- 229920005654 Sephadex Polymers 0.000 description 4
- 239000012507 Sephadex™ Substances 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 230000000692 anti-sense effect Effects 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000001086 cytosolic effect Effects 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 208000005017 glioblastoma Diseases 0.000 description 4
- 230000002055 immunohistochemical effect Effects 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000008363 phosphate buffer Substances 0.000 description 4
- 208000029340 primitive neuroectodermal tumor Diseases 0.000 description 4
- 208000020016 psychiatric disease Diseases 0.000 description 4
- 230000002285 radioactive effect Effects 0.000 description 4
- 238000000163 radioactive labelling Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 210000002027 skeletal muscle Anatomy 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 206010003571 Astrocytoma Diseases 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 241000283707 Capra Species 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102100039556 Galectin-4 Human genes 0.000 description 3
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 3
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 3
- 101000608765 Homo sapiens Galectin-4 Proteins 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 241001494479 Pecora Species 0.000 description 3
- 101100235354 Pseudomonas putida (strain ATCC 47054 / DSM 6125 / CFBP 8728 / NCIMB 11950 / KT2440) lexA1 gene Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 102100033130 T-box transcription factor T Human genes 0.000 description 3
- 101710086566 T-box transcription factor T Proteins 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 208000028683 bipolar I disease Diseases 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 210000003855 cell nucleus Anatomy 0.000 description 3
- 210000002257 embryonic structure Anatomy 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 239000005090 green fluorescent protein Substances 0.000 description 3
- 210000002216 heart Anatomy 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 238000001114 immunoprecipitation Methods 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 101150047523 lexA gene Proteins 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 230000000926 neurological effect Effects 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 210000003463 organelle Anatomy 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 230000004853 protein function Effects 0.000 description 3
- 201000000980 schizophrenia Diseases 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- 210000005253 yeast cell Anatomy 0.000 description 3
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 230000004568 DNA-binding Effects 0.000 description 2
- 102000002322 Egg Proteins Human genes 0.000 description 2
- 108010000912 Egg Proteins Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 2
- 208000025966 Neurological disease Diseases 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000007910 cell fusion Effects 0.000 description 2
- 210000001638 cerebellum Anatomy 0.000 description 2
- 235000013330 chicken meat Nutrition 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 229960000633 dextran sulfate Drugs 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 210000002969 egg yolk Anatomy 0.000 description 2
- 235000013345 egg yolk Nutrition 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 230000013020 embryo development Effects 0.000 description 2
- 238000002270 exclusion chromatography Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 210000001320 hippocampus Anatomy 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000011987 methylation Effects 0.000 description 2
- 238000007069 methylation reaction Methods 0.000 description 2
- 230000011278 mitosis Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 210000000272 myelencephalon Anatomy 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 239000002547 new drug Substances 0.000 description 2
- 210000000956 olfactory bulb Anatomy 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 210000000578 peripheral nerve Anatomy 0.000 description 2
- 102000013415 peroxidase activity proteins Human genes 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 210000002826 placenta Anatomy 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 230000037452 priming Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 108010050327 trypticase-soy broth Proteins 0.000 description 2
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000011534 wash buffer Substances 0.000 description 2
- 238000001086 yeast two-hybrid system Methods 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- PQVHMOLNSYFXIJ-UHFFFAOYSA-N 4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]pyrazole-3-carboxylic acid Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(N1CC2=C(CC1)NN=N2)=O)C(=O)O PQVHMOLNSYFXIJ-UHFFFAOYSA-N 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 241001479434 Agfa Species 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 208000020925 Bipolar disease Diseases 0.000 description 1
- 208000008720 Bone Marrow Neoplasms Diseases 0.000 description 1
- 206010006002 Bone pain Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 206010017577 Gait disturbance Diseases 0.000 description 1
- 101150009006 HIS3 gene Proteins 0.000 description 1
- 206010019196 Head injury Diseases 0.000 description 1
- 208000008454 Hyperhidrosis Diseases 0.000 description 1
- 102100034349 Integrase Human genes 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 108700026495 N-Myc Proto-Oncogene Proteins 0.000 description 1
- 238000011785 NMRI mouse Methods 0.000 description 1
- 241000687607 Natalis Species 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 239000008118 PEG 6000 Substances 0.000 description 1
- 206010033546 Pallor Diseases 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 206010033892 Paraplegia Diseases 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 229920002584 Polyethylene Glycol 6000 Polymers 0.000 description 1
- 101710182846 Polyhedrin Proteins 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 108010065868 RNA polymerase SP6 Proteins 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 244000088415 Raphanus sativus Species 0.000 description 1
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 1
- 101001039735 Rattus norvegicus Mast cell protease 1 Proteins 0.000 description 1
- 101100030250 Rattus norvegicus Pom121 gene Proteins 0.000 description 1
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 206010042674 Swelling Diseases 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 210000001943 adrenal medulla Anatomy 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 210000003403 autonomic nervous system Anatomy 0.000 description 1
- 210000003050 axon Anatomy 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 235000020420 bandung Nutrition 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 201000006491 bone marrow cancer Diseases 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 210000003710 cerebral cortex Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 210000003785 decidua Anatomy 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- DZGCGKFAPXFTNM-UHFFFAOYSA-N ethanol;hydron;chloride Chemical compound Cl.CCO DZGCGKFAPXFTNM-UHFFFAOYSA-N 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000002458 fetal heart Anatomy 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000011813 knockout mouse model Methods 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 208000037841 lung tumor Diseases 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 206010027191 meningioma Diseases 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 102000021160 microtubule binding proteins Human genes 0.000 description 1
- 108091011150 microtubule binding proteins Proteins 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- 210000002850 nasal mucosa Anatomy 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 210000004126 nerve fiber Anatomy 0.000 description 1
- 210000000944 nerve tissue Anatomy 0.000 description 1
- 206010061311 nervous system neoplasm Diseases 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- JPXMTWWFLBLUCD-UHFFFAOYSA-N nitro blue tetrazolium(2+) Chemical compound COC1=CC(C=2C=C(OC)C(=CC=2)[N+]=2N(N=C(N=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)[N+]([O-])=O)=CC=C1[N+]1=NC(C=2C=CC=CC=2)=NN1C1=CC=C([N+]([O-])=O)C=C1 JPXMTWWFLBLUCD-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 231100000915 pathological change Toxicity 0.000 description 1
- 230000036285 pathological change Effects 0.000 description 1
- 210000004197 pelvis Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000004237 preparative chromatography Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 210000004129 prosencephalon Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007420 radioactive assay Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000000698 schizophrenic effect Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 210000002023 somite Anatomy 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000035900 sweating Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000003867 tiredness Effects 0.000 description 1
- 208000016255 tiredness Diseases 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 230000005740 tumor formation Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- TP Protein (TP) involved in the development of the nervous system
- the present invention relates to a protein (T-protein) and related proteins which are involved in the development of the nervous system and are expressed in a tissue and development-specific manner, the variants of these proteins described below and DNA sequences coding for these proteins.
- the present invention further relates to antibodies or fragments thereof directed against these proteins, and to antisense RNAs or ribozymes directed against the expression of these proteins.
- the present invention relates to pharmaceuticals and diagnostic methods using the above compounds.
- the present invention is therefore based on the technical problem of providing means with which disorders in the development and function of the nervous system are diagnosed and can be treated if necessary.
- the present invention thus relates to a DNA sequence which encodes a protein which is involved in the development and function of the nervous system, in particular the CNS, and which is expressed in a tissue- and development-specific manner, the DNA sequence comprising the following DNA sequences:
- (k) a DNA sequence that differs from the DNA sequence of (a), (b), (c), (d), (e), (f), (g), (h), (i ) or (j) differs due to the degeneration of the genetic code.
- the present invention is based on the isolation of a human DNA sequence (called gene "T” or T gene; see Figures 1-8, which encodes the protein TP), it being found that the protein encoded by this DNA sequence is needed in the nervous system. The expression of the gene encoding this protein is increased in the nervous system. The sequence analysis showed that this is a new gene. In addition, other genes could be isolated Have homologies to this gene (murine gene "T”, FIGS. 9 and 10; human gene "T2", FIG. 16; human gene "T3", FIGS. 17 and 18; murine gene T2, FIGS. 12 and 13; murine gene T3, Fig. 19).
- the T gene, T2 gene and T3 gene are members of the T (gene) family and preferably originate from vertebrates such as humans, mice or rats. Defects in these genes lead to restrictions in the functions of the nervous system, particularly the CNS. Furthermore, these genes have an important function in the control of cell growth and changes in these genes or their expression lead to errors in the control of cell growth, for example also to tumor formation, especially of the neuroblastoma. This cancer almost exclusively affects younger children up to the age of 8. In 25 to 30 percent of cases, the first signs appear within the first 12 months of life. With neuroblastoma, very young cells of the autonomic nervous system degenerate.
- a neuroblastoma can be diagnosed by the doctor through blood, urine and ultrasound examinations as well as by taking biopsies from the tumor and a bone marrow examination. Once the exact location of the tumor is diagnosed, it is surgically removed. The early formation of metastases is problematic. By isolating and analyzing the T gene, it is now possible to develop novel diagnostic and therapeutic measures for neuroblastoma. This makes it possible to diagnose the cancer at an early stage and to establish forms of therapy that promise improved chances of recovery.
- T gene family leads to disorders in the development and differentiation of the nervous system, especially the brain. In many cases, this leads to mental illnesses, such as mental retardation or Alzheimer's.
- the T gene also plays an important role in the interconnection of individual brain areas, for example the forebrain and midbrain. Mutations in this gene in some cases lead to schizophrenic diseases or autism pussy syndromes.
- human and murine genes important, fundamental conclusions can be drawn about the development of the nervous system and especially the brain. This offers good starting points for researching pathological changes in the nervous system and especially in the brain.
- the genomic sequences make it easier for patients to be examined for possible mutations.
- the genomic sequences of the T gene are particularly advantageous when little (tumor) material is available for analysis. This makes it possible, for example, to examine even the smallest tumors for mutations in this gene. Furthermore, it opens up the possibility of checking the success of a therapy (in particular radiation and / or chemotherapy), since tumor cells circulating in the blood with genomic primers which are specific for the genomic DNA are detected by a PCR reaction can.
- hybridize used in the present invention refers to conventional hybridization conditions, preferably to hybridization conditions in which 5xSSPE, 1% SDS, 1xDenhardts solution is used and the hybridization temperatures between 35 ° C. and 70 ° C., preferably be at 65 ° C.
- washing is preferably carried out first with 2xSSC, 1% SDS and then with 0, 2xSSC at temperatures between 35 ° C and 70 ° C, preferably at 65 ° C (for the definition of SSPE, SSC and Denhardts solution see Sambrook et al ., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY (1989)).
- variants or fragment used in the present invention encompass DNA sequences which differ from the sequences indicated in the figures by deletion (s), insertion (s), exchange (s) and / or other im Distinguish modifications known in the art or comprise a fragment of the original nucleic acid molecule, the protein or peptide encoded by these DNA sequences still having the properties mentioned above.
- Functional equivalents, derivatives and precursors are therefore included.
- Derivatives are, for example, mutation derivatives (generated by, for example, deletions or insertions), fusions, allele variants, muteins and splice variants.
- FIGS. 14 and 15 Two selected examples of such splice variants are shown in FIGS. 14 and 15. Methods for generating the above changes in the nucleic acid sequence are known to the person skilled in the art and are described in standard works in molecular biology, for example in Sambrook et al. , supra. The person skilled in the art is also able to determine whether a protein encoded by a nucleic acid sequence modified in this way still has the properties mentioned above.
- the present invention relates to a DNA sequence that encodes a protein that contains the amino acid sequence of FIGS. 1, 9, 11, 12, 13, 14, 15, 16, 17, 18 or 19, wherein the protein has the biological activity defined above.
- a further preferred embodiment of the present invention relates to antisense RNA, which is characterized in that it is complementary to the above D ⁇ A sequences and the synthesis of the protein encoded by these D ⁇ A sequences can reduce or inhibit and a ribozyme, which is characterized in that it can bind to a part of the above DNA sequences and to the RNA transcribed from these DNA sequences and cleave them, thereby the synthesis of the protein encoded by these D ⁇ A sequences is reduced or inhibited.
- antisense RNAs and ribozymes are preferably complementary to a coding region of the mRNA.
- the person skilled in the art is able to prepare and use suitable antisense RNAs based on the disclosed D ⁇ A sequences. Suitable procedures are described for example in EB-Bl 0 223 399 or EP-AI 0 458.
- Ribozymes are RNA enzymes and consist of a single strand of RNA. These can cleave other RNAs intermolecularly, for example the mRNAs transcribed by the D ⁇ A sequences according to the invention.
- these ribozymes must have two domains, (1) a catalytic domain and, (2) a domain that is complementary to the target RNA and can bind to it, which is a prerequisite for cleaving the target RNA.
- a catalytic domain a domain that is complementary to the target RNA and can bind to it, which is a prerequisite for cleaving the target RNA.
- the D ⁇ A sequences according to the invention or the D ⁇ As coding for the antisense RNAs or ribozymes described above can also be inserted into a vector or expression vector.
- the present invention also includes these D ⁇ A sequences containing vectors or expression vectors.
- vector refers to a plasmid (eg pUC18, pBR322, pBlueScript), a virus or another suitable vehicle.
- the D ⁇ A molecule according to the invention is functionally linked in the vector to regulatory elements which allow its expression in prokaryotic or eukaryotic host cells.
- such vectors typically contain an origin of replication and specific genes which represent the phenotypic Allow selection of a transformed host cell.
- the regulatory elements for expression in prokaryotes include the lac, trp promoter or T7 promoter, and for expression in eukaryotes the AOXl or GALl promoter in yeast, and the CMV, SV40 , RVS-40 promoter, CMV or SV40 enhancer for expression in animal cells.
- suitable promoters are the metalothionein I and the polyhedrin promoter.
- the vector contains the promoter of the human T gene or an orthologist of the T gene. Suitable expression vectors for E.
- coli include, for example, pGEMEX, pUC derivatives, pGEX-2T, pET3b and pQE-8, the latter being preferred.
- Vectors suitable for expression in yeast include pYlOO and Ycpadl, pMSXND, pKCR, pEFBOS, cDM8 and pCEV4 for expression in mammalian cells.
- the expression vectors according to the invention also include vectors derived from baculovirus for expression in insect cells, for example pAcSGHisNT-A.
- DNA sequences according to the invention can also be inserted in connection with a DNA coding for another protein or peptide, so that the DNA sequences according to the invention can be expressed, for example, in the form of a fusion protein.
- these other DNAs are reporter sequences encoding a reporter molecule comprising a detectable protein, e.g. a dye, an antibiotic resistance, ß-galactosidase or a substance detectable by spectropshotometric, spectro-fluorometric, luminescent or radioactive assays.
- the present invention also relates to the above written vectors containing host cells.
- host cells include bacteria (for example the E. coli strains HB101, DH1, xl776, JM101, JM109, BL21 and SG13009), fungi, for example yeasts, preferably S. cerevisiae, plant cells, insect cells, preferably sf9 cells, and animal cells, preferably vertebrate or mammalian cells.
- Preferred mammalian cells are CHO, VERO, BHK, HeLa, COS, MDCK, 293 and WI38 cells. Methods for transforming these host cells, for phenotypically selecting transformants and for expressing the DNA molecules of the invention using the vectors described above are known in the art.
- the genes belonging to the sequences according to the invention can be amplified using suitable primer sequences.
- the primer sequences indicated in FIG. 20 are particularly suitable for amplifying the T2 and T3 genes.
- the present invention further relates to proteins encoded by the DNA sequences according to the invention and methods for producing the proteins encoded by the DNA sequences according to the invention.
- the skilled worker is familiar with conditions for culturing transformed or transfected host cells.
- the method according to the invention comprises the cultivation of the host cells described above under conditions which allow the expression of the protein (or fusion protein) (preferably stable expression), and the extraction of the protein from the culture or from the host cells. Suitable purification methods (for example preparative chromatography, affinity chromatography, for example immunoaffinity chromatography, HPLC etc.) are generally known.
- the proteins according to the invention preferably have those in FIGS. 1, 9, 11, 12, 13, 14, 15, 16, 17, 18 or 19 shown amino acid sequences or represent fusions, fragments, derivatives or precursors (bioprecursors) thereof, the above-mentioned properties in the sense of functional equivalents remain.
- Derivatives are to be understood in particular as those modified proteins or peptides which differ from the sequences shown in the figures by conservative amino acid exchanges or which contain non-conservative amino acid exchanges which do not significantly change the function of the T proteins.
- the inventors have identified the following amino acid motifs which are suitable for identifying previously unknown proteins which belong to the family of the T / T2 / T3 family according to the invention and a protein superfamily comprising pore membrane proteins and filament-binding proteins. Motif 1:
- (A, T) means amino acid A or T on this
- X (2,4) means two to four X's on this
- a further preferred embodiment of the present invention relates to antibodies against the proteins according to the invention described above or a fragment thereof.
- This Antibodies can be monoclonal, polyclonal or synthetic antibodies or fragments thereof.
- fragment means all parts of the monoclonal antibody (for example Fab, Fv or "single chain Fv” fragments) which have the same epitope specificity as the complete antibody. The production of such fragments is known to the person skilled in the art.
- the antibodies according to the invention are preferably monoclonal antibodies.
- the antibodies according to the invention can be produced according to standard methods, the protein encoded by the DNA sequences according to the invention or a synthetic fragment thereof serving as an immunogen.
- Methods for obtaining monoclonal antibodies are known to the person skilled in the art and comprise, for example, as a first step the preparation of polyclonal antibodies using the proteins according to the invention or fragments thereof (for example synthetic peptides) as immunogen for the immunization of suitable animals, for example rabbits or chickens, and the extraction of the polyclonal Antibodies from the serum or egg yolk.
- Zeil hybrids are produced and cloned from antibody-producing cells and bone marrow tumor cells. A clone is then selected which produces an antibody which is specific for the antigen used. This antibody is then made.
- Examples of cells that produce antibodies are spleen cells, lymph node cells, B-lymphocytes, etc.
- animals that can be immunized for this purpose are mice, rats, horses, goats and rabbits.
- the myeloma cells can be obtained from mice, rats, humans or other sources.
- Cell fusion can be carried out, for example, by the well-known Köhler and Milstein method.
- the hybridomas obtained by cell fusion are screened by means of the antigen by the enzyme-antibody method or by a similar method.
- clones are obtained using the limit dilution method.
- the clones obtained For example, BALB / c mice are implanted intraperitoneally, the ascites are removed from the mouse after 10 to 14 days, and the monoclonal antibody is purified by known methods (for example ammonium sulfate fractionation, PEG fractionation, ion exchange chromatography, gel chromatography or affinity chromatography).
- the monoclonal antibody mentioned is an antibody derived from an animal (for example a mouse), a humanized antibody or a chimeric antibody or a fragment thereof.
- Chimeric, human antibody-like or humanized antibodies have a reduced potential antigenicity, but their affinity for the target is not reduced.
- the production of chimeras and humanized antibodies or of antibodies similar to human antibodies has been described in detail (see, for example, Queen et al., Proc. Natl. Acad. Sci. USA 86 (1989), 10029, and Verhoeyan et al., Science 239 (1988), 1534).
- Humanized immunoglobulins have variable scaffold areas, which essentially come from a human immunoglobulin (called acceptor immunoglobulin) and the complementary determinants, which essentially come from a non-human immunoglobulin (e.g. from the mouse) (with the name donor immunoglobulin).
- acceptor immunoglobulin human immunoglobulin
- non-human immunoglobulin e.g. from the mouse
- donor immunoglobulin The constant region (s), if present, originate essentially from a human immunoglobulin.
- humanized (as well as human) antibodies offer a number of advantages over antibodies from mice or other species: (a) the human immune system should not recognize the framework or constant region of the humanized antibody as foreign, and therefore should Antibody response against such an injected antibody is lower than against a completely foreign mouse antibody or a partially foreign chimeric antibody; (b) since the effector region of the humanized antibody is human, it is likely to interact better with other parts of the human immune system, and (c) Injected humanized antibodies have a half-life that is essentially equivalent to that of naturally occurring human antibodies, allowing smaller and less frequent doses to be administered compared to antibodies from other species.
- the antibodies according to the invention can be used, for example, for immunoprecipitation of the proteins discussed above, for the isolation of related proteins from cDNA expression banks or for the purposes disclosed below (diagnosis / therapy).
- the present invention also relates to a hybridoma that produces the monoclonal antibody described above.
- the present invention relates to antibodies against the individually listed peptides of genes T2 and T3 (cf. FIG. 20).
- amino acid sequence of the suitable peptide is:
- the present invention makes it possible to investigate disorders of the development and function of the nervous system at the genetic level. These include neurological and psychiatric diseases (including Alzheimer's, Parkinson's disease, schizophrenia, manic-depressive diseases, autism, mental retardation), injuries to the nervous system, with congenital damage to the nervous system or with degenerative diseases of the nervous system. Furthermore, the invention enables the treatment of cancer, including tumors of the nervous system, such as neuroblastoma, astrocytoma, glioblastoma, medulloblastoma. This diagnosis can be not only postnatal, but also already happen prenatally.
- neurological and psychiatric diseases including Alzheimer's, Parkinson's disease, schizophrenia, manic-depressive diseases, autism, mental retardation
- injuries to the nervous system with congenital damage to the nervous system or with degenerative diseases of the nervous system.
- the invention enables the treatment of cancer, including tumors of the nervous system, such as neuroblastoma, astrocytoma, glioblastoma,
- DNA sequence according to the invention it can be determined in mammals, in particular humans, whether they contain a gene which codes and / or expresses the protein according to the invention or whether this gene forms a mutated form of the protein leads that is no longer biologically active.
- the person skilled in the art can carry out conventional methods such as reverse transcription, PCR, LCR, hybridization and sequencing.
- the antibodies according to the invention are also suitable for diagnostics, ie for example for the detection of the presence and / or the concentration of the protein according to the invention, a shortened or extended form of the protein etc. in a sample.
- the antibodies can be bound, for example, in liquid phase immunoassays or to a solid support.
- the antibodies can be labeled in different ways. Suitable markers and labeling methods are known in the art. Examples of immunoassays are ELISA and RIA.
- the present invention thus also relates to a diagnostic method for the detection of a disturbed expression of the protein according to the invention or for the detection of a modified form of this protein, in which a sample is brought into contact with the DNA sequences according to the invention or the antibody or fragment thereof according to the invention and then wise directly or indirectly determines whether the concentration of the protein and / or its amino acid sequence differ from a protein obtained from a healthy patient.
- the present invention also allows therapeutic measures to be carried out for the disorders discussed above, ie the above-described DNA sequences according to the invention, antisense RNAs, ribozymes and antibodies can also be used to prepare a medicament, for example to control the expression of the protein according to the invention or to Exchange of a mutated form of the gene can be used for a functional form and thus also for the manufacture of a medicament for the prevention or treatment of diseases of the nervous system, in particular tumor diseases of the CNS.
- the protein according to the invention can be introduced into mammals, in particular humans, by customary measures.
- a DNA sequence, antisense RNA or ribozyme according to the invention can also be introduced and expressed in mammals, in particular humans.
- the expression of the protein (TP) according to the invention or the related proteins can be controlled and regulated.
- the present invention thus also relates to a medicament which contains the DNA sequences described above, antisense RNA, the ribozyme, the expression vector, the protein according to the invention or the antibody or the fragment thereof.
- This drug may also contain a pharmaceutically acceptable carrier.
- Suitable carriers and the formulation of such medicaments are known to the person skilled in the art. Suitable carriers include, for example, phosphate-buffered saline solutions, water, emulsions, for example oil / water emulsions, surfactants, sterile solutions, etc.
- the medicaments can be administered orally or parenterally.
- Methods for parenteral administration include topical, intra-arterial, intramuscular, subcutaneous, intramedullary, intrathecal, intravenous, intravenous, intraperitoneal, or intranasal.
- the appropriate dosage is determined by the attending physician and depends on various factors, for example the age, gender, weight of the patient, the stage of the disease, the type of administration, etc.
- the nucleic acids described above are preferably inserted into a vector suitable for gene therapy and introduced into the cells, for example under the control of a tissue-specific vector.
- the vector containing the nucleic acids described above is a virus, for example an adenovirus, vaccinia virus or adenovirus. Retroviruses are particularly preferred.
- nucleic acids according to the invention can also be transported to the target cells in the form of colloidal dispersions. These include, for example, liposomes or lipoplexes (Mannino et al., Biotechniques 6 (1988), 682).
- the present invention relates to a diagnostic kit for carrying out the diagnostic method described above, which contains a DNA sequence according to the invention or the above-described antibody according to the invention or a fragment thereof.
- a diagnostic kit for carrying out the diagnostic method described above, which contains a DNA sequence according to the invention or the above-described antibody according to the invention or a fragment thereof.
- the DNA sequence or the antibody or the fragment thereof can be immobilized.
- Sequences of the T genes can be applied to nylon membranes or glass slides and hybridized with complex cDNA samples from tumors and associated normal tissues, or sick and associated healthy tissues. This enables the (fully automated) detection of the expression of these genes.
- the sequences used for this can be, for example, the entire cDNA sequence or short sequence sections, for example 10-15 bp oligomers (see, inter alia, FIG. 20).
- the therapy including cancer therapy, can then be specifically selected or adapted according to the individual situation of the patient. Genes whose altered expression are already influencing the treatment of the patient are, for example, the N-Myc gene in neuroblastoma.
- the isolation and characterization of the human gene according to the invention and in particular the mouse homologue thereof furthermore allow the establishment of an animal model, which is very valuable for the further study of diseases of the nervous system and cancer at the molecular level.
- the present invention thus also relates to a non-human mammal whose T gene or T2 or T3 gene is changed, e.g. by inserting a heterologous sequence, in particular a selection marker sequence.
- non-human mammal includes any mammal whose T gene, or T2 or T3 gene, may be altered. Examples of such mammals are mouse, rat, rabbit, horse, cattle, sheep, goat, monkey, pig, dog and cat, with mouse being preferred.
- T gene or T2 or T3 gene that has been changed means that the gene which occurs naturally in the non-human mammal is modified by standard methods by means of standard methods to change the gene structure or the gene sequence. This can be achieved, inter alia, by introducing a deletion of approximately 1-2 kb, in the place of which a heterologous sequence, for example a construct for mediating antibiotic resistance (for example a “neo-cassette”), is introduced . Furthermore, heterologous sequences can be introduced into the T gene, which allow time and tissue-specific deletions to be carried out in vivo. Furthermore, heterologous sequences can be introduced into the T gene, which make it possible to follow the expression of the T gene in vivo.
- GFP green fluorescent protein
- Figure 9 represents part of the cDNA sequence of the mouse T gene.
- Figure 10 shows an intron sequence of the mouse T gene flanked by two exons. These murine sequences can now be used for the targeted modification of the mouse T gene. For example, the splicing sequences of the intron can be deleted or changed so that the T gene is no longer spliced correctly. Furthermore, by inserting a splice acceptor sequence of another exon of the mouse T gene into the intron sequence, a sequence can be inserted into this intron which is recognized as an exon and which is spliced to the exons of the T gene located in front of it.
- This inserted sequence can be, for example, an exon that encodes the EGFP protein (Enhanced Green Fluorescent Protein).
- This turns the original mouse T gene into a fusion protein that contains the EGFP protein.
- a mouse can preferably be generated which allows the expression of the T gene to be monitored in vivo.
- the inserted sequence can be designed in the end (eg polyA signal, splice signals, etc.) such that no further exons of the T gene are spliced to the inserted exon or the spliced exon is no longer translated. This results in a deletion of the mouse T protein at the C-terminal end or a premature termination of the reading frame and an (at least partial) inactivation of the protein function of the mouse T gene can be achieved.
- sequences can also be inserted as new exon sequences which result in an mRNA sequence in which this new mRNA sequence is located at the 3 'end. Suitable sequences can then be used to change the stability of the mRNA or to change its location in the cell. The associated phenotype of the mice modified in this way can then provide important conclusions about the Function of the T gene. These mice can then also be used to find new active substances that compensate for the loss of function of the T gene.
- the sequence from FIG. 13 is used to produce a knock-out mouse.
- Figure 13 describes a mouse sequence of the T2 gene. Switching off the mouse T2 gene can be achieved in different ways. For example, the splicing sequence (GT) (underlined in FIG. 13) can be deleted or changed so that the T2 gene is not spliced correctly anymore. Furthermore, by inserting a splice acceptor sequence of another exon of the mouse T2 gene into the subsequent intron sequence, a sequence can be inserted into this intron which is recognized as an exon and which is spliced to the exons of the T2 gene located in front of it. This inserted exon can be, for example, an exon that encodes the EGFP protein.
- the inserted sequence can be designed in the end (eg polyA signal, etc.) in such a way that no further exons are spliced from the T2 gene to the inserted exon. This results in a deletion of the mouse T2 protein at the C-terminal end and an (at least partial) inactivation of the protein function of the mouse T2 gene can be achieved. Furthermore, such sequences can also be inserted as new exon sequences which result in an mRNA sequence in which this new mRNA sequence is located at the 3 'end.
- Suitable sequences can then be used to change the stability of the mRNA or to change its location in the cell.
- the associated phenotypes of the mice modified in this way can then provide important conclusions about the function of the T2 gene.
- These mice can then also be used to find new active substances that compensate for the loss of function of the T gene.
- a mammal can be generated that has a change in the T3 gene.
- the sequence in FIG. 19 represents part of the murine cDNA sequence of the T3 gene.
- Targeted changes to the mouse T3 gene can be achieved by deletions or insertions.
- the inserted sequence can be, for example, an exon that encodes the EGFP protein.
- the original mouse T3 gene becomes a fusion protein that carries the EGFP protein at the C-terminus.
- a mouse can be generated which allows the expression of the T3 gene to be monitored in vivo.
- the inserted sequence can be designed in the end (eg polyA signal, etc.) in such a way that no further exons are spliced from the T3 gene to the inserted exon. This results in a deletion of the mouse T3 protein at the C-terminal end and an (at least partial) inactivation of the protein function of the mouse T3 gene can be achieved.
- sequences can also be inserted as new exon sequences which result in an mRNA sequence in which this new mRNA sequence is located at the 3 'end.
- Suitable sequences can then be used to change the stability of the mRNA or to change its location in the cell.
- the associated phenotype of the mice modified in this way can then provide important conclusions about the function of the T3 gene. These mice can then also be used to find new active substances that compensate for the loss of function of the T3 gene.
- Another object of the present invention are cells obtained from the above non-human mammal. These cells can be in any form, e.g. in a primary or long-term culture.
- a non-human mammal according to the invention can be provided by conventional methods.
- a method is favorable which comprises the following steps: (a) Production of a DNA fragment, in particular a vector, containing an altered T, T2 or T3 gene, the gene having been altered by inserting a heterologous sequence, in particular a selectable marker;
- step (c) transforming the embryonic stem cells from step (b) with the DNA fragment from step (a), the T gene in the embryonic stem cells being changed by homologous recombination with the DNA fragment from (a),
- step (d) culturing the cells of step (c;
- step (e) selection of the cultured cells from step (d) for the presence of the heterologous sequence, in particular the selectable marker,
- step (f) Generating chimeric non-human mammals from the cells of step (e) by injecting these cells into mammalian blastocysts (preferably mouse blastocysts), transferring the blastocysts into pseudo-pregnant female mammals (preferably mouse) and analyzing the progeny obtained for a change in the T gene.
- mammalian blastocysts preferably mouse blastocysts
- pseudo-pregnant female mammals preferably mouse
- step (c) the mechanism of homologous recombination (cf. RM Torres, R. kuhn, Laboratory Protocols for Conditional Gene Targeting, Oxford University Press, 1997) is used to transfect embryonic stem cells.
- the homologous recombination between the DNA sequences present in a chromosome and new, added cloned DNA Sequences allows a cloned gene to be inserted into the genome of a living cell instead of the original gene.
- embryonic germ cells can be used to obtain via chimeras animals that are homozygous for the desired gene or the desired gene part or the desired mutation.
- embryonic stem cells refers to any embryonic stem cells from a non-human mammal that are suitable for mutating the T gene.
- the embryonic stem cells are preferably from the mouse, in particular the cells E14 / 1 or 129 / SV.
- vector encompasses any vector which, by recombination with the DNA of embryonic stem cells, enables a change in the T, T2 or T3 gene.
- the vector preferably has a marker which can be used to select for existing stem cells in which the desired recombination has taken place.
- a marker is e.g. the loxP / tk neo-cassette, which can be removed from the genome again using the Cre / loxP system.
- the present invention provides a non-human mammal whose T, T2 or T3 gene is altered. This change can be a switching off of the gene expression regulating function. With such a mammal or cells from it, the gene expression-controlling function of the TP protein can be investigated selectively. It is also possible to find substances, drugs and therapeutic approaches that can be used to selectively influence the controlling function.
- the present invention therefore provides a basis for responding to a wide variety of diseases. to act. Such diseases are, for example, restrictions on the CNS functions, which extend to mental retardation, or the induction of cancer due to errors in the control of cell proliferation.
- the T2 gene in the coding region of the cDNA sequence contains CGG trinucleotides which are known to be sensitive to methylation.
- the T2 gene therefore has a methylation-sensitive and unstable sequence in the coding region (N-terminal region of the protein which has no homology to Protein T or Protein T3), which leads to the failure of the gene with accompanying mental retardation and uncontrolled cell growth, like cancer.
- the T gene is affected by genomic rearrangements in many tumors. For example, in neuroblastoma, genomic changes in the DNA of tumors compared to the DNA of the associated healthy tissue can be detected. Furthermore, the expression of the T gene is e.g. changed in brain tumors. In glioblastomas in advanced stages, among other things, a strongly changed expression can be determined. In meningiomas, tumor-specific changes in the expression of the T gene and the appearance of the T protein can also be detected.
- the T2 gene is also affected by genomic rearrangements and an altered expression can be demonstrated in tumors.
- genomic rearrangements of the T2 gene can be identified in melanoma and lung tumors. Differences in expression are also detectable, for example, in gliomas, glioblastomas, astrocytomas and PNETs (primitive neuro-ectodermal tumors).
- the T3 gene is also affected by genomic rearrangements and expression changes in many tumors. In the case of colon carcinomas, for example, rearrangements can be demonstrated. Differences in expression can be found in gliomas, glioblastomas, astrocytomas and PNETs (primitive neuro-ectodermal tumors).
- the inventors have now discovered that the T protein has a certain relationship to proteins that perform very different functions in the cell. Sequence analysis of these proteins showed that the genes encoding these proteins are probably due to a common or similar precursor gene. Proteins such as the POM121 protein (Hallberg et al., J. Cell Biol. 122, pp. 513-522, 1993) belong in these protein superfamilies. It is one of two known core pore membrane proteins in vertebrates. This family also includes the CLIP-170 protein, which binds vesicles and other organelles within the cell to microtubules (Pierre et al., Cell 70, pp. 887-900, 1992).
- the T protein family is evolutionarily and functionally between the CLIP (cytoplasmic linker protein-170) and the POM121 protein. This intermediate position is also determined by the sequence analysis and the putative protein structure underpinned.
- the nuclear pore membrane protein POM121 has no pronounced coiled-coil structure, whereas the CLIP-170 protein shows a very pronounced coiled-coil structure between the N and C terminus (cf. FIG. 29).
- the family of T proteins contains coiled-coil structures, which are, however, significantly less pronounced than with CLIP-170.
- the family of T proteins takes a similar intermediate position with regard to the presence of hydrophobic domains.
- the POM121 protein has a hydrophobic domain at the N-terminus, which is embedded in the core membrane and positions the protein in the core pore.
- the CLIP-170 protein has no pronounced hydrophobic domain.
- the T protein and the T3 protein have a hydrophobic domain with three hydrophobic partial regions (cf. FIG. 30).
- the exchange of the N-terminus in the T2 protein in comparison to the basic evolutionary form led to the loss of this pronounced hydrophobic domain.
- all three T-proteins have in common the very similar structure of the C-terminus.
- the T3 protein is most similar to the T protein within the T protein family. But the T3 protein has also undergone a change in the course of evolution.
- the N-terminus was changed compared to the T-protein. This insertion resulted in a further coiled-coil structure compared to the otherwise very similar T protein.
- the T protein and T3 protein perform functions in the nuclear membrane localized form that are similar to that of the POM121. Interestingly, part of the C-terminus in the POM121 protein was lost in the course of evolution. Compared to the POM121 protein, the T proteins have a longer C terminus. This longer C-terminus enables many interactions with other proteins. It is also worth mentioning that a leucine zipper structure was discovered in the T protein, which facilitates interactions with other proteins.
- the T protein family plays an important role in mediating interactions between cell organelles and filaments, including microtubules.
- Microtubules play an important role in nerve cells, for example; for axons, for example, the plus ends of the microtubules point from the body away, while the microtubules in dendrites have both orientations. This cell polarity is of great importance for the functioning of a cell or living being. Furthermore, microtubules open up efficient organelle transport and they are essential for the general organization of membrane structures in a cell.
- the T proteins play an important mediating role between membrane structures and microtubules.
- the T gene and the T3 gene perform their function in particular as membrane proteins in the core pore, while the T2 protein acts in particular as a cytoplasmic protein.
- the T gene and the T3 gene are part of the nuclear pore complex.
- Nuclear pore complexes are extremely complex structures that mediate the bidirectional transport of macromolecules between the nucleus and the cytoplasm.
- the nuclear pore complex is embedded in the nuclear envelope and surrounds a central channel with a structure that has so far been insufficiently defined.
- Peripheral structures, short cytoplasmic filaments and a basket-like structure are attached to both sides of the central core pore complex. This basket-like structure interacts with molecules that pass through the nuclear pore complex. The mechanism of opening the nuclear pore complex has so far been poorly understood.
- the nuclear envelope is deliberately dissolved and its components, including the nuclear pore proteins, are distributed within the mitotic cytoplasm. At the end of mitosis, all of these components are reused to form the core shells of the daughter cells.
- the N-terminal half of the T protein has poor homology to the pore membrane protein POM121. The homology extends over the entire area of the POM121 protein and has an identity of approx. 18% at the protein level, so that the DNAs on which these proteins are based do little even stringent conditions should not hybridize with each other.
- the protein T according to the invention plays a very fundamental role with regard to the formation and structure of the core pore.
- a detailed analysis of the protein revealed a lipophilic domain at the N-terminus of the T protein.
- this sequence has no homology to the lipophilic sequence of the POM121 protein.
- a short section of amino acids which may serve as a signal sequence.
- various constructs of the T gene were produced.
- Various parts of the N-terminus of the T-protein were fused with the EnhancedGreenFluorescentProtein (EGFP).
- EGFP EnhancedGreenFluorescentProtein
- the fusion protein which contained the unchanged N-terminus of the T protein (putative signal sequence with lipophilic membrane domain), was actually embedded in the nuclear membrane.
- the fusion construct in which the putative signal sequence and the lipophilic domain are missing, was not embedded in the core membrane and accumulated in the cytoplasm. This showed that the N-terminus of the T protein is necessary and sufficient to lead to localization within the nuclear membrane.
- Antibodies against a peptide sequence of the T protein were generated to show that the T protein is actually located in the nuclear membrane. With these antibodies, immuno-isotochemical studies were carried out on human, mouse and rat tissues. It was found that the antibody detects a protein that is located in the core membrane.
- the results of the analysis of the expression at the protein level with the aid of the antibody are in very good agreement with the results of the analysis of the RNA expression.
- the mouse ortholog of the T gene was used in the RNA in situ analyzes. With the help of the human T gene cD ⁇ A clones, murine cD ⁇ A cones of the mouse ortholog were first isolated and sequenced. Sequence analysis confirmed that the isolated cD ⁇ A clones were the mouse ortholog. Such a murine cD ⁇ A clone of the T gene was then used for the R ⁇ A in situ hybridization (cf. FIGS. 25, 26, 27, 28). An expression analysis of the mouse T gene was then possible with the aid of this technique.
- T gene plays a crucial role in the development, formation and maintenance of the nervous system in vertebrates.
- pc post coneeptionem
- no expression can be seen yet.
- pc post coneeptionem
- an expression in the ventral mesencephalon and in the telencephalon is detectable.
- pc expression of the T gene can be determined in the telencephalon, in the ventral mesencephalon and in the myelencephalon.
- T gene or T2 or T3 gene were carried out in order to find out where the T gene or T2 or T3 gene are expressed.
- the T gene is predominantly expressed in the brain, hardly or not at all in the heart, lungs, placenta, liver, skeletal muscle, kidney or pancreas (regardless of adult or fetal tissue).
- the T2 gene on the other hand, is hardly expressed in the brain, but rather in the heart (adult and fetal), adult liver, adult skeletal muscle and adult kidney.
- the T3 gene is expressed in all tissues tested (adult and fetal heart, brain, liver, kidney; placenta, adult skeletal muscle, adult pancreas), except in the fetal lung.
- the bidirectional transport of molecules through the nuclear membrane is of crucial importance for the function of every eukaryotic cell.
- the information that is stored in the nucleus in the form of DNA (chromosomes) is transcribed into RNA, however, the information is only translated into protein in the cytoplasm. If the transcribed information (mRNA) does not get into the cytoplasm, the information is lost and there can be dramatic disturbances within the cell. But this transprot is not a one-way street; it is just as important that certain substances and proteins get into the nucleus so that cell function can be maintained.
- T protein is also embedded in the core membrane.
- the T protein is almost twice as large as the POM121 protein, ie it has a much larger binding capacity than the POM121 protein.
- the T protein is therefore very well suited to isolating possible binding partners that attach to the T protein, in particular the C terminus of the T protein.
- the tissue-specific expression of the T gene shows impressively that nuclear pore proteins (in particular nuclear pore membrane proteins) do not have to be expressed in all cells and at all times like 'housekeeping' genes.
- the predominant expression of the T gene in the nervous system shows that the T protein has a very specific function in the nervous system.
- the predominant expression of the T gene in the nervous system can now be used for the development of new drugs and new drug classes.
- new substances can now be isolated which specifically influence the bidirectional transport in the core pores of the nervous system.
- the localization of the T protein within the nuclear membrane is of great advantage.
- chemical compounds can be tested become. Many pharmaceutical companies have suitable screening procedures in which more than 200,000 chemicals can be tested.
- reporter assays eg GFP fusion proteins, colored substances, etc.
- GFP fusion proteins eg GFP fusion proteins, colored substances, etc.
- new active substances can be isolated which specifically influence the transport of molecules in nuclear pores, in particular those of the nervous system.
- T proteins according to the invention T, T2, T3 protein
- possible binding partners which can represent active substances in the above-mentioned sense
- T, T2, T3 protein T proteins according to the invention
- binding partners which can represent active substances in the above-mentioned sense
- Yeast Two- Hybrid system This system is based on the discovery that cellular transcription activators, such as GAL4 or lexA from yeast, can be broken down into two independent functional domains. Both domains are normally part of a protein in the nucleus of the yeast cell, which binds to certain activating sequences of different target genes and regulates their transcription.
- the DNA binding domain (BD) specifically binds to a specific DNA target sequence (upstream activating sequence) in the vicinity of the target gene promoter.
- the other domain, the activation domain (AD) increases the transcription rate of the target gene by interacting with the transcription initiation complex which is bound to the promoter of the target gene.
- the DNA binding domain (BD) of GAL4 or lexA is expressed there as a fusion protein with a "bait protein or peptide" (here: T, T2 or T3 protein / peptide) in yeast cells.
- This fusion protein also has a nuclear localization signal through which it is transported into the cell nucleus of the yeast.
- the bait fusion protein binds there to a target sequence (UAS) which is located in the yeast strain used in the vicinity of the promoters of two reporter genes (eg auxotrophic markers (HIS3) and enzymatic marker (lacZ)) is located.
- UAS target sequence
- HIS3 auxotrophic markers
- lacZ enzymatic marker
- a second fusion protein is now additionally expressed in the same yeast cell. This consists of the activation domain (AD) of GAL4 or lexA and a prey protein or peptide. It also has a core localization signal.
- the prey fusion protein is also transported in the cell nucleus of the yeast.
- the prey protein and the bait protein exposed at the UAS enter into a physical interaction with one another, then the statistical probability increases that the activation domain is in the vicinity of the reporter gene promoter. This leads to an increase in the transcription of the reporter genes, the extent of which is proportional to the strength of the interaction between bait and prey protein.
- a cDNA library or a combinatorial peptide library can be used as prey proteins.
- the present invention also relates to a method for identifying inhibitors or enhancers of the T protein family according to the invention.
- the nucleic acid sequences or parts of these sequences which are part of the T gene or its paralogues or orthologs are inserted into suitable vectors and used for the transfection or transformation of cells, tissues or organisms.
- These modified cells, tissues or organisms are then used to identify inhibitors or enhancers of the T protein or its paralogenous or orthologous proteins (for example T2 and T3) or proteins which interact directly or indirectly with these proteins.
- the inhibitors or enhancers identified by this approach can be used for active pharmaceutical ingredients or medicaments or for their production and can be used for the treatment of diseases such as cancer, neurological and psychiatric disorders and injuries to the nervous system.
- the nervous system or in the case of degenerative diseases of the nervous system can, among other things, be targeted to promote neuronal regeneration or to improve the interconnection of individual nerve areas (application including Alzheimer's disease, Parkinson's disease, schizophrenia, manic-depressive diseases, autism, mental retardation).
- the present invention makes it possible to test which substances or therapeutic agents are suitable for increasing or reducing the action of the T protein or the family of T proteins.
- the changed core pore properties which are influenced by the proteins T and T3, can be detected by suitable screening methods. These include, for example, the visualization of the bidirectional transport through the nuclear pore or the detection of an altered transcription of cellular or reporter genes.
- substances or therapeutic agents can be identified that inhibit or promote the action of proteins that are directly or indirectly involved in the action of the T protein or the family of T proteins.
- Substances or therapeutic agents that show an increase or decrease in the activity of the T protein (or T2 or T3) in the above-mentioned screening methods can be used to determine whether the increase or decrease in the effect of the T protein is too therapeutically desirable Effects. Above all, this includes inhibiting the growth or spread of tumor cells or promoting neuronal regeneration, for example after nerve injuries (including paraplegia and craniocerebral trauma).
- the identified substances can then be used as drugs or for the manufacture of these drugs. These drugs then make it possible to inhibit or block the spread of the disease-inducing cells and thus to contain or cure the disease as a whole.
- T protein (or T2 or T3) can also be used in those screening processes which not only allow the detection of the changed nuclear pore properties but also to identify upstream or downstream or parallel signal cascades. This makes it possible, for example, to identify tyrosine kinases or tyrosine phosphatases that regulate proteins, which in turn directly or indirectly influence the action of the T protein (or T2 or T3). In this way, suitable targets for positively influencing cell events can be identified and characterized.
- the T protein although it occurs as a nuclear pore protein, plays an important role in the interactions and interactions with filaments of the cell, for example microtubules and actin. These interactions can now be examined, for example by fusion proteins of the T protein with the EGFP protein.
- Cells that have been stably or transiently transformed or transfected with constructs for such fusion reporter proteins can be incubated with substances or pharmaceuticals in order to identify substances that can interact with the T protein with filaments such as the actin filaments or the Increase or decrease microtubules.
- active substances can be isolated which, among other things, positively influence the growth of nerve cells or the inhibition of the growth of tumor cells.
- immunoprecipitation should be mentioned as a method for identifying such possible active substances. It can be used to isolate proteins that bind to the T protein family. With these proteins, further immunoprecipitations can then be carried out in order to isolate new proteins which then no longer interact directly with the T protein.
- the present invention relates to a method for the identification of further proteins which play a role in the development and function of the nervous system and / or are a nuclear pore protein, the method comprising the following steps: (a) producing an antibody against a protein of the T family (T, T2 or T3 protein),
- Figure 1 human cDNA sequence (gene T) and deduced amino acid sequence
- FIG. 2 human genomic DNA sequence (gene T)
- FIG. 3 human genomic DNA sequence (gene T)
- FIG. 4 human genomic DNA sequence (gene T)
- FIG. 5 human genomic DNA sequence (gene T)
- FIG. 6 human genomic DNA sequence (gene T)
- FIG. 7 human genomic DNA sequence (gene T)
- FIG. 8 human genomic DNA sequence (gene T)
- Figure 9 partial murine cDNA sequence (gene T) and deduced amino acid sequence
- FIG. 10 partial murine genomic DNA sequence (gene T)
- Figure 11 partial human cDNA sequence (gene T2) and deduced amino acid sequence
- Figure 12 partial murine cDNA sequence (gene T2) and deduced amino acid sequence
- Figure 13 partial murine cDNA sequence (gene T2) and deduced amino acid sequence
- Figure 14 Splice variant of the human T gene with a deduced amino acid sequence
- Figure 15 Splice variant of the human T gene with a deduced amino acid sequence
- Fig. 21 Sequence comparison within the T family
- Fig. 22 Protein alignment of POM121 protein and T protein
- Fig. 23 Northern blot analysis
- Fig. 24 Immunohistochemical examinations and electron micrographs
- Fig. 25 In situ hybridization with embryonic RNA
- Fig. 26 In situ hybridization with RNA from the brain
- Fig. 27 In situ hybridization with RNA from fetal brain
- Fig. 28 In situ hybridization with RNA from mouse nerve tissue
- Fig. 29 Comparison of the coiled-coil regions between CLIP protein, T protein and POM121
- Fig. 30 Hydrophobicity blots for POM 121, T protein and T3 protein The following clones were deposited in accordance with the Budapest Treaty with the DSMZ (German Collection for Microorganisms and Cell Cultures GmbH), Mascheroder Weg 1b, Braunschweig, on August 18, 1998:
- Clone JFC955 (DSM12375); human genomic clone; represents human genomic sequence; includes start of the cDNA sequence
- Clone JFC N2112 (DSM12376); human genomic clone; has been fully sequenced. The sequence is shown in Figure 2 and contains the sequence of bp 1756-4228 of the human cDNA sequence.
- Clone JFC-BN27 (DSM 12659); contains the sequence of Bp 4370-8690 of the human cDNA sequence
- Clone JFC-BN20 contains the sequence of bp 2025-6280 of the human cDNA sequence On February 1, 2000, the following clone was deposited with the DSMZ in accordance with the Budapest Treaty:
- cDNA clone pL70 (DSM13270); represents essential parts of the T3 gene.
- the sequences shown in Figs. 2-8 come from the clones JFC955 (DSM 12375) and JFC950 (DSM 12374).
- the sequence shown in Fig. 1 comes from the clones JFC277 (DSM 12371), JFC405 (DSM 12372) and JFC-BN27 (DSM 12659) and JFC-BN20 (DSM 12698).
- the sequence shown in Fig. 9 comes from the clone JFC610 (DSM12373).
- the selected cDNA clones originate from genes that have CNS-specific expression.
- the cDNA pieces ('inserts') contained in the individual cDNA clones were isolated and used for hybridization with Northern blots.
- the Northern blots used included polyA-RNA from various human tissues (e.g. brain, skeletal muscle, liver and kidney) and various stages of development (fetal and adult tissues). As not only brain-specific genes are expressed in the fetal brain, as mentioned above, hybridization with the Northern blots was used to identify cDNA clones that are expressed primarily in the brain and less in other tissues.
- This differential analysis identified a cDNA clone that has a brain-specific expression pattern.
- the entire mRNA sequence for the new protein encoded therein could be isolated and decrypted (gene T with protein TP encoded therein) by repeated hybridization of the fetal cDNA library.
- the Baltimore Biological Lab. (BBL) agar plates, and BBL top agarose can be prepared.
- the phages human or murine cDNA library, Stratagene
- the phages were diluted 1:10 3 and 1:10 4 with SM medium in order to obtain individual plaques after plating.
- BBL agar For the BBL agar (pH 7.2), 10 g of BBL trypticase, 5 g of NaCl and 10 g of select agar are weighed in and made up to 1 1 with H 2 0. The agar is released by autoclaving. After cooling to approx. 60 ° C, pour the plates. The plates are preheated to 37 ° C before use to prevent premature solidification of the top agarose.
- the BBL top agarose (pH 7.2) was made up to 1 1 H 2 0 with 10 g BBL trypticase, 5 g NaCl, 6.5 g agarose and 10 ml IM MgS0 4 solution. Dissolve by autoclaving and prepare in a water bath at 41 ° C.
- the cDNA libraries used (human and murine fetal brain cDNA library; from Stratagene, Heidelberg) were cloned in the vector ⁇ -ZAPII. This made it possible to avoid subcloning the phage insert into a plasmid vector.
- This protocol allows cDNA, which is an insert in the ⁇ -ZAPII vector, to be converted in a simple manner by an in vivo approach into an insert which is now in the plasmid bluescript SK (-).
- the principle of this approach is that a helper phage introduces information for proteins that only allow DNA amplification in the area of the phage genome that has the genetic information for the plasmid with cDNA insert. It was largely carried out according to the manufacturer's protocol (Stratagene).
- plating was carried out in such a way that individual phage plaques were on the plate.
- the in vivo exeption test okol 1 was then carried out with these individual plaques.
- the plasmid DNA and its plasmid inserts were isolated from the bacterial clones and then hydrided with Northern blots. The selection of the clones to be investigated was based on the expression pattern in the Northern blots.
- radioactive labeling of the double-stranded insert DNA of the cDNA clone was carried out as follows for the further isolation of overlapping cDNA clones.
- the unincorporated nucleotides were separated using a self-made Sephadex G-50 column.
- the separation principle of the column is based on the Exclusion chromatography.
- the smaller unincorporated nucleotides fit into small pores of the column material, while the DNA remains excluded from them.
- the volume in which the nucleotides can move is therefore larger than the volume available to the DNA. If you now carry a mixture of DNA and nucleotides on the column, the DNA runs through the column faster than the nucleotides. This allows the unincorporated nucleotides to be separated.
- a Pasteur pipette was sealed with a small glass bead. Fill the Pasteur pipette with Sephadex G-50 ("Fine") dissolved in water until the filling material is 5 cm below the top edge of the Pasteur pipette. 2x rinsing the column with TE. Apply the above radioactive labeling approach. Add 320 ⁇ l TE. Discard the solution that has passed through the column. Place the Eppendorf tube under the column. Add 350 ⁇ l TE. Collect the radioactive solution that has passed through the column.
- Sephadex G-50 Sephadex G-50
- the plaque "blot” was carried out for the analysis of the cDNA library in order to make the cDNA located in phage clones accessible for hybridization.
- the hybridization is based on the binding of complementary, single stranded nucleic acids.
- the DNA to be examined was immobilized on a membrane and hybridized with a radioactively labeled probe.
- the complementary binding is retained even after washing off the non-specific adherent probes and can be made visible by autoradiography.
- single-stranded molecules were incubated under salt and temperature conditions, which favor the formation of base-paired double strands.
- a crucial factor in association and dissociation kinetics are the hydrogen bonds between the base pairs G-C and A-T.
- the hybridization reaction is influenced by changes in the temperature and the salt and sample concentration.
- the filters were packed in cling film.
- the autoradiography was carried out at -80 ° C. in an X-ray cassette which contained an intensifying film made of calcium tungstate. The exposure lasted 30 minutes to a few days, depending on the strength of the signal.
- the complete mRNA coding for the protein of the T gene could be isolated. Furthermore, using cD ⁇ A clones of this newly isolated gene T, two further genes (T2 and T3) could be isolated, which have pronounced homologies with this gene. The techniques mentioned above were used again for this. In order to isolate the related genes T2 and T3, the hybridization temperature was reduced to 55 ° C.
- the multiple tissue Northern blots were purchased from CLONTECH (Palo Alto, California, USA) and used according to the manufacturer's instructions.
- the respective DNA samples of the genes T, T2 and T3 were radioactively labeled and hybridized with the Northern.
- the sequence of bp 1-4200 of FIG. 1 was used for the analysis of the expression pattern at the Northern blot level for the T gene.
- the sequence of bp 1310-4870 of FIG. 17 was used for hybridization.
- the sequence of bp 3120-4230 of FIG. 16 was used for the gene T2.
- the "random priming" method was used for the radioactive labeling of double-stranded DNA.
- the unincorporated nucleotides were separated using a self-made Sephadex G-50 column.
- the separation of the column is based on the exclusion chromatography.
- the smaller unincorporated nucleotides fit into small pores of the column material, while the DNA remains excluded from them.
- the volume in which the nucleotides can move is therefore larger than the volume available to the DNA. If you now carry a mixture of DNA and nucleotides on the column, the DNA runs through the column faster than the nucleotides. This allows the unincorporated nucleotides to be separated. To do this, a Pasteur pipette is sealed with a small glass bead.
- the Northern blots were hybridized as described below. First, the Northern blots were pre-hybridized in 10 ml hybridization solution (350 ml 20% SDS, 500 ml IM phosphate buffer, pH 7.2; 150 ml distilled water) at 65 ° C. The Northern blots were used in a Glass tube in a hybridization roller oven for the duration of
- the pre-hybridization solution was discarded.
- the radiolabelled sample was added to the filters with 10 ml hybridization solution (65 ° C).
- Hybridization took place overnight at 65 ° C. The filters were then washed twice for 30 min with about 500 ml wash buffer (80 ml
- IM phosphate buffer pH 7.2; 100 ml 20% SDS, 1820 ml dist.
- the filters were sealed in plastic film.
- the autoradiography was carried out at -80 ° C. in an X-ray cassette which contained an intensifying film made of calcium tungstate. The exposure lasted 1-4 days depending on the strength of the signal.
- Embryos at various stages of development have been isolated from pregnant NMRI mice.
- the embryos and other tissue samples were fixed overnight with 4% paraformaldehyde in PBS at 4 ° C. 10 ⁇ m frozen sections of the embryos were transferred to slides coated with 3-aminopropyltriethoxysilane.
- Sense strand and antisense samples were prepared by in vitro transcription with a- 35 S-UTP, with a specific activity of> 10 9 decays per minute / ⁇ g.
- the linearized mouse T gene cDNA clone from FIG. 9 was transcribed with T7 or Sp6 RNA polymerase. The sample length was reduced to 150-200 nucleotides by alkaline lysis.
- the slides were in a solution containing 50% formamide, 10% dextran sulfate, 0.3 M NaCL, 10 mM Tris, 10 mM sodium phosphate pH 6.8, 20 mM dithiothreitol, 0.2% Denhardt's solution, 0.1 Triton X-100, 0.1 mg / ml Escherichia coli RNA and 0.1 mM non-radioactive aS-UTP, prehybridized at 54 ° C.
- the 35 S-labeled sample (8 x 10 4 decays per minute per ml) was added to the hybridization mix and the hybridization then continued for 16 h at 54 ° C. in a moist chamber.
- the slides were then washed in the hybridization solution for 2 hours.
- the remaining non-hybridized RNA sample was then digested with RNase A.
- the slides were then washed for 30 min at 37 ° C with 2x SSC, 0.1% SDS and for 30 min with 0.1x SSC, 0.1% SDS.
- the slides were then dehydrated with increasing ethanol concentrations.
- the slides were then covered with Ilford K5 autoradiography emulsion. After 1-2 weeks of exposure at 4 ° C, the slides were incubated in Kodak Dl9b developer and then stained with Giemsa.
- the sections were analyzed in dark and bright field illumination using a Zeiss SV8 stereomicroscope and an Axiophot microscope and photographed with an Agfa Ortho black and white film.
- Fig. 26 Expression of the mouse T gene in the postnatal brain.
- Fig. 28 Expression of the T gene during the development of the nervous system. Expression of the T gene in neurons in the mantle zone of the developing brain and in nuclei of peripheral nerves (arrow in b). No expression is visible in proliferating neurons in the subventricular layer or in migrating neurons in the intermediate zone (c, d). On day 16.5 dcp a strong expression in differentiating neurons of the mantle zone of the telencephalon is visible (e, d). Expression in neurons of the spinal cord and spinal ganglia is also visible (g, h). Furthermore, low expression is visible in a single layer under the skin (g, h).
- iz intermediate zone
- mz mantle zone
- sc spinal cord
- sga spinal ganglia
- sk skin
- svl subventricular layer
- the rabbit's serum is tested in an immunoblot.
- the peptide used for immunization is subjected to SDS-polyacrylamide gel electrophoresis and transferred to a nitrocellulose filter (cf. Khyse-Andersen, J., J. Biochem. Biophys. Meth. 10, (1984), 203-209).
- Western blot analysis was performed as in Bock, C.-T. et al. , Virus Genes 8, (1994), 215-229.
- the nitrocellulose filter is incubated for one hour at 37 ° C. with a first antibody. This antibody is rabbit serum (1: 10000 in PBS). After several washing steps with PBS, the nitrocellulose filter is incubated with a second antibody.
- This antibody is an alkaline phosphatase-linked monoclonal goat anti-rabbit IgG antibody (Dianova) (1: 5000) in PBS. After 30 minutes of incubation at 37 ° C, there are several washing steps with PBS and then the alkaline phosphatase detection reaction with developer solution (36 ⁇ M 5 'bromo-4-chloro-3-indolylphosphate, 400 ⁇ M nitroblue tetrazolium, 100mm Tris-HCl, pH 9.5, 100 mM NaCl, 5 mM MgCl 2 ) at room temperature until bands become visible.
- developer solution 36 ⁇ M 5 'bromo-4-chloro-3-indolylphosphate, 400 ⁇ M nitroblue tetrazolium, 100mm Tris-HCl, pH 9.5, 100 mM NaCl, 5 mM MgCl 2
- Antibodies are extracted from egg yolk and tested in a Western blot. Polyclonal antibodies according to the invention are detected.
- the immunohistochemical tests shown in FIG. 24 were carried out with an affinity-purified polyclonal rabbit antibody against the T protein (hereinafter referred to as first antibody) prepared as above.
- Mouse brain was removed and treated as follows.
- Liquid can run out more.
- the enzyme on the second antibody leads to the formation of a dye (DAB), whereby the T protein can be detected.
- DAB dye
- Fig. 24 (ad): light microscopic images showing that the T protein is located in or on the nucleus of the cell.
- the electron microscopic image in e shows that the T protein is not located in the nucleus but in the membrane.
- the images are in very good agreement with a function as a membrane-bound nuclear pore protein.
- the arrows in e show the dye formed, which can be seen on the cytoplasmic side of the core membrane.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Toxicology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biophysics (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Disclosed are a protein (TP) and proteins which are related thereto. Said proteins are involved in the development of the nervous system, especially the central nervous system, and are expressed in a tissue-specific and development-specific manner. The invention also relates to DNA sequences that code said proteins and antibodies or fragments thereof which are directed against said proteins. The invention further relates to antisense RNA or ribozymes which are directed against the expression of the proteins. Disclosed are medicaments and diagnostic processes in which the above-mentioned compounds are used. The invention further relates to a non-human mammal whose TP-coding gene is modified.
Description
An der Entwicklung des Nervensystems beteiligtes Protein (TP)Protein (TP) involved in the development of the nervous system
Die vorliegende Erfindung betrifft ein Protein (T-Protein) und dazu verwandte Proteine, die an der Entwicklung des Nervensystems beteiligt sind und gewebe- und entwicklungsspezifisch exprimiert werden, die nachstehend beschriebenen Varianten dieser Proteine sowie diese Proteine codierende DNA-Sequenzen. Die vorliegende Erfindung betrifft ferner gegen diese Proteine gerichtete Antikörper oder Fragmente davon, sowie gegen die Expression dieser Proteine gerichtete Antisense-RNAs bzw. Ribozyme. Schließlich betrifft die vorliegende Erfindung Arzneimittel und Diagnoseverfahren, bei denen die vorstehenden Verbindungen zur Anwendung kommen .The present invention relates to a protein (T-protein) and related proteins which are involved in the development of the nervous system and are expressed in a tissue and development-specific manner, the variants of these proteins described below and DNA sequences coding for these proteins. The present invention further relates to antibodies or fragments thereof directed against these proteins, and to antisense RNAs or ribozymes directed against the expression of these proteins. Finally, the present invention relates to pharmaceuticals and diagnostic methods using the above compounds.
Mutationen in Genen, die eine Rolle bei der Bildung und Aufrechterhaltung des Nervensystems spielen, sind von größter wissen- und wirtschaftlicher Bedeutung, da Erkrankungen am Nervensystem, insbesondere ZNS, sehr häufig vorkommen, oft durch einen schweren, zum Teil tödlichen Krankheitsverlauf gekennzeichnet sind und bisher nur sehr begrenzt therapierbar sind. Mit dem Anstieg der Lebenserwartung ist eine drastische Zunahme von neurologischen und psychischen Erkrankungen verbunden. Diese verursachen eine starke Einschränkung der Lebensqualität der betroffenen Personen sowie erhebliche Kosten sowohl für den Betroffenen als auch für die Gesellschaft.Mutations in genes that play a role in the formation and maintenance of the nervous system are of the greatest knowledge and economic importance, since diseases of the nervous system, especially the CNS, are very common, often characterized by a severe, sometimes fatal course of the disease and so far can only be treated to a very limited extent. The increase in life expectancy is associated with a drastic increase in neurological and mental illnesses. These cause a severe reduction in the quality of life of the people concerned and considerable costs for both those affected and for society.
Die Isolierung und Analyse für das Nervensystem spezifischer Gene bietet eine gute Möglichkeit, Erkrankungen, wie z.B. Schizophrenie, Alzheimer, Autismus, manische Depression und mentale Retardierungen untersuchen und schließlich auch behandeln zu können.The isolation and analysis of genes specific for the nervous system offers a good opportunity to prevent diseases such as To be able to examine and finally treat schizophrenia, Alzheimer's, autism, manic depression and mental retardation.
Somit liegt der vorliegenden Erfindung das technische Problem zugrunde, Mittel bereitzustellen, mit denen Störungen bei der Entwicklung und Funktion des Nervensystems diagnostiziert und
gegebenenfalls therapiert werden können.The present invention is therefore based on the technical problem of providing means with which disorders in the development and function of the nervous system are diagnosed and can be treated if necessary.
Die Lösung dieses technischen Problems wird durch die Bereitstellung der in den Patentansprüchen gekennzeichneten Ausführungsformen erzielt.This technical problem is solved by providing the embodiments characterized in the claims.
Gegenstand der vorliegenden Erfindung ist somit eine DNA-Sequenz, die ein Protein codiert, das an der Entwicklung und Funktion des Nervensystems, insbesondere des ZNS, beteiligt ist und gewebe- und entwicklungsspezifisch exprimiert wird, wobei die DNA-Sequenz folgende DNA-Sequenzen umfaßt:The present invention thus relates to a DNA sequence which encodes a protein which is involved in the development and function of the nervous system, in particular the CNS, and which is expressed in a tissue- and development-specific manner, the DNA sequence comprising the following DNA sequences:
(a) die DNA-Sequenz von Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7 oder Fig. 8 ;(a) the DNA sequence of Figures 1, 2, 3, 4, 5, 6, 7 or 8;
(b) die DNA-Sequenz von Fig. 9 oder Fig. 10;(b) the DNA sequence of Figure 9 or 10;
(c) die DNA-Sequenz von Fig. 11;(c) the DNA sequence of Figure 11;
(d) die DNA-Sequenz von Fig. 12 oder Fig. 13;(d) the DNA sequence of Figure 12 or 13;
(e) die DNA-Sequenz von Fig. 14 oder Fig. 15,(e) the DNA sequence of FIG. 14 or 15,
(f) die DNA-Sequenz von Fig. 16,(f) the DNA sequence of Fig. 16,
(g) die DNA-Sequenz von Fig. 17 oder 18, (h) die DNA-Sequenz von Fig. 19,(g) the DNA sequence of Fig. 17 or 18, (h) the DNA sequence of Fig. 19,
(i) eine mit (a) , (b) , (c) , (d) , (e) , (f ) , (g) oder (h) hybridisierende DNA-Sequenz;(i) a DNA sequence hybridizing with (a), (b), (c), (d), (e), (f), (g) or (h);
(j) Varianten, Derivate, Vorläufer oder Fragmente der DNA-Sequenz von (a) , (b) , (c) , (d) , (e) , (f), (g) , (h) oder (i) ; oder(j) Variants, derivatives, precursors or fragments of the DNA sequence of (a), (b), (c), (d), (e), (f), (g), (h) or (i) ; or
(k) eine DNA-Sequenz, die sich von der DNA-Sequenz von (a), (b) , (c), (d) , (e), (f), (g) , (h) , (i) oder (j) aufgrund der Degeneration des genetischen Codes unterscheidet .(k) a DNA sequence that differs from the DNA sequence of (a), (b), (c), (d), (e), (f), (g), (h), (i ) or (j) differs due to the degeneration of the genetic code.
Die vorliegende Erfindung beruht auf der Isolierung einer humanen DNA-Sequenz (Gen "T" oder T-Gen genannt; siehe die Figuren 1-8, das das Protein TP codiert), wobei sich herausstellte, daß das von dieser DNA-Sequenz codierte Protein im Nervensystem benötigt wird. Dabei ist die Expression des dieses Protein codierenden Gens im Nervensystem erhöht. Die Sequenzanalyse ergab, daß es sich hierbei um ein neues Gen handelt. Darüber hinaus konnten weitere Gene isoliert werden, die
Homologien zu diesem Gen aufweisen (murines Gen "T", Figuren 9 und 10; humanes Gen "T2", Figur 16; humanes Gen "T3", Figuren 17 und 18; murines Gen T2 , Figuren 12 und 13; murines Gen T3 , Fig. 19) . Das T-Gen, T2-Gen und T3-Gen stellen, wie nachfolgend bezeichnet, Mitglieder der T- (Gen) -Familie dar und stammen bevorzugt aus Vertebraten, wie Mensch, Maus oder Ratte. Defekte in diesen Genen führen zu Einschränkungen der Funktionen des Nervensystems, insbesondere des ZNS. Desweiteren üben diese Gene eine wichtige Funktion bei der Kontrolle des Zellwachstums aus und Veränderungen in diesen Genen bzw. deren Expression führen zu Fehlern in der Kontrolle des Zellwachs- tums, beispielsweise auch zur Tumorbildung, insbesondere des Neuroblastoms . Von dieser Krebserkrankungen sind fast ausschließlich kleinere Kinder bis ca. 8 Jahre betroffen. In 25 bis 30 Prozent der Fälle treten die ersten Anzeichen bereits innerhalb der ersten 12 Lebensmonate auf. Beim Neuroblastom entarten sehr junge Zellen des autonomen Nervensystems. Da diese Nerven an der Rückseite des Bauchraums und des Brustkorbes entlanglaufen, treten die meisten Neuroblastome im Bauch-, Becken-, Brust- oder Halsbereich auf. Mehr als die Hälfte der Erkrankungen gehen vom Nebennierenmark aus, welches auch von Nervenzellen gebildet wird. Zeichen, die beim Kleinkind auf ein Neuroblastom hinweisen können, sind Knoten, Schwellungen, Knochenschmerzen, Hinken, Müdigkeit, Fieber, Blässe, Schwitzen, hartnäckiger Husten, Blutergüsse ums Auge. Vom Arzt diagnostiziert werden kann ein Neuroblastom durch Blut-, Urin- und Ultraschalluntersuchungen sowie durch Entnahme von Biop- sien aus dem Tumor und eine Knochenmarksuntersuchung. Ist der genaue Sitz der Geschwulst diagnostiziert, wird sie operativ entfernt. Problematisch ist die frühe Bildung von Metastasen. Durch die Isolation und Analyse des T-Gens ist es nun möglich, neuartige Diagnose- und Therapiemaßnahmen für das Neuroblastom zu entwickeln. Hierdurch wird es dann möglich, eine frühzeitige Diagnose der Krebserkrankung durchzuführen und Therapieformen zu etablieren, die verbesserte Heilungschancen verheißen.The present invention is based on the isolation of a human DNA sequence (called gene "T" or T gene; see Figures 1-8, which encodes the protein TP), it being found that the protein encoded by this DNA sequence is needed in the nervous system. The expression of the gene encoding this protein is increased in the nervous system. The sequence analysis showed that this is a new gene. In addition, other genes could be isolated Have homologies to this gene (murine gene "T", FIGS. 9 and 10; human gene "T2", FIG. 16; human gene "T3", FIGS. 17 and 18; murine gene T2, FIGS. 12 and 13; murine gene T3, Fig. 19). The T gene, T2 gene and T3 gene, as designated below, are members of the T (gene) family and preferably originate from vertebrates such as humans, mice or rats. Defects in these genes lead to restrictions in the functions of the nervous system, particularly the CNS. Furthermore, these genes have an important function in the control of cell growth and changes in these genes or their expression lead to errors in the control of cell growth, for example also to tumor formation, especially of the neuroblastoma. This cancer almost exclusively affects younger children up to the age of 8. In 25 to 30 percent of cases, the first signs appear within the first 12 months of life. With neuroblastoma, very young cells of the autonomic nervous system degenerate. Because these nerves run along the back of the abdomen and chest, most neuroblastomas occur in the abdomen, pelvis, chest, or neck. More than half of the diseases originate from the adrenal medulla, which is also formed by nerve cells. Signs that may indicate a neuroblastoma in toddlers are knots, swelling, bone pain, limping, tiredness, fever, pallor, sweating, persistent cough, bruising around the eye. A neuroblastoma can be diagnosed by the doctor through blood, urine and ultrasound examinations as well as by taking biopsies from the tumor and a bone marrow examination. Once the exact location of the tumor is diagnosed, it is surgically removed. The early formation of metastases is problematic. By isolating and analyzing the T gene, it is now possible to develop novel diagnostic and therapeutic measures for neuroblastoma. This makes it possible to diagnose the cancer at an early stage and to establish forms of therapy that promise improved chances of recovery.
Desweiteren führen Mutationen in Genen der T-Gen-Familie zu Entwicklungs- und Differenzierungsstörungen des Nervensystems,
insbesondere des Gehirns. Dies führt in vielen Fällen zu geistigen Erkrankungen, z.B. mentalen Retardierungen oder Alzheimer. Das T-Gen übt auch eine wichtige Rolle bei der Verschaltung einzelner Gehirnareale, z.B. Vorder- und Mittelhirn, aus. Mutationen in diesem Gen führen in einigen Fällen zu schizophrenen Erkrankungen oder Autismussyndromen. Mit Hilfe der humanen und murinen Gene können wichtige, prinzipielle Rückschlüsse auf die Entstehung des Nervensystems und insbesondere des Gehirns gezogen werden. Hierbei bieten sich gute Ansatzpunkte für die Erforschung krankhafter Veränderungen des Nervensystems und insbesondere des Gehirns .Furthermore, mutations in genes in the T gene family lead to disorders in the development and differentiation of the nervous system, especially the brain. In many cases, this leads to mental illnesses, such as mental retardation or Alzheimer's. The T gene also plays an important role in the interconnection of individual brain areas, for example the forebrain and midbrain. Mutations in this gene in some cases lead to schizophrenic diseases or autism pussy syndromes. With the help of the human and murine genes, important, fundamental conclusions can be drawn about the development of the nervous system and especially the brain. This offers good starting points for researching pathological changes in the nervous system and especially in the brain.
Mit Hilfe der genomischen Sequenzen können Patienten auf mögliche Mutationen hin einfacher untersucht werden. Die genomischen Sequenzen des T-Gens sind besonders dann von Vorteil, wenn wenig (Tumor) material für die Analyse zur Verfügung steht. Hierdurch ist es beispielsweise möglich, schon kleinste Tumoren auf Mutationen in diesem Gen zu untersuchen. Weiterhin eröffnet es die Möglichkeit, eine Therapie (insbesondere Be- strahlungs- und/oder Chemotherapie) auf ihren Erfolg hin zu überprüfen, da im Blut zirkulierende Tumorzellen mit genomischen Primern, die spezifisch für die genomische DNA sind, durch eine PCR-Reaktion detektiert werden können.The genomic sequences make it easier for patients to be examined for possible mutations. The genomic sequences of the T gene are particularly advantageous when little (tumor) material is available for analysis. This makes it possible, for example, to examine even the smallest tumors for mutations in this gene. Furthermore, it opens up the possibility of checking the success of a therapy (in particular radiation and / or chemotherapy), since tumor cells circulating in the blood with genomic primers which are specific for the genomic DNA are detected by a PCR reaction can.
Der in der vorliegenden Erfindung verwendete Begriff "hybridisieren" bezieht sich auf konventionelle Hybridisierungsbedin- gungen, vorzugsweise auf Hybridisierungsbedingungen, bei denen als Lösung 5xSSPE, 1% SDS, lxDenhardts-Lösung verwendet wird und die Hybridisierungstemperaturen zwischen 35°C und 70°C, vorzugsweise bei 65°C liegen. Nach der Hybridisierung wird vorzugsweise zuerst mit 2xSSC, 1% SDS und danach mit 0 , 2xSSC bei Temperaturen zwischen 35°C und 70°C, vorzugsweise bei 65°C gewaschen (zur Definition von SSPE,SSC und Denhardts-Lösung siehe Sambrook et al . , Molecular Cloning: A Laboratory Manual, 2. Ausgabe, Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY (1989)). Besonders bevorzugt sind stringente Hybridisierungsbedingungen, wie sie beispielsweise in Sambrook et al . , supra, beschrieben sind.
Die in der vorliegenden Erfindung verwendeten Begriffe "Varianten" oder "Fragment" umfassen DNA-Sequenzen, die sich gegenüber den in den Figuren angegebenen Sequenzen durch Dele- tion(en), Insertion(en) , Austausch(e) und/oder andere im Stand der Technik bekannte Modifikationen unterscheiden bzw. ein Fragment des ursprünglichen Nucleinsäuremoleküls umfassen, wobei das durch diese DNA-Sequenzen codierte Protein bzw. Peptid noch die vorstehend erwähnten Eigenschaften aufweist. Es zählen deshalb funktioneile Äquivalente, Derivate, Vorläufer (bioprecursors) dazu. Unter Derivaten sind beispielsweise Mutationsderivate (erzeugt durch z.B. Deletionen oder Inser- tionen) , Fusionen, Allelvarianten, Muteine und Spleißvarianten zu verstehen. Zwei ausgesuchte Beispiele von solchen Spleißvarianten sind in den Fig. 14 und 15 gezeigt. Verfahren zur Erzeugung der vorstehenden Änderungen in der Nucleinsäurese- quenz sind dem Fachmann bekannt und in Standardwerken der Molekularbiologie beschrieben, beispielsweise in Sambrook et al . , supra. Der Fachmann ist auch in der Lage, zu bestimmen, ob ein von einer so veränderten Nucleinsäuresequenz codiertes Protein noch über die vorstehend erwähnten Eigenschaften verfügt .The term "hybridize" used in the present invention refers to conventional hybridization conditions, preferably to hybridization conditions in which 5xSSPE, 1% SDS, 1xDenhardts solution is used and the hybridization temperatures between 35 ° C. and 70 ° C., preferably be at 65 ° C. After hybridization, washing is preferably carried out first with 2xSSC, 1% SDS and then with 0, 2xSSC at temperatures between 35 ° C and 70 ° C, preferably at 65 ° C (for the definition of SSPE, SSC and Denhardts solution see Sambrook et al ., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY (1989)). Stringent hybridization conditions, as described, for example, in Sambrook et al. , supra. The terms “variants” or “fragment” used in the present invention encompass DNA sequences which differ from the sequences indicated in the figures by deletion (s), insertion (s), exchange (s) and / or other im Distinguish modifications known in the art or comprise a fragment of the original nucleic acid molecule, the protein or peptide encoded by these DNA sequences still having the properties mentioned above. Functional equivalents, derivatives and precursors (bioprecursors) are therefore included. Derivatives are, for example, mutation derivatives (generated by, for example, deletions or insertions), fusions, allele variants, muteins and splice variants. Two selected examples of such splice variants are shown in FIGS. 14 and 15. Methods for generating the above changes in the nucleic acid sequence are known to the person skilled in the art and are described in standard works in molecular biology, for example in Sambrook et al. , supra. The person skilled in the art is also able to determine whether a protein encoded by a nucleic acid sequence modified in this way still has the properties mentioned above.
In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung eine DNA-Sequenz, die ein Protein codiert, das die Aminosäuresequenz von Fig. 1, Fig. 9, Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15, Fig. 16, Fig. 17, Fig. 18 oder Fig. 19 umfaßt, wobei das Protein die vorstehend definierte biologische Aktivität hat.In a preferred embodiment, the present invention relates to a DNA sequence that encodes a protein that contains the amino acid sequence of FIGS. 1, 9, 11, 12, 13, 14, 15, 16, 17, 18 or 19, wherein the protein has the biological activity defined above.
Durch die Erniedrigung oder Hemmung der Expression der vorstehend beschriebenen DNA-Sequenzen, kann die Synthese der von diesen codierten Proteine, beispielsweise des T-Proteins, verringert oder eliminiert werden, was beispielsweise bei bestimmten Krankheitszuständen wünschenswert ist. Daher betrifft eine weitere bevorzugte Ausführungsform der vorliegenden Erfindung Antisense-RNA, die dadurch gekennzeichnet ist, daß sie zu den vorstehenden DΝA-Sequenzen komplementär ist und die Synthese des von diesen DΝA-Sequenzen codierten Proteins
verringern oder hemmen kann und ein Ribozym, das dadurch gekennzeichnet, daß es zu einem Teil der vorstehenden DNA-Sequenzen und an die von diesen DNA-Sequenzen transkribierte RNA spezifisch binden und diese spalten kann, wodurch die Synthese des von diesen DΝA-Sequenzen codierten Proteins verringert oder gehemmt wird. Vorzugsweise sind diese Antisense-RNAs und Ribozyme zu einer codierenden Region der mRNA komplementär. Der Fachmann ist in der Lage, ausgehend von den offenbarten DΝA-Sequenzen, geeignete Antisense-RNAs herzustellen und anzuwenden. Geeignete Vorgehensweisen sind beispielsweise in EB- Bl 0 223 399 oder EP-AI 0 458 beschrieben. Ribozyme sind RNA- Enzyme und bestehen aus einem einzelnen RNA-Strang . Diese können andere RNAs intermolekular spalten, beispielsweise die von den erfindungsgemäßen DΝA-Sequenzen transkribierten mRNAs . Diese Ribozyme müssen prinzipiell über zwei Domänen verfügen, (1) eine katalytische Domäne und, (2) eine Domäne, die zu der Ziel-RNA komplementär ist und an diese binden kann, was die Voraussetzung für eine Spaltung der Ziel-RNA ist. Ausgehend von in der Literatur beschriebenen Vorgehensweisen ist es inzwischen möglich, spezifische Ribozyme zu konstruieren, die eine gewünschte RNA an einer bestimmten, vorgewählten Stelle schneiden (siehe beispielsweise Tanner et al . , in: Antisense Research and Applications, CRC Press, Inc. (1993), 415-426).By lowering or inhibiting the expression of the DNA sequences described above, the synthesis of the proteins encoded by them, for example the T protein, can be reduced or eliminated, which is desirable, for example, in certain disease states. Therefore, a further preferred embodiment of the present invention relates to antisense RNA, which is characterized in that it is complementary to the above DΝA sequences and the synthesis of the protein encoded by these DΝA sequences can reduce or inhibit and a ribozyme, which is characterized in that it can bind to a part of the above DNA sequences and to the RNA transcribed from these DNA sequences and cleave them, thereby the synthesis of the protein encoded by these DΝA sequences is reduced or inhibited. These antisense RNAs and ribozymes are preferably complementary to a coding region of the mRNA. The person skilled in the art is able to prepare and use suitable antisense RNAs based on the disclosed DΝA sequences. Suitable procedures are described for example in EB-Bl 0 223 399 or EP-AI 0 458. Ribozymes are RNA enzymes and consist of a single strand of RNA. These can cleave other RNAs intermolecularly, for example the mRNAs transcribed by the DΝA sequences according to the invention. In principle, these ribozymes must have two domains, (1) a catalytic domain and, (2) a domain that is complementary to the target RNA and can bind to it, which is a prerequisite for cleaving the target RNA. Based on procedures described in the literature, it is now possible to construct specific ribozymes that cut a desired RNA at a specific, pre-selected location (see, for example, Tanner et al., In: Antisense Research and Applications, CRC Press, Inc. (1993 ), 415-426).
Die erfindungsgemäßen DΝA-Sequenzen bzw. die die vorstehend beschriebenen Antisense-RNAs oder Ribozyme codierenden DΝAs können auch in einen Vektor bzw. Expressionsvektor inseriert werden. Somit umfaßt die vorliegende Erfindung auch diese DΝA- Sequenzen enthaltende Vektoren bzw. Expressionsvektoren. Die Bezeichnung "Vektor" bezieht sich auf ein Plasmid (z.B. pUC18, pBR322, pBlueScript) , auf ein Virus oder ein anderes geeignetes Vehikel. In einer bevorzugten Ausführungsform ist das erfindungsgemäße DΝA-Molekül im Vektor mit regulatorischen Elementen funktionell verknüpft, die dessen Expression in prokaryontischen oder eukaryontisehen Wirtszellen erlauben. Solche Vektoren enthalten neben den regulatorischen Elementen, beispielsweise einem Promotor, typischerweise einen Replika- tionsursprung und spezifische Gene, die die phänotypische
Selektion einer transformierten Wirtszelle erlauben. Zu den regulatorischen Elementen für die Expression in Prokaryonten, beispielsweise E.coli, zählen der lac-, trp-Promotor oder T7- Promotor, und für die Expression in Eukaryonten der AOXl- oder GALl-Promotor in Hefe, und der CMV- , SV40-, RVS-40-Promotor, CMV- oder SV40-Enhancer für die Expression in tierischen Zellen. Weitere Beispiele für geeignete Promotoren sind der Me- tallothionein I- und der Polyhedrin-Promotor . In einer bevorzugten Ausführungsform enthält der Vektor den Promotor des humanen T-Gens oder eines Orthologen des T-Gens . Zu geeigneten Expressionsvektoren für E.coli zählen beispielsweise pGEMEX, pUC-Derivate, pGEX-2T, pET3b und pQE-8, wobei letzterer bevorzugt ist. Zu den für die Expression in Hefe geeigneten Vektoren zählen pYlOO und Ycpadl , für die Expression in Säugerzellen pMSXND, pKCR, pEFBOS , cDM8 und pCEV4. Zu den erfindungsgemäßen Expressionsvektoren zählen auch von Baculovirus abgeleitete Vektoren für die Expression in Insektenzellen, beispielsweise pAcSGHisNT-A.The DΝA sequences according to the invention or the DΝAs coding for the antisense RNAs or ribozymes described above can also be inserted into a vector or expression vector. Thus, the present invention also includes these DΝA sequences containing vectors or expression vectors. The term "vector" refers to a plasmid (eg pUC18, pBR322, pBlueScript), a virus or another suitable vehicle. In a preferred embodiment, the DΝA molecule according to the invention is functionally linked in the vector to regulatory elements which allow its expression in prokaryotic or eukaryotic host cells. In addition to the regulatory elements, for example a promoter, such vectors typically contain an origin of replication and specific genes which represent the phenotypic Allow selection of a transformed host cell. The regulatory elements for expression in prokaryotes, for example E. coli, include the lac, trp promoter or T7 promoter, and for expression in eukaryotes the AOXl or GALl promoter in yeast, and the CMV, SV40 , RVS-40 promoter, CMV or SV40 enhancer for expression in animal cells. Further examples of suitable promoters are the metalothionein I and the polyhedrin promoter. In a preferred embodiment, the vector contains the promoter of the human T gene or an orthologist of the T gene. Suitable expression vectors for E. coli include, for example, pGEMEX, pUC derivatives, pGEX-2T, pET3b and pQE-8, the latter being preferred. Vectors suitable for expression in yeast include pYlOO and Ycpadl, pMSXND, pKCR, pEFBOS, cDM8 and pCEV4 for expression in mammalian cells. The expression vectors according to the invention also include vectors derived from baculovirus for expression in insect cells, for example pAcSGHisNT-A.
Allgemeine, auf dem Fachgebiet bekannte Verfahren können zur Konstruktion von Expressionsvektoren, die die erfindungsgemäßen DNA-Sequenzen und geeignete Kontrollsequenzen enthalten, verwendet werden. Zu diesen Verfahren zählen beispielsweise in vitro-Rekombinationstechniken, synthetische Verfahren, sowie in vivo-Rekombinationsverfahren, wie sie beispielsweise in Sambrook et al . , supra, beschrieben sind. Die erfindungs- gemäßen DNA-Sequenzen können auch in Verbindung mit einer für ein anderes Protein bzw. Peptid codierenden DNA inseriert werden, sodaß die erfindungsgemäßen DNA-Sequenzen beispielsweise in Form eines Fusionsproteins exprimiert werden können. Bevorzugt sind diese anderen DNAs Reportersequenzen, die ein Reportermolekül codieren, das ein detektierbares Protein umfaßt, z.B. einen Farbstoff, eine Antibiotikaresistenz , ß-Ga- lactosidase oder eine durch spektropshotometrische, spektro- fluorometrische, luminescente oder radioaktive Assays nachweisbare Substanz.General methods known in the art can be used to construct expression vectors containing the DNA sequences of the invention and suitable control sequences. These methods include, for example, in vitro recombination techniques, synthetic methods and in vivo recombination methods, as described, for example, in Sambrook et al. , supra. The DNA sequences according to the invention can also be inserted in connection with a DNA coding for another protein or peptide, so that the DNA sequences according to the invention can be expressed, for example, in the form of a fusion protein. Preferably these other DNAs are reporter sequences encoding a reporter molecule comprising a detectable protein, e.g. a dye, an antibiotic resistance, ß-galactosidase or a substance detectable by spectropshotometric, spectro-fluorometric, luminescent or radioactive assays.
Die vorliegende Erfindung betrifft auch die vorstehend be-
schriebenen Vektoren enthaltende Wirtszellen. Zu diesen Wirtszellen zählen Bakterien (beispielsweise die E. coli-Stämme HB101, DH1, xl776, JM101, JM109, BL21 und SG13009), Pilze, z.B. Hefen, vorzugsweise S. cerevisiae, Pflanzenzellen, Insektenzellen, vorzugsweise sf9-Zellen, und Tierzellen, vorzugsweise Vertebraten- oder Säugerzellen. Bevorzugte Säugerzellen sind CHO-, VERO-, BHK- , HeLa- , COS-, MDCK, 293- und WI38-Zel- len. Verfahren zur Transformation dieser Wirtszellen, zur phänotypischen Selektion von Transformanten und zur Expression der erfindungsgemäßen DNA-Moleküle unter Verwendung der vorstehend beschriebenen Vektoren sind auf dem Fachgebiet bekannt .The present invention also relates to the above written vectors containing host cells. These host cells include bacteria (for example the E. coli strains HB101, DH1, xl776, JM101, JM109, BL21 and SG13009), fungi, for example yeasts, preferably S. cerevisiae, plant cells, insect cells, preferably sf9 cells, and animal cells, preferably vertebrate or mammalian cells. Preferred mammalian cells are CHO, VERO, BHK, HeLa, COS, MDCK, 293 and WI38 cells. Methods for transforming these host cells, for phenotypically selecting transformants and for expressing the DNA molecules of the invention using the vectors described above are known in the art.
Anhand von geeigneten Primersequenzen können die zu den erfindungsgemäßen Sequenzen gehörigen Gene amplifiziert werden. Zur Amplifikation der Gene T2 und T3 eignen sich insbesondere die in Fig. 20 angegebenen Primersequenzen.The genes belonging to the sequences according to the invention can be amplified using suitable primer sequences. The primer sequences indicated in FIG. 20 are particularly suitable for amplifying the T2 and T3 genes.
Die vorliegende Erfindung betrifft ferner von den erfindungsgemäßen DNA-Sequenzen codierte Proteine sowie Verfahren zur Herstellung der von den erfindungsgemäßen DNA-Sequenzen codierten Proteine. Dem Fachmann sind Bedingungen bekannt, transformierte bzw. transfizierte Wirtszellen zu kultivieren. Das erfindungsgemäße Verfahren umfaßt die Kultivierung der vorstehend beschriebenen Wirtszellen unter Bedingungen, die die Expression des Proteins (bzw. Fusionsproteins) erlauben (vorzugsweise stabile Expression) , und die Gewinnung des Proteins aus der Kultur oder aus den Wirtszellen. Geeignete Reinigungsverfahren (beispielsweise präparative Chromatographie, Affinitätschromatographie, beispielsweise Immunoaffinität- schromatographie, HPLC etc.) sind allgemein bekannt.The present invention further relates to proteins encoded by the DNA sequences according to the invention and methods for producing the proteins encoded by the DNA sequences according to the invention. The skilled worker is familiar with conditions for culturing transformed or transfected host cells. The method according to the invention comprises the cultivation of the host cells described above under conditions which allow the expression of the protein (or fusion protein) (preferably stable expression), and the extraction of the protein from the culture or from the host cells. Suitable purification methods (for example preparative chromatography, affinity chromatography, for example immunoaffinity chromatography, HPLC etc.) are generally known.
Die erfindungsgemäßen Proteine weisen bevorzugt die in den Fig. 1, Fig. 9, Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15, Fig. 16, Fig. 17, Fig. 18 oder Fig. 19 gezeigten Aminosäuresequenzen auf bzw. stellen Fusionen, Fragmente, Derivate oder Vorläufer (bioprecursors) davon dar, wobei die vorstehend erwähnten Eigenschaften im Sinne funktioneller Äquivalente
erhalten bleiben. Hinsichtlich der Definitionen dieser Begriffe wird auf die jeweiligen vorstehenden Ausführungen verwiesen. Unter Derivaten sind insbesondere solche veränderten Proteine bzw. Peptide zu verstehen, die sich von den in den Figuren gezeigten Sequenzen durch konservative Aminosäuren- austauche unterscheiden oder solche nichtkonservativen Aminosäureaustausche enthalten, die die Funktion der T-Proteine nicht wesentlich verändern.The proteins according to the invention preferably have those in FIGS. 1, 9, 11, 12, 13, 14, 15, 16, 17, 18 or 19 shown amino acid sequences or represent fusions, fragments, derivatives or precursors (bioprecursors) thereof, the above-mentioned properties in the sense of functional equivalents remain. With regard to the definitions of these terms, reference is made to the respective explanations above. Derivatives are to be understood in particular as those modified proteins or peptides which differ from the sequences shown in the figures by conservative amino acid exchanges or which contain non-conservative amino acid exchanges which do not significantly change the function of the T proteins.
Von den Erfindern wurden folgende Aminosäurenmotive identifiziert, die sich dazu eignen bisher unbekannte Proteine, die zu der Familie der erfindungsgemäßen T-/T2-/T3-Familie und einer Protein-Superfamilie aus Porenmembranproteinen und Filament- bindenden Proteinen gehören, zu identifizieren. Motiv 1:The inventors have identified the following amino acid motifs which are suitable for identifying previously unknown proteins which belong to the family of the T / T2 / T3 family according to the invention and a protein superfamily comprising pore membrane proteins and filament-binding proteins. Motif 1:
(A,T) (I,P,V) (L,T) (G,A,Q) (L, V) XXX (L, V) Motiv 2 : IYTDWAN Motiv 3 :(A, T) (I, P, V) (L, T) (G, A, Q) (L, V) XXX (L, V) Motif 2: IYTDWAN Motif 3:
AXXXXXXXXXGXXXXXXAXXXXXXXXXXXXXXXXXXQ Motiv 4 :AXXXXXXXXXGXXXXXXAXXXXXXXXXXXXXXXXXXQ Motif 4:
SXXXXDX ( 12 , 20 ) KX ( 17 , 22 ) AXXXXXXXXL Motiv 5 :SXXXXDX (12, 20) KX (17, 22) AXXXXXXXXL style 5:
IYTDWANXXLX (K, R) Motiv 6 :IYTDWANXXLX (K, R) Motif 6:
KX ( 18 , 21 ) AXXXXXXXXLX ( 15 , 24 ) S Motiv 7 : NX ( 3 , 11 ) SXXXAXXXXXXXLKX (18, 21) AXXXXXXXXLX (15, 24) S Motif 7: NX (3, 11) SXXXAXXXXXXXL
Erläuterung: X bedeutet jede AminosäureExplanation: X means every amino acid
(A,T) bedeutet Aminosäure A oder T an dieser(A, T) means amino acid A or T on this
StelleJob
X(2,4) bedeutet zwei bis vier X's an dieserX (2,4) means two to four X's on this
StelleJob
Eine weitere bevorzugte Ausführungsform der vorliegenden Erfindung betrifft Antikörper gegen die vorstehend beschriebenen erfindungsgemäßen Proteine oder ein Fragment davon. Diese
Antikörper können monoclonale, polyclonale oder synthetische Antikörper sein oder Fragmente davon. In diesem Zusammenhang bedeutet der Begriff "Fragment" alle Teile des monoclonalen Antikörpers (z.B. Fab- , Fv- oder "single chain Fv" -Fragmente) , welche die gleiche Epitopspezifität wie der vollständige Antikörper aufweisen. Die Herstellung solcher Fragmente ist dem Fachmann bekannt .A further preferred embodiment of the present invention relates to antibodies against the proteins according to the invention described above or a fragment thereof. This Antibodies can be monoclonal, polyclonal or synthetic antibodies or fragments thereof. In this context, the term "fragment" means all parts of the monoclonal antibody (for example Fab, Fv or "single chain Fv" fragments) which have the same epitope specificity as the complete antibody. The production of such fragments is known to the person skilled in the art.
Vorzugsweise handelt es sich bei den erfindungsgemäßen Antikörpern um monoclonale Antikörper. Die erfindungsgemäßen Antikörper können gemäß Standardverfahren hergestellt werden, wobei das von den erfindungsgemäßen DNA-Sequenzen codierte Protein oder ein synthetisches Fragment davon als Immunogen dienen. Verfahren zur Gewinnung monoclonaler Antikörper sind dem Fachmann bekannt und umfassen beispielsweise als ersten Schritt die Herstellung von polyclonalen Antikörpern unter Verwendung der erfindungsgemäßen Proteine oder Fragmente davon (beispielsweise synthetische Peptide) als Immunogen zur Immunisierung geeigneter Tiere, beispielsweise Kaninchen oder Hühner, und die Gewinnung der polyclonalen Antikörper aus dem Serum bzw. Eigelb.The antibodies according to the invention are preferably monoclonal antibodies. The antibodies according to the invention can be produced according to standard methods, the protein encoded by the DNA sequences according to the invention or a synthetic fragment thereof serving as an immunogen. Methods for obtaining monoclonal antibodies are known to the person skilled in the art and comprise, for example, as a first step the preparation of polyclonal antibodies using the proteins according to the invention or fragments thereof (for example synthetic peptides) as immunogen for the immunization of suitable animals, for example rabbits or chickens, and the extraction of the polyclonal Antibodies from the serum or egg yolk.
Dann werden beispielsweise Zeil-Hybride aus Antikörper produzierenden Zellen und Knochenmark-Tumorzeilen hergestellt und cloniert. Anschließend wird ein Clon selektioniert , der einen Antikörper produziert, der für das verwendete Antigen spezifisch ist. Dieser Antikörper wird dann hergestellt. Beispiele von Zellen, die Antikörper produzieren, sind Milzzellen, Lymphknotenzellen, B-Lymphozyten etc.. Beispiele von Tieren, die zu diesem Zweck immunisiert werden können, sind Mäuse, Ratten, Pferde, Ziegen und Kaninchen. Die Myelomzellen lassen sich aus Mäusen, Ratten, Menschen oder anderen Quellen erhalten. Die Zellfusion kann man beispielsweise durch das allgemein bekannte Verfahren von Köhler und Milstein durchführen. Die durch Zellfusion erhaltenen Hybridome werden mittels dem Antigen nach dem Enzym-Antikörper-Verfahren oder nach einem ähnlichen Verfahren abgesucht. Clone werden beispielsweise mit dem Grenz-Verdünnungsverfahren erhalten. Die erhaltenen Clone
werden beispielsweise BALB/c-Mäusen intraperitoneal implantiert, nach 10 bis 14 Tagen wird der Ascites der Maus entnommen, und der monoclonale Antikörper durch bekannte Verfahren (beispielsweise Ammoniumsulfatfraktionierung, PEG-Fraktionie- rung, Ionenaustauschchromatographie, Gelchromatographie oder Affinitätschromatographie) gereinigt .Then, for example, Zeil hybrids are produced and cloned from antibody-producing cells and bone marrow tumor cells. A clone is then selected which produces an antibody which is specific for the antigen used. This antibody is then made. Examples of cells that produce antibodies are spleen cells, lymph node cells, B-lymphocytes, etc. Examples of animals that can be immunized for this purpose are mice, rats, horses, goats and rabbits. The myeloma cells can be obtained from mice, rats, humans or other sources. Cell fusion can be carried out, for example, by the well-known Köhler and Milstein method. The hybridomas obtained by cell fusion are screened by means of the antigen by the enzyme-antibody method or by a similar method. For example, clones are obtained using the limit dilution method. The clones obtained For example, BALB / c mice are implanted intraperitoneally, the ascites are removed from the mouse after 10 to 14 days, and the monoclonal antibody is purified by known methods (for example ammonium sulfate fractionation, PEG fractionation, ion exchange chromatography, gel chromatography or affinity chromatography).
In einer besonders bevorzugten Ausführungsform ist der genannte monoclonale Antikörper ein aus einem Tier (z.B. Maus) stammender Antikörper, ein humanisierter Antikörper oder ein chimärer Antikörper oder ein Fragment davon. Chimäre, menschlichen Antikörper ähnelnde oder humanisierte Antikörper besitzen eine herabgesetzte potentielle Antigenität, jedoch ist ihre Affinität gegenüber dem Ziel nicht herabgesetzt. Die Herstellung von Chimären und humanisierten Antikörpern bzw. von den menschlichen Antikörpern ähnelnden Antikörpern wurde ausführlich beschrieben (siehe beispielsweise Queen et al . , Proc. Natl. Acad. Sei. USA 86 (1989), 10029, und Verhoeyan et al . , Science 239 (1988), 1534). Humanisierte Immunglobuline weisen variable Grundgerüstbereiche auf, die im wesentlichen von einem humanen Immunglobulin stammen (mit der Bezeichnung Akzeptor-Immunglobulin) und die Komplementär!tat der determinierenden Bereiche, die im wesentlichen von einem nicht-menschlichen Immunglobulin (z.B. von der Maus) stammen (mit der Bezeichnung Donor-Immunglobulin) . Die (der) konstante (n) Be- reich(e) stammt/stammen, falls vorhanden, auch im wesentlichen von einem menschlichen Immunglobulin. Bei der Verabreichung an menschliche Patienten bieten humanisierte (sowie die menschlichen) Antikörper eine Reihe von Vorteilen gegenüber Antikörpern von Mäusen oder anderen Spezies: (a) das menschliche Immunsystem sollte das Grundgerüst oder den konstanten Bereich des humanisierten Antikörpers nicht als fremd erkennen und daher sollte die Antikörper-Antwort gegen einen solchen injizierten Antikörper geringer ausfallen als gegen einen vollständig fremden Maus-Antikörper oder einen partiell fremden Chimären Antikörper; (b) da der Effektorbereich des humanisierten Antikörpers menschlich ist, dürfte er mit anderen Teilen des menschlichen Immunsystems besser interagieren, und
(c) injizierte humanisierte Antikörper weisen eine Halbwertszeit auf, die im wesentlichen zu der von natürlich vorkommenden menschlichen Antikörpern äquivalent ist, was es erlaubt, kleinere und weniger häufige Dosen im Vergleich zu Antikörpern anderer Spezies zu verabreichen.In a particularly preferred embodiment, the monoclonal antibody mentioned is an antibody derived from an animal (for example a mouse), a humanized antibody or a chimeric antibody or a fragment thereof. Chimeric, human antibody-like or humanized antibodies have a reduced potential antigenicity, but their affinity for the target is not reduced. The production of chimeras and humanized antibodies or of antibodies similar to human antibodies has been described in detail (see, for example, Queen et al., Proc. Natl. Acad. Sci. USA 86 (1989), 10029, and Verhoeyan et al., Science 239 (1988), 1534). Humanized immunoglobulins have variable scaffold areas, which essentially come from a human immunoglobulin (called acceptor immunoglobulin) and the complementary determinants, which essentially come from a non-human immunoglobulin (e.g. from the mouse) (with the name donor immunoglobulin). The constant region (s), if present, originate essentially from a human immunoglobulin. When administered to human patients, humanized (as well as human) antibodies offer a number of advantages over antibodies from mice or other species: (a) the human immune system should not recognize the framework or constant region of the humanized antibody as foreign, and therefore should Antibody response against such an injected antibody is lower than against a completely foreign mouse antibody or a partially foreign chimeric antibody; (b) since the effector region of the humanized antibody is human, it is likely to interact better with other parts of the human immune system, and (c) Injected humanized antibodies have a half-life that is essentially equivalent to that of naturally occurring human antibodies, allowing smaller and less frequent doses to be administered compared to antibodies from other species.
Die erfindungsgemäßen Antikörper können beispielsweise zur Immunpräzipitation der vorstehend diskutierten Proteine, zur Isolierung verwandter Proteine aus cDNA-Expressionsbanken oder zu den nachstehend offenbarten Zwecken (Diagnose/Therapie) verwendet werden.The antibodies according to the invention can be used, for example, for immunoprecipitation of the proteins discussed above, for the isolation of related proteins from cDNA expression banks or for the purposes disclosed below (diagnosis / therapy).
Die vorliegende Erfindung betrifft auch ein Hybridom, das den vorstehend beschriebenen monoclonalen Antikörper erzeugt.The present invention also relates to a hybridoma that produces the monoclonal antibody described above.
In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung Antikörper gegen die einzeln aufgeführten Peptide der Gene T2 und T3 (vgl. Fig. 20).In a preferred embodiment, the present invention relates to antibodies against the individually listed peptides of genes T2 and T3 (cf. FIG. 20).
Es wurde herausgefunden, daß das nachstehende Peptid speziell für die Generierung von Antikörpern gegen das Protein T verwendet werden kann. Die Aminosäuresequenz des geeigneten Pep- tids lautet:It has been found that the following peptide can be used specifically for the generation of antibodies to the protein T. The amino acid sequence of the suitable peptide is:
EKGEDPETRRMRTVKNIADEKGEDPETRRMRTVKNIAD
Die vorliegende Erfindung ermöglicht es, Störungen der Entwicklung und Funktion des Nervensystems auf genetischer Ebene zu untersuchen. Hierzu zählen unter anderem neurologische und psychiatrische Erkrankungen (u.a. Alzheimer, Morbus Parkinson, Schizophrenie, Manisch-depressive Erkrankungen, Autismus, mentale Retardierung), Verletzungen des Nervensystems, bei angeborenen Schädigungen des Nervensystems oder bei degenerativen Erkrankungen des Nervensystems. Desweiteren ermöglicht die Erfindung die Behandlung von Krebs, u.a von Tumoren des Nervensystems, wie Neuroblastom, Astrozytom, Glioblastom, Medulloblastom. Diese Diagnose kann nicht nur postnatal, son-
dern bereits pränatal erfolgen. Mit einer erfindungsgemäßen DNA-Sequenz bzw. davon abgeleiteten Sonden oder Primern kann in Säugern, insbesondere dem Menschen, festgestellt werden, ob sie ein Gen enthalten, das das erfindungsgemäße Protein codiert und/oder exprimiert bzw. ob dieses Gen zu einer mutierten Form des Proteins führt, die nicht länger biologisch aktiv ist. Dazu kann der Fachmann übliche Verfahren, wie Reverse Transkription, PCR, LCR, Hybridisierung und Sequenzierung durchführen. Auch die erfindungsgemäßen Antikörper eignen sich für die Diagnostik, d.h. beispielsweise zum Nachweis des Vorhandensein und/oder der Konzentration des erfindungsgemäßen Proteins, einer verkürzten oder verlängerten Form des Proteins etc., in einer Probe. Die Antikörper können beispielsweise in Immunoassays in Flüssigphase oder an einen festen Träger gebunden werden. Dabei können die Antikörper auf verschiedene Art und Weise markiert sein. Geeignete Marker und Markierungsverfahren sind auf dem Fachgebiet bekannt. Beispiele für Immu- nassays sind ELISA und RIA.The present invention makes it possible to investigate disorders of the development and function of the nervous system at the genetic level. These include neurological and psychiatric diseases (including Alzheimer's, Parkinson's disease, schizophrenia, manic-depressive diseases, autism, mental retardation), injuries to the nervous system, with congenital damage to the nervous system or with degenerative diseases of the nervous system. Furthermore, the invention enables the treatment of cancer, including tumors of the nervous system, such as neuroblastoma, astrocytoma, glioblastoma, medulloblastoma. This diagnosis can be not only postnatal, but also already happen prenatally. With a DNA sequence according to the invention or probes or primers derived therefrom, it can be determined in mammals, in particular humans, whether they contain a gene which codes and / or expresses the protein according to the invention or whether this gene forms a mutated form of the protein leads that is no longer biologically active. To this end, the person skilled in the art can carry out conventional methods such as reverse transcription, PCR, LCR, hybridization and sequencing. The antibodies according to the invention are also suitable for diagnostics, ie for example for the detection of the presence and / or the concentration of the protein according to the invention, a shortened or extended form of the protein etc. in a sample. The antibodies can be bound, for example, in liquid phase immunoassays or to a solid support. The antibodies can be labeled in different ways. Suitable markers and labeling methods are known in the art. Examples of immunoassays are ELISA and RIA.
Somit betrifft die vorliegende Erfindung auch ein Diagnoseverfahren zum Nachweis einer gestörten Expression des erfindungsgemäßen Proteins oder zum Nachweis einer veränderten Form dieses Proteins, bei dem man eine Probe mit den erfindungsgemäßen DNA-Sequenzen oder dem erfindungsgemäßen Antikörper oder Fragment davon in Berührung bringt und sodann besipiels- weise direkt oder indirekt bestimmt, ob sich die Konzentration des Proteins und/oder seine Aminosäuresequenz im Vergleich zu einer aus einem gesunden Patienten gewonnenen Protein unterscheiden.The present invention thus also relates to a diagnostic method for the detection of a disturbed expression of the protein according to the invention or for the detection of a modified form of this protein, in which a sample is brought into contact with the DNA sequences according to the invention or the antibody or fragment thereof according to the invention and then wise directly or indirectly determines whether the concentration of the protein and / or its amino acid sequence differ from a protein obtained from a healthy patient.
Die vorliegende Erfindung erlaubt auch die Durchführung therapeutischer Maßnahmen bei den vorstehend diskutierten Störungen, d.h. die vorstehend beschriebenen, erfindungsgemäßen DNA- Sequenzen, Antisense-RNAs , Ribozyme und Antikörper können auch zur Herstellung eines Arzneimittels, beispielsweise zur Kontrolle der Expression des erfindungsgemäßen Proteins oder zum
Austausch einer mutierten Form des Gens gegen eine funktionel- le Form verwendet werden und somit auch zur Herstellung eines Arzneimittels zur Prävention oder der Behandlung von Erkrankungen des Nervensystems, insbesondere Tumorerkrankungen des ZNS. Beispielsweise kann das erfindungsgemäße Protein in Säugern, insbesondere den Menschen, durch übliche Maßnahmen eingebracht werden. Hierzu kann es günstig sein, das Protein an ein vom jeweiligen Körper nicht als fremd angesehenes Protein, z.B. Transferrin oder Rinderserumalbumin (BSA) zu koppeln. Auch kann eine erfindungsgemäße DNA-Sequenz, Antisense-RNA oder Ribozym in Säuger, insbesondere den Menschen, eingebracht und exprimiert werden. Mit einem erfindungsgemäßen Antikörper kann die Expression des erfindungsgemäßen Proteins (TP) bzw. der verwandten Proteine kontrolliert und reguliert werden.The present invention also allows therapeutic measures to be carried out for the disorders discussed above, ie the above-described DNA sequences according to the invention, antisense RNAs, ribozymes and antibodies can also be used to prepare a medicament, for example to control the expression of the protein according to the invention or to Exchange of a mutated form of the gene can be used for a functional form and thus also for the manufacture of a medicament for the prevention or treatment of diseases of the nervous system, in particular tumor diseases of the CNS. For example, the protein according to the invention can be introduced into mammals, in particular humans, by customary measures. For this purpose, it can be advantageous to couple the protein to a protein that is not considered foreign by the respective body, for example transferrin or bovine serum albumin (BSA). A DNA sequence, antisense RNA or ribozyme according to the invention can also be introduced and expressed in mammals, in particular humans. With an antibody according to the invention, the expression of the protein (TP) according to the invention or the related proteins can be controlled and regulated.
Somit betrifft die vorliegende Erfindung auch ein Arzneimittel, das die vorstehend beschriebenen DNA-Sequenzen, Antisense-RNA, das Ribozym, den Expressionsvektor, das erfindungsgemäße Protein oder den Antikörper bzw. das Fragment davon enthält. Dieses Arzneimittel enthält gegebenenfalls zusätzlich einen pharmazeutisch verträglichen Träger. Geeignete Träger und die Formulierung derartiger Arzneimittel sind dem Fachmann bekannt. Zu geeigneten Trägern zählen beispielsweise Phosphat-gepufferte Kochsalzlösungen, Wasser, Emulsionen, beispielsweise Öl/Wasser-Emulsionen, Νetzmittel, sterile Lösungen etc. Die Verabreichung der Arzneimittel kann oral oder parenteral erfolgen. Zu den Verfahren für die parenterale Verabreichung gehören die topische, intra-arterielle, intramuskuläre, subkutane, intramedulläre, intrathekale, intraven- trikuläre, intravenöse, intraperitoneale oder intranasale Verabreichung. Die geeignete Dosierung wird von dem behandelnden Arzt bestimmt und hängt von verschiedenen Faktoren ab, beispielsweise von dem Alter, dem Geschlecht, dem Gewicht des Patienten, dem Stadium der Erkrankung, der Art der Verabreichung etc ..
Vorzugsweise werden die vorstehend beschriebenen Nucleinsäuren in einen für die Gentherapie geeigneten Vektor inseriert und, beispielsweise unter Kontrolle eines gewebespezifischen Vektors in die Zellen eingeschleust. In einer bevorzugten Ausführungsform ist der die vorstehend beschriebenen Nucleinsäuren enthaltende Vektor ein Virus, beispielsweise ein Adenovirus, Vaccinia-Virus oder Adenovirus. Besonders bevorzugt sind Retroviren. Beispiele für geeignete Retroviren sind MoMuLV, HaMuSV, MuMTV, RSV oder GaLV. Für Zwecke der Gentherapie können die erfindungsgemäßen Nucleinsäuren auch in Form von kolloidalen Dispersionen zu den Zielzellen transportiert werden. Dazu zählen beispielsweise Liposomen oder Lipoplexe (Mannino et al . , Biotechniques 6 (1988), 682).The present invention thus also relates to a medicament which contains the DNA sequences described above, antisense RNA, the ribozyme, the expression vector, the protein according to the invention or the antibody or the fragment thereof. This drug may also contain a pharmaceutically acceptable carrier. Suitable carriers and the formulation of such medicaments are known to the person skilled in the art. Suitable carriers include, for example, phosphate-buffered saline solutions, water, emulsions, for example oil / water emulsions, surfactants, sterile solutions, etc. The medicaments can be administered orally or parenterally. Methods for parenteral administration include topical, intra-arterial, intramuscular, subcutaneous, intramedullary, intrathecal, intravenous, intravenous, intraperitoneal, or intranasal. The appropriate dosage is determined by the attending physician and depends on various factors, for example the age, gender, weight of the patient, the stage of the disease, the type of administration, etc. The nucleic acids described above are preferably inserted into a vector suitable for gene therapy and introduced into the cells, for example under the control of a tissue-specific vector. In a preferred embodiment, the vector containing the nucleic acids described above is a virus, for example an adenovirus, vaccinia virus or adenovirus. Retroviruses are particularly preferred. Examples of suitable retroviruses are MoMuLV, HaMuSV, MuMTV, RSV or GaLV. For the purposes of gene therapy, the nucleic acids according to the invention can also be transported to the target cells in the form of colloidal dispersions. These include, for example, liposomes or lipoplexes (Mannino et al., Biotechniques 6 (1988), 682).
Schließlich betrifft die vorliegende Erfindung einen diagnostischen Kit zur Durchführung des vorstehend beschriebenen Diagnoseverfahrens, der eine erfindungsgemäße DNA-Sequenz oder den vorstehend beschriebenen, erfindungsgemäßen Antikörper oder ein Fragment davon enthält. Je nach Ausgestaltung des diagnostischen Kits können die DNA-Sequenz bzw. der Antikörper oder das Fragment davon immobilisiert sein.Finally, the present invention relates to a diagnostic kit for carrying out the diagnostic method described above, which contains a DNA sequence according to the invention or the above-described antibody according to the invention or a fragment thereof. Depending on the configuration of the diagnostic kit, the DNA sequence or the antibody or the fragment thereof can be immobilized.
Sequenzen der T-Gene können auf Nylonmembranen oder Glasträger aufgebracht werden und mit komplexen cDNA-Proben aus Tumoren und zugehörigen Normalgeweben, oder krankem und zugehörigen gesundem Gewebe hybridisiert werden. Hierdurch ist die (vollautomatisierte) Erfassung der Expresssion dieser Gene möglich. Die hierzu verwendeten Sequenzen können z.B. die gesamte cDNA- Sequenz oder kurze Sequenzabschnitte z.B. 10-15 bp-Oligomere (siehe u.a. Fig. 20) sein. Nach Determination der Expression der T-Gene kann dann die Therapie, unter anderem die Krebstherapie gezielt der nach der jeweiligen individuellen Situation des Patienten ausgewählt oder angepasst werden. Gene, deren veränderte Expression bereits jetzt Einfluß nehmen auf die Behandlung des Patienten ist z.B. das N-Myc Gen beim Neuroblastom. Durch die Erfassung der Expression der T-Gene kann
somit die Bandlung sehr schnell und effizient den jeweiligen Erfordernisssen angepaßt werden und trägt somit wesentlich zur verbesserten Therapie bei .Sequences of the T genes can be applied to nylon membranes or glass slides and hybridized with complex cDNA samples from tumors and associated normal tissues, or sick and associated healthy tissues. This enables the (fully automated) detection of the expression of these genes. The sequences used for this can be, for example, the entire cDNA sequence or short sequence sections, for example 10-15 bp oligomers (see, inter alia, FIG. 20). After determining the expression of the T genes, the therapy, including cancer therapy, can then be specifically selected or adapted according to the individual situation of the patient. Genes whose altered expression are already influencing the treatment of the patient are, for example, the N-Myc gene in neuroblastoma. By detecting the expression of the T genes thus the bandung can be adapted very quickly and efficiently to the respective requirements and thus contributes significantly to the improved therapy.
Die Isolierung und Charakterisierung des menschlichen erfindungsgemäßen Gens und insbesondere der Maushomologe davon erlauben darüberhinaus die Etablierung eines Tiermodells, was für das weitere Studium von Erkrankungen des Nervensytems und von Krebserkrankungen auf molekularer Ebene sehr wertvoll ist. Gegenstand der vorliegenden Erfindung ist somit ferner ein nicht-menschliches Säugetier, dessen T-Gen bzw. T2- oder T3- Gen verändert ist, z.B. durch Insertion einer heterologen Sequenz, insbesondere einer Selektionsmarkersequenz .The isolation and characterization of the human gene according to the invention and in particular the mouse homologue thereof furthermore allow the establishment of an animal model, which is very valuable for the further study of diseases of the nervous system and cancer at the molecular level. The present invention thus also relates to a non-human mammal whose T gene or T2 or T3 gene is changed, e.g. by inserting a heterologous sequence, in particular a selection marker sequence.
Der Ausdruck "nicht-menschliches Säugetier" umfaßt jegliches Säugetier, dessen T-Gen bzw. T2- oder T3-Gen verändert sein kann. Beispiele solcher Säugetiere sind Maus, Ratte, Kaninchen, Pferd, Rind, Schaf, Ziege, Affe, Schwein, Hund und Katze, wobei Maus bevorzugt ist.The term "non-human mammal" includes any mammal whose T gene, or T2 or T3 gene, may be altered. Examples of such mammals are mouse, rat, rabbit, horse, cattle, sheep, goat, monkey, pig, dog and cat, with mouse being preferred.
Der Ausdruck "T-Gen bzw. T2- oder T3-Gen, das verändert ist" bedeutet, daß in dem im nicht-menschlichen Säugetier natürlich vorkommenden entsprechenden Gen durch Standardmethoden eine Veränderung der Genstruktur oder der Gensequenz durchgeführt wird. Dies kann unter anderem durch die Einführung einer Dele- tion von ca. 1-2 kb, an dessen Stelle eine heterologe Sequenz, z.B. ein Konstrukt zur Vermittlung von Antibiotika-Resistenz (z.B. eine "neo-Kassette"), eingeführt wird, erreicht werden. Desweiteren können heterologe Sequenzen in das T-Gen eingeführt werden, die es erlauben, in vivo zeit- und gewebespezifische Deletionen durchzuführen. Weiterhin können heterologe Sequenzen in das T-Gen eingeführt werden, die es erlauben, die Expression des T-Gens in vivo zu verfolgen. Dies kann unter anderem durch die Insertion einer für das GFP (green fluo- rescent protein) -Protein codierenden Sequenz innrerhalb eines
Exons oder als eigenständiges Exon durchgeführt werden. Diese Methoden sind allgemein in Schwartzberg et al . , Proc. Natl . Acad. Sei. USA, Vol. 87, S. 3210-3214, 1990 beschrieben, worauf hier Bezug genommen wird.The expression “T gene or T2 or T3 gene that has been changed” means that the gene which occurs naturally in the non-human mammal is modified by standard methods by means of standard methods to change the gene structure or the gene sequence. This can be achieved, inter alia, by introducing a deletion of approximately 1-2 kb, in the place of which a heterologous sequence, for example a construct for mediating antibiotic resistance (for example a “neo-cassette”), is introduced . Furthermore, heterologous sequences can be introduced into the T gene, which allow time and tissue-specific deletions to be carried out in vivo. Furthermore, heterologous sequences can be introduced into the T gene, which make it possible to follow the expression of the T gene in vivo. This can be done, inter alia, by inserting a sequence coding for the GFP (green fluorescent protein) protein within one Exons or as an independent exon. These methods are generally described in Schwartzberg et al. , Proc. Natl. Acad. Be. USA, Vol. 87, pp. 3210-3214, 1990, to which reference is made here.
Insbesondere kann die Veränderung wie nachfolgend beschrieben durch geführt werden. Figur 9 repäsentiert einen Teil der cDNA-Sequenz des T-Gens der Maus. Die Abbildung 10 zeigt eine Intronsequenz des T-Gens der Maus, die von zwei Exons flankiert wird. Diese murinen Sequenzen können nun zur gezielten Veränderung des Maus T-Gens verwendet werden. So kann man z.B. die Spleiß-Sequenzen des Introns deletieren oder so verändern, dass das T-Gen nicht mehr korrekt gespleißt wird. Desweitern kann durch Einbau einer Spleißakzeptorsequenz eines anderen Exons des Maus T-Gens in die Intronsequenz eine Sequenz in dieses Intron inseriert werden, die als Exon erkannt wird und an die davor liegenden Exons des T-Gens herangespleißt wird. Diese inserierte Sequenz kann z.B. ein Exon sein, das das EGFP-Protein (EnhancedGreenFluorescentProtein) kodiert. Hierdurch wird aus dem ursprünglichen Maus T-Gen ein Fusionsprotein, das das EGFP-Protein beinhaltet. Hierdurch kann bevorzugt eine Maus generiert werden, die es erlaubt, die Expression des T-Gens in vivo zu verfolgen. Die inserierte Sequenz kann am Ende so gestaltet sein (z.B PolyA-Signal , Spleißsignale usw. ) , daß keine weiteren Exons des T-Gens an das inserierte Exon herangespleißt werden oder das heranspleißte Exons nicht mehr translatiert werden. Hierdurch entsteht eine Dele- tion des Maus T-Proteins am C-terminalen Ende oder ein vorzeitiger Abbruch des Leserahmens und eine (zumindest teilweise) Inaktitivierung der Proteinfunktion des Maus T-Gens kann erreicht werden. Desweiteren können auch solche Sequenzen als neue Exonsequenzen inseriert werden, die eine mRNA-Sequenz ergeben, bei der am 3 ' -Ende diese neue mRNA-Sequenz lokalisiert ist. Durch geeignete Sequenzen ist dann eine Veränderung der Stabilität der mRNA oder eine veränderte Lokalisation in der Zelle zu erreichen. Die damit einhergenden Phänotype der so veränderten Mäuse können dann wichtige Rückschlüsse auf die
Funktion des T-Gens ergeben. Diese Mäuse können dann auch zum Auffinden neuer Wirkstoffe verwendet werden, die den Funktionsverlust des T-Gens kompensieren.In particular, the change can be carried out as described below. Figure 9 represents part of the cDNA sequence of the mouse T gene. Figure 10 shows an intron sequence of the mouse T gene flanked by two exons. These murine sequences can now be used for the targeted modification of the mouse T gene. For example, the splicing sequences of the intron can be deleted or changed so that the T gene is no longer spliced correctly. Furthermore, by inserting a splice acceptor sequence of another exon of the mouse T gene into the intron sequence, a sequence can be inserted into this intron which is recognized as an exon and which is spliced to the exons of the T gene located in front of it. This inserted sequence can be, for example, an exon that encodes the EGFP protein (Enhanced Green Fluorescent Protein). This turns the original mouse T gene into a fusion protein that contains the EGFP protein. In this way, a mouse can preferably be generated which allows the expression of the T gene to be monitored in vivo. The inserted sequence can be designed in the end (eg polyA signal, splice signals, etc.) such that no further exons of the T gene are spliced to the inserted exon or the spliced exon is no longer translated. This results in a deletion of the mouse T protein at the C-terminal end or a premature termination of the reading frame and an (at least partial) inactivation of the protein function of the mouse T gene can be achieved. Furthermore, such sequences can also be inserted as new exon sequences which result in an mRNA sequence in which this new mRNA sequence is located at the 3 'end. Suitable sequences can then be used to change the stability of the mRNA or to change its location in the cell. The associated phenotype of the mice modified in this way can then provide important conclusions about the Function of the T gene. These mice can then also be used to find new active substances that compensate for the loss of function of the T gene.
In einer weiteren bevorzugten Ausführungsform wird die Sequenz von Fig. 13 zur Herstellung einer Knock-out-Maus eingesetzt. Figur 13 beschreibt eine Maussequenz des Gens T2. Das Ausschalten des Maus T2-Gens kann hierbei auf unterschiedliche Wege erreicht werden. So kann man z.B. die Spleiß-Sequenz (GT) unterstrichen in Figur 13) deletieren oder so verändern, dass das T2-Gen nicht merh korrekt gespleißt wird. Desweiteren kann durch Einbau einer Spleißakzeptorsequenz eines anderen Exons des Maus T2-Gens in die anschließende Intronsequenz eine Sequenz in dieses Intron inseriert werden, die als Exon erkannt wird und an die davor liegenden Exons des T2-Gens herangespleißt werden. Dieses inserierte Exon kann z.B. ein Exon sein, das das EGFP-Protein kodiert. Hierdurch wird aus dem ursprünglichen Maus T2-Gen ein Fusionsprotein, das am C-Termi- nus das EGFP-Protein trägt. Hierdurch kann eine Maus generiert werden, die es erlaubt, die Expression des T2-Gens in vivo zu verfolgen. Die inserierte Sequenz kann am Ende so gestaltet sein (z.B PolyA-Signal usw.), dass keine weiteren Exons von dem T2-Gen an das inserierte Exon herangespleißt werden. Hierdurch entsteht eine Deletion des Maus T2-Proteins am C-termi- nalen Ende und eine (zumindest teilweise) Inaktitivierung der Proteinfunktion des Maus T2-Gens kann erreicht werden. Des- weiteren können auch solche Sequenzen als neue Exonsequenzen inseriert werden, die eine mRNA-Sequenz ergeben, bei der am 3 ' -Ende diese neue mRNA-Sequenz lokalisiert ist. Durch geeignete Sequenzen ist dann eine Veränderung der Stabilität der mRNA oder eine veränderte Lokalisation in der Zelle zu erreichen. Die damit einhergenden Phänotypen der so veränderten Mäuse können dann wichtige Rückschlüsse auf die Funktion des T2-Gens ergeben. Diese Mäuse können dann auch zum Auffinden neuer Wirkstoffe verwendet werden, die den Funktionsverlust des T-Gens kompensieren.
Desweiteren kann ein Säugetier generiert werden, das eine Veränderung des T3-Gens aufweist. Die Sequenz in Fig. 19 repä- sentiert einen Teil des murinen cDNA-Sequenz des T3 Gens. Durch Deletionen oder Insertionen können gezielte Veränderungen am T3-Gen der Maus erreicht werden. Die inserierte Sequenz kann z.B. ein Exon sein, das das EGFP-Protein kodiert. Hierdurch wird aus dem ursprünglichen Maus T3-Gen ein Fusionsprotein, das am C-Terminus das EGFP-Protein trägt. Hierdurch kann eine Maus generiert werden, die es erlaubt, die Expression des T3-Gens in vivo zu verfolgen. Die inserierte Sequenz kann am Ende so gestaltet sein (z.B PolyA-Signal usw.), dass keine weiteren Exons von dem T3-Gen an das inserierte Exon herangespleißt werden. Hierdurch entsteht eine Deletion des Maus T3-Proteins am C-terminalen Ende und eine (zumindest teilweise) Inaktitivierung der Proteinfunktion des Maus T3- Gens kann erreicht werden. Desweiteren können auch solche Sequenzen als neue Exonsequenzen inseriert werden, die eine mRNA-Sequenz ergeben, bei der am 3 ' -Ende diese neue mRNA-Sequenz lokalisiert ist. Durch geeignete Sequenzen ist dann eine Veränderung der Stabilität der mRNA oder eine veränderte Lokalisation in der Zelle zu erreichen. Die damit einhergenden Phänotype der so veränderten Mäuse können dann wichtige Rückschlüsse auf die Funktion des T3-Gens ergeben. Diese Mäuse können dann auch zum Auffinden neuer Wirkstoffe verwendet werden, die den Funktionsverlust des T3-Gens kompensieren.In a further preferred embodiment, the sequence from FIG. 13 is used to produce a knock-out mouse. Figure 13 describes a mouse sequence of the T2 gene. Switching off the mouse T2 gene can be achieved in different ways. For example, the splicing sequence (GT) (underlined in FIG. 13) can be deleted or changed so that the T2 gene is not spliced correctly anymore. Furthermore, by inserting a splice acceptor sequence of another exon of the mouse T2 gene into the subsequent intron sequence, a sequence can be inserted into this intron which is recognized as an exon and which is spliced to the exons of the T2 gene located in front of it. This inserted exon can be, for example, an exon that encodes the EGFP protein. This transforms the original mouse T2 gene into a fusion protein that carries the EGFP protein at the C-terminus. In this way, a mouse can be generated which allows the expression of the T2 gene to be followed in vivo. The inserted sequence can be designed in the end (eg polyA signal, etc.) in such a way that no further exons are spliced from the T2 gene to the inserted exon. This results in a deletion of the mouse T2 protein at the C-terminal end and an (at least partial) inactivation of the protein function of the mouse T2 gene can be achieved. Furthermore, such sequences can also be inserted as new exon sequences which result in an mRNA sequence in which this new mRNA sequence is located at the 3 'end. Suitable sequences can then be used to change the stability of the mRNA or to change its location in the cell. The associated phenotypes of the mice modified in this way can then provide important conclusions about the function of the T2 gene. These mice can then also be used to find new active substances that compensate for the loss of function of the T gene. Furthermore, a mammal can be generated that has a change in the T3 gene. The sequence in FIG. 19 represents part of the murine cDNA sequence of the T3 gene. Targeted changes to the mouse T3 gene can be achieved by deletions or insertions. The inserted sequence can be, for example, an exon that encodes the EGFP protein. In this way, the original mouse T3 gene becomes a fusion protein that carries the EGFP protein at the C-terminus. In this way, a mouse can be generated which allows the expression of the T3 gene to be monitored in vivo. The inserted sequence can be designed in the end (eg polyA signal, etc.) in such a way that no further exons are spliced from the T3 gene to the inserted exon. This results in a deletion of the mouse T3 protein at the C-terminal end and an (at least partial) inactivation of the protein function of the mouse T3 gene can be achieved. Furthermore, such sequences can also be inserted as new exon sequences which result in an mRNA sequence in which this new mRNA sequence is located at the 3 'end. Suitable sequences can then be used to change the stability of the mRNA or to change its location in the cell. The associated phenotype of the mice modified in this way can then provide important conclusions about the function of the T3 gene. These mice can then also be used to find new active substances that compensate for the loss of function of the T3 gene.
Ein weiterer Gegenstand der vorliegenden Erfindung sind Zellen, die aus dem vorstehenden nicht-menschlichen Säugetier erhalten werden. Diese Zellen können in jeglicher Form vorliegen, z.B. in einer Primär- oder Langzeit-Kultur.Another object of the present invention are cells obtained from the above non-human mammal. These cells can be in any form, e.g. in a primary or long-term culture.
Ein erfindungsgemäßes nicht-menschliches Säugetier kann durch übliche Verfahren bereitgestellt werden. Günstig ist ein Verfahren, das folgende Schritte umfaßt:
(a) Herstellung eines DNA-Fragments, insbesondere eines Vektors, enthaltend ein verändertes T-, T2- oder T3-Gen, wobei das Gen durch Insertion einer heterologen Sequenz, insbesondere eines selektierbaren Markers, verändert worden ist;A non-human mammal according to the invention can be provided by conventional methods. A method is favorable which comprises the following steps: (a) Production of a DNA fragment, in particular a vector, containing an altered T, T2 or T3 gene, the gene having been altered by inserting a heterologous sequence, in particular a selectable marker;
(b) Präparation embryonaler Stammzellen aus einem nicht-menschlichen Säuger (bevorzugt Maus) ;(b) preparation of embryonic stem cells from a non-human mammal (preferably mouse);
(c) Transformation der embryonalen Stammzellen von Schritt (b) mit dem DNA-Fragment von Schritt (a) , wobei das T-Gen in den embryonalen Stammzellen durch homologe Rekombination mit dem DNA-Fragment von (a) verändert wird,(c) transforming the embryonic stem cells from step (b) with the DNA fragment from step (a), the T gene in the embryonic stem cells being changed by homologous recombination with the DNA fragment from (a),
(d) Kultivieren der Zellen von Schritt (c;(d) culturing the cells of step (c;
(e) Selektion der kultivierten Zellen von Schritt (d) auf das Vorhandensein der heterologen Sequenz, insbesondere des selektierbaren Markers,(e) selection of the cultured cells from step (d) for the presence of the heterologous sequence, in particular the selectable marker,
(f) Erzeugen chimerer nicht-menschlicher Säuger aus den Zellen von Schritt (e) durch Injektion dieser Zellen in Säuger-Blastozysten (bevorzugt Maus-Blastozysten) , Übertragen der Blastozysten in pseudo-schwangere weibliche Säuger (bevorzugt Maus) und Analyse der erhaltenen Nachkommen auf eine Veränderung des T-Gens .(f) Generating chimeric non-human mammals from the cells of step (e) by injecting these cells into mammalian blastocysts (preferably mouse blastocysts), transferring the blastocysts into pseudo-pregnant female mammals (preferably mouse) and analyzing the progeny obtained for a change in the T gene.
In Schritt (c) wird der Mechanismus der homologen Rekombination (vgl. R.M. Torres, R. Kühn, Laboratory Protocols for Conditional Gene Targeting, Oxford University Press, 1997) ausgenutzt, um embryonale Stammzellen zu transfizieren. Die homologe Rekombination zwischen den in einem Chromosom vorhandenen DNA-Sequenzen und neuen, hinzugefügten clonierten DNA-
Sequenzen ermöglicht das Einfügen eines klonierten Gens in das Genom einer lebenden Zelle anstelle des ursprünglichen Gens. Mit dieser Methode können bei Verwendung embryonaler Keimzellen via Chimären Tiere erhalten werden, die für das gewünschte Gen oder den gewünschten Genteil oder die gewünschte Mutation homozygot sind.In step (c) the mechanism of homologous recombination (cf. RM Torres, R. Kühn, Laboratory Protocols for Conditional Gene Targeting, Oxford University Press, 1997) is used to transfect embryonic stem cells. The homologous recombination between the DNA sequences present in a chromosome and new, added cloned DNA Sequences allows a cloned gene to be inserted into the genome of a living cell instead of the original gene. With this method, embryonic germ cells can be used to obtain via chimeras animals that are homozygous for the desired gene or the desired gene part or the desired mutation.
Der Ausdruck "embryonale Stammzellen" betrifft jegliche embryonalen Stammzellen eines nicht-menschlichen Säugetiers, die sich zur Mutierung des T-Gens eignen. Vorzugsweise sind die embryonalen Stammzellen von der Maus, insbesondere die Zellen E14/1 oder 129/SV.The term "embryonic stem cells" refers to any embryonic stem cells from a non-human mammal that are suitable for mutating the T gene. The embryonic stem cells are preferably from the mouse, in particular the cells E14 / 1 or 129 / SV.
Der Ausdruck "Vektor" umfaßt jeglichen Vektor, der durch Rekombination mit der DNA von embryonalen Stammzellen eine Veränderung des T-, T2- oder T3-Gens ermöglicht. Vorzugsweise weist der Vektor einen Marker auf, mit dem auf vorhandene Stammzellen selektioniert werden kann, in denen die gewünschte Rekombination erfolgt ist. Ein solcher Marker ist z.B. die loxP/tk neo-Cassette, die mit Hilfe des Cre/loxP-Systems wieder aus dem Genom entfernt werden kann.The term "vector" encompasses any vector which, by recombination with the DNA of embryonic stem cells, enables a change in the T, T2 or T3 gene. The vector preferably has a marker which can be used to select for existing stem cells in which the desired recombination has taken place. Such a marker is e.g. the loxP / tk neo-cassette, which can be removed from the genome again using the Cre / loxP system.
Desweiteren kennt der Fachmann Bedingungen und Materialien, um die Schritte (a)-(f) durchzuführen.Furthermore, the person skilled in the art knows conditions and materials in order to carry out steps (a) - (f).
Mit der vorliegenden Erfindung wird ein nicht-menschliches Säugetier bereitgestellt, dessen T-, T2- oder T3-Gen verändert ist. Diese Veränderung kann ein Ausschalten der Genexpression- regulierenden Funktion sein. Mit einem solchen Säugetier bzw. Zellen daraus kann selektiv die Genexpression-kontrollierende Funktion des TP-Proteins untersucht werden. Ferner ist es hiermit möglich, Substanzen, Arzneimittel und Therapieansätze zu finden, mit denen selektiv auf die kontrollierde Funktion eingewirkt werden kann. Daher liefert die vorliegende Erfindung eine Basis, um auf die verschiedensten Erkrankungen ein-
zuwirken. Solche Erkrankungen sind z.B. Einschränkungen der ZNS-Funktionen, die bis zu mentalen Retardierungen reichen oder die Induktion von Krebs durch Fehler bei der Kontolle der Zeilproliferation.The present invention provides a non-human mammal whose T, T2 or T3 gene is altered. This change can be a switching off of the gene expression regulating function. With such a mammal or cells from it, the gene expression-controlling function of the TP protein can be investigated selectively. It is also possible to find substances, drugs and therapeutic approaches that can be used to selectively influence the controlling function. The present invention therefore provides a basis for responding to a wide variety of diseases. to act. Such diseases are, for example, restrictions on the CNS functions, which extend to mental retardation, or the induction of cancer due to errors in the control of cell proliferation.
Von den Erfindern wurde bei der Sequenzanalyse herausgefunden, daß das T2-Gen in der kodierenden Region der cDNA-Sequenz CGG- Trinukleotide enthält, die als methylierungssensitiv bekannt sind. Das T2-Gen besitzt also im kodierenden Bereich (N-termi- naler Bereich des Proteins, der keine Homologie zu Protein T oder Protein T3 aufweist) eine methylierungssensitive und instabile Sequenz, die zum Ausfall des Gens mit einhergender mentaler Retardierung und nicht kontrolliertem Zellwachstum, wie Krebs, führt.It was found by the inventors in the sequence analysis that the T2 gene in the coding region of the cDNA sequence contains CGG trinucleotides which are known to be sensitive to methylation. The T2 gene therefore has a methylation-sensitive and unstable sequence in the coding region (N-terminal region of the protein which has no homology to Protein T or Protein T3), which leads to the failure of the gene with accompanying mental retardation and uncontrolled cell growth, like cancer.
Alle drei Gene der T-Familie spielen eine große Rolle bei Tumoren. Das T-Gen ist bei vielen Tumoren von genomischen Rearrangierungen betroffen. So sind z.B. beim Neuroblastom genomische Veränderungen in der DNA von Tumoren im Vergleich zur DNA des dazugehörigen gesunden Gewebes feststellbar. Desweiteren ist die Expression des T-Gens z.B. in Tumoren des Gehirns verändert. So läßt sich unter anderem bei Glioblasto- men in fortgeschrittenen Stadien eine stark veränderte Expression feststellen. In Meningiomen sind auch tumorspezische Veränderungen der Expression des T-Gens und des Auftretens des T-Proteins nachweisbar.All three genes of the T family play a major role in tumors. The T gene is affected by genomic rearrangements in many tumors. For example, in neuroblastoma, genomic changes in the DNA of tumors compared to the DNA of the associated healthy tissue can be detected. Furthermore, the expression of the T gene is e.g. changed in brain tumors. In glioblastomas in advanced stages, among other things, a strongly changed expression can be determined. In meningiomas, tumor-specific changes in the expression of the T gene and the appearance of the T protein can also be detected.
Das T2-Gen ist bei vielen Tumorerkrankungen auch von genomischen Rearrangierungen betroffen und eine veränderte Expression ist in Tumoren nachzuweisen. So lassen sich z.B. bei Melanomen und bei Lungentumoren genomische Rearrangierungen des T2-Gens feststellen. Expressionsunterschiede sind z.B. auch in Gliomen, Glioblastomen, Astrozytomen und PNETs (Primitive Neuro-Ektodermale Tumoren) nachweisbar.
Das T3-Gen ist auch bei vielen Tumoren von genomischen Rearrangierungen und Expressionsveränderungen betroffen. So lassen sich z.B. bei Coloncarcinomen Rearrangierungen nachweisen. Expressionsunterschiede sind unter anderem in Gliomen, Glioblastomen, Astrozytomen und PNETs (Primitive Neuro-Ekto- dermale Tumoren) feststellbar.In many tumor diseases, the T2 gene is also affected by genomic rearrangements and an altered expression can be demonstrated in tumors. For example, genomic rearrangements of the T2 gene can be identified in melanoma and lung tumors. Differences in expression are also detectable, for example, in gliomas, glioblastomas, astrocytomas and PNETs (primitive neuro-ectodermal tumors). The T3 gene is also affected by genomic rearrangements and expression changes in many tumors. In the case of colon carcinomas, for example, rearrangements can be demonstrated. Differences in expression can be found in gliomas, glioblastomas, astrocytomas and PNETs (primitive neuro-ectodermal tumors).
Durch die Isolierung und genaue Analyse des T-Gens wurde von den Erfindern nun entdeckt, dass das T-Protein eine gewisse Verwandtschaft zu Proteinen aufweist, die ganz unterschiedliche Funktionen in der Zelle ausüben. Die Sequenzanalyse dieser Proteine ergab, dass die Gene, die diese Proteine kodieren, wohl auf ein gemeinsames oder ähnliche Vorläufergene zurückzuführen sind. In diese Proteinsuperfamile gehören Proteine wie das POM121-Protein (Hallberg et al . , J. Cell Biol . 122, S. 513-522, 1993) . Es ist eines von zwei bekannten Kernporenmem- branproteinen bei Vertebraten. Desweiteren gehört in diese Familie das CLIP-170-Protein, das Vesikel und andere Organellen innerhalb der Zelle an Microtubuli bindet (Pierre et al . , Cell 70, S. 887-900, 1992) Die unerwartete Entdeckung, dass Gene, die so unterschiedliche Aufgaben innerhalb der Zelle ausüben, zu einer gemeinsamen Protein-Superfamilie gehören, ist äußerst überraschend und bei erstem Anschein sogar widersprüchlich. Analysiert man aber die Funktionen der einzelen Gene, so lassen sich zwei Hauptfuntionen dieser Proteine ableiten. Das CLIP-170-Protein bindet an Microtubuli, die neu isolierten T-Proteine und das POM121-Protein sind im Kernporenkomplex lokalisiert. Aufgrund der Eigenschaften dieser Proteine wird von den Erfindern vorgeschlagen, diese Proteinsuperfamilie als POMIC-Proteinsuperfamilie zu bezeichnen. POMIC soll dabei für Poren- und/oder Microtubuli-bindendes Protein stehen. Im Rahmen der Isolierung und Analyse des T- Gens konnten zwei Paraloge des T-Gens isoliert werden, die oben näher beschriebenen T2- und T3-Gene. Die Familie der T- Proteine steht evolutionär und funktionell gesehen zwischen dem CLIP (cytoplasmic linker protein-170) und dem POM121- Protein. Diese Zwischenstellung wird auch durch die Sequenz-
analyse und die putative Proteinstruktur untermauert. Das Kernporenmembranprotein POM121 besitzt keine ausgeprägte Coiled-Coil-Struktur, das CLIP-170-Protein dagegen zeigt zwischen dem N- und C-Terminus eine sehr ausgeprägte Coiled- Coil-Struktur (vgl. Fig. 29). Bei der Familie der T-Proteine sind Coiled-Coil-Strukuren vorhanden, die aber deutlich weniger ausgeprägt sind als bei CLIP-170. Eine ähnliche Zwischenstellung nimmt die Familie der T-Proteine in Hinsicht auf das Vorkommen von hydrophoben Domänen ein. Das Protein POM121 besitzt eine hydrophobe Domäne am N-Terminus, die in die Kernmembran eingelagert wird und das Protein in der Kernpore positioniert. Das CLIP-170-Protein besitzt keine ausgeprägte hydrophobe Domäne. Das T-Protein und das T3-Protein besitzen dagegen eine hydrophobe Domäne mit drei hydrophoben Teilbereichen (vgl. Fig. 30) . Der Austausch des N-Terminus im T2- Protein im Vergleich zu der evolutionären Grundform führte zum Verlust dieser ausgeprägten hydrophoben Domäne. Allen drei T- Proteinen dagegen gemeinsam ist der sehr ähnliche Aufbau des C-Terminus. Das T3-Protein ist dem T-Protein innerhalb der T- Proteinfamilie am ähnlichsten. Doch auch das T3-Protein hat im Laufe der Evolution eine Veränderung erfahren. Durch Insertion von ca. 400 Aminosäuren wurde der N-Terminus im Vergleich zum T-Protein verändert. Diese Insertion führte zu einer weiteren Coiled-Coil-Struktur im Vergleich zum ansonsten sehr ähnlichen T-Protein. Das T-Protein und das T3-Protein führen in der kernmembranlokalisierten Form Funktionen aus, die dem des POM121 ähneln. Interessanterweise kam es aber im Laufe der Evolution zu dem Verlust eines Teils des C-Terminus im POM121- Protein. Im Vergleich zum POM121-Protein haben die T-Proteine einen längeren C-Terminus . Durch diesen längeren C-Terminus sind vielerlei Wechselwirkungen mit anderen Proteinen möglich. Erwähnenswert ist hierbei auch, dass im T-Protein eine Leucin- Zipper-Struktur entdeckt wurde, die Wechselwirkungen mit anderen Protein erleichtert. Die Familie der T-Proteine spielt eine wichtige Rolle bei der Vermittlung von Interaktionen zwischen Zellorganellen und Filamenten, u.a. Mikrotubuli . Mikrotubuli spielen z.B. in Nervenzellen eine große Rolle; bei Axonen z.B. zeigen die Plus-Enden der Mikrotubuli vom Zeil-
körper weg, während die Mikrotubuli bei Dendriten beide Orientierungen aufweisen. Diese Zellpolarität ist von großer Wichtigkeit für das Funktionieren einer Zelle oder Lebewesens. Desweiteren eröffnen Mikrotubuli einen effizienten Organellentransport und sie sind von essentieller Bedeutung für die generelle Organisation von Membranstrukturen in einer Zelle. Die T-Proteine üben eine wichtige Mittlerfunktion zwischen Membranstrukuren und Mikrotubuli aus. Das T-Gen und das T3-Gen üben insbesondere als Membranprotein in der Kernpore ihre Funktion aus, während das T2-Protein insbesondere als zytpo- plasmatisches Protein wirkt.Through the isolation and precise analysis of the T gene, the inventors have now discovered that the T protein has a certain relationship to proteins that perform very different functions in the cell. Sequence analysis of these proteins showed that the genes encoding these proteins are probably due to a common or similar precursor gene. Proteins such as the POM121 protein (Hallberg et al., J. Cell Biol. 122, pp. 513-522, 1993) belong in these protein superfamilies. It is one of two known core pore membrane proteins in vertebrates. This family also includes the CLIP-170 protein, which binds vesicles and other organelles within the cell to microtubules (Pierre et al., Cell 70, pp. 887-900, 1992). The unexpected discovery that genes that are so different Performing tasks within the cell, belonging to a common protein superfamily, is extremely surprising and, at first glance, even contradictory. However, if one analyzes the functions of the individual genes, two main functions of these proteins can be derived. The CLIP-170 protein binds to microtubules, the newly isolated T proteins and the POM121 protein are located in the nuclear pore complex. Because of the properties of these proteins, the inventors propose to refer to this protein superfamily as the POMIC protein superfamily. POMIC is said to stand for pore and / or microtubule binding protein. Within the framework of the isolation and analysis of the T gene, two paralogues of the T gene could be isolated, the T2 and T3 genes described in more detail above. The T protein family is evolutionarily and functionally between the CLIP (cytoplasmic linker protein-170) and the POM121 protein. This intermediate position is also determined by the sequence analysis and the putative protein structure underpinned. The nuclear pore membrane protein POM121 has no pronounced coiled-coil structure, whereas the CLIP-170 protein shows a very pronounced coiled-coil structure between the N and C terminus (cf. FIG. 29). The family of T proteins contains coiled-coil structures, which are, however, significantly less pronounced than with CLIP-170. The family of T proteins takes a similar intermediate position with regard to the presence of hydrophobic domains. The POM121 protein has a hydrophobic domain at the N-terminus, which is embedded in the core membrane and positions the protein in the core pore. The CLIP-170 protein has no pronounced hydrophobic domain. In contrast, the T protein and the T3 protein have a hydrophobic domain with three hydrophobic partial regions (cf. FIG. 30). The exchange of the N-terminus in the T2 protein in comparison to the basic evolutionary form led to the loss of this pronounced hydrophobic domain. In contrast, all three T-proteins have in common the very similar structure of the C-terminus. The T3 protein is most similar to the T protein within the T protein family. But the T3 protein has also undergone a change in the course of evolution. By inserting about 400 amino acids, the N-terminus was changed compared to the T-protein. This insertion resulted in a further coiled-coil structure compared to the otherwise very similar T protein. The T protein and T3 protein perform functions in the nuclear membrane localized form that are similar to that of the POM121. Interestingly, part of the C-terminus in the POM121 protein was lost in the course of evolution. Compared to the POM121 protein, the T proteins have a longer C terminus. This longer C-terminus enables many interactions with other proteins. It is also worth mentioning that a leucine zipper structure was discovered in the T protein, which facilitates interactions with other proteins. The T protein family plays an important role in mediating interactions between cell organelles and filaments, including microtubules. Microtubules play an important role in nerve cells, for example; for axons, for example, the plus ends of the microtubules point from the body away, while the microtubules in dendrites have both orientations. This cell polarity is of great importance for the functioning of a cell or living being. Furthermore, microtubules open up efficient organelle transport and they are essential for the general organization of membrane structures in a cell. The T proteins play an important mediating role between membrane structures and microtubules. The T gene and the T3 gene perform their function in particular as membrane proteins in the core pore, while the T2 protein acts in particular as a cytoplasmic protein.
Anhand der Befunde der Erfinder sind das T-Gen und das T3-Gen Teil des Kernporenkomplexes. Kernporenkomplexe (Nuclear pore complexes - NPCs) sind extrem komplizierte Strukturen, die den bidirektionalen Transport von Makromolekülen zwischen dem Kern und dem Zytoplasma vermitteln. Der Kernporenkomplex ist in die Kernhülle (Nuclear envelope) eingebettet und umschließt einen zentralen Kanal mit bisher erst ungenügend definierter Struktur. An beiden Seiten des zentralen Kernporenkomplexes sind periphere Strukturen, kurze zytoplasmatische Filamente und ein korbähnliches Gebilde angeheftet. Diese korbähnliche Struktur interagiert mit Molekülen, die durch den Kernporenkomplex gelangen. Der Mechanismus des Auf aus des Kernporenkomplexes ist bisher erst kaum verstanden. Desweiteren wurden bisher bei Beobachtungen von Zellen, die eine Mitose durchlaufen, festgestellt, dass die Kernhülle gezielt aufgelöst wird und deren Komponenten, einschließlich der Kernporenproteine, innerhalb des mitotischen Zytoplasmas verteilt werden. Am Ende der Mitose werden alle diese Komponenten wiederverwendet, um die Kernhüllen der Tochterzellen zu bilden. Durch die detai- lierte Analyse des Gens T haben die Erfinder herausgefunden, dass die N-terminale Hälfte des Proteins T schwache Homologie zu dem Porenmembranprotein POM121 hat. Die Homologie erstreckt sich über den gesamten Bereich des POM121-Proteins und weist eine Identität von ca. 18% auf Proteinebene auf, so daß die diesen Proteine zugrundeliegenden DNAs selbst unter wenig
stringenten Bedingungen nicht miteinander hybridisieren sollten. Dem erfindungsgemäßen Protein T kommt in Hinsicht auf das Entstehen und den Aufbau der Kernpore eine ganz fundamentale Rolle zu. Bei der detailierten Analyse des Proteins konnte eine lipophile Domäne am N-Terminus des T-Proteins festgestellt werden. Diese Sequenz hat aber keine Homologie zu der lipophilen Sequenz des POM121-Proteins . Vor der lipophilen Domäne im T-Protein befindet sich noch ein kurzer Abschnitt von Aminosäuren, die möglicherweise als Signalsequenz dienen. Um festzustellen, ob diese putative Signalsequenz und die lipophile Domäne in vivo an der Einlagerung in die Kernmembran beteiligt sind, wurden verschiedene Konstrukte des T-Gens hergestellt. Hierbei wurden verschiedene Teile des N-Terminus des T-Proteins mit dem EnhancedGreenFluorescentProtein (EGFP) fusioniert. Das EGFP wurde dabei an den C-Terminus des T- Proteins fusioniert. Das Fusionsprotein, das den unveränderten N-Terminus des T-Proteins (putative Signalsequenz mit lipophi- ler Membrandomäne) beinhaltete, wurde tatsächlich in die Kernmembran eingelagert. Das Fusionskonstrukt, bei dem die putative Signalsequenz und die lipophile Domäne fehlt, wurde dagegen nicht in die Kernmembran eingelagert und reicherte sich im Zytoplasma an. Dies zeigte, dass der N-Terminus des T- Proteins notwendig ist und ausreicht, um zu einer Lokalisation innerhalb der Kernmembran zu führen. Um zu zeigen, dass das T- Protein tatsächlich in der Kernmembran lokalisiert ist, wurden Antikörper gegen eine Peptidsequenz des T-Proteins generiert. Mit diesen Antikörpern wurden immunhisotchemische Untersuchungen an Geweben von Mensch, Maus und Ratte durchgeführt. Hierbei zeigte sich, dass der Antikörper ein Protein detektiert, das in der Kernmembran loaklisiert ist. Da es mit Hilfe eines Lichtmikroskopes schwierig ist zu unterscheiden, ob das Protein in der Kernmembran oder dem Kern selber lokalisiert ist, wurden mit Hilfe der hochauflösenden Methode der Elektronenmikroskopie weitere Analysen durchgeführt. Hierdurch ist es möglich gewesen eindeutig zu zeigen, dass das T-Protein in der Kernmembran lokalisiert ist. Als Nachweisreaktion wurde hierbei ein Zweitantikörper verwendet, an dem das Enzym Rettichpe- rodixase gekoppelt war und der zu einer Farbreaktion führte
(DAB) . Der gebildete Farbstoff ist auf den elektronenmikroskopischen Aufnahmen nur auf der zytoplasmatischen Seite der Kernmembran zu sehen. Dies deutet darauf hin, dass der Antikörper ein Epitop des T-Proteins erkennt, das von der zytoplasmatischen Seite aus für den Antikörper zugänglich ist. Die Analyse der immunhistochemisehen Schnitte zeigte ferner, dass der Antikörper sehr spezifisch Neurone erkennt (vgl. Fig. 24) . Die Ergebnisse der Analyse der Expression auf Proteinebene mit Hilfe des Antikörpers stehen sehr gut in Einklang mit den Ergebnissen der Analyse der RNA-Expression . Bei den RNA-in situ-Analysen wurde das Mausortholog des T-Gens verwendet. Mit Hilfe der humanen T-Gen-cDΝA-Klone wurden hierfür zunächst murine cDΝA-Kone des Mausorthologs isoliert und sequenziert. Die Sequenzanalyse bestätigte, dass es sich bei den isolierten cDΝA-Klonen um das Mausortholog handelte. Ein solcher muriner cDΝA-Klon des T-Gens wurde dann für die RΝA-in situ Hybridisierung eingesetzt (vgl. Figs . 25, 26, 27, 28). Mit Hilfe dieser Technik war dann eine Expressionsanalyse des T-Gens der Maus möglich. Die genaue Analyse des räumlich-zeitlichen Expressionsverlaufes zeigte, dass das T-Gen eine entscheidende Rolle bei der Entstehung, Bildung und Aufrechterhaltung des Nervensystems bei Vertebraten spielt. Während der frühen Mausembryogenese am Tag 9,5 post coneeptionem (pc = post coneeptionem) ist noch keine Expression zu erkennen. Am Tag 10,5 pc ist eine Expression im ventralen Mesencephalon und im Telencephalon nachweisbar. In diesem Stadium liegt auch eine starke Expression im Bereich der Verbindung des Mesencephalons und des Telencephalons (forbrain-midbrain) vor. Am Tag 11,5 pc ist eine Expression des T-Gens im Telencephalon, im ventralen Mesencephalon und im Myelencephalon feststellbar. Am Tag 12.5 pc ist eine Expression in Neuronen der Mantelzone des sich entwickelnden Gehirns und in den Kernen der peripheren Nerven sichtbar. Desweiteren liegt eine Expression im Myelencephalon, Rückenmark, und Spinalganglien vor. Eine geringe Expression ist im Mesencephalon und Telencephalon detektierbar . Keine Expression ist z.B. in proliferierenden Neuronen in der sub- ventrikulären Schicht oder in migrierenden Neuronen der λ In- termediate' -Zone nachweisbar. Am Tag 14.5 pc ist auch eine
Expression in mesenchymalen Geweben, z.B. um die Wirbelsäule oder im Bereich von sich entwickelnden Knochen, sichtbar. Am Tag 16.5 pc ist eine starke Expression in allen Teilen des Gehirns und des peripheren Nervensystems (z.B. Spinalganglien und Nervenfasern des Schwanzes) feststellbar. Deweiteren ist eine Expression in sich differenzierenden Neuronen der Mantelzone des Telencephalons zu detektieren. Weiterhin ist auch eine Expression in Neuronen des Rückenmarks und der Spinal- ganglien feststellbar. Bei der Entwicklung des Gehirns nach der Geburt ist vor allem eine Expression im Riechkolben (ol- factory bulb) , im cerebralen Cortex und im sich entwickelnden Hippocampus nachzuweisen. Eine geringe Expression ist dagegen im Coliculus und dem sich entwickelnden Cerebellum feststellbar. Im vollständig entwickelten Gehirn liegt ein ähnliches Expressionsmuster vor.Based on the inventors' findings, the T gene and the T3 gene are part of the nuclear pore complex. Nuclear pore complexes (NPCs) are extremely complex structures that mediate the bidirectional transport of macromolecules between the nucleus and the cytoplasm. The nuclear pore complex is embedded in the nuclear envelope and surrounds a central channel with a structure that has so far been insufficiently defined. Peripheral structures, short cytoplasmic filaments and a basket-like structure are attached to both sides of the central core pore complex. This basket-like structure interacts with molecules that pass through the nuclear pore complex. The mechanism of opening the nuclear pore complex has so far been poorly understood. Furthermore, observations of cells undergoing mitosis have so far shown that the nuclear envelope is deliberately dissolved and its components, including the nuclear pore proteins, are distributed within the mitotic cytoplasm. At the end of mitosis, all of these components are reused to form the core shells of the daughter cells. Through detailed analysis of the T gene, the inventors found that the N-terminal half of the T protein has poor homology to the pore membrane protein POM121. The homology extends over the entire area of the POM121 protein and has an identity of approx. 18% at the protein level, so that the DNAs on which these proteins are based do little even stringent conditions should not hybridize with each other. The protein T according to the invention plays a very fundamental role with regard to the formation and structure of the core pore. A detailed analysis of the protein revealed a lipophilic domain at the N-terminus of the T protein. However, this sequence has no homology to the lipophilic sequence of the POM121 protein. In front of the lipophilic domain in the T protein is a short section of amino acids, which may serve as a signal sequence. In order to determine whether this putative signal sequence and the lipophilic domain are involved in the incorporation into the nuclear membrane in vivo, various constructs of the T gene were produced. Various parts of the N-terminus of the T-protein were fused with the EnhancedGreenFluorescentProtein (EGFP). The EGFP was fused to the C-terminus of the T protein. The fusion protein, which contained the unchanged N-terminus of the T protein (putative signal sequence with lipophilic membrane domain), was actually embedded in the nuclear membrane. In contrast, the fusion construct, in which the putative signal sequence and the lipophilic domain are missing, was not embedded in the core membrane and accumulated in the cytoplasm. This showed that the N-terminus of the T protein is necessary and sufficient to lead to localization within the nuclear membrane. Antibodies against a peptide sequence of the T protein were generated to show that the T protein is actually located in the nuclear membrane. With these antibodies, immuno-isotochemical studies were carried out on human, mouse and rat tissues. It was found that the antibody detects a protein that is located in the core membrane. Since it is difficult to distinguish with the aid of a light microscope whether the protein is located in the nuclear membrane or in the nucleus itself, further analyzes were carried out using the high-resolution method of electron microscopy. This made it possible to clearly show that the T protein is localized in the core membrane. A second antibody was used as the detection reaction, to which the enzyme radish pedodixase was coupled and which led to a color reaction (DAB). The dye formed can only be seen on the electron micrographs on the cytoplasmic side of the core membrane. This indicates that the antibody recognizes an epitope of the T protein that is accessible to the antibody from the cytoplasmic side. Analysis of the immunohistochemical sections also showed that the antibody recognizes neurons very specifically (cf. FIG. 24). The results of the analysis of the expression at the protein level with the aid of the antibody are in very good agreement with the results of the analysis of the RNA expression. The mouse ortholog of the T gene was used in the RNA in situ analyzes. With the help of the human T gene cDΝA clones, murine cDΝA cones of the mouse ortholog were first isolated and sequenced. Sequence analysis confirmed that the isolated cDΝA clones were the mouse ortholog. Such a murine cDΝA clone of the T gene was then used for the RΝA in situ hybridization (cf. FIGS. 25, 26, 27, 28). An expression analysis of the mouse T gene was then possible with the aid of this technique. The exact analysis of the spatio-temporal expression course showed that the T gene plays a crucial role in the development, formation and maintenance of the nervous system in vertebrates. During early mouse embryogenesis on day 9.5 post coneeptionem (pc = post coneeptionem), no expression can be seen yet. On day 10.5 pc an expression in the ventral mesencephalon and in the telencephalon is detectable. At this stage there is also strong expression in the area of the connection of the mesencephalon and the telencephalon (forbrain-midbrain). On day 11.5 pc expression of the T gene can be determined in the telencephalon, in the ventral mesencephalon and in the myelencephalon. On day 12.5 pc an expression in neurons of the mantle zone of the developing brain and in the nuclei of the peripheral nerves is visible. Furthermore, there is an expression in the myelencephalon, spinal cord, and spinal ganglia. A low expression can be detected in the mesencephalon and telencephalon. No expression is detectable, for example, in proliferating neurons in the subventricular layer or in migrating neurons of the λ intermediate 'zone. On day 14.5 pc there is also one Expression in mesenchymal tissues, eg around the spine or in the area of developing bones, visible. On day 16.5 pc a strong expression can be found in all parts of the brain and the peripheral nervous system (eg spinal ganglia and nerve fibers of the tail). Furthermore, expression in differentiating neurons of the mantle zone of the telencephalon can be detected. Expression in neurons of the spinal cord and spinal ganglia is also detectable. In the development of the brain after birth, expression in the olfactory bulb (ol factory bulb), in the cerebral cortex and in the developing hippocampus can be demonstrated. A low expression, however, can be found in the coliculus and the developing cerebellum. There is a similar expression pattern in the fully developed brain.
Um herauszufinden, wo das T-Gen bzw. T2- oder T3-Gen exprimiert werden, wurden Northern Blots (vgl. Fig. 23) durchgeführt. Das T-Gen wird vorwiegend im Gehirn, kaum oder überhaupt nicht in Herz, Lunge, Plazenta, Leber, Skelettmuskel, Niere oder Pankreas (unabhängig von adultem oder fötalem Gewebe) exprimiert. Das T2-Gen dagegen wird so gut wie nicht im Gehirn exprimiert, sondern stark in Herz (adult und fötal) , adulter Leber, adultem Skelettmuskel und adulter Niere. Das T3-Gen wird in allen getesteten Geweben (adultes und fötales Herz, Gehirn, Leber, Niere; Plazenta, adulter Skelettmuskel, adulter Pankreas), außer in fötaler Lunge, exprimiert.Northern blots (see FIG. 23) were carried out in order to find out where the T gene or T2 or T3 gene are expressed. The T gene is predominantly expressed in the brain, hardly or not at all in the heart, lungs, placenta, liver, skeletal muscle, kidney or pancreas (regardless of adult or fetal tissue). The T2 gene, on the other hand, is hardly expressed in the brain, but rather in the heart (adult and fetal), adult liver, adult skeletal muscle and adult kidney. The T3 gene is expressed in all tissues tested (adult and fetal heart, brain, liver, kidney; placenta, adult skeletal muscle, adult pancreas), except in the fetal lung.
Durch die Entdeckung des T-Gens und der detailierten Analyse dieses Gens mit all den daraus gewonnenen Informationen wurden die Grundlagen geschaffen, völlig neuartige Arzneimittel und Arznei ittelwirkstoffklassen zu entwickeln. Der bidirektionale Transport von Molekülen durch die Kernmembran ist von entscheidender Bedeutung für die Funktion einer jeden eukary- ontischen Zelle. Die Information, die in Form von DNA (Chromosomen) im Kern gespeichert ist, wird transkribiert in RNA,
die Information allerdings wird erst im Zytoplasma in Protein übersetzt ( translatiert) . Gelangt die trankribierte Information (mRNA) nicht in das Zytoplasma, so geht die Information verloren und es kann zu dramatischen Störungen innerhalb der Zelle kommen. Dieser Transprot ist aber keine Einbanhnstraße; es ist genauso wichtig, dass bestimmte Stoffe und Proteine in den Kern gelangen, damit die Zellfunktion aufrechterhalten werden kann. Gelangt z.B. ein Transkriptionsfaktor, der ja - wie auch die anderen Proteine im Zytoplasma gebildet wird - nicht in den Zellkern, so kann dieser nicht die Transkription der anderen Gene auslösen. Damit sind dann oft dramatische Störungen des Zellgeschehens, bis hin zum Absterben der Zelle oder des Organsimus, verbunden. Dies macht deutlich, dass Kernporenproteine eine äußerst wichtige Funktion innerhalb der Zelle ausüben. Die Analyse des T-Gens hat nun gezeigt, dass das T-Protein auch in die Kernmembran eingelagert wird. Interessanterweise ist das T-Protein aber fast doppelt so groß wie das POM121-Protein, d.h. es besitzt eine sehr viel größere Bindungskapazität als das POM121-Protein. Das T-Protein ist daher sehr gut geeignet, mögliche Bindungspartner zu isolieren, die sich an das T-Protein, im besonderen den C-Terminus des T-Proteins anlagern.The discovery of the T gene and the detailed analysis of this gene with all the information obtained from it created the basis for developing completely new types of drugs and classes of active ingredients. The bidirectional transport of molecules through the nuclear membrane is of crucial importance for the function of every eukaryotic cell. The information that is stored in the nucleus in the form of DNA (chromosomes) is transcribed into RNA, however, the information is only translated into protein in the cytoplasm. If the transcribed information (mRNA) does not get into the cytoplasm, the information is lost and there can be dramatic disturbances within the cell. But this transprot is not a one-way street; it is just as important that certain substances and proteins get into the nucleus so that cell function can be maintained. If, for example, a transcription factor that - like the other proteins in the cytoplasm - does not get into the cell nucleus, it cannot trigger the transcription of the other genes. This is often associated with dramatic disturbances in cell activity, including the death of the cell or the organism. This makes it clear that nuclear pore proteins have an extremely important function within the cell. The analysis of the T gene has now shown that the T protein is also embedded in the core membrane. Interestingly, the T protein is almost twice as large as the POM121 protein, ie it has a much larger binding capacity than the POM121 protein. The T protein is therefore very well suited to isolating possible binding partners that attach to the T protein, in particular the C terminus of the T protein.
Die gewebespezifische Expression des T-Gens zeigt auf eindrucksvolle Weise, dass Kernporenproteine (insbesondere Kern- porenmembranproteine) nicht wie 'housekeeping' -Gene in allen Zellen und zu allen Zeiten exprimiert werden müssen. Die vorwiegende Expression des T-Gens im Nervensystem zeigt, dass das T-Protein im Nervensytem eine sehr spezifische Funktion wahrnimmt. Die vorwiegende Expression des T-Gens im Nervensytem kann nun für die Entwicklung von neuen Arzneimitteln und neuer Arzneimittelwirkstoffklassen genutzt werden. Mit Hilfe des T-Proteins können nun neue Stoffe isoliert werden, die den bidirektionalen Transport in Kernporen des Nervensytems gezielt beeinflussen. Die Lokalisation des T-Proteins innerhalb der Kernmembran ist dabei von großem Vorteil. Mit Hilfe von automatisierten Tests können chemische Verbindungen getestet
werden. Viele Pharmafirmen besitzen geeignete Screeningverfah- ren, bei denen mehr als 200.000 Chemikalien getestet werden können. Hierzu können z.B. Reporterassays (z.B. GFP-Fusions- proteine, farbige Stoffe, usw.) verwendet werden, die den erfolgreichen Transport eines Moleküls in den Kern oder in das Zytoplasma anzeigen. Hierdurch können dann neue Wirkstoffe isoliert werden, die den Transport von Molekülen in Kernporen, insbesondere deren des Nervensytems , gezielt beeinflussen.The tissue-specific expression of the T gene shows impressively that nuclear pore proteins (in particular nuclear pore membrane proteins) do not have to be expressed in all cells and at all times like 'housekeeping' genes. The predominant expression of the T gene in the nervous system shows that the T protein has a very specific function in the nervous system. The predominant expression of the T gene in the nervous system can now be used for the development of new drugs and new drug classes. With the help of the T protein, new substances can now be isolated which specifically influence the bidirectional transport in the core pores of the nervous system. The localization of the T protein within the nuclear membrane is of great advantage. With the help of automated tests chemical compounds can be tested become. Many pharmaceutical companies have suitable screening procedures in which more than 200,000 chemicals can be tested. For this purpose, for example, reporter assays (eg GFP fusion proteins, colored substances, etc.) can be used, which indicate the successful transport of a molecule into the nucleus or into the cytoplasm. In this way, new active substances can be isolated which specifically influence the transport of molecules in nuclear pores, in particular those of the nervous system.
Die Identifizierung und Analyse von Wechselwirkungen zwischen den erfindungsgemäßen T-Proteinen (T-, T2-, T3-Protein) bzw. Peptiden oder Fragmenten davon und möglichen Bindungspartnern, die Wirkstoffe im oben genannten Sinn darstellen können, kann beispielsweise mit dem "Yeast Two-Hybrid-System" (Fields, Nature 340, S. 245-247 (1989)) geschehen. Dieses System basiert auf der Entdeckung, daß zelluläre Transkriptionsaktivatoren, wie z.B. GAL4 oder lexA aus Hefe, in zwei unabhängige Funktionsdomänen zerlegt werden können. Beide Domänen sind normalerweise Bestandteil eines Proteins im Zellkern der Hefezelle, welches an bestimmte aktivierende Sequenzen verschiedener Zielgene bindet und deren Transkription reguliert. Dabei bindet die eine Domäne, die DNA-Bindungsdomäne (BD) , spezifisch an eine bestimmte DNA-ZielSequenz (upstream acti- vating sequence) in der Nähe des Zielgenpromotors. Die andere Domäne, die Aktivierungsdomäne (AD) , erhöht die Transkriptionsrate des Zielgens durch Wechselwirkung mit dem Trans- kriptionsinitiationskomplex, der am Promotor des Zielgens gebunden ist. Im "Yeast Two-Hybrid-System" wird diese Struktur von Transkriptionsfaktoren in veränderter Form ausgenutzt. Die DNA-Bindungsdomäne (BD) von GAL4 oder lexA wird dort als Fusionsprotein mit einem "Köderprotein oder -peptid" (hier: T- , T2- oder T3-Protein/Peptid) in Hefezellen exprimiert. Dieses Fusionsprotein besitzt außerdem ein Kernlokalisierungssignal , durch welches es in den Zellkern der Hefe transportiert wird. Das Köder-Fusionsprotein bindet dort an eine Zielsequenz (UAS) , die sich in dem verwendeten Hefestamm in der Nähe der Promotoren von zwei Reportergenen (z.B. auxotropher Marker
(HIS3) und enzymatischer Marker (lacZ)) befindet. Dadurch entsteht eine Konstellation, in der das Köderprotein oder - peptid in direkter räumlicher Nähe des Reportergenpromotors exponiert wird. In derselben Hefezelle wird nun zusätzlich ein zweites Fusionsprotein exprimiert. Dieses besteht aus der Aktivierungsdomäne (AD) von GAL4 oder lexA und einem Beuteprotein -oder peptid. Es besitzt ebenfalls ein Kernlokalisierungssignal. Das Beute-Fusionsprotein wird also auch in der Zellkern der Hefe transportiert. Falls nun das Beuteprotein und das an der UAS exponierte Köderprotein eine physikalische Wechselwirkung miteinander eingehen, dann erhöht sich die statistische Wahrscheinlichkeit, daß die Aktivierungsdomäne sich in der Nähe des Reportergenpromotors aufhält. Dadurch kommt es zu einer Steigerung der Transkription der Reportergene, deren Ausmaß proportional zur Stärke der Wechselwirkung zwischen Köder- und Beuteprotein ist. Dabei kommen als Beuteproteine z.B. eine cDNA-Bibliothek oder auch eine kombinatorische Peptidbibliothek in Frage.The identification and analysis of interactions between the T proteins according to the invention (T, T2, T3 protein) or peptides or fragments thereof and possible binding partners, which can represent active substances in the above-mentioned sense, can be done, for example, with the "Yeast Two- Hybrid system "(Fields, Nature 340, pp. 245-247 (1989)). This system is based on the discovery that cellular transcription activators, such as GAL4 or lexA from yeast, can be broken down into two independent functional domains. Both domains are normally part of a protein in the nucleus of the yeast cell, which binds to certain activating sequences of different target genes and regulates their transcription. One domain, the DNA binding domain (BD), specifically binds to a specific DNA target sequence (upstream activating sequence) in the vicinity of the target gene promoter. The other domain, the activation domain (AD), increases the transcription rate of the target gene by interacting with the transcription initiation complex which is bound to the promoter of the target gene. In the "Yeast Two Hybrid System" this structure of transcription factors is used in a modified form. The DNA binding domain (BD) of GAL4 or lexA is expressed there as a fusion protein with a "bait protein or peptide" (here: T, T2 or T3 protein / peptide) in yeast cells. This fusion protein also has a nuclear localization signal through which it is transported into the cell nucleus of the yeast. The bait fusion protein binds there to a target sequence (UAS) which is located in the yeast strain used in the vicinity of the promoters of two reporter genes (eg auxotrophic markers (HIS3) and enzymatic marker (lacZ)) is located. This creates a constellation in which the bait protein or peptide is exposed in the immediate vicinity of the reporter gene promoter. A second fusion protein is now additionally expressed in the same yeast cell. This consists of the activation domain (AD) of GAL4 or lexA and a prey protein or peptide. It also has a core localization signal. The prey fusion protein is also transported in the cell nucleus of the yeast. If the prey protein and the bait protein exposed at the UAS enter into a physical interaction with one another, then the statistical probability increases that the activation domain is in the vicinity of the reporter gene promoter. This leads to an increase in the transcription of the reporter genes, the extent of which is proportional to the strength of the interaction between bait and prey protein. A cDNA library or a combinatorial peptide library can be used as prey proteins.
Die vorliegende Erfindung betrifft auch ein Verfahren, um Inhibitoren oder Enhancer der erfindungsgemäßen T-Protein- familie zu identifizieren. Dazu werden die Nukleinsäuresequen- zen oder Teile dieser Sequenzen, die Teil des T-Gens oder dessen Paraloge oder Orthologe sind, in geeignete Vektoren inseriert und für die Transfizierung oder Transformierung von Zellen, Geweben oder Organismen verwendet. Diese veränderten Zellen, Gewebe oder Organismen werden dann zur Identifizierung von Inhibitoren oder Enhancern des T-Proteins oder dessen paralogen oder orthologen Proteine (z.B. T2 und T3 ) oder Proteinen, die mit diesen Proteinen in direkter oder indirekter Wechselwirkung treten, eingesetzt. Die durch diesen Ansatz identifizierten Inhibitoren oder Enhancer können für pharmazeutische Wirkstoffe oder Medikamente oder zu deren Herstellung eingesetzt werden und für die Behandlung von Erkrankungen wie Krebs, neurologischen und psychiatrischen Erkrankungen und Verletzungen des Nervensystems angewendet werden. Bei Verletzungen des Nervensystems, bei angeborenen Schädigungen des
Nervensystems oder bei degenerativen Erkrankungen des Nervensystems können durch diese Behandlung unter anderem gezielt die neuronale Regeneration gefördert oder die Verschaltung einzelner Nervenbereiche verbessert werden (Anwendung u.a. Alzheimer, Morbus Parkinson, Schizophrenie, Manisch-Depressive Erkrankungen, Autismus, mentale Retardierung) . Die vorliegende Erfindung eröffnet die Möglichkeit zu testen, welche Stoffe oder Therapeutika geeignet sind, die Wirkung des T-Proteins oder der Familie der T-Proteine zu verstärken oder zu verringern. Insbesondere können die veränderten Kernporeneigenschaften, die durch die Proteine T und T3 beeinflußt werden, durch geeignete Screeningverfahren erfaßt werden. Hierzu zählen die z.B. Visualisierung des bidirektionalen Transportes durch die Kernpore oder die Detektion einer veränderten Transkription von zellulären oder Reportergenen. Desweiteren können Stoffe oder Therapeutika identifiziert werden, die die Wirkung von Proteinen hemmen oder fördern, die direkt oder indirekt an der Wirkung des T-Proteins oder der Familie der T-Proteine beteiligt sind. Stoffe oder Therapeutika, die in oben genannten Screeningverfahren eine Verstärkung oder Verminderung der Wirkung des T-Proteins (oder T2 oder T3 ) zeigen, können eingesetzt werden, um zu determieren, ob die Verstärkung oder die Verminderung der Wirkung des T-Proteins zu therapeutisch wünschenswerten Efekten führt. Hierzu zählt vor allem die Inhibition des Wachstums oder der Ausbreitung von Tumorzellen oder die Förderung der neuronalen Regeneration z.B. nach Verletzungen der Nerven (u.a. Querschnittslähmung und Schädel- Hirntraumata) . Die identifizierten Stoffe können dann als Medikamente oder für die Herstellung dieser Medikamente eingesetzt werden. Durch diese Medikamente ist es dann möglich, die Ausbreitung der krankheitsinduzierenden Zellen zu inhibieren oder zu blockieren, und damit insgesamt die Krankheit einzudämmen oder zu heilen. Eine wichtige Anwendung dieser Medi- kamante ist u.a. die Verhinderung des Wachstums und der Ausbreitung von Tumorzellen. Ergänzend hierzu kommen die identi- fizerten Wirkstoffe als Medikamente in Einsatz, die das Wachstums von bestimmten Zellen gezielt anregen. Hierdurch ist es dann möglich, Zellen oder Strukturen des Nervensystems, die
durch eine Verletzung oder durch degenerative Prozesse geschädigt sind, wiederherzustellen. Das T-Protein (oder T2 oder T3 ) kann auch in solchen Screeningverfahren eingesetzt werden, die es erlauben, nicht nur die veränderten Kernporeneigenschaften erfassen sondern auch vor- oder nachgeschaltete oder parallele Signalkaskaden zu identifizieren. Hierdurch ist es möglich z.B. Tyrosinkinasen ödere Tyrosinphosphatasen zu identifizieren, die Proteine regulieren, die wiederum direkt oder indirekt die Wirkung des T-Proteins (oder T2 oder T3 ) beeinflussen. Hierdurch können geeignete Ziele für die positive Beeinflussung des Zellgeschehens erkannt und charakterisiert werden. Weiterhin kommt dem T-Protein, obwohl es als Kernporenprotein vorkommt, eine wichtige Bedeutung bei der Interaktionen und Wechselwirkungen mit Filamenten der Zelle z.B. Mikrotubuli und Aktin bei. Diese Wechselwirkungen können nun untersucht werden, z.B. durch Fusionsproteine des T-Proteins mit dem EGFP-Protein. Zellen, die mit Konstrukten für solche Fusions-Reporter-Proteine stabil oder transient transformiert oder transfiziert wurden, können mit Stoffen oder Pharmazeuti- ka inkubiert werden um Stoffe die identifizieren, die die Wechselwirkung des T-Proteins mit Filamenten wie den Aktinfi- lamenten oder den Mikrotubuli verstärken oder verringern. Hierdurch können Wirkstoffe isoiert werden, die unter anderem das Wachstum von Nervenzellen oder die Hemmung des Wachstums von Tumorzellen positiv beeinflussen. Als Methode zur Identifizierung solcher möglicher Wirkstoffe ist beispielsweise die Immunpräzipitation zu nennen. Hiermit können Proteine isoliert werden, die an die T-Protein-Familie binden. Mit diesen Proteinen können dann weitere Immunpräzipitationen durchgeführt werden, um wieder neue Proteine zu isolieren, die dann nicht mehr direkt mit dem T-Protein interagieren.The present invention also relates to a method for identifying inhibitors or enhancers of the T protein family according to the invention. For this purpose, the nucleic acid sequences or parts of these sequences which are part of the T gene or its paralogues or orthologs are inserted into suitable vectors and used for the transfection or transformation of cells, tissues or organisms. These modified cells, tissues or organisms are then used to identify inhibitors or enhancers of the T protein or its paralogenous or orthologous proteins (for example T2 and T3) or proteins which interact directly or indirectly with these proteins. The inhibitors or enhancers identified by this approach can be used for active pharmaceutical ingredients or medicaments or for their production and can be used for the treatment of diseases such as cancer, neurological and psychiatric disorders and injuries to the nervous system. For injuries to the nervous system, for congenital damage to the The nervous system or in the case of degenerative diseases of the nervous system can, among other things, be targeted to promote neuronal regeneration or to improve the interconnection of individual nerve areas (application including Alzheimer's disease, Parkinson's disease, schizophrenia, manic-depressive diseases, autism, mental retardation). The present invention makes it possible to test which substances or therapeutic agents are suitable for increasing or reducing the action of the T protein or the family of T proteins. In particular, the changed core pore properties, which are influenced by the proteins T and T3, can be detected by suitable screening methods. These include, for example, the visualization of the bidirectional transport through the nuclear pore or the detection of an altered transcription of cellular or reporter genes. Furthermore, substances or therapeutic agents can be identified that inhibit or promote the action of proteins that are directly or indirectly involved in the action of the T protein or the family of T proteins. Substances or therapeutic agents that show an increase or decrease in the activity of the T protein (or T2 or T3) in the above-mentioned screening methods can be used to determine whether the increase or decrease in the effect of the T protein is too therapeutically desirable Effects. Above all, this includes inhibiting the growth or spread of tumor cells or promoting neuronal regeneration, for example after nerve injuries (including paraplegia and craniocerebral trauma). The identified substances can then be used as drugs or for the manufacture of these drugs. These drugs then make it possible to inhibit or block the spread of the disease-inducing cells and thus to contain or cure the disease as a whole. An important application of this drug is among other things the prevention of the growth and spread of tumor cells. In addition, the identified active ingredients are used as medicines that specifically stimulate the growth of certain cells. This then makes it possible for cells or structures of the nervous system to damaged by injury or degenerative processes. The T protein (or T2 or T3) can also be used in those screening processes which not only allow the detection of the changed nuclear pore properties but also to identify upstream or downstream or parallel signal cascades. This makes it possible, for example, to identify tyrosine kinases or tyrosine phosphatases that regulate proteins, which in turn directly or indirectly influence the action of the T protein (or T2 or T3). In this way, suitable targets for positively influencing cell events can be identified and characterized. Furthermore, the T protein, although it occurs as a nuclear pore protein, plays an important role in the interactions and interactions with filaments of the cell, for example microtubules and actin. These interactions can now be examined, for example by fusion proteins of the T protein with the EGFP protein. Cells that have been stably or transiently transformed or transfected with constructs for such fusion reporter proteins can be incubated with substances or pharmaceuticals in order to identify substances that can interact with the T protein with filaments such as the actin filaments or the Increase or decrease microtubules. In this way, active substances can be isolated which, among other things, positively influence the growth of nerve cells or the inhibition of the growth of tumor cells. For example, immunoprecipitation should be mentioned as a method for identifying such possible active substances. It can be used to isolate proteins that bind to the T protein family. With these proteins, further immunoprecipitations can then be carried out in order to isolate new proteins which then no longer interact directly with the T protein.
Desweiteren betrifft die vorliegende Erfindund ein Verfahren zur Identifizierung von weiteren Proteinen, die bei der Entwicklung und Funktion des Nervensystems eine Rolle spielen und/oder ein Kernporenprotein sind, wobei das Verfahren folgende Schritte aufweist:
(a) Herstellen eines Antikörpers gegen ein Protein der T-Familie (T-, T2- oder T3-Protein) ,Furthermore, the present invention relates to a method for the identification of further proteins which play a role in the development and function of the nervous system and / or are a nuclear pore protein, the method comprising the following steps: (a) producing an antibody against a protein of the T family (T, T2 or T3 protein),
(b) Kontaktieren eines Zellextrakts mit dem Antikörper und Identifizieren des Antikörper/Protein-Komplexes ,(b) contacting a cell extract with the antibody and identifying the antibody / protein complex,
(c) Analysieren des Komplexes, um ein Protein zu identifizieren, das an das Protein des Komplexes gebunden hat und kein Antikörper ist, und(c) analyzing the complex to identify a protein that has bound to the protein of the complex and is not an antibody, and
(d) ggf. Wiederholen der Schritte (a) bis (c) , um weitere Proteine dieser Funktion zu identifizieren.(d) optionally repeating steps (a) to (c) in order to identify further proteins of this function.
Die Erfindung wird weiter anhand der Figuren beschrieben, welche zeigen:The invention is further described with reference to the figures, which show:
Figur 1: humane cDNA-Sequenz (Gen T) und abgeleitete AminosäuresequenzFigure 1: human cDNA sequence (gene T) and deduced amino acid sequence
Figur 2: humane genomische DNA-Sequenz (Gen T)FIG. 2: human genomic DNA sequence (gene T)
Figur 3 : humane genomische DNA-Sequenz (Gen T)FIG. 3: human genomic DNA sequence (gene T)
Figur 4: humane genomische DNA-Sequenz (Gen T)FIG. 4: human genomic DNA sequence (gene T)
Figur 5: humane genomische DNA-Sequenz (Gen T)FIG. 5: human genomic DNA sequence (gene T)
Figur 6: humane genomische DNA-Sequenz (Gen T)FIG. 6: human genomic DNA sequence (gene T)
Figur 7: humane genomische DNA-Sequenz (Gen T)FIG. 7: human genomic DNA sequence (gene T)
Figur 8: humane genomische DNA-Sequenz (Gen T)
Figur 9: partielle murine cDNA-Sequenz (Gen T) und abgeleitete AminosäuresequenzFIG. 8: human genomic DNA sequence (gene T) Figure 9: partial murine cDNA sequence (gene T) and deduced amino acid sequence
Figur 10: partielle murine genomische DNA-Sequenz (Gen T)FIG. 10: partial murine genomic DNA sequence (gene T)
Figur 11: partielle humane cDNA-Sequenz (Gen T2 ) und abgeleitete AminosäuresequenzFigure 11: partial human cDNA sequence (gene T2) and deduced amino acid sequence
Figur 12: partielle murine cDNA-Sequenz (Gen T2 ) und abgeleitete AminosäuresequenzFigure 12: partial murine cDNA sequence (gene T2) and deduced amino acid sequence
Figur 13: partielle murine cDNA-Sequenz (Gen T2 ) und abgeleitete AminosäuresequenzFigure 13: partial murine cDNA sequence (gene T2) and deduced amino acid sequence
Figur 14: Spleißvariante des humanen T-Gens mit abgeleiteter AminosäuresequenzFigure 14: Splice variant of the human T gene with a deduced amino acid sequence
Figur 15: Spleißvariante des humanen T-Gens mit abgeleiteter AminosäuresequenzFigure 15: Splice variant of the human T gene with a deduced amino acid sequence
Fig. 16: partielle humane cDNA-Sequenz (Gen T2 ) mit abgeleiteter Aminosäuresequenz16: partial human cDNA sequence (gene T2) with a deduced amino acid sequence
Fig. 17: partielle humane cDNA-Sequenz (Gen T3 ; Protein-Isoform 1) mit abgeleiteter Aminosäuresequenz17: partial human cDNA sequence (gene T3; protein isoform 1) with a deduced amino acid sequence
Fig. 18: partielle humane cDNA-Sequenz (Gen T3 ; Protein-Isoform 2) mit abgeleiteter Aminosäuresequenz
Fig. 19: partielle murine cDNA-Sequenz mit abgeleiteter Aminosäuresequenz (Gen T3 )18: partial human cDNA sequence (gene T3; protein isoform 2) with a deduced amino acid sequence 19: partial murine cDNA sequence with deduced amino acid sequence (gene T3)
Fig. 20: Oligonukleotide und Peptide (T-Gen)20: oligonucleotides and peptides (T gene)
Fig. 21: Sequenzvergleich innerhalb der T-FamilieFig. 21: Sequence comparison within the T family
Fig. 22: Proteinalignment von POM121-Protein und T-ProteinFig. 22: Protein alignment of POM121 protein and T protein
Fig. 23: Northern Blot AnalyseFig. 23: Northern blot analysis
Fig. 24: Immunhistochemische Untersuchungen und elektronenmikroskopische AufnahmenFig. 24: Immunohistochemical examinations and electron micrographs
Fig. 25: In-situ Hybridisierung mit embryonaler RNAFig. 25: In situ hybridization with embryonic RNA
Fig. 26: In-situ Hybridisierung mit RNA aus GehirnFig. 26: In situ hybridization with RNA from the brain
Fig. 27: In-situ Hybridisierung mit RNA aus fötalem GehirnFig. 27: In situ hybridization with RNA from fetal brain
Fig. 28: In-situ Hybridisierung mit RNA aus Nervengeweben der MausFig. 28: In situ hybridization with RNA from mouse nerve tissue
Fig. 29: Vergleich der Coiled-Coil-Regionen zwischen CLIP-Protein, T-Protein und POM121Fig. 29: Comparison of the coiled-coil regions between CLIP protein, T protein and POM121
Fig. 30: Hydrophobizitätsblots für POM 121, T-Protein und T3 -Protein
Folgende Clone wurden gemäß Budapester Vertrag bei der DSMZ (Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH) , Mascheroder Weg 1b, Braunschweig, am 18. August 1998 hinterlegt :Fig. 30: Hydrophobicity blots for POM 121, T protein and T3 protein The following clones were deposited in accordance with the Budapest Treaty with the DSMZ (German Collection for Microorganisms and Cell Cultures GmbH), Mascheroder Weg 1b, Braunschweig, on August 18, 1998:
Clon JFC277 (DSM12371); humane cDNA; repräsentiert die humane cDNA-Sequenz von Bp 1218-3690Clone JFC277 (DSM12371); human cDNA; represents the human cDNA sequence of bp 1218-3690
Clon JFC405 (DSM12372); humane cDNA; repräsentiert die humane cDNA-Sequenz von Bp 1-1891Clone JFC405 (DSM12372); human cDNA; represents the human cDNA sequence of Bp 1-1891
Clon JFC601 (DSM12373); murine cDNA; repräsentiert die murine cDNA-Sequenz von Bp 225-3026Clone JFC601 (DSM12373); murine cDNA; represents the murine cDNA sequence of bp 225-3026
Clon JFC950 (DSM12374); humaner genomischer Clon; repräsentiert humane genomische SequenzClone JFC950 (DSM12374); human genomic clone; represents human genomic sequence
Clon JFC955 (DSM12375); humaner genomischer Clon; repräsentiert humane genomische Sequenz; beinhaltet Start der cDNA-SequenzClone JFC955 (DSM12375); human genomic clone; represents human genomic sequence; includes start of the cDNA sequence
Clon JFC N2112 (DSM12376) ; humaner genomischer Clon; wurde vollständig sequenziert. Die Sequenz ist in Fig. 2 gezeigt und enthält die Sequenz von Bp 1756-4228 der humanen cDNA- Sequenz .Clone JFC N2112 (DSM12376); human genomic clone; has been fully sequenced. The sequence is shown in Figure 2 and contains the sequence of bp 1756-4228 of the human cDNA sequence.
Am 2. Februar 1999 wurde folgender Clon gemäß Budapester Vertrag bei der DSMZ hinterlegt:On February 2, 1999 the following clone was deposited with the DSMZ in accordance with the Budapest Treaty:
Clon JFC-BN27 (DSM 12659); enthält die Sequenz von Bp 4370-8690 der humanen cDNA-SequenzClone JFC-BN27 (DSM 12659); contains the sequence of Bp 4370-8690 of the human cDNA sequence
Am 19. Februar 1999 wurde folgender Clon gemäß Budapester Vertrag bei der DSMZ hinterlegt:On February 19, 1999 the following clone was deposited with the DSMZ in accordance with the Budapest Treaty:
Clon JFC-BN20 (DSM 12698); enthält die Sequenz von Bp 2025-6280 der humanen cDNA-Sequenz
Am 1. Februar 2000 wurde folgender Clon gemäß Budapester Vertrag bei der DSMZ hinterlegt:Clone JFC-BN20 (DSM 12698); contains the sequence of bp 2025-6280 of the human cDNA sequence On February 1, 2000, the following clone was deposited with the DSMZ in accordance with the Budapest Treaty:
cDNA-Klon pL70 (DSM13270); repräsentiert wesentliche Teile des Gens T3.cDNA clone pL70 (DSM13270); represents essential parts of the T3 gene.
Die in den Fig. 2-8 gezeigten Sequenzen entstammen den Klonen JFC955 (DSM 12375) und JFC950 (DSM 12374) . Die in Fig. 1 gezeigte Sequenz stammt aus den Clonen JFC277 (DSM 12371), JFC405 (DSM 12372) und JFC-BN27 (DSM 12659) und JFC-BN20 (DSM 12698) . Die in Fig. 9 gezeigte Sequenz stammt aus dem Clon JFC610 (DSM12373) .The sequences shown in Figs. 2-8 come from the clones JFC955 (DSM 12375) and JFC950 (DSM 12374). The sequence shown in Fig. 1 comes from the clones JFC277 (DSM 12371), JFC405 (DSM 12372) and JFC-BN27 (DSM 12659) and JFC-BN20 (DSM 12698). The sequence shown in Fig. 9 comes from the clone JFC610 (DSM12373).
Die Erfindung wird weiter anhand des nachfolgenden Ausführungsbeispiels beschrieben.The invention is further described on the basis of the exemplary embodiment below.
BEISPIELEEXAMPLES
Hinsichtlich der verwendeten Methoden wird auch auf Sambrook, J., Fritsch, E.F. und Maniatis, T. (Molecular cloning; a laboratory manual ; second edition; Cold Spring Harbor Laboratory Press, 1989) und Current Protocols in Molecular Biology (John Wiley and Sons, 1994-1998) hingewiesen, wobei die nachfolgend erwähnten Techniken, insbesondere Präparation von DNA bzw. RNA oder Νorthern-Blot dem Fachmann hinreichend bekannt sind und beherrscht werden.With regard to the methods used, Sambrook, J., Fritsch, E.F. and Maniatis, T. (Molecular cloning; a laboratory manual; second edition; Cold Spring Harbor Laboratory Press, 1989) and Current Protocols in Molecular Biology (John Wiley and Sons, 1994-1998), using the techniques mentioned below, in particular preparation of DNA or RNA or Northern blot are sufficiently known to the person skilled in the art and are mastered.
Bevor die Durchführung der Experimente im einzelnen beschrieben wird, soll im nächsten Abschnitt erst einmal die Arbeitsstrategie erläutert werden.
Auf der Suche nach Genen, die im mutierten Zustand Erkrankungen des ZNS (z.B. neurodegenerative Erkrankungen, mentale Retardierungen, Tumorerkrankungen des ZNS) auslösen, wurden aus einer humanen fötalen Gehirn-cDNA-Bibliothek (Fa. Strata- gene, Heidelberg) 23 cDNA-Klone isoliert. Eine humane fötale Gehirn-cDNA-Bibliothek wurde als Ausgangsmaterial verwendet, da davon ausgegangen wurde, daß in einer fötalen Gehirn-cDNA- Bibliothek Gene, die in der Entwicklung des ZNS und insbesondere des Gehirns eine Rolle spielen, vorhanden sind. Da aber auch sogenannte Haushaltsgene (Gene, die in den meisten Geweben exprimiert werden) im ZNS exprimiert werden, wurde nun getestet, ob die ausgewählten cDNA-Klone von Genen stammen, die eine ZNS-spezifische Expression aufweisen. Hierzu wurden die in den einzelnen cDNA-Klonen enthaltenen cDNA-Stücke ('Inserts') isoliert und für die Hybridisierung mit Northernblots verwendet. Die verwendeten Northernblots beinhalteten polyA-RNA aus verschiedenen menschlichen Geweben (z.B. Gehirn, Skelettmuskel, Leber und Niere) und verschiedenen Entwicklungsstadien (fötale und adulte Gewebe) . Da, wie oben erwähnt, im fötalen Gehirn nicht nur gehirnspezifische Gene exprimiert werden, wurde die Hybrdisierung mit den Northernblots dazu verwendet, cDNA-Klone zu identifizieren, die vor allem im Gehirn exprimiert werden und weniger in anderen Geweben. Durch diese differentielle Analyse konnte ein cDNA-Klon identifiziert werden, der ein gehirnspezifisches Expressionsmuster aufweist. Unter Verwendung dieses cDNA-Klons konnte durch wiederholtes Hybridisieren der fötalen cDNA-Bibliothek die gesamte mRNA-Sequenz für das darin codierte neue Protein isoliert und entschlüsselt werden (Gen T mit darin codiertem Protein TP) .Before the implementation of the experiments is described in detail, the work strategy should be explained in the next section. In search of genes which, in the mutated state, trigger diseases of the CNS (eg neurodegenerative diseases, mental retardation, tumor diseases of the CNS), 23 cDNA clones were developed from a human fetal brain cDNA library (from Stratogen, Heidelberg) isolated. A human fetal brain cDNA library was used as the starting material, since it was assumed that genes which play a role in the development of the CNS and in particular the brain are present in a fetal brain cDNA library. However, since so-called household genes (genes that are expressed in most tissues) are also expressed in the CNS, it has now been tested whether the selected cDNA clones originate from genes that have CNS-specific expression. For this purpose, the cDNA pieces ('inserts') contained in the individual cDNA clones were isolated and used for hybridization with Northern blots. The Northern blots used included polyA-RNA from various human tissues (e.g. brain, skeletal muscle, liver and kidney) and various stages of development (fetal and adult tissues). As not only brain-specific genes are expressed in the fetal brain, as mentioned above, hybridization with the Northern blots was used to identify cDNA clones that are expressed primarily in the brain and less in other tissues. This differential analysis identified a cDNA clone that has a brain-specific expression pattern. Using this cDNA clone, the entire mRNA sequence for the new protein encoded therein could be isolated and decrypted (gene T with protein TP encoded therein) by repeated hybridization of the fetal cDNA library.
BEISPIEL 1: Identifizierung der T-Gene 1. Titration der cDNA-BibliothekenEXAMPLE 1: Identification of the T genes 1. Titration of the cDNA libraries
Um eine effektive Infektion zu gewährleisten, war es zunächst notwendig, in einer Übernachtkultur phagenkompetente Bakterien herzustellen. Die in dem Medium enthaltenen Magnesium-Ionen
induzieren den Maltose-Rezeptor der Bakterien, an dem der Phage bindet, um das Bakterium zu infizieren.In order to ensure an effective infection, it was first necessary to produce phage-competent bacteria in an overnight culture. The magnesium ions contained in the medium induce the bacterial maltose receptor to which the phage binds to infect the bacterium.
Durchführung :Execution :
50 μl E. coli XLl-Blue in 50 ml LB-Medium ansetzen, wobei dem Medium MgS04 in einer Konzentration von 10 mM zugesetzt wird. Bei 30°C und 220 rpm über Nacht inkubieren. Abzentrifugieren der Bakterien bei 4°C und 1000 xg für 10 min. In 25 ml 10 mM MgS04 resuspendieren. Die so erzeugten phagenkompetenten Bakterien waren bei 4°C bis zu einer Woche lagerfähig.Prepare 50 μl E. coli XLl-Blue in 50 ml LB medium, adding MgSO 4 in a concentration of 10 mM to the medium. Incubate overnight at 30 ° C and 220 rpm. Centrifuge the bacteria at 4 ° C and 1000 xg for 10 min. Resuspend in 25 ml of 10 mM MgS0 4 . The phage-competent bacteria produced in this way could be stored at 4 ° C for up to one week.
2. Ausplattieren der cDNA-Bibliotheken2. Plating out the cDNA libraries
Zum Ausplattieren der Bibliothek mußten Baltimore Biological Lab. (BBL) -Agarplatten, und BBL-Top-Agarose vorbereitet werden. Die Phagen (humane bzw. murine cDNA-Bibliothek, Fa. Stratagene) wurden, um nach dem Ausplattieren Einzelplaques zu erhalten, mit SM-Medium 1:103 und 1:104 verdünnt.The Baltimore Biological Lab. (BBL) agar plates, and BBL top agarose can be prepared. The phages (human or murine cDNA library, Stratagene) were diluted 1:10 3 and 1:10 4 with SM medium in order to obtain individual plaques after plating.
Durchführung :Execution :
Für den BBL-Agar (pH 7,2) werden 10 g BBL-Trypticase, 5 g NaCl, und 10 g Select Agar eingewogen und auf 1 1 mit H20 aufgefüllt. Der Agar wird durch Autoklavieren gelöst. Nach Abkühlen auf ca. 60°C die Platten gießen. Die Platten werden vor Gebrauch auf 37°C vorgewärmt, um ein vorzeitiges Erstarren der Top-Agarose zu vermeiden. Die BBL-Top-Agarose (pH 7,2) wurde mit 10 g BBL-Trypticase, 5 g NaCl, 6,5 g Agarose und 10 ml IM MgS04-Lösung auf 1 1 H20 angesetzt. Durch Autoklavieren lösen und im Wasserbad auf 41°C bereitstellen. 15 μl wie vorstehend angeben verdünnte Phagenlösung und 250 μl der kompetenten XL-1 Bakterien in ein 15 ml Falcontube geben. 20 min. bei Raumtemperatur inkubieren. 10 ml BBL-Top Agarose zugeben, schwenken und auf die angewärmte Agarplatte geben. Nach ca. 20 min ist die Top-Agarose-Schicht fest, und die Platten können mit der Agarseite nach oben gestapelt werden. Die Inkubation erfolgt über Nacht bei 37°C. Die Platten sind nach abgelaufener Inkubationszeit bei 4°C lagerbar oder können direkt zum Transfer der Phagenplaques verwendet werden. Zur
Lagerung die Platten diese zusammen mit einem chloroformgetränkten Tuch in Plastiksäcken gut verschließen. Das Chloroform verhindert das Wachstum von kälteliebenden Bakterien und Pilzen.For the BBL agar (pH 7.2), 10 g of BBL trypticase, 5 g of NaCl and 10 g of select agar are weighed in and made up to 1 1 with H 2 0. The agar is released by autoclaving. After cooling to approx. 60 ° C, pour the plates. The plates are preheated to 37 ° C before use to prevent premature solidification of the top agarose. The BBL top agarose (pH 7.2) was made up to 1 1 H 2 0 with 10 g BBL trypticase, 5 g NaCl, 6.5 g agarose and 10 ml IM MgS0 4 solution. Dissolve by autoclaving and prepare in a water bath at 41 ° C. Place 15 μl of the diluted phage solution as specified above and 250 μl of the competent XL-1 bacteria in a 15 ml Falcon tube. 20 min. incubate at room temperature. Add 10 ml BBL-Top agarose, swirl and put on the warmed agar plate. After about 20 minutes the top agarose layer is solid and the plates can be stacked with the agar side up. Incubation takes place overnight at 37 ° C. After the incubation period has elapsed, the plates can be stored at 4 ° C or can be used directly to transfer the phage plaques. to Store the plates tightly together with a chloroform-soaked cloth in plastic bags. The chloroform prevents the growth of cold-loving bacteria and fungi.
3. In vivo Exeision3. In vivo execution
Die verwendeten cDNA-Banken (humane und murine fötale Gehirn- cDNA-Bibliothek; Fa. Stratagene, Heidelberg) waren in dem Vektor λ-ZAPII kloniert. Hierdurch bestand die Möglichkeit, die Subklonierung des Phageninserts in einen Plasmid-Vektor zu umgehen. Dieses Protokoll erlaubt es auf einfache Weise, cDNA, die sich als Insert im λ-ZAPII-Vektor befindet, durch einen in vivo Ansatz in ein Insert zu überführen, das sich nun im Plasmid Blueskript SK(-) befindet. Das Prinzip dieses Ansatzes liegt darin, daß durch einen Helferphagen Informationen für Proteine eingebracht werden, die eine DNA-Amplifikation nur in dem Bereich des Phagengenoms erlauben, die die genetische Information für das Plasmid mit cDNA-Insert besitzen. Es wurde weitgehend nach dem Protokoll des Herstellers (Stratagene) verfahren.The cDNA libraries used (human and murine fetal brain cDNA library; from Stratagene, Heidelberg) were cloned in the vector λ-ZAPII. This made it possible to avoid subcloning the phage insert into a plasmid vector. This protocol allows cDNA, which is an insert in the λ-ZAPII vector, to be converted in a simple manner by an in vivo approach into an insert which is now in the plasmid bluescript SK (-). The principle of this approach is that a helper phage introduces information for proteins that only allow DNA amplification in the area of the phage genome that has the genetic information for the plasmid with cDNA insert. It was largely carried out according to the manufacturer's protocol (Stratagene).
Insbesondere wurde so ausplattiert, daß Einzel-Phagenplaques auf der Platte waren. Mit diesen Einzelplaques wurde dann das in-vivo Exe i s i onspro t okol 1 durchgeführt. Aus den Bakterienklonen wurde die Plasmid-DNA und deren Plasmid- Inserts isoliert und anschließend mit Northern Blots hydridisiert . Die Auswahl der weiter zu untersuchenden Klone beruhte auf dem Expressionsmuster bei den Northern Blots.In particular, plating was carried out in such a way that individual phage plaques were on the plate. The in vivo exeption test okol 1 was then carried out with these individual plaques. The plasmid DNA and its plasmid inserts were isolated from the bacterial clones and then hydrided with Northern blots. The selection of the clones to be investigated was based on the expression pattern in the Northern blots.
Durchführung :Execution :
100 μl eines Einzel-Phagen λ-ZAPII-Klones mit 200 μl XL1- Bakterien und 2 μl Helferphagen (im Stratagene-Kit enthalten) versetzen. 15 min. bei 37°C und 80 rpm schütteln, wobei die spezifische Anlagerung beider Phagentypen an das Wirtsbakte- rium stattfindet. 3 ml LB-Medium zugeben. 2 h bei 37°C und 200 rpm inkubieren. Während dieser Zeit findet die DNA-Replikation des im 1-ZAPII-Vektors enthaltenen Plasmides, dessen
Zirkularisierung, sowie die Verpackung in Hüllproteine und Ausschleusung aus dem Bakterium statt. Auf 70°C für 20 min. erhitzen. Im Anschluß 15 min. bei 4000g zentrifugieren. Dies tötet die noch verbliebenen Bakterien ab und trennt deren Bruchstücke von den in der Phagenhülle vorhandenen Plasmiden ab, die sich im Überstand befinden. 1 μl davon zu 200 μl SOLR- Wirtszellen geben, 15 min. bei 37°C inkubieren. 100 μl auf LB/Amp-Platten ausplattieren. Über Nacht bei 37°C lagern. Die nun gewachsenen Bakterienklone enthalten das Plasmid mit dem entsprechenden cDNA-Insert. Es wurde jeweils eine Mini-Prep- DNA-Präparation durchgeführt.Add 100 μl of a single phage λ-ZAPII clone with 200 μl XL1 bacteria and 2 μl helper phage (included in the Stratagene kit). 15 minutes. Shake at 37 ° C and 80 rpm, the specific attachment of both phage types to the host bacterium. Add 3 ml LB medium. Incubate for 2 h at 37 ° C and 200 rpm. During this time, DNA replication of the plasmid contained in the 1-ZAPII vector, its Circularization, as well as packaging in envelope proteins and removal from the bacteria instead. At 70 ° C for 20 min. heat. Then 15 min. Centrifuge at 4000g. This kills the remaining bacteria and separates their fragments from the plasmids present in the phage shell, which are in the supernatant. Add 1 ul of this to 200 ul SOLR host cells, 15 min. Incubate at 37 ° C. Plate 100 μl on LB / Amp plates. Store at 37 ° C overnight. The bacterial clones that have now grown contain the plasmid with the corresponding cDNA insert. A mini-prep DNA preparation was carried out in each case.
4. "random primed" DNA-Markierung4. "random primed" DNA labeling
Die radioaktive Markierung der doppelsträngigen Insert-DNA des cDNA-Klons wurde für die weitere Isolation von überlappenden cDNA-Klonen wie folgt durchgeführt.The radioactive labeling of the double-stranded insert DNA of the cDNA clone was carried out as follows for the further isolation of overlapping cDNA clones.
Durchführung :Execution :
Für einen typischen Markierungsansatz 100 ng DNA in einem Volumen von 12 μl H20 lösen. 10 minütiges Erhitzen auf 95°C bewirkt die Denaturierung der DNA in Einzelstränge. Ansatz auf Eis lagern, um eine Reassoziation der beiden komplementären DNA-Stränge zu verhindern. Den Reaktionsansatz durch 4 μl OLB (Oligo-labelling-buffer, 1 μl Klenow (1U) sowie 2 , 5 μl a-32P- dCTP und 2,5 l a-32P-dATP komplettieren. Über Nacht bei Raumtemperatur inkubieren. Während dieser Zeit findet die Bildung des Komplementärstranges, ausgehend von den an einen Einzelstrang angelagerten Hexanucleotiden, durch das Klenow- Fragment der E. coli DNA-Polymerase I statt. Die radioaktive Markierung der DNA erfolgt durch den Einbau des a-32P-dCTP und des a-32P-dATP.For a typical labeling approach, dissolve 100 ng DNA in a volume of 12 μl H 2 0. Heating for 10 minutes at 95 ° C causes denaturation of the DNA in single strands. Store the batch on ice to prevent reassociation of the two complementary DNA strands. Complete the reaction mixture with 4 μl OLB (oligo labeling buffer, 1 μl Klenow (1U) as well as 2.5 μl a- 32 P-dCTP and 2.5 l a- 32 P-dATP. Incubate overnight at room temperature. While During this time, the complementary strand, starting from the hexanucleotides attached to a single strand, takes place through the Klenow fragment of E. coli DNA polymerase I. The DNA is radiolabelled by the incorporation of the a- 32 P-dCTP and the a- 32 P-dATP.
5. Abtrennen von nicht-eingebauten radioaktiven Nucleotiden5. Separation of unincorporated radioactive nucleotides
Die Abtrennung der nichteingebauten Nucleotide erfolgte mit Hilfe einer selbst gefertigten Sephadex G-50 Säule. Das Au f t r ennung s p r i n z i p der Säule beruht auf der
Ausschlußchromatographie. Die kleineren nichteingebauten Nucleotide passen in kleine Poren des Säulenmaterials, während die DNA von diesen ausgeschlossen bleibt. Das Volumen, in dem sich die Nucleotide bewegen können ist daher größer als das Volumen, das der DNA zur Verfügung steht. Trägt man nun ein Gemisch aus DNA und Nucleotiden auf die Säule, so läuft die DNA schneller als die Nucleotide durch die Säule. Dies erlaubt die Abtrennung der nichteingebauten Nucleotide.The unincorporated nucleotides were separated using a self-made Sephadex G-50 column. The separation principle of the column is based on the Exclusion chromatography. The smaller unincorporated nucleotides fit into small pores of the column material, while the DNA remains excluded from them. The volume in which the nucleotides can move is therefore larger than the volume available to the DNA. If you now carry a mixture of DNA and nucleotides on the column, the DNA runs through the column faster than the nucleotides. This allows the unincorporated nucleotides to be separated.
Durchführung :Execution :
Eine Pasteurpipette wurde mit einem kleinen Glaskügelchen verschlossen. Auffüllen der Pasteurpipette mit in Wasser gelöstem Sephadex G-50 ("Fine") bis sich das Füllmaterial 5 cm unter der Oberkante der Pasteurpipette befindet. 2x Spülen der Säule mit TE . Auftragen des obigen radioaktiven Markierungsansatzes. Zugabe von 320 μl TE. Die Lösung, die durch die Säule gelaufen ist, verwerfen. Eppendorf-Tube unter die Säule stellen. Zugabe von 350 μl TE. Auffangen der durch die Säule gelaufenen radioaktiven Lösung.A Pasteur pipette was sealed with a small glass bead. Fill the Pasteur pipette with Sephadex G-50 ("Fine") dissolved in water until the filling material is 5 cm below the top edge of the Pasteur pipette. 2x rinsing the column with TE. Apply the above radioactive labeling approach. Add 320 μl TE. Discard the solution that has passed through the column. Place the Eppendorf tube under the column. Add 350 μl TE. Collect the radioactive solution that has passed through the column.
6. Plaαue-"blot"6. Plaαue "blot"
Der Plaque-"Blot" wurde für die Analyse der cDNA-Bibliothek vorgenommen, um die in Phagenklonen befindliche cDNA der Hybridisierung zugänglich zu machen.The plaque "blot" was carried out for the analysis of the cDNA library in order to make the cDNA located in phage clones accessible for hybridization.
Durchführung :Execution :
Eine beschriftete, markierte Hybond-N-Membran luftblasenfrei für 1 min auf die Platte mit den Phagenplaques legen. Das Markierungsmuster wurde übertragen. 10 min auf mit Denaturierungslösung (0,5 M NaOH; 1,5 M NaCl) getränktes Whatmanpapier legen, die Plaque-Seite nach oben. 10 min. in 50 mM Phosphatpuffer neutralisieren. Mit einem Phosphatpuffergetränkten Kleenex-Tuch werden die verbleibenden Reste des Bakterienrasens mit leichtem Druck abgewischt. Die Filter werden bei Raumtemperatur zum Trocknen ausgelegt. Anschließend wurden die Filter 1 h bei 90°C gebacken.
7. HvbridisierunσPlace a labeled, marked Hybond-N membrane free of air bubbles on the plate with the phage plaques for 1 min. The marking pattern has been transferred. Place on Whatman paper soaked with denaturing solution (0.5 M NaOH; 1.5 M NaCl) for 10 min, with the plaque side up. 10 min. neutralize in 50 mM phosphate buffer. The remaining remains of the bacterial lawn are wiped off with a little pressure using a Kleenex cloth soaked in phosphate buffer. The filters are designed to dry at room temperature. The filters were then baked at 90 ° C. for 1 hour. 7. Hybridization
Die Hybridisierung beruht auf der Bindung komplementärer, einzels trängiger Nucleinsäuren. Dazu wurde die zu untersuchende DNA auf einer Membran immobilisiert und mit einer radioaktiv markierten Sonde hybridisiert. Die komplementäre Bindung bleibt auch nach dem Abwaschen der unspezifisch adhärenten Sonden erhalten und kann autoradiographisch sichtbar gemacht werden. Bei der Hybridsierung wurden einzelsträngige Moleküle unter Salz- und Temperaturbedingungen inkubiert, die die Bildung von basengepaarten doppel s t rängen begünstigen. Einen entscheidenden Faktor bei der Assoziations- und der Dissoziationski- netik stellen die Wasserstoffbrückenbindungen zwischen den Basen-paaren G-C und A-T dar. Die Hybridisierungsreaktion wird durch Veränderungen der Temperatur und der Salz- und Probenkonzentration beeinflußt.The hybridization is based on the binding of complementary, single stranded nucleic acids. For this purpose, the DNA to be examined was immobilized on a membrane and hybridized with a radioactively labeled probe. The complementary binding is retained even after washing off the non-specific adherent probes and can be made visible by autoradiography. In the hybridization, single-stranded molecules were incubated under salt and temperature conditions, which favor the formation of base-paired double strands. A crucial factor in association and dissociation kinetics are the hydrogen bonds between the base pairs G-C and A-T. The hybridization reaction is influenced by changes in the temperature and the salt and sample concentration.
Durchführung :Execution :
Zunächst die DNA-Filter in Hybridisierungslösung (0,5 M NaPiFirst the DNA filter in hybridization solution (0.5 M NaPi
(pH 7,2); 7% SDS; 0,2% BSA; 0,2% PEG 6000; 0,05% Polyvinylpyrrolidon 360000; 0,05% Ficoll 70000; 0,5% Dextransulfat) mit 0,1 ml/cm2 bei 65°C prähybridisieren. Dazu die Filter in einer Kunststoffbox in einem Schüttelwasserbad für die Dauer von mindestens 1 h bei 65°C inkubieren. Die Prähybridisierungslösung verwerfen. Die radioaktiv markierte Probe (s. oben 4. und 5.) mit 0,5 ml/cπr Hybridisierungslösung(pH 7.2); 7% SDS; 0.2% BSA; 0.2% PEG 6000; 0.05% polyvinyl pyrrolidone 360,000; 0.05% Ficoll 70000; Prehybridize 0.5% dextran sulfate) at 0.1 ml / cm 2 at 65 ° C. Incubate the filters in a plastic box in a shaking water bath for at least 1 h at 65 ° C. Discard the prehybridization solution. The radioactively labeled sample (see 4 and 5 above) with 0.5 ml / cπr hybridization solution
(65°C) auf die Filter geben. Die Aktivität der Probe sollte 50 cpm, gemessen im Abstand von 40 cm, nicht unterschreiten. Die Hybridisierung erfolgt über Nacht bei 65°C (humane cDNA- Bibliothek) oder 55°C (Interspezieshybridisierungen Mensch- Maus und zur Isolation der homologen Gene) . Die Filter zweimal 30 min mit etwa 500 ml Waschpuffer im Schüttelbad bei 65°CApply (65 ° C) to the filters. The activity of the sample should not fall below 50 cpm, measured at a distance of 40 cm. Hybridization takes place overnight at 65 ° C. (human cDNA library) or 55 ° C. (interspecies hybridizations human-mouse and for the isolation of the homologous genes). The filters twice for 30 min with about 500 ml wash buffer in a shaking bath at 65 ° C
(55°C) waschen. Daran anschließend wurde eine Autoradiographie durchgeführt .
8. AutoradiographieWash (55 ° C). An autoradiography was then carried out. 8. Autoradiography
Die Filter wurden in Frischhaltefolie verpackt. Die Autoradiographie erfolgte bei -80°C in einer Röntgenkassette, die eine Verstärkerfolie aus Calciumwolframat enthielt. Die Exponierung dauerte je nach Stärke des Signals 30 min bis einige Tage.The filters were packed in cling film. The autoradiography was carried out at -80 ° C. in an X-ray cassette which contained an intensifying film made of calcium tungstate. The exposure lasted 30 minutes to a few days, depending on the strength of the signal.
Mit Hilfe der oben genannten Techniken konnte die komplette mRNA, die für das Protein des Gens T codiert, isoliert werden. Desweiteren konnte unter der Verwendung von cDΝA-Klonen dieses neu isolierten Gens T zwei weitere Gene (T2 und T3 ) isoliert werden, die mit diesem Gen ausgeprägte Homologien aufweisen. Hierzu wurden wieder die oben erwähnten Techniken verwendet. Zur Isolation der verwandten Gene T2 und T3 wurde die Hybridisierungstemperatur auf 55°C erniedrigt.With the help of the above-mentioned techniques, the complete mRNA coding for the protein of the T gene could be isolated. Furthermore, using cDΝA clones of this newly isolated gene T, two further genes (T2 and T3) could be isolated, which have pronounced homologies with this gene. The techniques mentioned above were used again for this. In order to isolate the related genes T2 and T3, the hybridization temperature was reduced to 55 ° C.
BEISPIEL 2: Northern BlotEXAMPLE 2: Northern Blot
Die 'multiple tissue Northern blots' wurden von der Firma CLONTECH (Palo Alto, Kalifornien, USA) gekauft und nach den Anweisungen des Herstellers angewendet. Die jeweiligen DNA- Proben der Gene T, T2 und T3 wurden radioaktiv markiert und mit den Northern hybridisiert. Für die Analyse des Expressionsmusters auf Northern-Blot-Ebene wurde für das T-Gen die Sequenz von bp 1-4200 der Fig. 1 verwendet. Für das Gen T3 wurde die Sequenz von bp 1310-4870 der Fig. 17 für die Hybridisierung verwendet. Für das Gen T2 wurde die Sequenz von bp 3120-4230 der Fig. 16. Zur radioaktiven Markierung doppelsträngiger DNA wurde die "random priming" Methode verwendet .The multiple tissue Northern blots were purchased from CLONTECH (Palo Alto, California, USA) and used according to the manufacturer's instructions. The respective DNA samples of the genes T, T2 and T3 were radioactively labeled and hybridized with the Northern. The sequence of bp 1-4200 of FIG. 1 was used for the analysis of the expression pattern at the Northern blot level for the T gene. For the T3 gene, the sequence of bp 1310-4870 of FIG. 17 was used for hybridization. The sequence of bp 3120-4230 of FIG. 16 was used for the gene T2. The "random priming" method was used for the radioactive labeling of double-stranded DNA.
a) Random Priming:a) Random priming:
Für einen typischen Markierungsansatz 100 ng DNA in einem Volumen von 12 μl lösen. 10 inütiges Erhitzen auf 95°C bewirkt die Denaturierung der DNA in Einzelstränge. Ansatz auf Eis lagern, um eine Reassoziation der beiden komplementären
DNA-Stränge zu verhindern. Den Reaktionsansatz durch 4 μl OLB, 1 μl Klenow (1U) sowie 2 , 5 μl a-32P- dCTP und 2 , 5 μl a-32P- dATP komplettieren. Über Nacht bei Raumtemperatur inkubieren. Während dieser Zeit findet die Bildung des KomplementärStranges, ausgehend von den an einen Einzelstrang angelagerten Hexanucleotiden, durch das Klenow-Fragment der E. coli DNA-Polymerase I statt. Die radioaktive Markierung der DNA erfolgt durch den Einbau des a-32P-dCTP und des a-32P- dATP.For a typical labeling approach, dissolve 100 ng DNA in a volume of 12 μl. Heating for 10 minutes at 95 ° C causes the denaturation of the DNA in single strands. Approach on ice to reassociate the two complementary To prevent DNA strands. Complete the reaction mixture with 4 μl OLB, 1 μl Klenow (1U) as well as 2.5 μl a- 32 P- dCTP and 2.5 μl a- 32 P- dATP. Incubate overnight at room temperature. During this time, the complementary strand, starting from the hexanucleotides attached to a single strand, takes place through the Klenow fragment of E. coli DNA polymerase I. The DNA is radiolabelled by incorporating the a- 32 P-dCTP and the a- 32 P-dATP.
Die Abtrennung der nichteingebauten Nucleotide erfolgte mit Hilfe einer selbst gefertigten Sephadex G-50 Säule. Das Au f t r ennung sp r i n z i p der Säule beruht auf der Ausschlußchromatographie. Die kleineren nichteingebauten Nucleotide passen in kleine Poren des Säulenmaterials, während die DNA von diesen ausgeschlossen bleibt. Das Volumen, in dem sich die Nucleotide bewegen können ist daher größer als das Volumen, das der DNA zur Verfügung steht. Trägt man nun ein Gemisch aus DNA und Nucleotiden auf die Säule, so läuft die DNA schneller als die Nucleotide durch die Säule. Dies erlaubt die Abtrennung der nichteingebauten Nucleotide. Dazu wird eine Pasteurpipette mit einem kleinen Glaskügelchen verschlossen. Auffüllen der Pasteurpipette mit in Wasser gelöstem Sephadex G-50 ("Fine") bis sich das Füllmaterial 5 cm unter der Oberkante der Pasteurpipette befindet. 2x Spülen der Säule mit TE. Auftragen des radioaktiven Markierungsansatzes. Zugabe von 320 μl TE. Die Lösung, die durch die Säule gelaufen ist, verwerfen. Eppendorf-Tube unter die Säule stellen. Zugabe von 350 μl TE. Auffangen der durch die Säule gelaufenen radioaktiven Lösung.The unincorporated nucleotides were separated using a self-made Sephadex G-50 column. The separation of the column is based on the exclusion chromatography. The smaller unincorporated nucleotides fit into small pores of the column material, while the DNA remains excluded from them. The volume in which the nucleotides can move is therefore larger than the volume available to the DNA. If you now carry a mixture of DNA and nucleotides on the column, the DNA runs through the column faster than the nucleotides. This allows the unincorporated nucleotides to be separated. To do this, a Pasteur pipette is sealed with a small glass bead. Fill the Pasteur pipette with Sephadex G-50 ("Fine") dissolved in water until the filling material is 5 cm below the top edge of the Pasteur pipette. 2x rinsing the column with TE. Apply the radioactive labeling approach. Add 320 μl TE. Discard the solution that has passed through the column. Place the Eppendorf tube under the column. Add 350 μl TE. Collect the radioactive solution that has passed through the column.
b) Hvbridisisieruncr:b) Hybridization:
Die Hybridisierung der Northern Blots erfolgte wie nachfolgend beschrieben. Zunächst wurden die Northern blots in 10 ml Hybridisierungslösung (350 ml 20%iges SDS, 500 ml IM Phosphatpuffer, pH 7,2; 150 ml dest. Wasser) bei 65°C prähybridisiert. Dazu die wurden Northern blots in einer
Glasröhre in einem Hybridisierungs-Rollofen für die Dauer vonThe Northern blots were hybridized as described below. First, the Northern blots were pre-hybridized in 10 ml hybridization solution (350 ml 20% SDS, 500 ml IM phosphate buffer, pH 7.2; 150 ml distilled water) at 65 ° C. The Northern blots were used in a Glass tube in a hybridization roller oven for the duration of
6 h bei 65°C inkubiert.Incubated for 6 h at 65 ° C.
Die Prähybridisierungslösung wurde verworfen. Die radioaktiv markierte Probe wurde mit 10 ml Hybridisierungslösung (65°C) auf die Filter gegeben.The pre-hybridization solution was discarded. The radiolabelled sample was added to the filters with 10 ml hybridization solution (65 ° C).
Die Hybridisierung erfolgte über Nacht bei 65°C. Die Filter wurden dann zweimal 30 min mit etwa 500 ml Waschpuffer (80 mlHybridization took place overnight at 65 ° C. The filters were then washed twice for 30 min with about 500 ml wash buffer (80 ml
IM Phosphatpuffer, pH 7,2; 100 ml 20% iges SDS, 1820 ml dest.IM phosphate buffer, pH 7.2; 100 ml 20% SDS, 1820 ml dist.
Wasser) im Schüttelbad bei 65°C gewaschen.Water) in a shaking bath at 65 ° C.
c) Autoradiographie:c) Autoradiography:
Die Filter wurden in Kunststoffolie eingeschweißt. Die Autoradiographie erfolgte bei -80°C in einer Röntgenkassette, die eine Verstärkerfolie aus Calciumwolframat enthielt. Die Exponierung dauerte je nach Stärke des Signals 1-4 Tage.The filters were sealed in plastic film. The autoradiography was carried out at -80 ° C. in an X-ray cassette which contained an intensifying film made of calcium tungstate. The exposure lasted 1-4 days depending on the strength of the signal.
Die Ergebnisse der durchgeführten Northern Blots sind in Fig. 23 gezeigt.The results of the Northern blots performed are shown in FIG. 23.
BEISPIEL 3: RNA in situ HybridisierungEXAMPLE 3: RNA in situ hybridization
Embryos in verschiedenen Entwicklungstadien wurden aus schwangeren NMRI-Mäusen isoliert. Die Embryonen und andere Gewebeproben wurden über Nacht mit 4% Paraformaldehyd in PBS bei 4°C fixiert. 10 μm Gefrierschnitte der Embryos wurden auf mit 3-Aminopropyltriethoxysilane beschichteten Objektträgern transferiert. Sinnstrang ("Sense")- und Gegenstrang ( "Antisense" ) -Proben wurden durch in vi tro Transkription mit a-35S-UTP, mit einer spezifischen Aktivität von >109 Zerfälle pro Minute/μg, hergestellt. Hierzu wurde der linearisierte Maus-T-Gen cDNA-Klon aus Fig. 9 mit T7- oder Sp6-RNA- Polymerase transkribiert. Die Probenlänge wurde durch alkalische Lyse auf 150-200 Nucleotide reduziert. Die Objektträger wurden in einer Lösung, die 50% Formamid, 10% Dextransulfat, 0,3 M NaCL, 10 mM Tris, 10 mM Natriumphosphat pH 6.8, 20 mM Dithiothreitol , 0,2% Denhardt ' s Lösung, 0,1
Triton X-100, 0,1 mg/ml Escherichia coli RNA und 0,1 mM nichtradioaktives a-S-UTP enthielt, bei 54°C vorhybridisiert. Für die Hybridisierung wurde die 35S-markierte Probe (8 x 104 Zerfälle pro Minute pro ml) zum Hybridisierungsmix zugegeben und die Hybridisierung dann für 16 h bei 54°C in einer feuchten Kammer fortgesetzt. Die Objektträger wurden dann in der Hybridisierungslösung für 2 h gewaschen. Die verbliebene nichthybridisierte RNA-Probe wurde dann mit RNase A verdaut. Die Objektträger wurden dann 30 min bei 37°C mit 2x SSC, 0,1% SDS und 30 min mit 0 , lx SSC, 0,1% SDS gewaschen. Anschließend wurden die Objektträger mit ansteigenden Ethanol- Konzentrationen dehydriert. Die Objektträger wurden dann mit Ilford K5 Autoradiografieemulsion bedeckt. Nach 1-2 Wochen Exposition bei 4°C wurden die Objektträger in Kodak Dl9b- Entwickler inkubiert und dann mit Giemsa gefärbt. Die Schnitte wurden in Dunkel- und Hellfeld Ausleuchtung mit einem Zeiss SV8-Stereomikroskop und einem Axiophot Mikroskop analysiert und mit einem Agfa Ortho-Schwarz-Weiß-Film fotografiert.Embryos at various stages of development have been isolated from pregnant NMRI mice. The embryos and other tissue samples were fixed overnight with 4% paraformaldehyde in PBS at 4 ° C. 10 μm frozen sections of the embryos were transferred to slides coated with 3-aminopropyltriethoxysilane. Sense strand and antisense samples were prepared by in vitro transcription with a- 35 S-UTP, with a specific activity of> 10 9 decays per minute / μg. For this purpose, the linearized mouse T gene cDNA clone from FIG. 9 was transcribed with T7 or Sp6 RNA polymerase. The sample length was reduced to 150-200 nucleotides by alkaline lysis. The slides were in a solution containing 50% formamide, 10% dextran sulfate, 0.3 M NaCL, 10 mM Tris, 10 mM sodium phosphate pH 6.8, 20 mM dithiothreitol, 0.2% Denhardt's solution, 0.1 Triton X-100, 0.1 mg / ml Escherichia coli RNA and 0.1 mM non-radioactive aS-UTP, prehybridized at 54 ° C. For hybridization, the 35 S-labeled sample (8 x 10 4 decays per minute per ml) was added to the hybridization mix and the hybridization then continued for 16 h at 54 ° C. in a moist chamber. The slides were then washed in the hybridization solution for 2 hours. The remaining non-hybridized RNA sample was then digested with RNase A. The slides were then washed for 30 min at 37 ° C with 2x SSC, 0.1% SDS and for 30 min with 0.1x SSC, 0.1% SDS. The slides were then dehydrated with increasing ethanol concentrations. The slides were then covered with Ilford K5 autoradiography emulsion. After 1-2 weeks of exposure at 4 ° C, the slides were incubated in Kodak Dl9b developer and then stained with Giemsa. The sections were analyzed in dark and bright field illumination using a Zeiss SV8 stereomicroscope and an Axiophot microscope and photographed with an Agfa Ortho black and white film.
Die Ergebnisse der RNA in-situ Hybridisierung sind in den Figs . 25, 26, 27 und 28 gezeigt.The results of the RNA in situ hybridization are shown in Figs. 25, 26, 27 and 28.
Fig. 25: Expression des Maus T-Gens während der Mausembryogenese . Hellfeld- (a,c,e,g) und Dunkelfeldbilder (b, d, f, h) von Horizontal- (a,b) und Sagittalschnitten (c-h) durch einen 10,5 (a,b), 12,5 (c,d), 14,5 (e,f) und 16,5 (g,h) dpc Embryo (dpc = days post coneeptionem) , die mit einer Antisense-Riboprobe des Maus-T-Gens hybridisiert wurden, dec = Decidua, g = Darm, he = Herz, lab = Labyrinth, li = Leber, me = Myelcephalon, sc = Rückenmark, sga = Spinalganglien, sb = Zahnknospe, te = Telencephalon. Balken = 1 mm25: Expression of the mouse T gene during mouse embryogenesis. Bright field (a, c, e, g) and dark field (b, d, f, h) images of horizontal (a, b) and sagittal sections (ch) through a 10.5 (a, b), 12.5 ( c, d), 14.5 (e, f) and 16.5 (g, h) dpc embryo (dpc = days post coneeptionem) which were hybridized with an antisense riboprobe of the mouse T gene, dec = Decidua , g = intestine, he = heart, lab = labyrinth, li = liver, me = myelcephalon, sc = spinal cord, sga = spinal ganglia, sb = tooth bud, te = telencephalon. Bar = 1 mm
Fig. 26: Expression des Maus-T-Gens im postnatalen Gehirn. Hellfeld- (a,d) und Dunkel feldbilder (b,c,e,f) von Horizontalschnitten durch einen 1 wpn (weeks post natalis) und 6 wpn Kopf, die mit einer T-Gen Antisense (b,e) und Senseprobe (c,f) hybridisiert wurden, ce = Cerebellum, cor = Cortex, cos
= Colliculuε, ey = Auge, hi = Hippocampus, ne Nasalepithelium, ob = Riechkolben. Balken = 1 mmFig. 26: Expression of the mouse T gene in the postnatal brain. Bright field (a, d) and dark field images (b, c, e, f) of horizontal sections through a 1 wpn (weeks post natalis) and 6 wpn head, which were combined with a T-gene antisense (b, e) and sense sample ( c, f) were hybridized, ce = cerebellum, cor = cortex, cos = Colliculuε, ey = eye, hi = hippocampus, ne nasal epithelium, whether = olfactory bulb. Bar = 1 mm
Fig. 27: Stärkere Vergrößerung des 10,5 dcp Embryos von Fig. 25 a,b. Die Pfeile zeigen auf einen Bereich von geringer Expression in den Somiten (Pfeile in b) . Eine starke Expression ist in der Region zwischen Mesencephalon und Telencephalon ( "Forbrain-Midbrain-Junction" ) zu erkennen. Aod = Aorta dorsalis, me = Mesencephalon, sc = Rückenmark, te = Telencephalon. Balken = 100
Fig. 27: Magnification of the 10.5 dcp embryo of Fig. 25 a, b. The arrows point to an area of low expression in the somites (arrows in b). A strong expression can be seen in the region between mesencephalon and telencephalon ("Forbrain-Midbrain-Junction"). Aod = dorsal aorta, me = mesencephalon, sc = spinal cord, te = telencephalon. Bar = 100
Fig. 28: Expression des T-Gens während der Entwicklung des Nervensystems. Expression des T-Gens in Neuronen der Mantelzone des sich entwickelnden Gehirns und in Nuclei von peripheren Nerven (Pfeil in b) . In proliferierenden Neuronen in der subventrikulären Schicht oder in migrierenden Neuronen der Intermediate-Zone (c,d) ist keine Expression sichtbar. Am Tag 16,5 dcp ist eine starke Expression in sich differenzierenden Neuronen der Mantelzone des Telencephalons sichtbar (e,d) . Weiterhin ist eine Expression in Neuronen des Rückenmarks und der Spinalganglien sichtbar (g,h) . Desweiteren ist eine geringe Expression in einer einzelnen Schicht unter der Haut sichtbar (g,h). iz = Intermediatzone, mz = Mantelzone, sc = Rückenmark, sga = Spinalganglien, sk = Haut, svl = Subventricularschicht , vn = Ventrikel. Balken = 100 μm.Fig. 28: Expression of the T gene during the development of the nervous system. Expression of the T gene in neurons in the mantle zone of the developing brain and in nuclei of peripheral nerves (arrow in b). No expression is visible in proliferating neurons in the subventricular layer or in migrating neurons in the intermediate zone (c, d). On day 16.5 dcp a strong expression in differentiating neurons of the mantle zone of the telencephalon is visible (e, d). Expression in neurons of the spinal cord and spinal ganglia is also visible (g, h). Furthermore, low expression is visible in a single layer under the skin (g, h). iz = intermediate zone, mz = mantle zone, sc = spinal cord, sga = spinal ganglia, sk = skin, svl = subventricular layer, vn = ventricle. Bar = 100 μm.
BEISPIEL 4: Herstellung von AntikörpernEXAMPLE 4: Preparation of Antibodies
Mit einen synthetisch hergestellten Peptid der Sequenz "EKGEDPETRRMRTVKNIAD " werden Tiere zur Erzeugung von Antikörpern gegen das T-Protein wie folgt immunisiert:Animals are immunized with a synthetically produced peptide of the sequence "EKGEDPETRRMRTVKNIAD" to generate antibodies against the T protein as follows:
Immunisierunqsprotokoll für polyklonale Antikörper imImmunization protocol for polyclonal antibodies in the
KaninchenRabbits
Pro Immunisierung werden 600 μg gereinigtes KLH-gekoppeltes600 μg of purified KLH are coupled per immunization
Peptid in 0,7 ml PBS und 0,7 ml komplettem bzw. inkomplettem
Freund 's Adjuvans eingesetzt.Peptide in 0.7 ml PBS and 0.7 ml complete or incomplete Freund's adjuvant used.
Tag 0: 1. Immunisierung (komplettes Freund ' s Adjuvans) Tag 14: 2. Immunisierung (inkomplettes Freund' s Adjuvans; icFA)Day 0: 1st immunization (complete Freund's adjuvant) Day 14: 2nd immunization (incomplete Freund's adjuvant; icFA)
Tag 28 3. Immunisierung (icFA) Tag 56 4. Immunisierung (icFA) Tag 80 AusblutenDay 28 3rd Immunization (icFA) Day 56 4th Immunization (icFA) Day 80 Bleed
Das Serum des Kaninchens wird im Immunoblot getestet. Hierzu wird das zur Immunisierung eingesetzte Peptid einer SDS- Polyacrylamid-Gelelektrophorese unterzogen und auf ein Nitrocellulosefilter übertragen (vgl. Khyse-Andersen, J., J. Biochem. Biophys . Meth. 10, (1984), 203-209). Die Western Blot-Analyse wurde wie in Bock, C.-T. et al . , Virus Genes 8, (1994), 215-229, beschrieben, durchgeführt. Hierzu wird das Nitrocellulosefilter eine Stunde bei 37°C mit einem ersten Antikörper inkubiert. Dieser Antikörper ist das Serum des Kaninchens (1:10000 in PBS) . Nach mehreren Waschschritten mit PBS wird das Nitrocellulosefilter mit einem zweiten Antikörper inkubiert. Dieser Antikörper ist ein mit alkalischer Phospha- tase gekoppelter monoklonaler Ziege Anti-Kaninchen-IgG- Antikörper (Dianova) (1:5000) in PBS. Nach 30-minütiger Inkubation bei 37°C folgen mehrere Waschschritte mit PBS und anschließend die alkalische Phosphatase-Nachweisreaktion mit Entwicklerlösung (36μM 5' Bromo-4-chloro-3-indolylphosphat , 400μM Nitroblau-tetrazolium, lOOmM Tris-HCl, pH 9.5, 100 mM NaCl, 5 mM MgCl2) bei Raumtemperatur, bis Banden sichtbar werden .The rabbit's serum is tested in an immunoblot. For this purpose, the peptide used for immunization is subjected to SDS-polyacrylamide gel electrophoresis and transferred to a nitrocellulose filter (cf. Khyse-Andersen, J., J. Biochem. Biophys. Meth. 10, (1984), 203-209). Western blot analysis was performed as in Bock, C.-T. et al. , Virus Genes 8, (1994), 215-229. For this purpose, the nitrocellulose filter is incubated for one hour at 37 ° C. with a first antibody. This antibody is rabbit serum (1: 10000 in PBS). After several washing steps with PBS, the nitrocellulose filter is incubated with a second antibody. This antibody is an alkaline phosphatase-linked monoclonal goat anti-rabbit IgG antibody (Dianova) (1: 5000) in PBS. After 30 minutes of incubation at 37 ° C, there are several washing steps with PBS and then the alkaline phosphatase detection reaction with developer solution (36μM 5 'bromo-4-chloro-3-indolylphosphate, 400μM nitroblue tetrazolium, 100mm Tris-HCl, pH 9.5, 100 mM NaCl, 5 mM MgCl 2 ) at room temperature until bands become visible.
Es zeigt sich, daß erfindungsgemäße, polyklonale Antikörper hergestellt werden können.It turns out that polyclonal antibodies according to the invention can be produced.
Immunisierungsprotokoll für polyklonale Antikörper im Huhn Pro Immunisierung werden 100 μg gereinigtes KLH-gekoppeltes Peptid in 0,8 ml PBS und 0,8 ml komplettem bzw. inkomplettem Freund 's Adjuvans eingesetzt.
Tag 0. 1. Immunisierung (komplettes Freund' s Adjuvans)Immunization protocol for polyclonal antibodies in chicken 100 μg of purified KLH-coupled peptide in 0.8 ml of PBS and 0.8 ml of complete or incomplete Freund's adjuvant are used per immunization. Day 0. 1. Immunization (complete Freund's adjuvant)
Tag 28: 2. Immunisierung (inkomplettes Freund' s Adjuvans; icFA)Day 28: 2nd immunization (incomplete Freund's adjuvant; icFA)
Tag 50: 3. Immunisierung (icFA)Day 50: 3rd immunization (icFA)
Aus Eigelb werden Antikörper extrahiert und im Western Blot getestet. Es werden erfindungsgemäße, polyklonale Antikörper nachgewiesen.Antibodies are extracted from egg yolk and tested in a Western blot. Polyclonal antibodies according to the invention are detected.
Immunisierunqsprotokoll für monoklonale Antikörper der Maus Pro Immunisierung werden 250 μg gereinigtes KLH-gekoppeltes Peptid in 0,25 ml PBS und 0,25 ml komplettem bzw. inkomplettem Freund' s Adjuvans eingesetzt; bei der 4. Immunisierung ist das Peptid in 0,5 ml (ohne Adjuvans) gelöst.Immunization protocol for mouse monoclonal antibodies Pro immunization uses 250 μg of purified KLH-coupled peptide in 0.25 ml of PBS and 0.25 ml of complete or incomplete Freund's adjuvant; at the 4th immunization the peptide is dissolved in 0.5 ml (without adjuvant).
Tag 0. 1. Immunisierung (komplettes Freund ' s Adjuvans)Day 0. 1. Immunization (complete Freund's adjuvant)
Tag 28: 2. Immunisierung (inkomplettes Freund' s Adjuvans; icFA)Day 28: 2nd immunization (incomplete Freund's adjuvant; icFA)
Tag 56: 3. Immunisierung (icFA)Day 56: 3rd immunization (icFA)
Tag 84: 4. Immunisierung (PBS) Tag 87 : FusionDay 84: 4. Immunization (PBS) Day 87: Fusion
Überstände von Hybridomen werden im Western Blot getestet. Erfindungsgemäße, monoklonale Antikörper werden nachgewiesen.Supernatants from hybridomas are tested in a Western blot. Monoclonal antibodies according to the invention are detected.
BEISPIEL 5: Immunhistochemische UntersuchungenEXAMPLE 5: Immunohistochemical Assays
Mit einem wie oben hergestellten äffinitätsgereinigten polyklonalen Kaninchenantikörper gegen das T-Protein (nachfolgend Erstantikörper genannt) wurden die in Fig. 24 gezeigten immunhistochemisehen Untersuchungen gemacht. Mausgehirn wurde entnommen und wie folgt behandelt.The immunohistochemical tests shown in FIG. 24 were carried out with an affinity-purified polyclonal rabbit antibody against the T protein (hereinafter referred to as first antibody) prepared as above. Mouse brain was removed and treated as follows.
l.Tag1st day
Schnittdicke 6-10 μm, übliche Fixierung auf Objektträgern,Section thickness 6-10 μm, usual fixation on slides,
Aufbewahrung bis etwa 2 Monate in -80°C
Schnitte am Abend vorher rausnehmen und über Nacht bei RT trocknen lassenStorage up to about 2 months in -80 ° C Take the cuts out the evening before and let them dry overnight at RT
Objektträger in PBS spülen, abkippen, nochmal spülen, danachRinse slides in PBS, tip over, rinse again, then
10 min in PBS stehen lassen, Objektträger herausnehmen und um das Gewebe herum dieLet stand in PBS for 10 min, remove slides and around the tissue
Flüssigkeit mit einem Tuch abwischen.Wipe off the liquid with a cloth.
Mit PAP-PEN (Eiweiß-Glycerin; Fa. Dako) einkreisen, daß keineCircle with PAP-PEN (protein glycerin; Dako) that none
Flüssigkeit mehr herauslaufen kann.Liquid can run out more.
100 μl Peroxidase Blocking Solution (Fa. Dako, Hamburg) zugeben, 20 min inkubierenAdd 100 μl peroxidase blocking solution (from Dako, Hamburg), incubate for 20 min
Objektträger in PBS spülen, abkippen, nochmals spülen, danachRinse slides in PBS, tip, rinse again, then
10 min in PBS stehen lassen.Let stand in PBS for 10 min.
Objektträger herausnehmen und um das Gewebe herum dieRemove the slide and the tissue around the tissue
Flüssigkeit mit einem Tuch abwischen. Normal- (Schaf ) -Serum mit PBS 1:10 verdünnen (z.B. Schaf DakoWipe off the liquid with a cloth. Dilute normal (sheep) serum 1:10 with PBS (e.g. sheep Dako
X0503, Fa. Dako Hamburg), 100 μl hiervon zugeben und 20 min inkubierenX0503, from Dako Hamburg), add 100 μl of it and incubate for 20 min
Objektträger in PBS spülen, abkippen, nochmal spülen, danachRinse slides in PBS, tip over, rinse again, then
10 min in PBS stehen lassen, Objektträger herausnehmen und um das Gewebe herum dieLet stand in PBS for 10 min, remove slides and around the tissue
Flüssigkeit mit einem Tuch abwischen.Wipe off the liquid with a cloth.
Erstantikörper in einer Verdünnungen von 1:100 zugeben.Add first antibody in a dilution of 1: 100.
100 μl Erstantikörper zugeben (in PBS) und im Kühlschrank in feuchter Kammer über Nacht inkubieren. Kontrolle: ohne ErstantikörperAdd 100 μl of first antibody (in PBS) and incubate in the refrigerator in a moist chamber overnight. Control: without first antibody
2. Tag2 day
Feuchte Kammer aus dem Kühlschrank nehmen und bei RT stehen lassen. Objektträger in PBS spülen, abkippen, nochmal spülen, danach 10 min in PBS stehen lassen, wenn viele Objektträger analysiert werden, zweimal mit PBS waschen.Take the moist chamber out of the refrigerator and let it stand at RT. Rinse slides in PBS, tip over, rinse again, then leave to stand in PBS for 10 min, if many slides are analyzed, wash twice with PBS.
Objektträger herausnehmen und um das Gewebe herum die Flüssigkeit mit einem Tuch abwischen.Remove the slide and wipe the liquid around the tissue with a cloth.
Zweitantikörper 'Antirabbit-Biotinyliert ' 1:100 (Fa. Amersham, Braunschweig) in PBS verdünnen und 100 μl davon zugeben. 45 min in feuchter Kammer bei RT inkubieren.
Objektträger in PBS spülen, abkippen, nochmal spülen, danach 10 min in PBS stehen lassen,Dilute the second antibody 'Antirabbit-Biotinylated' 1: 100 (Amersham, Braunschweig) in PBS and add 100 μl. Incubate for 45 min in a moist chamber at RT. Rinse slides in PBS, tip over, rinse again, then leave to stand in PBS for 10 min.
Objektträger herausnehmen und um das Gewebe herum die Flüssigkeit mit einem Tuch abwischen.Remove the slide and wipe the liquid around the tissue with a cloth.
Streptavidin-Peroxidase (Streptavidin-horseraddish) (Fa. Amersham, Braunschweig) 1:100 mit PBS verdünnen und 100 μl davon zugeben.Dilute streptavidin peroxidase (Streptavidin-horseraddish) (from Amersham, Braunschweig) 1: 100 with PBS and add 100 μl.
45 min in feuchter Kammer bei RT inkubieren. Objektträger in PBS spülen, abkippen, nochmals spülen, danach 10 min in PBS stehen lassen,Incubate for 45 min in a moist chamber at RT. Rinse slides in PBS, tip over, rinse again, then leave to stand in PBS for 10 min.
Objektträger herausnehmen und um das Gewebe herum die Flüssigkeit mit einem Tuch abwischen.Remove the slide and wipe the liquid around the tissue with a cloth.
Färben : Pro ml Puffer einen Tropfen Chromogen kurz vorStaining: A drop of chromogen per ml of buffer shortly before
Benutzung zugeben. Vortexen und dunkel stellen.Admit usage. Vortex and darken.
100 μl Färbelösung (Fa. Dako, Hamburg) zugeben. Zum Schluß dieAdd 100 μl of staining solution (Dako, Hamburg). Finally the
Kontrolle färben. Etwa 2 min inkubieren.Color control. Incubate for approximately 2 minutes.
Objektträger in Wasser inkubieren. Unter dem Mikroskop anschauen.Incubate slides in water. Look under the microscope.
1-2 Tropfen Crystal Mount auf Schnitt geben. Falls eine Luftblase vorhanden ist, mit einem Papiertaschentuch absaugen. Der Rest des Objektträgers wird mit HCl-EtOH zur Entfernung der Farbe abgewischt.Place 1-2 drops of Crystal Mount on the cut. If there is an air bubble, vacuum with a tissue. The rest of the slide is wiped with HCl-EtOH to remove the color.
Auf Deckgals einen Strich Klebstoff (Eukitt) geben. Deckglas auf Objektträger ohne Erzeugung von Luftblasen andrücken.Put a line of glue (eu putty) on the cover gals Press the coverslip onto the slide without creating air bubbles.
Das Enzym am Zweitantikörper führt zu einer Farbstoffbildung (DAB) , wodurch das T-Protein nachgewiesen werden kann.The enzyme on the second antibody leads to the formation of a dye (DAB), whereby the T protein can be detected.
Fig. 24 (a-d) : lichtmikroskopische Aufnahmen, die zeigen, dass das T-Protein im oder am Kern der Zelle lokalisiert ist. Die elekronenmikrospopsiche Aufnahme in e zeigt, dass das T- Protein nicht im Kern, sondern in der Membran lokalisiert ist. Die Bilder sind in sehr guter Übereinstimmung mit einer Funktion als membranständiges Kernporenprotein. Die Pfeile in
e zeigen den gebildeten Farbstoff , der auf der cytoplasmatischen Seite der Kernmembran zu sehen ist.
Fig. 24 (ad): light microscopic images showing that the T protein is located in or on the nucleus of the cell. The electron microscopic image in e shows that the T protein is not located in the nucleus but in the membrane. The images are in very good agreement with a function as a membrane-bound nuclear pore protein. The arrows in e show the dye formed, which can be seen on the cytoplasmic side of the core membrane.
Claims
1. DNA-Sequenz, die ein Protein codiert, das an der Entwicklung des Nervensystems, insbesondere des ZNS, beteiligt ist und gewebe- und entwicklungsspezifisch exprimiert wird, wobei die DNA-Sequenz folgende DNA- Sequenzen umfaßt:1. DNA sequence which encodes a protein which is involved in the development of the nervous system, in particular the CNS, and which is expressed in a tissue- and development-specific manner, the DNA sequence comprising the following DNA sequences:
(a) die DNA-Sequenz von Fig. 1, Fig. 2, Fig. 3,(a) the DNA sequence of FIGS. 1, 2, 3,
Fig. 4, Fig. 5, Fig. 6, Fig. 7 oder Fig. 8;4, 5, 6, 7 or 8;
(b) die DNA-Sequenz von Fig. 9 oder Fig. 10;(b) the DNA sequence of Figure 9 or 10;
(c) die DNA-Sequenz von Fig. 11;(c) the DNA sequence of Figure 11;
(d) die DNA-Sequenz von Fig. 12 oder Fig. 13; (e) die DNA-Sequenz von Fig. 14 oder Fig. 15,(d) the DNA sequence of Figure 12 or 13; (e) the DNA sequence of FIG. 14 or 15,
(f) die DNA-Sequenz von Fig. 16,(f) the DNA sequence of Fig. 16,
(g) die DNA-Sequenz von Fig. 17 oder 18, (h) die DNA-Sequenz von Fig. 19,(g) the DNA sequence of Fig. 17 or 18, (h) the DNA sequence of Fig. 19,
(i) eine mit (a) , (b) , (c) , (d) , (e) , (f ) , (g) oder (h) hybridisierende DNA-Sequenz;(i) a DNA sequence hybridizing with (a), (b), (c), (d), (e), (f), (g) or (h);
(j) Fragmente, Varianten, funktioneile Äquivalente, Derivate oder Vorläufer der DNA- Sequenz von (a) , (b) , (c) , (d) , (e) , (f ) , (g) , (h) oder (i) ; oder (k) eine DNA-Sequenz, die sich von der DNA-Sequenz von (a), (b), (c) , (d) , (e) , (f ) , (g) , (h) , (i) oder (j) aufgrund der Degeneration des genetischen Codes unterscheidet.(j) Fragments, variants, functional equivalents, derivatives or precursors of the DNA sequence of (a), (b), (c), (d), (e), (f), (g), (h) or (i); or (k) a DNA sequence that differs from the DNA sequence of (a), (b), (c), (d), (e), (f), (g), (h), ( i) or (j) differs due to the degeneration of the genetic code.
2. DNA-Sequenz nach Anspruch 1, die ein Protein bzw. Peptid codiert, das die Aminosäuresequenz von Fig. 1, Fig. 9, Fig. 11, Fig, 12, Fig. 13, Fig. 14, Fig. 15, Fig. 16, Fig. 17, Fig. 18 oder Fig. 19 umfaßt, wobei das Protein bzw. Peptid die in Anspruch 1 definierte biologische Aktivität hat.2. DNA sequence according to claim 1, which encodes a protein or peptide which contains the amino acid sequence of FIGS. 1, 9, 11, 12, 13, 14, 15, 15 16, 17, 18 or 19, wherein the protein or peptide has the biological activity defined in claim 1.
3. Antisense-RNA, dadurch gekennzeichnet, daß sie zu der DΝA-Sequenz von Anspruch 1 oder 2 komplementär ist und die Synthese des von dieser DNA-Sequenz codierten Proteins verringern oder hemmen kann.3. Antisense RNA, characterized in that it is complementary to the DΝA sequence of claim 1 or 2 and may reduce or inhibit the synthesis of the protein encoded by this DNA sequence.
Ribozym, dadurch gekennzeichnet, daß es zu der DNA- Sequenz von Anspruch 1 oder 2 komplementär ist und an die von dieser DNA-Sequenz transkribierte RNA spezifisch binden und diese spalten kann, wodurch die Synthese des von dieser DNA-Sequenz codierten Proteins verringert oder gehemmt wird.Ribozyme, characterized in that it is complementary to the DNA sequence of claim 1 or 2 and can specifically bind to and cleave the RNA transcribed from this DNA sequence, thereby reducing or inhibiting the synthesis of the protein encoded by this DNA sequence becomes.
5. Expressionsvektor, die DΝA-Sequenz nach Anspruch 1 oder 2 enthaltend oder die Antisense-RNA nach Anspruch 3 oder das Ribozym nach Anspruch 4 codierend.5. Expression vector containing the DΝA sequence according to claim 1 or 2 or the antisense RNA according to claim 3 or the ribozyme according to claim 4.
6. Expressionsvektor nach Anspruch 5, wobei dieser zusätzlich den Promotor des humanen T-Gens oder eines Orthologen des T-Gens beinhaltet.6. Expression vector according to claim 5, which additionally contains the promoter of the human T gene or an orthologist of the T gene.
7. Expressionsvektor nach Anspruch 5 oder 6, der das T- , T2- oder T3-Protein oder Fragmente davon in Form eines7. Expression vector according to claim 5 or 6, which the T, T2 or T3 protein or fragments thereof in the form of a
Reporterfusionsproteins kodiert.Reporter fusion protein encoded.
8. Wirtszelle, die mit dem Expressionsvektor nach einem der Ansprüche 5-7 transformiert ist.8. host cell transformed with the expression vector according to any one of claims 5-7.
9. Protein, das von der DΝA-Sequenz nach Anspruch 1 oder 2 codiert wird und das an der Entwicklung des Nervensystems beteiligt ist und gewebe- und entwicklungsspezifisch exprimiert wird bzw. Fusionsproteine, Fragmente, Varianten, Derivate oder Vorläufer des Proteins.9. Protein which is encoded by the DΝA sequence according to claim 1 or 2 and which is involved in the development of the nervous system and is expressed in a tissue- and development-specific manner or fusion proteins, fragments, variants, derivatives or precursors of the protein.
10. Protein nach Anspruch 9, wobei dieses eines der folgenden Motive aufweist:10. Protein according to claim 9, which has one of the following motifs:
Motiv 1 (A,T) (I,P,V) (L,T) (G,A,Q) (L, V) XXX (L, V) Motiv 2 IYTDWAN Motiv 3 AXXXXXXXXXGXXXXXXAXXXXXXXXXXXXXXXXXXQ Motiv 4 SXXXXDX ( 12 , 20 ) KX ( 17 , 22 ) AXXXXXXXXL Motiv 5 IYTDWANXXLX (K, R) Motiv 6: KX(18,21)AXXXXXXXXLX(15,24)S Motiv 7: NX(3,11)SXXXAXXXXXXXLMotif 1 (A, T) (I, P, V) (L, T) (G, A, Q) (L, V) XXX (L, V) Motif 2 IYTDWAN Motif 3 AXXXXXXXXXGXXXXXXAXXXXXXXXXXXXXXXXXXXXQ Motif 4 SXXXXDX (12, 20 ) KX (17, 22) AXXXXXXXXL style 5 IYTDWANXXLX (K, R) Motif 6: KX (18.21) AXXXXXXXXLX (15.24) S Motif 7: NX (3.11) SXXXAXXXXXXXL
mit : X = jede Aminosäure (A,T) = Aminosäure A oder T an dieser Stellewith: X = each amino acid (A, T) = amino acid A or T at this point
X(Zahl 1, Zahl 2) = Zahl 1 bis Zahl 2 X's an dieser StelleX (number 1, number 2) = number 1 to number 2 X's at this point
11. Verfahren zur Herstellung des Proteins nach Anspruch 9, das die Züchtung der Wirtszelle nach Anspruch 8 unter geeigneten Bedingungen und die Gewinnung des Proteins aus der Zelle oder dem Zuchtmedium umfaßt.11. A method for producing the protein of claim 9, which comprises culturing the host cell of claim 8 under suitable conditions and recovering the protein from the cell or the growth medium.
12. Antikörper, der gegen das Protein nach Anspruch 9 gerichtet ist, oder Fragment davon.12. Antibody directed against the protein of claim 9, or fragment thereof.
13. Antikörper nach Anspruch 12, wobei dieser durch Immunisierung von Tieren mit einen Peptid mit der Sequenz "EKGEDPETRRMRTVKNIAD" erhalten wird.13. The antibody of claim 12, which is obtained by immunizing animals with a peptide having the sequence "EKGEDPETRRMRTVKNIAD".
14. Verwendung der DNA-Sequenz nach Anspruch 1 oder 2, der Antisense-RNA nach Anspruch 3 , des Ribozyms nach Anspruch 4, des Expressionsvektors nach einem der Ansprüche 5-7, des Proteins nach Anspruch 9 oder des Antikörpers oder des Fragments davon nach Anspruch 12 oder 13 zur Prävention oder Behandlung von Erkrankungen des Nervensystems, insbesondere des ZNS.14. Use of the DNA sequence according to claim 1 or 2, the antisense RNA according to claim 3, the ribozyme according to claim 4, the expression vector according to one of claims 5-7, the protein according to claim 9 or the antibody or the fragment thereof Claim 12 or 13 for the prevention or treatment of diseases of the nervous system, in particular the CNS.
15. Verwendung nach Anspruch 14, wobei die Erkrankung des Nervensystems eine Tumorerkrankung des ZNS ist.15. Use according to claim 14, wherein the disease of the nervous system is a tumor disease of the CNS.
16. Verwendung nach Anspruch 14, wobei es sich bei der Behandlung von Erkrankungen des Nervensystems um die Förderung der neuronalen Regeneration bei Verletzungen des Nervensystems und bei degenerativen Erkrankungen des16. Use according to claim 14, wherein it is in the treatment of diseases of the nervous system to promote neuronal regeneration in injuries to the nervous system and in degenerative diseases of the
Nervensystems hande11.Nervous system hand11.
17. Verwendung nach Anspruch 14, wobei es sich bei der Behandlung von Erkrankungen des Nervensystems um die Wiederherstellung der neuronalen Verknüpfungen und der Wiederherstellung von angeborenen und erworbenen Fehlfunktionen des Nervensystems handelt.17. Use according to claim 14, wherein it is the Treatment of diseases of the nervous system involves the restoration of the neural connections and the restoration of congenital and acquired malfunctions of the nervous system.
18. Verwendung nach Anspruch 15 zur Hemmung des Wachstums und der Ausbreitung von Tumorzellen.18. Use according to claim 15 for inhibiting the growth and spread of tumor cells.
19. Diagnoseverfahren zum Nachweis einer gestörten Expression des Proteins nach Anspruch 9 oder zum Nachweis einer veränderten Form dieses Proteins, bei dem man eine Probe mit der DNA-Sequenz nach Anspruch 1 oder 2 oder dem Antikörper oder dem Fragment davon nach Anspruch 12 oder 13 in Berührung bringt und sodann direkt oder indirekt bestimmt, ob sich die Konzentration des Proteins und/oder seine Aminosäuresequenz im Vergleich zu einer aus einem gesunden Patienten gewonnenen Protein unterscheiden.19. Diagnostic method for the detection of a disturbed expression of the protein according to claim 9 or for the detection of an altered form of this protein, in which a sample with the DNA sequence according to claim 1 or 2 or the antibody or the fragment thereof according to claim 12 or 13 in Touches and then directly or indirectly determines whether the concentration of the protein and / or its amino acid sequence differ from a protein obtained from a healthy patient.
20. Diagnostischer Kit zur Durchführung des Verfahrens nach Anspruch 19, der die DNA-Sequenz nach Anspruch 1 oder 2 und/oder den Antikörper oder das Fragment davon nach Anspruch 12 oder 13 enthält.20. Diagnostic kit for performing the method according to claim 19, which contains the DNA sequence according to claim 1 or 2 and / or the antibody or the fragment thereof according to claim 12 or 13.
21. Nicht-menschliches Säugetier, dessen natürlich vorkommendes T-, T2- oder T3-Gen eine Veränderung der21. Non-human mammal, the naturally occurring T, T2 or T3 gene of which is a change in
Genstruktur oder der Gensequenz aufweist.Has gene structure or the gene sequence.
22. Nicht-menschliches Säugetier, wobei eine Veränderung der Genstruktur des T-, T2- oder T3-Gens in dem Säugetier durch die Einführung einer Deletion, an dessen Stelle eine homologe oder heterologe Sequenz eingeführt wird, erreicht wird.22. Non-human mammal, wherein a change in the gene structure of the T, T2 or T3 gene in the mammal is achieved by the introduction of a deletion, in the place of which a homologous or heterologous sequence is introduced.
23. Nicht-menschliches Säugetier, wobei eine Veränderung der Genstruktur des T-, T2-oder T3-Gens durch Insertion einer homologen oder heterologen Sequenz in das in dem Säugetier natürlich vorkommenden entsprechenden Gen erreicht wird. 23. Non-human mammal, wherein a change in the gene structure of the T, T2 or T3 gene is achieved by inserting a homologous or heterologous sequence into the corresponding gene naturally occurring in the mammal.
24. Nicht-menschliches Säugetier nach Anspruch 22 oder 23, wobei die heterologe Sequenz eine Selektionsmarkersequenz ist .24. The non-human mammal of claim 22 or 23, wherein the heterologous sequence is a selection marker sequence.
25. Nicht-menschliches Säugetier nach Anspruch 24, wobei die Selektionsmarkersequenz Resistenz gegen Neomycin vermittelt .25. The non-human mammal of claim 24, wherein the selection marker sequence mediates resistance to neomycin.
26. Verfahren zur Herstellung eines nicht-menschlichen Säugetiers nach einem der Ansprüche 21-25 gekennzeichnet durch die folgenden Schritte:26. A method for producing a non-human mammal according to any one of claims 21-25, characterized by the following steps:
(a) Herstellung eines DNA-Fragments, insbesondere eines Vektors, enthaltend ein verändertes T-, T2- oder T3-Gen, wobei das T-, T2- oder T3-Gen durch(a) Production of a DNA fragment, in particular a vector, containing an altered T, T2 or T3 gene, the T, T2 or T3 gene being replaced by
Insertion einer heterologen Sequenz, insbesondere eines selektierbaren Markers, verändert worden ist;Insertion of a heterologous sequence, in particular a selectable marker, has been changed;
(b) Präparation embryonaler Stammzellen aus einem nicht-menschlichen Säuger (bevorzugt Maus); (c) Transformation der embryonalen Stammzellen von(b) preparation of embryonic stem cells from a non-human mammal (preferably mouse); (c) Transformation of embryonic stem cells from
Schritt (b) mit dem DNA-Fragment von Schritt (a) , wobei das T-Gen in den embryonalen Stammzellen durch homologe Rekombination mit dem DNA-Fragment von (a) verändert wird, (d) Kultivieren der Zellen von Schritt (c) ,Step (b) with the DNA fragment from step (a), the T gene in the embryonic stem cells being changed by homologous recombination with the DNA fragment from (a), (d) culturing the cells from step (c) ,
(e) Selektion der kultivierten Zellen von Schritt (d) auf das Vorhandensein der heterologen Sequenz, insbesondere des selektierbaren Markers,(e) selection of the cultured cells from step (d) for the presence of the heterologous sequence, in particular the selectable marker,
(f) Erzeugen chimerer nicht-menschlicher Säuger aus den Zellen von Schritt (e) durch Injektion dieser(f) Generating chimeric non-human mammals from the cells of step (e) by injection
Zellen in Säuger-Blastocysten (bevorzugt Maus- Blastozyten) , Übertragen der Blastozysten in pseudo-schwangere weibliche Säuger (bevorzugt Maus) und Analyse der erhaltenen Nachkommen auf eine Veränderung des T-, T2- oder T3-Gens.Cells in mammalian blastocysts (preferably mouse blastocytes), transferring the blastocysts into pseudo-pregnant female mammals (preferably mouse) and analysis of the progeny obtained for a change in the T, T2 or T3 gene.
27. Transgene Zelle oder Gewebe, die bzw. das in der Lage ist, ein T-Protein oder ein Teil des T-Proteins bzw. ein Orthologes davon zu exprimieren.27. A transgenic cell or tissue capable of producing a T protein or part of the T protein To express orthologes of it.
28. Verwendung des nicht-menschlichen Säugetiers nach einem der Ansprüche 21-25 oder der transgenen Zelle oder des transgenen Gewebes nach Anspruch 27 für die Analyse der28. Use of the non-human mammal according to any one of claims 21-25 or the transgenic cell or transgenic tissue according to claim 27 for the analysis of the
Funktion der T-Gen-Familie.Function of the T gene family.
29. Verwendung des nicht-menschlichen Säugetiers nach einem der Ansprüche 21-25 oder der transgenen Zelle oder des transgenen Gewebes nach Anspruch 27 zur Identifizierung von Inhibitoren und Enhancern der T-Gen-Familie.29. Use of the non-human mammal according to one of claims 21-25 or the transgenic cell or the transgenic tissue according to claim 27 for the identification of inhibitors and enhancers of the T gene family.
30. Vertebratengen sowie funktionelles Äquivalent, Derivat oder ein Bioprecursor davon, wobei diese für ein Protein kodieren, das eine statistisch signifikante30. Vertebrate gene as well as functional equivalent, derivative or a bioprecursor thereof, which code for a protein that is statistically significant
Aminosäuresequenzhomologie zum T-Gen, T2-Gen oder T3-Gen gemäß einer der Figuren Fig. 1, Fig. 9, Fig. 11, Fig, 12, Fig. 13, Fig. 14, Fig. 15, Fig. 16, Fig. 17, Fig. 18 oder Fig. 19 aufweist.Amino acid sequence homology to the T gene, T2 gene or T3 gene according to one of the figures FIG. 1, 9, 11, 12, 13, 14, 15, 16, 16 17, 18 or 19.
31. T-Gen und dessen Ve r t e br a t e n o r t h o 1 o g e und Vertebratenparaloge, die ein Kernporenprotein kodieren.31. T-Gen and its Ver br t e n o r t h o 1 o g e and vertebrate paralogues encoding a nuclear pore protein.
32. Vertebratenprotein, das eine Aminosäuresequenz gemäß Fig. 1 aufweist oder eine Aminosäuresequenz, die sich von der32. Vertebrate protein which has an amino acid sequence according to FIG. 1 or an amino acid sequence which differs from that
Aminosäuresequenz in Figur 1 in einer oder mehreren Aminosäuren unterscheidet.Amino acid sequence in Figure 1 differs in one or more amino acids.
33. Vertebraten T-, T2- oder T3-Gen und das darin kodierte Protein, in allen seinen in der Natur vorkommenden allelischen und mutierten Formen.33. Vertebrate T, T2 or T3 gene and the protein encoded therein, in all its naturally occurring allelic and mutant forms.
34. Arzneimittel enthaltend ein Protein gemäß Anspruch 9 oder ein funktionelles Äquivalent, ein Fragment oder einen Bioprecursor davon in Kombination mit einem pharmazeutisch geeigneten Träger.34. Medicament containing a protein according to claim 9 or a functional equivalent, a fragment or a bioprecursor thereof in combination with a pharmaceutically suitable carrier.
35. Verfahren zur Identifizierung von Stoffen, die einen verstärkenden oder hemmenden Einfluß auf die Wirkung von T-Protein, T2-Protein oder T3-Protein haben, mittels35. Methods of identification of substances that have a reinforcing or inhibiting influence on the action of T-protein, T2-protein or T3-protein, by means of
Bestimmung des bidirektionalen Transports durch die Kernporen, - Bestimmung der Bindung an Filamente der Zelle (z.B.Determination of the bidirectional transport through the nuclear pores, determination of the binding to filaments of the cell (e.g.
Aktinfilamente und Mikrotubuli) , oder Bestimmung der erhöhten bzw. verringerten Transkription von zellulären oder Reportergenen.Actin filaments and microtubules), or determining the increased or decreased transcription of cellular or reporter genes.
36. Verfahren zur Identifizierung von Stoffen, die einen verstärkenden oder hemmenden Einfluß auf die Wirkung von Proteinen haben, die mit dem T-Protein in direkter oder indirekter Weise funktioneil verbunden sind, oder parallele Signal- oder Funktionswege darstellen, mittels - Bestimmung des bidirektionalen Transports durch die36. Method for the identification of substances which have a reinforcing or inhibiting influence on the action of proteins which are functionally linked to the T-protein in a direct or indirect manner, or which represent parallel signal or function paths, by means of - determination of the bidirectional transport through the
Kernporen,Nuclear pores,
Bestimmung der P h o s p h o r y 1 i e r u n g und Dephosphorylierung von Proteinen,Determination of the p h o r y 1 i e r u n g and dephosphorylation of proteins,
Bestimmung der Bindung des T-Proteins an Filamente der Zelle (z.B. Aktinfilamente und Mikrotubuli), oderDetermination of the binding of the T protein to filaments of the cell (e.g. actin filaments and microtubules), or
Bestimmung der erhöhten oder verringerten Transkription von zellulären oder Reportergenen.Determination of the increased or decreased transcription of cellular or reporter genes.
37. Verfahren nach Anspruch 35 oder 36, wobei die veränderte Transkription mit Reportermolekülen, vorzugsweise dem Auftreten von bestimmten mRNAs oder dem EGFP-Protein, nachgewiesen wird.37. The method according to claim 35 or 36, wherein the altered transcription with reporter molecules, preferably the occurrence of certain mRNAs or the EGFP protein, is detected.
38. Verfahren zur Identifizierung von weiteren Proteinen, die bei der Entwicklung und Funktion des Nervensystems eine Rolle spielen und/oder ein Kernporenprotein sind, wobei das Verfahren folgende Schritte aufweist:38. A method for identifying further proteins that play a role in the development and function of the nervous system and / or are a nuclear pore protein, the method comprising the following steps:
(a) Herstellen eines Antikörpers gegen ein Protein gemäß Anspruch 9 ,(a) producing an antibody against a protein according to claim 9,
(b) Kontaktieren eines Zellextrakts mit dem Antikörper und Identifizieren des Antikörper / Pro tein- Komplexes, (c) Analysieren des Komplexes, um ein Protein zu identifizieren, das an das Protein des Komplexes gebunden hat und kein Antikörper ist, und(b) contacting a cell extract with the antibody and identifying the antibody / protein complex, (c) analyzing the complex to identify a protein that has bound to the protein of the complex and is not an antibody, and
(d) ggf. Wiederholen der Schritte (a) bis (c) , um weitere Proteine dieser Funktion zu identifizieren. (d) optionally repeating steps (a) to (c) in order to identify further proteins of this function.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19908423 | 1999-02-26 | ||
DE19908423A DE19908423A1 (en) | 1999-02-26 | 1999-02-26 | Protein involved in the development of the CNS |
PCT/DE2000/000583 WO2000050451A2 (en) | 1999-02-26 | 2000-02-28 | Protein (tp) that is involved in the development of the nervous system |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1165607A2 true EP1165607A2 (en) | 2002-01-02 |
Family
ID=7899009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00916770A Withdrawn EP1165607A2 (en) | 1999-02-26 | 2000-02-28 | Protein (tp) that is involved in the development of the nervous system |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1165607A2 (en) |
AU (1) | AU3801800A (en) |
DE (1) | DE19908423A1 (en) |
WO (1) | WO2000050451A2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10042609A1 (en) * | 2000-08-30 | 2002-03-28 | Deutsches Krebsforsch | Use of T-proteins for the differential characterization and therapy of injuries and tumors of the nervous system |
WO2003085134A2 (en) * | 2002-04-05 | 2003-10-16 | The University Of Tokyo | Methods of diagnosing and treating colorectal cancer |
EP3816934A1 (en) | 2019-11-04 | 2021-05-05 | Nathan Vinçon | Method of, and computerized system for labeling an image of cells of a patient |
WO2024215528A1 (en) | 2023-04-13 | 2024-10-17 | Ventana Medical Systems, Inc. | Proliferation assay for fixed solid tumors |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU3665893A (en) * | 1992-02-12 | 1993-09-03 | United States Of America, As Represented By The Secretary, Department Of Health And Human Services, The | Sequences characteristic of human gene transcription product |
ATE274578T1 (en) * | 1993-11-04 | 2004-09-15 | Innogenetics Nv | HUMAN T CELL IMMUNODOMINANT EPITOPES OF THE C-HEPATITIS VIRUS |
EP0679716A4 (en) * | 1993-11-12 | 1999-06-09 | Kenichi Matsubara | Gene signature. |
GB9510944D0 (en) * | 1995-05-31 | 1995-07-26 | Bogaert Thierry | Assays and processes for the identification of compounds which control cell behaviour,the compounds identified and their use in the control of cell behaviour |
EP0825198A1 (en) * | 1996-08-22 | 1998-02-25 | K.U. Leuven Research & Development | Plag gene family and tumorigenesis |
GB9625283D0 (en) * | 1996-12-04 | 1997-01-22 | Janssen Pharmaceutica Nv | Vertebrate homologues of unc-53 protein of c.elegans or functional eqivalents thereof and cdna sequences coding for said homologue |
WO1998046747A2 (en) * | 1997-04-11 | 1998-10-22 | Whitehead Institute For Biomedical Research | Genes in the non-recombining region of the y chromosome |
GB9811962D0 (en) * | 1998-06-03 | 1998-07-29 | Janssen Pharmaceutica Nv | Vertebrate homologue of UNC-53 protein of C.elegans |
-
1999
- 1999-02-26 DE DE19908423A patent/DE19908423A1/en not_active Withdrawn
-
2000
- 2000-02-28 EP EP00916770A patent/EP1165607A2/en not_active Withdrawn
- 2000-02-28 WO PCT/DE2000/000583 patent/WO2000050451A2/en not_active Application Discontinuation
- 2000-02-28 AU AU38018/00A patent/AU3801800A/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO0050451A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2000050451A3 (en) | 2001-08-02 |
WO2000050451A2 (en) | 2000-08-31 |
DE19908423A1 (en) | 2000-08-31 |
AU3801800A (en) | 2000-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69534310T2 (en) | PTC GENES AND ITS USE | |
DE69233477T2 (en) | TRANSGENIC NON-HUMAN ANIMALS WITHOUT PRION PROTEIN | |
DE69926731T2 (en) | DIAGNOSIS AND TREATMENT OF AUR1 AND / OR AUR2 RELATED DISEASES | |
DE69430130T2 (en) | POLYPEPTIDES FROM THE SEMAPHORIN GENFAMILY | |
DE69838905T2 (en) | TRANSCRIPTION FACTOR ISLET-BRAIN 1 (IB1) | |
DE68928491T2 (en) | PRODUCTS AND METHOD FOR CONTROLLING THE SUPPRESSION OF NEOPLASTIC PHENOTYPES | |
WO2002040668A2 (en) | Proteins and dna sequences underlying these proteins used for treating inflammations | |
DE69636870T2 (en) | KVLQT1 - A GENE OF LONG QT SYNDROME WHICH CODES FOR KVLQT1 AND WHICH IS COMPOSED WITH Mink TO MAKE IK'S CALIUM CHANNELS OF HEART | |
DE69934239T2 (en) | LY6H GEN | |
DE69733861T2 (en) | USE OF NEURONAL APOPTOSIS INHIBITOR PROTEIN | |
DE69924120T2 (en) | NUCLEIC ACID CODING FOR ATAXIN-2 BINDING PROTEINS, RELATED PRODUCTS AND METHODS FOR THE APPLICATION THEREOF | |
EP0805204B1 (en) | Epididymis-specific receptor protein and its use | |
EP1165607A2 (en) | Protein (tp) that is involved in the development of the nervous system | |
EP1317275A1 (en) | Medicament comprising a dna sequence which codes for the rna-binding koc protein, and comprising a koc protein or a dna sequence of the koc promoter | |
DE69734890T2 (en) | RdgB PROTEINS | |
DE69434090T2 (en) | EPSILON SUB-UNIT OF THE GABA A-RECEPTOR | |
WO2002017947A2 (en) | Use of t proteins for the differential characterization and treatment of lesions and tumors of the nervous system | |
DE60219164T2 (en) | POLYPEPTIDE WITH CELL DOMICIATING EFFECT | |
DE60217711T2 (en) | PTP10D NUCLEIC ACIDS AND PEPTIDES IN THE REGULATION OF ENERGY HOMEOSTASIS | |
DE69929876T2 (en) | FOR HM1.24 ANTIGEN CODING GEN AND ITS PROMOTER | |
DE60038025T2 (en) | HIGH AFFINITY-choline | |
DE69823022T2 (en) | NEW, HUMAN TUMORSUPPRESSORGEN. | |
DE19841413C1 (en) | New potassium channel protein, Kv6.2, used to screen for specific modulators, potentially useful e.g. as antiarrhythmic agents | |
EP1249495A1 (en) | Murine DNase X, pharmaceuticals containing thereof and non-human mammal with modified DNase X-gene | |
DE60024862T2 (en) | "INSULIN-DEPENDENT SEQUENCE DNA BINDING PROTEIN-1" (IRSDBP-1), A GENERIC ENCODER AND ITS USES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010824 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20030902 |