EP1150082A1 - Procédé et dispositif d'échange de chaleur - Google Patents
Procédé et dispositif d'échange de chaleur Download PDFInfo
- Publication number
- EP1150082A1 EP1150082A1 EP00115776A EP00115776A EP1150082A1 EP 1150082 A1 EP1150082 A1 EP 1150082A1 EP 00115776 A EP00115776 A EP 00115776A EP 00115776 A EP00115776 A EP 00115776A EP 1150082 A1 EP1150082 A1 EP 1150082A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- exchanger block
- heat exchange
- gas streams
- blocks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04084—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
- F25J3/04224—Cores associated with a liquefaction or refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
- F25J3/04357—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04787—Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J5/00—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
- F25J5/002—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/54—Oxygen production with multiple pressure O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/32—Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/42—Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/50—Arrangement of multiple equipments fulfilling the same process step in parallel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/902—Apparatus
- Y10S62/903—Heat exchange structure
Definitions
- the invention relates to a method for indirect heat exchange of several Gas flows with a heat / coolant in heat exchanger blocks, in which the Gas flows are passed through a variety of heat exchange passages only one of the gas streams is passed through at least one heat exchanger block. Furthermore, the invention relates to a heat exchange device for indirect Heat exchange of at least two gas flows with a heat / coolant in Heat exchanger blocks, which have a variety of heat exchange passages have.
- the main heat exchanger is usually designed as a plate heat exchanger which has a large number of heat exchange passages for the streams to be treated. In air separation plants in which large amounts of air are processed, several such heat exchanger blocks are necessary to process the air and product quantities.
- the main heat exchanger is usually divided into two blocks from about 20,000 to 30,000 Nm 3 / h of air.
- collectors / distributors necessary to the gas flows from the respective inlet nozzle on the to distribute assigned heat exchange passages or from the Heat exchange passages emerging gas flows into the corresponding Merge outlet connection.
- the collectors / distributors have so far been integrated into the heat exchanger block Distribution zones realized. In these distribution zones there are at least some of the slats that delimit the individual heat exchange passages from one another, arranged obliquely, so that the gas flowing in through the inlet connection into the Heat exchange passages is performed or that from the Heat exchange passages exiting gas flow to the outlet port is redirected.
- the object of the present invention is to provide a method and an apparatus for to develop indirect heating or cooling of multiple gas flows which the pressure loss in the heat exchanger is as low as possible.
- the heat exchange device for indirect heat exchange of at least two gas streams with a heat / coolant in Heat exchanger blocks, which have a variety of heat exchange passages own, is characterized in that the heat exchange passages one Heat exchanger blocks intended for one of the gas flows on two opposite end faces of the heat exchanger block and end with are in flow communication with a collector / distributor, the Collector / distributor over the entire end face of the heat exchanger block extend.
- At least one gas flow is as low as possible Should experience pressure loss, passed through a heat exchanger block through which otherwise no further of the gas flows are carried. Stream of course through this heat exchanger block one or more heat or cold carriers with where the gas flow exchanges its heat.
- Heat exchange passages of this heat exchanger block extend from one Face of the block to the opposite face and run essentially parallel. On the two end faces where the heat exchange passages end a collector / distributor attached to the outside of the heat exchanger block, which the covers the entire end face and a connecting piece for the supply and discharge having.
- the heat exchange passages thus go in without a cross-sectional taper the supply and discharge via and the flow deflection in the collector / distributor takes place slowly.
- the pressure loss in the heat exchanger block and the associated one This minimizes collectors / distributors.
- the invention is particularly suitable in processes in which gas streams, one Have pressure of less than 3.5 bar, preferably between 1.1 and 1.8 bar, in hereinafter referred to as low pressure flows, in indirect heat exchange with a Heat or cold carriers are to be brought. According to the invention, this is done by one heat exchanger block only one of these low-pressure gas flows, i.e. for each of the gas streams that have a pressure of less than 3.5 bar its own heat exchanger block used.
- the method according to the invention is preferably used in low-temperature decomposition of application air application.
- the product of a low pressure column Gas streams withdrawn from the double column rectifier have only a small amount Overpressure of about 0.1 to 0.8 bar above atmospheric pressure, so that a reduction the pressure drop is of great importance. This applies analogously to gaseous Argon product, since the crude argon column also operated under relatively low pressure becomes.
- the gas flows with the feed air in indirect are particularly preferred Heat exchange brought.
- the feed air can be divided into several flows through the heat exchanger blocks at different pressure levels be performed.
- the air supply can be below Pressure column pressure passed through the heat exchanger block and then into the Pressure column can be fed, on the other hand, the feed air can before Heat exchanger block recompressed and after cooling for cooling be relaxed while working.
- the gas stream is passed through the heat exchanger blocks so that it suffers a pressure drop of 120 to 300 mbar, preferably 120 to 200 mbar.
- a pressure drop of 120 to 300 mbar, preferably 120 to 200 mbar.
- Figure 1 shows a process scheme known from the prior art of a large air separation plant for processing about 100,000 Nm 3 / h of air, in which it is necessary to implement the main heat exchanger by means of several separate heat exchanger blocks 3.
- Compressed and cleaned feed air 1 becomes part 2 directly several in parallel mutually arranged heat exchanger blocks 3a - 3e supplied, in part 4 by means of of a compressor 5 post-compressed, cooled in an after-cooler 6 and then into the Heat exchanger blocks 3a - 3e directed.
- This in the following as turbine air flow 7 designated compressed air is at an intermediate point the heat exchanger blocks 3a - 3e removed, relaxed in a turbine 8 and one in the low pressure column 10 Rectification unit 11, which has a pressure column 9 and a low pressure column 10 includes, initiated.
- the heat exchanger blocks 3a - 3e form the main heat exchanger of the Air separation plant.
- the supply air 2 cooled in blocks 3a - 3e becomes the Pressure column 9 of the rectification unit 11 supplied.
- the low pressure column 10 will gaseous oxygen 14, gaseous nitrogen 15 and gaseous impure nitrogen 16 taken as regeneration gas at a pressure of about 1.3 bar. Further it is possible to use oxygen and nitrogen as liquid in the rectification unit 11 Products 12, 13 to win.
- the gas streams 14, 15, 16 are in each of the Heat exchanger blocks 3a - 3e guided and against the feed air flow 2 and Turbine airflow 7 warmed by indirect heat exchange.
- FIG. 1 A method diagram corresponding to FIG. 1 is shown in FIG. in contrast to the known method shown in Figure 1, the Heat exchanger blocks 3 are divided according to the invention according to products.
- the Air flow 2 and the turbine air 7 are the same as in the method according to FIG 1 supplied to all heat exchanger blocks 23a - 23e.
- the gaseous Gas flows 14, 15, 16 no longer in all heat exchanger blocks 23, but in in each case specifically heated to the gas streams 14, 15, 16 blocks 23.
- the Heat exchanger blocks 23 are dimensioned so that the gaseous Oxygen stream 14 and the impure nitrogen stream 16 each have blocks 23a, 23e Result in maximum dimensions, i.e. blocks 23a and 23e are exactly on that expected oxygen or nitrogen amounts. From manufacturing technology For this reason, all blocks 23a-23e are executed with the same size, so that for the pure nitrogen flow 15, three heat exchanger blocks 23b-23d are required.
- the heat exchanger block 23a thus only oxygen 14 against the Air flows 2 and 7 guided through the blocks 23b to 23d pure nitrogen 15 against air 2, 7 and by the heat exchanger block 23e impure nitrogen 16 against air 2, 7. Die
- the number of heat exchanger blocks 23 thus remains in relation to the method Figure 1 the same, since the same product quantities with the same in both methods Air volumes have to exchange their heat.
- Every heat exchanger block 23 are only three streams, two air streams 2, 7 and a gas stream 14, 15 or 16, supplied, whereby each block 23 only six collectors / distributors with the appropriate connection piece required.
- the heat exchanger blocks 23 are in accordance with the figures 7 and 8 executed.
- the structure of a Heat exchanger blocks 3 shown the usual way.
- Figure 3 shows the Lamella arrangement in the distribution zones 31 for the oxygen passages 34, Figure 4 for the pure nitrogen passages 35 and Figure 5 accordingly for the Impure nitrogen passages 36.
- Figure 6 the arrangement of all inputs and Outlet nozzle to see.
- the distribution zones 31, 32, 33 both lead to a change in the direction of flow as well as cross-sectional changes, which in turn changes the Cause flow velocity. Both have a negative impact on the Block flow and creates an undesirable pressure drop across the Heat exchanger block 3.
- the pressure drop affects in particular the gas flows, which have a relatively low pressure between 1.1 and 1.8 bar.
- FIGS. 7 and 8 show the new block configuration.
- a key feature of the The inventive method is that in each heat exchanger block 23 only one of the gas streams 14, 15, 16 is guided in countercurrent with air 2, 7. With the End faces of the heat exchanger block 23 become collectors / distributors 43, also as Dome headers are referred to as inlets and outlets for the respective gas stream 14, 15, 16 connected.
- the collectors / distributors 43 are semi-cylindrical and have a connecting piece for the product feed or discharge.
- the one in the new Heat exchanger block 23 introduced gas flow does not experience anything Cross-sectional change and no significant change in current direction.
- the Pressure drop across the heat exchanger block 23 is greater than the pressure drop a usual block 3, as it was explained with reference to FIGS. 3 to 6, by approximately 30% reduced. Furthermore, the costs for the heat exchanger blocks 23 are reduced, since on the elaborate lamella cuts for the distribution zones 32 in Figures 3 to 5 can be dispensed with.
- the new Heat exchanger blocks preferably only have a narrow distribution zone 42 at the inlet and exit area of the heat exchange passages are provided.
- the slats in the narrow distribution zone 42 are parallel to the slats below or above the heat exchange passages are arranged, but have a smaller distance from each other.
- the gas entering the collector 41 easily builds up in front of the Distribution zone 42, which ensures an even distribution of the gas over all passages the distribution zone 42 and thus is reached on all heat exchange passages.
- FIGS Procedure Another advantage of the invention is shown in FIGS Procedure clearly.
- the piping in the new process much easier.
- the number of block sockets from ten to six per heat exchanger block are also fewer manifolds and Pipe bends necessary to block the gas flows 14, 15, 16 feed.
- the method according to the invention is not restricted to such processes only where all products are obtained in gaseous form, but also, for example Internal compression processes in which liquid products from the rectification unit subtracted from.
- Figure 9 shows the scheme of an air separation process in which in addition gaseous pure nitrogen 15 and gaseous impure nitrogen 16 liquid nitrogen 51 removed from the main capacitor of the rectification unit 11 and by means of an internal compression pump 52 is brought to increased pressure.
- the liquid and Nitrogen 51 brought to increased pressure is then in the heat exchanger block 56 against air 7 and compressed by the compressor 59 high pressure air evaporates and warmed up.
- the oxygen 12 is also in liquid form from the Low pressure column 10 is withdrawn and using the two pumps 54 and 55 internally compressed.
- the pure nitrogen stream 15 and the impure nitrogen stream 16 are in the heat exchanger blocks 23b, c, d and block 23e, respectively, respectively 7 and 8 are constructed, heated.
- internally compressed streams 57, 58 find a high-pressure heat exchanger block 56 Application.
- the high-pressure heat exchanger block 56 corresponds at first glance the heat exchanger block explained with reference to Figures 3 to 6, but has one significantly higher strength to withstand the high pressures of internal compression flows to be able to withstand. Those occurring in the heat exchanger block 56 Pressure losses have a far less effect on the internal compression flows 57, 58 negative than in the gaseous gas streams 15, 16 from the low pressure column 10.
- FIG. 10 A method similar to that in FIG. 9 is shown in FIG. 10, in which likewise liquid oxygen 12 is internally compressed 54, 55, but not against high pressure air, but is vaporized and heated against high pressure nitrogen.
- the Pressure column 9 removed gaseous nitrogen at 61 through which Heat exchanger block 62 out, compressed by means of the compressor 63 and in Countercurrent passed through the heat exchanger block 62 back into the pressure column 9.
- the construction of the heat exchanger block 62 corresponds essentially to that Heat exchanger block 56 in FIG. 9. There is no internal compression of nitrogen this variant, since 63 high-pressure nitrogen 64 are drawn off after the compressor can.
- FIG. 11 shows a further application of the method according to the invention.
- liquid oxygen is removed from the rectification column 11 at 12 and by means of the two pumps 54, 55 internally compressed.
- the evaporation of liquid oxygen takes place in this embodiment against circulating nitrogen, which at 61 from the Pressure column 9 removed, warmed in the heat exchanger block 77, with the compressors 71, 72, 73 compressed and in the heat exchanger block 77 against the Internal compression products cooled and passed into the pressure column 9 76.
- a part of the nitrogen is expanded after the compressor 71 (74) and into the Nitrogen cycle returned.
- Another part of the nitrogen is released Compression in compressors 71, 72, 73 and subsequent cooling in Heat exchanger block 77 at an intermediate point from the heat exchanger block 77 deducted, relaxed at 75 and returned to the nitrogen cycle.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10021081 | 2000-04-28 | ||
DE10021081A DE10021081A1 (de) | 2000-04-28 | 2000-04-28 | Verfahren und Vorrichtung zum Wärmeaustausch |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1150082A1 true EP1150082A1 (fr) | 2001-10-31 |
Family
ID=7640352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00115776A Withdrawn EP1150082A1 (fr) | 2000-04-28 | 2000-07-21 | Procédé et dispositif d'échange de chaleur |
Country Status (6)
Country | Link |
---|---|
US (1) | US6629433B2 (fr) |
EP (1) | EP1150082A1 (fr) |
JP (1) | JP2001355963A (fr) |
KR (1) | KR20010098779A (fr) |
CN (1) | CN1202400C (fr) |
DE (1) | DE10021081A1 (fr) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2867262A1 (fr) * | 2004-03-02 | 2005-09-09 | Air Liquide | Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede |
WO2005085728A1 (fr) * | 2004-03-02 | 2005-09-15 | L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude | Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede |
DE102007031765A1 (de) | 2007-07-07 | 2009-01-08 | Linde Ag | Verfahren zur Tieftemperaturzerlegung von Luft |
DE102007031759A1 (de) | 2007-07-07 | 2009-01-08 | Linde Ag | Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft |
DE102009034979A1 (de) | 2009-04-28 | 2010-11-04 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff |
EP2312248A1 (fr) | 2009-10-07 | 2011-04-20 | Linde Aktiengesellschaft | Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon |
EP2458311A1 (fr) | 2010-11-25 | 2012-05-30 | Linde Aktiengesellschaft | Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air |
DE102010052544A1 (de) | 2010-11-25 | 2012-05-31 | Linde Ag | Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft |
EP2520886A1 (fr) | 2011-05-05 | 2012-11-07 | Linde AG | Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air |
EP2568242A1 (fr) | 2011-09-08 | 2013-03-13 | Linde Aktiengesellschaft | Procédé et dispositif destinés à la production d'acier |
EP2600090A1 (fr) | 2011-12-01 | 2013-06-05 | Linde Aktiengesellschaft | Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air |
DE102011121314A1 (de) | 2011-12-16 | 2013-06-20 | Linde Aktiengesellschaft | Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft |
DE102013017590A1 (de) | 2013-10-22 | 2014-01-02 | Linde Aktiengesellschaft | Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage |
DE102012017488A1 (de) | 2012-09-04 | 2014-03-06 | Linde Aktiengesellschaft | Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren |
EP2784420A1 (fr) | 2013-03-26 | 2014-10-01 | Linde Aktiengesellschaft | Procédé de séparation de l'air et installation de séparation de l'air |
WO2014154339A2 (fr) | 2013-03-26 | 2014-10-02 | Linde Aktiengesellschaft | Procédé de séparation d'air et installation de séparation d'air |
EP2801777A1 (fr) | 2013-05-08 | 2014-11-12 | Linde Aktiengesellschaft | Installation de décomposition de l'air dotée d'un entraînement de compresseur principal |
EP2963369A1 (fr) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Procede et dispositif cryogeniques de separation d'air |
EP2963370A1 (fr) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Procede et dispositif cryogeniques de separation d'air |
EP2963371A1 (fr) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air |
EP2963367A1 (fr) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable |
EP3006875A1 (fr) | 2014-10-09 | 2016-04-13 | Linde Aktiengesellschaft | Procédé de réglage d'un système d'échangeur thermique couplé et système d'échangeur thermique |
WO2018206886A1 (fr) * | 2017-05-11 | 2018-11-15 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Appareil d'échange de chaleur |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7188492B2 (en) * | 2002-01-18 | 2007-03-13 | Linde Aktiengesellschaft | Plate heat exchanger |
JP4820721B2 (ja) * | 2006-09-07 | 2011-11-24 | オリオン機械株式会社 | 薬液用熱交換器 |
US9222725B2 (en) * | 2007-06-15 | 2015-12-29 | Praxair Technology, Inc. | Air separation method and apparatus |
EP2236964B1 (fr) * | 2009-03-24 | 2019-11-20 | Linde AG | Procédé et dispositif de séparation de l'air à basse température |
US8397535B2 (en) * | 2009-06-16 | 2013-03-19 | Praxair Technology, Inc. | Method and apparatus for pressurized product production |
DE102009040561A1 (de) | 2009-09-08 | 2011-03-10 | Linde Aktiengesellschaft | Wärmetauscher |
JP6738126B2 (ja) * | 2015-02-03 | 2020-08-12 | エア・ウォーター・クライオプラント株式会社 | 空気分離装置 |
RU178401U1 (ru) * | 2018-01-24 | 2018-04-03 | федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) | Тепломассообменное устройство |
US20210285719A1 (en) * | 2020-03-13 | 2021-09-16 | Air Products And Chemicals, Inc. | Heat exchanger apparatus, manifold arrangement for a heat exchanger apparatus, and methods relating to same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5035284A (en) * | 1987-12-24 | 1991-07-30 | Sumitomo Presicion Products Co. Ltd. | Plate-fin-type heat exchanger |
DE4204172A1 (de) * | 1992-02-13 | 1993-08-19 | Linde Ag | Verfahren zur behandlung eines einsatzstromes und verfahren zur tieftemperaturzerlegung von luft |
US5333683A (en) * | 1991-12-11 | 1994-08-02 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Indirect heat exchanger |
US5979182A (en) * | 1997-03-13 | 1999-11-09 | Kabushiki Kaisha Kobe Seiko Sho | Method of and apparatus for air separation |
FR2778971A1 (fr) * | 1998-05-20 | 1999-11-26 | Air Liquide | Installation de production d'un gaz, forme d'un constituant ou d'un melange de constituants de l'air sous une haute pression |
EP0971189A1 (fr) * | 1998-07-10 | 2000-01-12 | Praxair Technology, Inc. | Installation cryogénique de séparation des gaz de l'air avec fort taux de détente |
-
2000
- 2000-04-28 DE DE10021081A patent/DE10021081A1/de not_active Withdrawn
- 2000-07-21 EP EP00115776A patent/EP1150082A1/fr not_active Withdrawn
-
2001
- 2001-04-20 KR KR1020010021410A patent/KR20010098779A/ko active IP Right Grant
- 2001-04-25 JP JP2001127000A patent/JP2001355963A/ja active Pending
- 2001-04-28 CN CNB011156422A patent/CN1202400C/zh not_active Expired - Fee Related
- 2001-04-30 US US09/844,254 patent/US6629433B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5035284A (en) * | 1987-12-24 | 1991-07-30 | Sumitomo Presicion Products Co. Ltd. | Plate-fin-type heat exchanger |
US5333683A (en) * | 1991-12-11 | 1994-08-02 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Indirect heat exchanger |
DE4204172A1 (de) * | 1992-02-13 | 1993-08-19 | Linde Ag | Verfahren zur behandlung eines einsatzstromes und verfahren zur tieftemperaturzerlegung von luft |
US5979182A (en) * | 1997-03-13 | 1999-11-09 | Kabushiki Kaisha Kobe Seiko Sho | Method of and apparatus for air separation |
FR2778971A1 (fr) * | 1998-05-20 | 1999-11-26 | Air Liquide | Installation de production d'un gaz, forme d'un constituant ou d'un melange de constituants de l'air sous une haute pression |
EP0971189A1 (fr) * | 1998-07-10 | 2000-01-12 | Praxair Technology, Inc. | Installation cryogénique de séparation des gaz de l'air avec fort taux de détente |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2867262A1 (fr) * | 2004-03-02 | 2005-09-09 | Air Liquide | Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede |
WO2005085728A1 (fr) * | 2004-03-02 | 2005-09-15 | L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude | Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede |
DE102007031765A1 (de) | 2007-07-07 | 2009-01-08 | Linde Ag | Verfahren zur Tieftemperaturzerlegung von Luft |
DE102007031759A1 (de) | 2007-07-07 | 2009-01-08 | Linde Ag | Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft |
EP2015013A2 (fr) | 2007-07-07 | 2009-01-14 | Linde Aktiengesellschaft | Procédé et dispositif de production d'un gaz sous pression par séparation cryogénique d'air |
EP2015012A2 (fr) | 2007-07-07 | 2009-01-14 | Linde Aktiengesellschaft | Procédé pour la séparation cryogénique d'air |
DE102009034979A1 (de) | 2009-04-28 | 2010-11-04 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff |
EP2312248A1 (fr) | 2009-10-07 | 2011-04-20 | Linde Aktiengesellschaft | Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon |
EP2458311A1 (fr) | 2010-11-25 | 2012-05-30 | Linde Aktiengesellschaft | Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air |
DE102010052544A1 (de) | 2010-11-25 | 2012-05-31 | Linde Ag | Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft |
DE102010052545A1 (de) | 2010-11-25 | 2012-05-31 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft |
EP2466236A1 (fr) | 2010-11-25 | 2012-06-20 | Linde Aktiengesellschaft | Procédé de production d'un produit d'impression gazeux par décomposition à basse température de l'air |
EP2520886A1 (fr) | 2011-05-05 | 2012-11-07 | Linde AG | Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air |
DE102011112909A1 (de) | 2011-09-08 | 2013-03-14 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zur Gewinnung von Stahl |
EP2568242A1 (fr) | 2011-09-08 | 2013-03-13 | Linde Aktiengesellschaft | Procédé et dispositif destinés à la production d'acier |
EP2600090A1 (fr) | 2011-12-01 | 2013-06-05 | Linde Aktiengesellschaft | Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air |
DE102011121314A1 (de) | 2011-12-16 | 2013-06-20 | Linde Aktiengesellschaft | Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft |
DE102012017488A1 (de) | 2012-09-04 | 2014-03-06 | Linde Aktiengesellschaft | Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren |
EP2784420A1 (fr) | 2013-03-26 | 2014-10-01 | Linde Aktiengesellschaft | Procédé de séparation de l'air et installation de séparation de l'air |
WO2014154339A2 (fr) | 2013-03-26 | 2014-10-02 | Linde Aktiengesellschaft | Procédé de séparation d'air et installation de séparation d'air |
EP2801777A1 (fr) | 2013-05-08 | 2014-11-12 | Linde Aktiengesellschaft | Installation de décomposition de l'air dotée d'un entraînement de compresseur principal |
DE102013017590A1 (de) | 2013-10-22 | 2014-01-02 | Linde Aktiengesellschaft | Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage |
EP2963369A1 (fr) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Procede et dispositif cryogeniques de separation d'air |
EP2963370A1 (fr) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Procede et dispositif cryogeniques de separation d'air |
EP2963371A1 (fr) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air |
EP2963367A1 (fr) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable |
WO2016005031A1 (fr) | 2014-07-05 | 2016-01-14 | Linde Aktiengesellschaft | Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable |
EP3006875A1 (fr) | 2014-10-09 | 2016-04-13 | Linde Aktiengesellschaft | Procédé de réglage d'un système d'échangeur thermique couplé et système d'échangeur thermique |
WO2018206886A1 (fr) * | 2017-05-11 | 2018-11-15 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Appareil d'échange de chaleur |
FR3066265A1 (fr) * | 2017-05-11 | 2018-11-16 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Appareil d'echange de chaleur |
Also Published As
Publication number | Publication date |
---|---|
US6629433B2 (en) | 2003-10-07 |
KR20010098779A (ko) | 2001-11-08 |
DE10021081A1 (de) | 2002-01-03 |
JP2001355963A (ja) | 2001-12-26 |
CN1321868A (zh) | 2001-11-14 |
US20020124596A1 (en) | 2002-09-12 |
CN1202400C (zh) | 2005-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1150082A1 (fr) | Procédé et dispositif d'échange de chaleur | |
EP0093448B1 (fr) | Procédé et dispositif pour obtenir de l'oxygène gazeux sous pression élevée | |
EP0384483B1 (fr) | Procédé et dispositif de rectification d'air | |
EP1672301B1 (fr) | Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air | |
EP1994344A1 (fr) | Procédé et dispositif de décomposition de l'air à basse température | |
EP1284404A1 (fr) | Procédé et dispositif pour la production d'un produit sous pression par séparation cryogénique de l'air | |
DE4109945A1 (de) | Verfahren zur tieftemperaturzerlegung von luft | |
EP1067345A1 (fr) | Procédé et dispositif pour la séparation cryogénique des constituants de l'air | |
DE102010052545A1 (de) | Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft | |
EP2313724A2 (fr) | Procédé et dispositif de séparation de l'air à basse température | |
DE10013073A1 (de) | Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft | |
EP1544559A1 (fr) | Procédé et dispositif pour la séparation cryogénique d'air | |
EP1146301A1 (fr) | Procédé et dispositif de production d'azote à haute pression par séparation d'air | |
WO2016131545A1 (fr) | Procédé et dispositif d'obtention d'un produit d'azote comprimé | |
DE10238282A1 (de) | Verfahren zur Tieftemperatur-Zerlegung von Luft | |
EP0768503B1 (fr) | Procédé de séparation d'air à triple colonne | |
EP0795727A1 (fr) | Procédé et dispositif pour la liquéfaction d'un gaz à bas point d'ébullition | |
DE102004016931A1 (de) | Verfahren und Vorrichtung zur variablen Erzeugung eines Druckproduktes durch Tieftemperaturzerlegung von Luft | |
EP1329680B1 (fr) | Echangeur de chaleur à plaques | |
DE10052180A1 (de) | Drei-Säulen-System zur Tieftemperatur-Zerlegung von Luft | |
DE10045128A1 (de) | Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung | |
DE10147047A1 (de) | Zwei-oder Drei-Turbinen-Kreislauf zur Erzeugung eines Flüssigkeitsprodukts | |
WO2023030689A1 (fr) | Procédé pour obtenir un ou plusieurs produits de l'air et installation de séparation d'air | |
EP1209431A1 (fr) | Procédé et dispositif de production d'oxygène et d'azote | |
DE10139097A1 (de) | Verfahren und Vorrichtung zur Erzeugung von Sauerstoff durch Tieftemperatur-Zerlegung von Luft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20020408 |
|
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20040510 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20041123 |