EP1151479A2 - Optical detector with a filter layer made of porous silicon and method for the production thereof - Google Patents
Optical detector with a filter layer made of porous silicon and method for the production thereofInfo
- Publication number
- EP1151479A2 EP1151479A2 EP99967910A EP99967910A EP1151479A2 EP 1151479 A2 EP1151479 A2 EP 1151479A2 EP 99967910 A EP99967910 A EP 99967910A EP 99967910 A EP99967910 A EP 99967910A EP 1151479 A2 EP1151479 A2 EP 1151479A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- filter layer
- filter
- optical detector
- contacts
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 17
- 229910021426 porous silicon Inorganic materials 0.000 title claims description 22
- 230000000694 effects Effects 0.000 claims abstract description 12
- 238000005530 etching Methods 0.000 claims description 20
- 238000009413 insulation Methods 0.000 claims description 18
- 229920002120 photoresistant polymer Polymers 0.000 claims description 13
- 230000001419 dependent effect Effects 0.000 claims description 12
- 230000003595 spectral effect Effects 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 238000000206 photolithography Methods 0.000 claims description 2
- 238000007704 wet chemistry method Methods 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 10
- 229910052710 silicon Inorganic materials 0.000 abstract description 10
- 239000010703 silicon Substances 0.000 abstract description 10
- 239000010410 layer Substances 0.000 description 52
- 239000000463 material Substances 0.000 description 6
- 239000011241 protective layer Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/227—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a Schottky barrier
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/227—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a Schottky barrier
- H10F30/2275—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a Schottky barrier being a metal-semiconductor-metal [MSM] Schottky barrier
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/331—Coatings for devices having potential barriers for filtering or shielding light, e.g. multicolour filters for photodetectors
- H10F77/337—Coatings for devices having potential barriers for filtering or shielding light, e.g. multicolour filters for photodetectors using interference filters, e.g. multilayer dielectric filters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/96—Porous semiconductor
Definitions
- the present invention relates to an optical detector with a filter layer made of porous silicon with a laterally variable filter effect according to the preamble of claim 1 and a method for producing such an optical detector according to the preamble of claim 9.
- dielectric filter layers eg Bragg reflector, Fabry-Perot filter
- a simple and inexpensive method of manufacturing dielectric filters is to produce superlattices from porous silicon.
- the raw material silicon also offers the possibility of producing photo receivers (e.g. photo resistors, photo diodes).
- the object of the present invention is therefore to provide an optical detector which can be produced very simply and inexpensively and which is variable. Furthermore, a manufacturing method for such an optical detector is to be created with which the filter properties, that is to say the variability of the detector, can be set in a simple manner.
- the object is achieved according to the invention by an optical detector with the characterizing features of claim 1 and by a manufacturing method with the characterizing features of claim 9.
- contact areas and active filter areas can be predetermined using only a single lithography.
- the contacts are arranged transversely to the filter layer since individual detectors lying next to one another are thereby almost completely decoupled from one another. However, this reduces the filter area.
- Figure 1 is a schematic plan view of an optical detector with a first contact geometry for optimal decoupling.
- FIG. 2 shows a schematic top view of a detector with a second contact geometry for optimal use of area
- FIG. 3 shows a schematic top view of a spectroscope with an optical detector according to the present invention
- Fig. 4a, b, c, d is a schematic representation of a manufacturing step in section and in supervision of a manufacturing process.
- FIG. 1 shows the top view of an optical detector 1 with a substrate 1.1 and contacts 5 arranged transversely to a filter layer 3 made of porous silicon.
- a filter layer 3 made of porous silicon.
- the optical detector 1 schematically shows a top view of the optical detector 1 with optimal use of area.
- the contacts 5 are arranged on the side of the filter layer 3.
- the entire filter layer 3 is used for the detection.
- the individual wavelength ranges cannot be completely decoupled from one another.
- the use of a few contacts 5 leads to a detector 1 or a group of detectors 1 with a wide wavelength range (e.g. for a three-color sensor).
- many contacts 5 lead to a detector 1 or a group of detectors 1 with a sharp spectral resolution.
- the contacts 5 can be designed as oh cal contacts and then result in photodetectors in the form of photoresistors, with the internal amplification inherent in the photoresistors, but also with relatively large dark currents.
- the contacts 5 can therefore also be designed as Schottky contacts, as a result of which the dark currents are very greatly reduced.
- there is then no internal reinforcement so that the doping of the silicon must be very low so that a space charge zone of the Schottky contacts expands significantly below the filter layer 3.
- By counter-doping the silicon before metallizing the contacts 5, also realize pn junctions, e.g. B. to further lower the Dunke1 current.
- the dark current of the optical detector 1 according to the invention with photoresistors can also be reduced in that the thickness of the photoresist layer (substrate 1.1) is chosen to be as small as possible.
- This can e.g. B. in the production with amorphous silicon or polysilicon by choosing a high-resistance substrate (substrate) and high-resistance, thin silicon layers (filter layers). In the case of single-crystal silicon, the highest possible resistance should also be used.
- a thin photoresist layer can be achieved by using very thin wafers or by using an insulation layer inside the wafer. As an insulation layer comes e.g. B. Si0 2 ("SIMOX" or "BESOI”) or a pn junction in question.
- FIG. 3 schematically shows a top view of a completed spectroscope with a contact geometry according to FIG. 1 and the insulation layer 7.
- the optical detector 1 or such a dielectric filter is manufactured from porous silicon by anodic etching.
- the location-dependent spectral sensitivity is generated by applying a cross current during the etching process.
- the porous silicon is then etched away at predetermined locations.
- the ohmic contacts 5 or Schottky contacts 5 are applied at these points.
- a suitable arrangement of the contacts 5 results in photoresistors or metal-semiconductor-metal (MSM) diodes, in which the non-porosidized silicon beneath the porous filter layer 3 serves as the photosensitive layer.
- MSM metal-semiconductor-metal
- a filter structure is first produced by anodic etching of a disk made of single-crystal silicon 1.1, or a layer made of amorphous or polycrystalline silicon (FIG. 4a).
- a location-dependent filter effect is created by impressing an additional current along the surface.
- the insulation layer 7 (z. B. Si0 2 , Si 3 N 4 , Polyi id, plastic film, etc.) is applied to the sample.
- a strip remains in the middle of the sample, which subsequently serves as a filter layer 3 (FIG. 4b).
- the application of the insulating layer 7 can, for. B. in a vapor deposition or sputtering system, the structuring can be done using a shadow mask (not shown).
- Photoresist 9 is then applied to the sample.
- a protective layer (not shown), e.g. B. made of titanium.
- the photoresist 9 is exposed to the structures of the future contacts 5.
- the varnish is developed (Fig. 4c).
- the porous silicon of the filter layer 3 is then etched with the photoresist 9 as a mask, for. B. by REACTIVE ION ETCHING.
- the protective layer (not shown) is also etched, and the already applied insulation layer 7 is not or only partially attacked (FIG. 4d).
- the contact material is applied.
- the photoresist 9 and the contact material lying thereon are removed (lift-off method).
- the protective layer (not shown) is etched away.
- the optical detector 1 is then available as a finished spectroscope from FIG. 3.
- the production method according to the invention has the advantage that only one lithography is required.
- the contact material is self-adjusting only on the etched areas applied. Areas from the center of the layer made of porous silicon can be used as active filter areas, that is to say, in contrast to other methods, edge zones with undesired edge effects can be avoided.
- Optical detector 1 based on silicon, which consists of several photodetectors below a filter layer 3 made of porous silicon, which has a location-dependent filter effect.
- Optical detector 1 in which the silicon is single crystal or polycrystalline or amorphous.
- Optical detector 1 in which the location-dependent filter effect is produced during the production of the porous silicon of the filter layer 3 by an additional current through the silicon across the etching current or generally by a non-uniform etching current.
- Optical detector 1 in which the location-dependent filter effect by a suitable shape of the etching cell or a
- Optical detector 1 in which the photodetectors are designed as photoresistors or as metal-semiconductor-metal diodes or from pnp (or npn) diodes or from combinations thereof and in which the photodetection essentially in the material under the filter layer 3 takes place.
- Optical detector 1 in which the size and shape of the individual contacts 5 and filter surfaces are designed such that a desired behavior of spectral sensitivity of the individual detectors is achieved.
- This location-dependent spectral filter effect can be caused by a non-uniform etching current density, e.g. B. can be achieved by impressing a cross current or by a suitable shaped etching surface or non-uniform exposure during or after the etching.
- Manufacturing method for an optical detector 1 in which the sample is metallized following the etching. After the metallization, the etching mask is removed, so that the applied metal is structured by lift-off. With this method, only one lithography is required, and the contacts are self-aligning only on the porous silicon spots etched away.
- the metal surfaces on the insulation layer 7 can be used as bonding and contact surfaces.
- the insulation layer 7 serves on the one hand to protect against the etching of the underlying porous silicon layers of the filter layer 3 and as mechanical protection when making contact, on the other hand larger leakage currents are avoided when making contact on non-porosized material.
- the active detector surface can be placed in regions with a defined filter by means of the insulation layer 7, edge regions during the production of the porous silicon can be avoided.
- Contact 5 can be modified by ion implantation prior to metallization using the etching mask as an implantation mask.
- the contact resistances can be reduced by increasing the doping; pn junctions are generated by contradoping.
Landscapes
- Light Receiving Elements (AREA)
- Spectrometry And Color Measurement (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
Optischer Detektor mit einer Filterschicht aus porösem Silizium und Herstellungsverfahren dazu Optical detector with a filter layer made of porous silicon and manufacturing process therefor
Die vorliegende Erfindung betrifft einen optischen Detektor mit einer Filterschicht aus porösem Silizium mit lateral veränderlicher Filterwirkung gemäß Oberbegriff von Anspruch 1 sowie ein Verfahren zur Herstellung eines solchen optischen Detektors gemäß Oberbegriff von Anspruch 9.The present invention relates to an optical detector with a filter layer made of porous silicon with a laterally variable filter effect according to the preamble of claim 1 and a method for producing such an optical detector according to the preamble of claim 9.
Zur spektralen Auflösung von Licht sind bereits viele Verfahren bekannt. Als Beispiele Können die Brechung in einem Prisma, die Beugung an einem Liniengitter oder die wellenlängenabhängige Reflektion oder Transmission an dielektrischen Fil- terschichten (z. B. Bragg-Reflektor, Fabry-Perot-Filter) genannt werden. Eine einfache und preisgünstige Methode zur Herstellung von dielektrischen Filtern ist die Erzeugung von Übergittern aus porösem Silizium. Das Ausgangsmaterial Silizium bietet gleichzeitig die Möglichkeit zur Erzeugung von Photoempfängern (z. B. Photowiderstände, Photodioden).Many methods are already known for the spectral resolution of light. Examples include refraction in a prism, diffraction on a line grating or wavelength-dependent reflection or transmission on dielectric filter layers (eg Bragg reflector, Fabry-Perot filter). A simple and inexpensive method of manufacturing dielectric filters is to produce superlattices from porous silicon. The raw material silicon also offers the possibility of producing photo receivers (e.g. photo resistors, photo diodes).
Soweit Photodetektoren auf Halbleiterbasis, der Einsatz von Übergittern aus porösem Silizium und die Herstellung von lateralen Verlaufsfiltern aus porösem Silizium bekannt ist, ha- ben bisher alle bekannten Detektoren den Nachteil, daß sie kaum variierbar sind. Es sind mit den bekannten Verfahren nur Detektoren herstellbar, die in einem dieser Verfahren festgelegten Wellenlängenbereich einsetzbar sind. Ferner wird nicht die gesamte Filterschicht zur Detektion genutzt oder können einzelne Wellenlängenbereiche nicht gänzlich voneinander entkoppelt werden.As far as semiconductor-based photodetectors, the use of superlattices made of porous silicon and the production of lateral graduated filters made of porous silicon are known, all known detectors have so far the disadvantage that they can hardly be varied. With the known methods, only detectors can be produced which can be used in a wavelength range defined in these methods. Furthermore, the entire filter layer is not used for detection or individual wavelength ranges cannot be completely decoupled from one another.
Die Aufgabe der vorliegenden Erfindung ist daher, einen optischen Detektor zu schaffen, der sehr einfach und kostengün- stig hergestellt werden kann und variabel ist. Ferner soll ein Herstellungsverfahren für einen solchen optischen Detektor geschaffen werden, mit welchem die Filtereigenschaften, daß heißt, die Variabilität des Detektors, auf einfache Weise eingestellt werden können. Die Aufgabe wird erfindungsgemäß durch einen optischen Detektor mit den kennzeichnenden Merkmalen des Anspruchs 1 und durch ein Herstellungsverfahren mit den kennzeichnenden Merk- malen des Anspruchs 9 gelöst.The object of the present invention is therefore to provide an optical detector which can be produced very simply and inexpensively and which is variable. Furthermore, a manufacturing method for such an optical detector is to be created with which the filter properties, that is to say the variability of the detector, can be set in a simple manner. The object is achieved according to the invention by an optical detector with the characterizing features of claim 1 and by a manufacturing method with the characterizing features of claim 9.
Durch die integrierte Ausbildung können unter Verwendung nur einer einzigen Lithographie Kontaktflächen und aktive Filtergebiete vorbestimmt werden.Thanks to the integrated design, contact areas and active filter areas can be predetermined using only a single lithography.
Gemäß Anspruch 2 ist es von Vorteil, daß die Kontakte quer zur Filterschicht angeordnet sind, da dadurch einzelne nebeneinanderliegenden Detektoren fast gänzlich voneinander entkoppelt sind. Dadurch verringert sich allerdings die Filter- fläche.According to claim 2, it is advantageous that the contacts are arranged transversely to the filter layer since individual detectors lying next to one another are thereby almost completely decoupled from one another. However, this reduces the filter area.
Gemäß Anspruch 3 ist es zum Erhalt einer großen Filterfläche daher von Vorteil, daß die Kontakte an den Seiten der Filterschicht angebracht sind. Dadurch kann die gesamte Filter- schicht für die Detektion genutzt werden, wobei dann allerdings die einzelnen Wellenlängenbereiche nicht gänzlich voneinander entkoppelt werden können.According to claim 3, it is therefore advantageous to obtain a large filter area that the contacts are attached to the sides of the filter layer. As a result, the entire filter layer can be used for the detection, although the individual wavelength ranges cannot then be completely decoupled from one another.
Weitere Vorteile der vorliegenden Erfindung ergeben sich aus den Merkmalen der Unteransprüche 4 bis 8 sowie 11 bis 16.Further advantages of the present invention result from the features of subclaims 4 to 8 and 11 to 16.
Ausführungsformen der vorliegenden Erfindung werden im folgenden anhand der Zeichnungen näher beschrieben. Es zeigen:Embodiments of the present invention are described below with reference to the drawings. Show it:
Fig. 1 eine schematische Draufsicht auf einen optischen Detektor mit einer ersten Kontaktgeometrie zur optimalen Entkopplung;Figure 1 is a schematic plan view of an optical detector with a first contact geometry for optimal decoupling.
Fig. 2 eine schematische Draufsicht auf einen Detektor mit einer zweiten Kontaktgeometrie für eine optimale Flächenausnutzung;2 shows a schematic top view of a detector with a second contact geometry for optimal use of area;
Fig. 3 eine schematische Draufsicht auf ein Spektroskop mit einem optischen Detektor gemäß vorliegender Erfindung; Fig. 4a, b, c, d eine schematische Darstellung eines Herstellungsschrittes im Schnitt und in Aufsicht eines Herstellungsverfahrens .3 shows a schematic top view of a spectroscope with an optical detector according to the present invention; Fig. 4a, b, c, d is a schematic representation of a manufacturing step in section and in supervision of a manufacturing process.
In Fig. 1 ist die Draufsicht eines optischen Detektors 1 mit einem Substrat 1.1 und quer zu einer Filterschicht 3 aus porösem Silizium angeordneten Kontakten 5. Durch das Anbringen der Kontakte 5 quer zur Filterschicht 3 werden einzelne, ne- beneinanderliegende Detektoren 1 fast gänzlich voneinander entkoppelt. Allerdings erfolgt dies auf Kosten eines Teils der Filterfläche der Filterschicht 3.1 shows the top view of an optical detector 1 with a substrate 1.1 and contacts 5 arranged transversely to a filter layer 3 made of porous silicon. By attaching the contacts 5 transversely to the filter layer 3, individual, adjacent detectors 1 are almost completely decoupled from one another . However, this is done at the expense of part of the filter area of the filter layer 3.
In Fig. 2 ist schematisch eine Draufsicht des optischen De- tektors 1 bei optimaler Flächenausnutzung dargestellt. Die Kontakte 5 sind in dieser Ausführungsform seitlich der Filterschicht 3 angeordnet. Dadurch wird die gesamte Filterschicht 3 für die Detektion genutzt. Allerdings können die einzelnen Wellenlängenbereiche nicht gänzlich voneinander entkoppelt werden.2 schematically shows a top view of the optical detector 1 with optimal use of area. In this embodiment, the contacts 5 are arranged on the side of the filter layer 3. As a result, the entire filter layer 3 is used for the detection. However, the individual wavelength ranges cannot be completely decoupled from one another.
Grundsätzlich gilt, daß die Verwendung von einigen wenigen Kontakten 5 zu einem Detektor 1 bzw. einer Gruppe von Detektoren 1 mit breitem Wellenlängenbereich (z. B. für einen Dreifarbensensor) führt. Dagegen führen viele Kontakte 5 zu einem Detektor 1 bzw. einer Gruppe von Detektoren 1 mit scharfer spektraler Auflösung.Basically, the use of a few contacts 5 leads to a detector 1 or a group of detectors 1 with a wide wavelength range (e.g. for a three-color sensor). In contrast, many contacts 5 lead to a detector 1 or a group of detectors 1 with a sharp spectral resolution.
Die Kontakte 5 können als oh sche Kontakte ausgebildet sein und ergeben dann Photodetektoren in Form von Photowiderständen, mit der den Photowiderständen eigenen inneren Verstärkung aber auch mit relativ großen Dunkelströmen. Die Kontakte 5 können daher auch als Schottkykontakte ausgebildet sein, wodurch die Dunkelströme sehr stark erniedrigt werden. Aller- dings ergibt sich dann keine innere Verstärkung, so daß die Dotierung des Siliziums sehr niedrig sein muß, damit sich eine Raumladungszone der Schottkykontakte wesentlich unter die Filterschicht 3 ausdehnt. Durch eine Kontradotierung des Siliziums vor einer Metallisierung der Kontakte 5 lassen sich auch pn-Übergänge realisieren, z. B. zur weiteren Erniedrigung des Dunke1Stroms.The contacts 5 can be designed as oh cal contacts and then result in photodetectors in the form of photoresistors, with the internal amplification inherent in the photoresistors, but also with relatively large dark currents. The contacts 5 can therefore also be designed as Schottky contacts, as a result of which the dark currents are very greatly reduced. However, there is then no internal reinforcement, so that the doping of the silicon must be very low so that a space charge zone of the Schottky contacts expands significantly below the filter layer 3. By counter-doping the silicon before metallizing the contacts 5, also realize pn junctions, e.g. B. to further lower the Dunke1 current.
Der Dunkelstrom des erfindungsgemäßen optischen Detektors 1 mit Photowiderständen kann auch dadurch erniedrigt werden, daß die Dicke der Photowiderstandsschicht (Substrat 1.1) möglichst klein gewählt wird. Dies kann z. B. bei der Herstellung mit amorphen Silizium oder Polysilizium durch Wahl eines möglichst hochohmigen Trägermaterials (Substrats) und hochohmigen, dünnen Siliziumschichten (Filterschichten) erreicht werden. Bei einkristallinem Silizium sollte ebenfalls möglichst hochohmiges Material genutzt werden. Eine dünne Photowiderstandsschicht kann die durch die Benutzung von sehr dünnen Wafern oder durch die Benutzung einer Isolations- schicht Schicht im Inneren des Wafers erreicht werden. Als eine Isolationsschicht kommt z. B. Si02 ("SIMOX" oder "BESOI" ) oder ein pn-Übergang in Frage.The dark current of the optical detector 1 according to the invention with photoresistors can also be reduced in that the thickness of the photoresist layer (substrate 1.1) is chosen to be as small as possible. This can e.g. B. in the production with amorphous silicon or polysilicon by choosing a high-resistance substrate (substrate) and high-resistance, thin silicon layers (filter layers). In the case of single-crystal silicon, the highest possible resistance should also be used. A thin photoresist layer can be achieved by using very thin wafers or by using an insulation layer inside the wafer. As an insulation layer comes e.g. B. Si0 2 ("SIMOX" or "BESOI") or a pn junction in question.
In Fig. 3 ist schematisch eine Draufsicht eines fertigge- stellten Spektroskops mit einer Kontaktgeometrie gemäß Fig. 1 und der Isolationsschicht 7 dargestellt.FIG. 3 schematically shows a top view of a completed spectroscope with a contact geometry according to FIG. 1 and the insulation layer 7.
Der optische Detektor 1 bzw. ein solches dielektrisches Filter, wird durch anodisches Ätzen aus porösem Silizium herge- stellt. Die ortsabhängige spektrale Empfindlichkeit wird erzeugt durch das Anlegen eines Querstromes während des Ätzvorganges .The optical detector 1 or such a dielectric filter is manufactured from porous silicon by anodic etching. The location-dependent spectral sensitivity is generated by applying a cross current during the etching process.
Anschließend wird das poröse Silizium an vorbestimmten Stel- len weggeätzt. An diesen Stellen werden die ohmschen Kontakte 5 oder Schottky-Kontakte 5 aufgebracht. Durch geeignete Anordnung der Kontakte 5 entstehen Photowiderstände bzw. Metall-Halbleiter-Metall (MSM) -Dioden, bei welchen als photoempfindliche Schicht das nicht-porosidierte Silizium unter- halb der porösen Filterschicht 3 dient. Wegen der ortsabhängigen spektralen Transmission des Filters ergibt sich auch eine ortsabhängige spektrale Empfindlichkeit der Photodetektoren. Bei dem erfindungsgemäßen Herstellungsverfahren wird zunächst eine Filterstruktur durch anodisches Ätzen einer Scheibe aus einkristallinem Silizium 1.1 erzeugt, bzw. eine Schicht aus amorphem oder polykristallinem Silizium (Fig. 4a). Durch Ein- prägen eines zusätzlichen Stromes längs der Oberfläche entsteht eine ortsabhängige Filterwirkung.The porous silicon is then etched away at predetermined locations. The ohmic contacts 5 or Schottky contacts 5 are applied at these points. A suitable arrangement of the contacts 5 results in photoresistors or metal-semiconductor-metal (MSM) diodes, in which the non-porosidized silicon beneath the porous filter layer 3 serves as the photosensitive layer. Because of the location-dependent spectral transmission of the filter, there is also a location-dependent spectral sensitivity of the photodetectors. In the production method according to the invention, a filter structure is first produced by anodic etching of a disk made of single-crystal silicon 1.1, or a layer made of amorphous or polycrystalline silicon (FIG. 4a). A location-dependent filter effect is created by impressing an additional current along the surface.
Anschließend wird die Isolationsschicht 7 (z. B. Si02, Si3N4, Polyi id, Kunststoffolie, u.s.w.) auf die Probe aufgetragen. Dabei bleibt ein Streifen in der Mitte der Probe frei, welche nachher als Filterschicht 3 dient (Fig. 4b) . Das Auftragen der Isolierschicht 7 kann z. B. in einer Aufdampf- oder Sput- teranlage erfolgen, wobei die Strukturierung mittels einer Schattenmaske (nicht dargestellt) erfolgen kann.Then the insulation layer 7 (z. B. Si0 2 , Si 3 N 4 , Polyi id, plastic film, etc.) is applied to the sample. A strip remains in the middle of the sample, which subsequently serves as a filter layer 3 (FIG. 4b). The application of the insulating layer 7 can, for. B. in a vapor deposition or sputtering system, the structuring can be done using a shadow mask (not shown).
Daraufhin wird Photolack 9 auf die Probe aufgetragen. Zur Vermeidung des Eindringens von Photolack 9 in die Poren des porösen Siliziums der Filterschicht 3 kann vorher eine Schutzschicht (nicht dargestellt), z. B. aus Titan aufge- bracht werden.Photoresist 9 is then applied to the sample. To prevent the penetration of photoresist 9 into the pores of the porous silicon of the filter layer 3, a protective layer (not shown), e.g. B. made of titanium.
Der Photolack 9 wird mit den Strukturen der zukünftigen Kontakte 5 belichtet. Der Lack wird entwickelt (Fig. 4c).The photoresist 9 is exposed to the structures of the future contacts 5. The varnish is developed (Fig. 4c).
Anschließend wird das poröse Silizium der Filterschicht 3 mit dem Photolack 9 als Maske geätzt, z. B. durch REAKTIVES IONEN-ÄTZEN. Die Schutzschicht (nicht dargestellt) wird mitgeätzt, und die bereits aufgebrachte Isolationsschicht 7 wird nicht oder nur zum Teil angegriffen (Fig. 4d) .The porous silicon of the filter layer 3 is then etched with the photoresist 9 as a mask, for. B. by REACTIVE ION ETCHING. The protective layer (not shown) is also etched, and the already applied insulation layer 7 is not or only partially attacked (FIG. 4d).
Dann wird das Kontaktmaterial aufgetragen. Der Photolack 9 und das darauf liegende Kontaktmaterial wird entfernt (Lift- Off-Verfahren) . Die Schutzschicht (nicht dargestellt) wird weggeätzt. Als Ergebnis liegt dann der optische Detektor 1 als fertiggestelltes Spektroskop aus Fig. 3 vor.Then the contact material is applied. The photoresist 9 and the contact material lying thereon are removed (lift-off method). The protective layer (not shown) is etched away. As a result, the optical detector 1 is then available as a finished spectroscope from FIG. 3.
Das erfindungsgemäße Herstellungsverfahren hat den Vorteil, daß nur eine Lithographie benötigt wird. Außerdem wird das Kontaktmaterial selbstjustierend nur auf die geätzten Gebiete aufgetragen. Als aktive Filtergebiete können Bereiche aus der Mitte der hergestellten Schicht aus porösem Silizium verwendet werden, das heißt, im Gegensatz zu anderen Verfahren können Randzonen mit unerwünschten Randeffekten vermieden wer- den.The production method according to the invention has the advantage that only one lithography is required. In addition, the contact material is self-adjusting only on the etched areas applied. Areas from the center of the layer made of porous silicon can be used as active filter areas, that is to say, in contrast to other methods, edge zones with undesired edge effects can be avoided.
Im folgenden werden noch einmal die wesentlichen Merkmale des Erfindungsgegenstandes zusammengefaßt dargestellt:The essential features of the subject matter of the invention are summarized again below:
1. Optischer Detektor 1 auf der Basis von Silizium, welcher aus mehreren Photodetektoren unterhalb einer Filterschicht 3 aus porösem Silizium besteht, welcher eine ortsabhängige Filterwirkung hat.1. Optical detector 1 based on silicon, which consists of several photodetectors below a filter layer 3 made of porous silicon, which has a location-dependent filter effect.
2. Optischer Detektor 1, bei welchem das Silizium einkristallin oder polykristallin oder amorph ist.2. Optical detector 1, in which the silicon is single crystal or polycrystalline or amorphous.
3. Optischer Detektor 1, bei welchem die ortsabhängige Filterwirkung während der Herstellung des porösen Siliziums der Filterschicht 3 durch einen zusätzlichen Strom durch das Silizium quer zum Ätzstrom oder allgemein durch einen ungleichförmigen Ätzstrom erzeugt wird.3. Optical detector 1, in which the location-dependent filter effect is produced during the production of the porous silicon of the filter layer 3 by an additional current through the silicon across the etching current or generally by a non-uniform etching current.
4. Optischer Detektor 1, bei welchem die ortsabhängige Fil- terwirkung durch eine geeignete Form der Ätzzelle oder einer4. Optical detector 1, in which the location-dependent filter effect by a suitable shape of the etching cell or a
Ätzmaske auf dem Silizium erzeugt wird.Etching mask on which silicon is generated.
5. Optischer Detektor 1, bei welchem die Photodetektoren als Photowiderstände oder als Metall-Halbleiter-Metall-Dioden oder aus p-n-p (bzw. n-p-n)-Dioden oder aus Kombinationen davon ausgelegt sind und bei denen die Photodetektion im wesentlichen im Material unter der Filterschicht 3 stattfindet.5. Optical detector 1, in which the photodetectors are designed as photoresistors or as metal-semiconductor-metal diodes or from pnp (or npn) diodes or from combinations thereof and in which the photodetection essentially in the material under the filter layer 3 takes place.
6. Optischer Detektor 1 , bei welchem Größe und Form der ein- zelnen Kontakte 5 und Filterflächen so ausgelegt sind, daß ein gewünschtes Verhalten von spektraler Empfindlichkeit der Einzeldetektoren erreicht wird. 7. Herstellungsverfahren für einen optischen Detektor 1, bei welchem eine Probe aus amorphem oder polykristallinem oder einkristallinem Silizium mit oder ohne isolierender Zwischenschicht 7 und eine Filterschicht 3 aus porösem Silizium mit ortsabhängiger Filterwirkung hergestellt wird. Diese ortsabhängige spektrale Filterwirkung kann durch eine ungleichförmige Ätzstromdichte, z. B. durch Einprägen eines Querstromes oder durch eine geeignete geformte Ätzfläche oder ungleichförmiges Belichten während oder nach dem Ätzen erreicht wer- den.6. Optical detector 1, in which the size and shape of the individual contacts 5 and filter surfaces are designed such that a desired behavior of spectral sensitivity of the individual detectors is achieved. 7. Production method for an optical detector 1, in which a sample of amorphous or polycrystalline or single-crystal silicon with or without an insulating intermediate layer 7 and a filter layer 3 of porous silicon with a location-dependent filter effect is produced. This location-dependent spectral filter effect can be caused by a non-uniform etching current density, e.g. B. can be achieved by impressing a cross current or by a suitable shaped etching surface or non-uniform exposure during or after the etching.
8. Herstellungsverfahren für einen optischen Detektor 1 , bei welchem nach der Herstellung der porösen Filterschicht 3 diese Schicht mit einer Isolationsschicht 7 bedeckt wird. Die spätere aktive Filterschicht 3 wird wieder von der Isolationsschicht 7 befreit oder erst gar nicht davon bedeckt (z. B. durch Verwendung einer Scheibenmaske) .8. Production method for an optical detector 1, in which after the production of the porous filter layer 3, this layer is covered with an insulation layer 7. The later active filter layer 3 is again freed from the insulation layer 7 or not covered at all (for example by using a disk mask).
9. Herstellungsverfahren für einen optischen Detektor 1, bei welchem die Oberfläche nach dem Aufbringen der Isolationsschicht 7 mit einer Schicht aus Photolack 9 und eventuell einer darunterliegenden Schutzschicht, z. B. aus Titan, bedeckt wird. Anschließend werden die Kontakteflächen durch Photolithographie definiert, und der Photolack 9 wird an diesen Stellen weggeätzt. Der übrigbleibende Photolack 9 dient als Maske für die nachfolgende Ätzung. Als Alternative kann jedes andere Verfahren zum Aufbringen einer Ätzmaske verwendet werden (z. B. Aufkleben einer Folie, Siebdruck u.s.w.).9. Manufacturing method for an optical detector 1, in which the surface after the application of the insulation layer 7 with a layer of photoresist 9 and possibly an underlying protective layer, for. B. made of titanium. The contact areas are then defined by photolithography, and the photoresist 9 is etched away at these locations. The remaining photoresist 9 serves as a mask for the subsequent etching. As an alternative, any other method for applying an etching mask can be used (e.g. gluing on a foil, screen printing, etc.).
10. Herstellungsverfahren für einen optischen Detektor 1, bei welchem das poröse Silizium der Filterschicht 3 durch die Ätzmaske aus Photolack 9 (oder einem anderen Material) naßchemisch oder trockenchemisch (z. B. reaktives Ionenätzen) oder durch Sputtern weggeätzt wird. Die Isolationsschicht 7 wird dabei, soweit sie nicht von der Ätzmaske geschützt wird, nur teilweise oder gar nicht geätzt.10. Production method for an optical detector 1, in which the porous silicon of the filter layer 3 is etched away by the etching mask made of photoresist 9 (or another material) wet-chemically or dry-chemically (z. B. reactive ion etching) or by sputtering. Insofar as it is not protected by the etching mask, the insulation layer 7 is only partially or not etched.
11. Herstellungsverfahren für einen optischen Detektor 1, bei welchem im Anschluß an das Ätzen die Probe metallisiert wird. Im Anschluß an die Metallisierung wird die Ätzmaske entfernt, so daß das aufgebrachte Metall durch Lift-Off strukturiert wird. Durch dieses Verfahren wird nur eine Lithographie benötigt, und die Kontakte werden selbstjustierend nur auf die weggeätzten porösen Silizium-Stellen angebracht. Die Metallflächen auf der Isolationsschicht 7 können als Bond- und Kontaktflächen genutzt werden. Die Isolationsschicht 7 dient zum einen als Schutz vor dem Ätzen der darunterliegenden porösen Siliziumschichten der Filterschicht 3 und als mechanischer Schutz beim Kontaktieren, zum anderen werden größere Leckströme beim Kontaktieren auf nicht-porosidierten Material vermieden. Durch die Isolationsschicht 7 kann die aktive Detektorfläche in Bereiche mit definiertem Filter gelegt werden, Randbereiche beim Herstellen des porösen Siliziums kön- nen vermieden werden. Durch Ionenimplantation vor der Metallisierung mit Ausnutzen der Ätzmaske als Implantationsmaske kann der Kontakt 5 modifiziert werden. Durch Erhöhung der Dotierung können die Kontaktwiderstände verringert werden, durch Kontradotierungen werden pn-Übergänge erzeugt.11. Manufacturing method for an optical detector 1, in which the sample is metallized following the etching. After the metallization, the etching mask is removed, so that the applied metal is structured by lift-off. With this method, only one lithography is required, and the contacts are self-aligning only on the porous silicon spots etched away. The metal surfaces on the insulation layer 7 can be used as bonding and contact surfaces. The insulation layer 7 serves on the one hand to protect against the etching of the underlying porous silicon layers of the filter layer 3 and as mechanical protection when making contact, on the other hand larger leakage currents are avoided when making contact on non-porosized material. The active detector surface can be placed in regions with a defined filter by means of the insulation layer 7, edge regions during the production of the porous silicon can be avoided. Contact 5 can be modified by ion implantation prior to metallization using the etching mask as an implantation mask. The contact resistances can be reduced by increasing the doping; pn junctions are generated by contradoping.
12. Herstellungsverfahren für einen optischen Detektor 1, bei welchem die Kontakte 5 an die Ränder des porösen Filters gelegt werden. Dadurch bleibt die ganze Filterfläche erhalten, allerdings auf Kosten eines gewissen Übersprechens von be- nachbarten Detektoren 1.12. Manufacturing method for an optical detector 1, in which the contacts 5 are placed on the edges of the porous filter. As a result, the entire filter area is retained, but at the expense of a certain crosstalk from neighboring detectors 1.
13. Herstellungsverfahren für einen optischen Detektor 1, bei welchem die Kontakte 5 von einer Isolationsschicht 7 quer durch die Filterschicht 3 bis zur anderen Isolationsschicht 7 verlaufen. Dadurch wird die Beeinflussung benachbarter Einzeldetektoren 1 größtenteils vermieden, allerdings auf Kosten eines Teils der Filterfläche. 13. Manufacturing method for an optical detector 1, in which the contacts 5 run from one insulation layer 7 across the filter layer 3 to the other insulation layer 7. This largely avoids influencing adjacent individual detectors 1, but at the expense of part of the filter area.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19900879A DE19900879A1 (en) | 1999-01-12 | 1999-01-12 | Optical detector with a filter layer made of porous silicon and manufacturing process therefor |
DE19900879 | 1999-01-12 | ||
PCT/DE1999/004096 WO2000041456A2 (en) | 1999-01-12 | 1999-12-24 | Optical detector with a filter layer made of porous silicon and method for the production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1151479A2 true EP1151479A2 (en) | 2001-11-07 |
Family
ID=7894042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99967910A Withdrawn EP1151479A2 (en) | 1999-01-12 | 1999-12-24 | Optical detector with a filter layer made of porous silicon and method for the production thereof |
Country Status (6)
Country | Link |
---|---|
US (1) | US6689633B1 (en) |
EP (1) | EP1151479A2 (en) |
JP (1) | JP2003505856A (en) |
CA (1) | CA2355217A1 (en) |
DE (1) | DE19900879A1 (en) |
WO (1) | WO2000041456A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10333669A1 (en) * | 2003-07-24 | 2005-03-03 | Forschungszentrum Jülich GmbH | Photodetector and method for its production |
KR101374932B1 (en) | 2007-09-28 | 2014-03-17 | 재단법인서울대학교산학협력재단 | The method for laterally graded porous optical filter by diffusion limited etch process and structure using thereof |
DE102010004890A1 (en) * | 2010-01-18 | 2011-07-21 | Siemens Aktiengesellschaft, 80333 | Photodiode array, radiation detector and method for producing such a photodiode array and such a radiation detector |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5043571A (en) * | 1988-08-01 | 1991-08-27 | Minolta Camera Kabushiki Kaisha | CCD photosensor and its application to a spectrophotometer |
GB9213824D0 (en) * | 1992-06-30 | 1992-08-12 | Isis Innovation | Light emitting devices |
DE4319413C2 (en) * | 1993-06-14 | 1999-06-10 | Forschungszentrum Juelich Gmbh | Interference filter or dielectric mirror |
EP0645621A3 (en) * | 1993-09-28 | 1995-11-08 | Siemens Ag | Sensor. |
DE4342527A1 (en) * | 1993-12-15 | 1995-06-22 | Forschungszentrum Juelich Gmbh | Process for the electrical contacting of porous silicon |
DE4444620C1 (en) * | 1994-12-14 | 1996-01-25 | Siemens Ag | Sensor for detecting electromagnetic radiation and method for its production |
DE19608428C2 (en) | 1996-03-05 | 2000-10-19 | Forschungszentrum Juelich Gmbh | Chemical sensor |
DE19609073A1 (en) * | 1996-03-08 | 1997-09-11 | Forschungszentrum Juelich Gmbh | Color selective Si detector array |
DE19653097A1 (en) * | 1996-12-20 | 1998-07-02 | Forschungszentrum Juelich Gmbh | Layer with a porous layer area, an interference filter containing such a layer and method for its production |
US5939732A (en) * | 1997-05-22 | 1999-08-17 | Kulite Semiconductor Products, Inc. | Vertical cavity-emitting porous silicon carbide light-emitting diode device and preparation thereof |
DE19746089A1 (en) * | 1997-10-20 | 1999-04-29 | Forschungszentrum Juelich Gmbh | Optical component with filter structure |
US6350623B1 (en) * | 1999-10-29 | 2002-02-26 | California Institute Of Technology | Method of forming intermediate structures in porous substrates in which electrical and optical microdevices are fabricated and intermediate structures formed by the same |
-
1999
- 1999-01-12 DE DE19900879A patent/DE19900879A1/en not_active Withdrawn
- 1999-12-24 US US09/889,134 patent/US6689633B1/en not_active Expired - Fee Related
- 1999-12-24 EP EP99967910A patent/EP1151479A2/en not_active Withdrawn
- 1999-12-24 CA CA002355217A patent/CA2355217A1/en not_active Abandoned
- 1999-12-24 JP JP2000593082A patent/JP2003505856A/en not_active Withdrawn
- 1999-12-24 WO PCT/DE1999/004096 patent/WO2000041456A2/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO0041456A2 * |
Also Published As
Publication number | Publication date |
---|---|
US6689633B1 (en) | 2004-02-10 |
WO2000041456A2 (en) | 2000-07-20 |
WO2000041456A3 (en) | 2000-10-19 |
WO2000041456A9 (en) | 2001-09-27 |
JP2003505856A (en) | 2003-02-12 |
DE19900879A1 (en) | 2000-08-17 |
CA2355217A1 (en) | 2000-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2035326B1 (en) | Sensor having diode pixels and method for producing the same | |
DE69222229T2 (en) | Bicolor radiation detector arrangement and method for its production | |
DE69318957T2 (en) | Manufacturing process for pressure transducers using silicon on insulation technology and transducers manufactured in this way | |
DE68911772T2 (en) | Photodiode and photodiode matrix made of II-VI semiconductor material and manufacturing process therefor. | |
DE69429381T2 (en) | Method for micromachining a sensor integrated in the surface of a silicon body | |
DE4315012B4 (en) | Method for producing sensors and sensor | |
DE19618593A1 (en) | Surface-mountable radiation-sensitive detector element | |
DE19752208A1 (en) | Thermal membrane sensor and method for its manufacture | |
DE4309206C1 (en) | Semiconductor device having a force and/or acceleration sensor | |
EP0684462A2 (en) | Thermal sensor/actuator realised in semiconductor material | |
EP0005185B1 (en) | Method for simultaneously forming schottky-barrier diodes and ohmic contacts on doped semiconductor regions | |
EP1801554A2 (en) | Sensor for the contactless measuring of a temperature | |
EP0182088B1 (en) | Schottky contact on a semiconductor surface and method of making the same | |
DE2729973C2 (en) | Method for producing a semiconductor device | |
DE3784969T2 (en) | DEVICE WITH A MONOLITHIC NON-LINEAR FABRY-PEROT ETALON AND PRODUCTION METHOD THEREFOR. | |
DE102020008064A1 (en) | DEEP DITCH INSULATION STRUCTURE AND METHOD FOR MANUFACTURING IT | |
EP2847557A1 (en) | Micro-optical filter and the use thereof in a spectrometer | |
DE69022710T2 (en) | Method of manufacturing a semiconductor device. | |
EP1151479A2 (en) | Optical detector with a filter layer made of porous silicon and method for the production thereof | |
EP2269221B1 (en) | Optoelectronic radiation detector and method for producing a plurality of detector elements | |
DE69012078T2 (en) | Method of manufacturing a Schottky diode device. | |
WO2010013194A2 (en) | Orientation of an electronic cmos structure with respect to a buried structure in the case of a bonded and thinned-back stack of semiconductor wafers | |
DE3227263C2 (en) | Method of manufacturing a planar avalanche photodiode with a long-wave sensitivity limit above 1.3 µm. | |
DE69839005T2 (en) | Method for producing a thin-film field-effect transistor | |
EP3582267B1 (en) | Uv radiation sensor based on diamond |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010511 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FORSCHUNGSZENTRUM JUELICH GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20050126 |