[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1036107A1 - Polyetheresteramide - Google Patents

Polyetheresteramide

Info

Publication number
EP1036107A1
EP1036107A1 EP98956937A EP98956937A EP1036107A1 EP 1036107 A1 EP1036107 A1 EP 1036107A1 EP 98956937 A EP98956937 A EP 98956937A EP 98956937 A EP98956937 A EP 98956937A EP 1036107 A1 EP1036107 A1 EP 1036107A1
Authority
EP
European Patent Office
Prior art keywords
polyether ester
ester amides
acids
mixtures
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98956937A
Other languages
English (en)
French (fr)
Inventor
Ralf Timmermann
Wolfgang Schulz-Schlitte
Michael Voigt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1997153534 external-priority patent/DE19753534A1/de
Priority claimed from DE1997153532 external-priority patent/DE19753532A1/de
Application filed by BASF SE filed Critical BASF SE
Publication of EP1036107A1 publication Critical patent/EP1036107A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances

Definitions

  • DE-A 25 23 991, DE-A 28 02 989, DE-A 28 56 787 describe copolyether ester amides which, starting from short-chain, acid-terminated polyamide units, preferably based on PA 11, are prepared by condensation with hydroxyl-functional polyethers and monofunctional acids become.
  • DE-A 31 45 998 describes polyether ester amides from aminocarboxylic acids, dicarboxylic acids and long-chain polyethers.
  • the polymers obtained are characterized by low molecular weights and are not suitable, e.g. To extrude foils.
  • EP-A 0 163 902 and EP-A 0 095 893 describe polyether ester amides from lactams or aminocarboxylic acids, dicarboxylic acids and long-chain polyethers.
  • US-A 4 230 838 describes polyether ester amides from an acid-terminated polyamide, dicarboxylic acids and polytetramethylene glycol.
  • EP-A 0 378 015 describes polyether ester amides with good water vapor permeability, which in turn have a block-like structure and are acid-terminated
  • Polyamides and hydroxyl-functional polyethers are produced. It is difficult rigorous adherence to stoichiometry to obtain high molecular weight polymers. Polymers with lower molecular weights are poorly suited for film extrusion.
  • the object of the invention is to provide polyether ester amides which have a high water vapor permeability, are suitable for use in film extrusion and are simple and safe to produce and are fast-crystallizing.
  • polyether ester amides according to the invention are also biodegradable or compostable.
  • polyester amides are much simpler than the methods described so far, since a multi-stage procedure is not necessary (prior synthesis of acid-terminated short-chain polyamides) and the stoichiometry of the synthesis can be maintained very well by the additional use of short-chain diol compounds and very high molecular weight polyether ester amides are thus obtained that are ideal for extrusion applications.
  • the invention therefore relates to polyether ester amides which have a statistical arrangement of the ester and amide segments and where the alcohol component consists of monomeric and oligomeric diols.
  • the content of oligomeric diol, based on the total content of the alcohol component, is generally 3 to 99, preferably 5 to 80 mol%, particularly preferably 15 to 80 mol%, in particular 15 to 50 mol%.
  • the polyether ester amides are preferably composed of the following monomers:
  • Oligomeric polyols consisting of polyethylene glycols, polypropylene glycols, randomly or block-like polyglycols from mixtures of ethylene oxide or propylene oxide, or polytetrahydrofurans with molecular weights (weight average) between 100 and 10,000 and
  • monomeric diols preferably C2-C j 2-alkyldiols, in particular C 2 -C, 5-alkyldiols, for example and preferably ethylene glycol, 1,4-butanediol, 1,3-propanediol,
  • Dicarboxylic acids preferably C2-C12-, particularly preferably C2-Cö-alkyldicarboxylic acids, for example and preferably oxalic acid, succinic acid, adipic acid, also in the form of their respective esters (methyl, ethyl, etc.),
  • Alkylhydroxycarboxylic acids with preferably 2 to 12 carbon atoms in the alkyl chain and lactones such as and preferably caprolactone and others,
  • Amino alcohols preferably having 2 to 12 carbon atoms in the alkyl chain, for example and preferably ethanolamine, propanolamine,
  • Cyclic lactams preferably having 5 to 12, preferably 6 to 11 carbon atoms. such as and preferably ⁇ -caprolactam or laurolactam etc.,
  • ⁇ -aminocarboxylic acids preferably having 6 to 12 carbon atoms in the alkyl chain, such as, for example, and preferably aminocaproic acid, etc.
  • both hydroxyl- or acid-terminated polyesters with molecular weights between 300 and 10,000 can be used as the ester-forming component.
  • the polyether ester amides according to the invention can further contain 0.05 to 5% by weight, preferably 0.1 to 1% by weight, of branching agents.
  • branching agents can e.g. trifunctional alcohols such as trimethylolpropane or glycerin, tetrafunctional
  • Alcohols such as pentaerythritol, trifunctional carboxylic acids such as citric acid or tri- or tetrafunctional hydroxycarboxylic acids.
  • the branching agents increase the melt viscosity of the polyether ester amides according to the invention to such an extent that extrusion blow molding is possible with these polymers.
  • the proportion of ether and ester fractions in the polymer is generally 5 to 85, preferably 20 to 80,% by weight, based on the total polymer.
  • the polyetheresteramides according to the invention generally have an average molecular weight (Mw determined according to gel chromatography in cresol against standard polystyrene) from 10,000 to 300,000, preferably from 15,000 to 150,000, in particular 15,000 to 100,000.
  • Mw average molecular weight
  • the synthesis can be carried out either by the "polyamide method” by stoichiometric mixing of the starting components, if appropriate with the addition of water and subsequent removal of water from the reaction mixture, or by the “polyester method” by adding an excess of diol with esterification of the acid groups and subsequent transesterification or unamidation these esters are made. In this second case, the excess glycol is distilled off in addition to water.
  • the reaction generally takes place at temperatures of 180 up to 280 ° C and under reduced pressure, preferably ⁇ 5 mbar, in particular ⁇ 1 mbar.
  • suitable catalysts can be used to catalyze the esterification or amidation reactions.
  • Titanium compounds for the esterifications or phosphorus compounds for the amidation reactions include e.g. Titanium compounds for the esterifications or phosphorus compounds for the amidation reactions. These catalysts are known from the prior art.
  • polyether ester amides according to the present invention can be filled and
  • Reinforcing materials and common additives are mixed. As a rule, up to 80% by weight (based on polyetheresteramide) of fillers and reinforcing materials can be added.
  • inorganic materials are used as fillers and reinforcing materials.
  • fibrous reinforcing materials such as glass and carbon fibers and mineral fillers, e.g. Talc, mica, chalk, kaolin, wollastonite, gypsum, quartz, dolomite, silicates.
  • the fillers and reinforcing materials can also be surface-treated.
  • Glass fibers generally have a fiber diameter between 8 and 14 ⁇ m and can be used as continuous fibers or as cut or ground glass fibers, the fibers being able to be equipped with a suitable sizing system and an adhesion promoter or adhesion promoter system based on silane.
  • the polyetheresteramides may further contain 1 to 90, preferably 10 to 60, in particular 15 to 50 parts by weight (based on polyetheresteramide) of starch, modified starch, cellulose and / or modified cellulose.
  • starch described in WO 96/31 561 can be used as starch.
  • Other possible additives are:
  • UV stabilizers antioxidants, pigments, dyes, nucleating agents, crystallization accelerators and retarders, flow aids, lubricants, mold release agents, flame retardants, water repellents. Plasticizers and / or impact modifiers can also be added.
  • polyether ester amides according to the invention can also be used as a blend with biodegradable polymers.
  • biodegradable polymers include e.g. aliphatic polyesters such as polycaprolactone, aliphatic-aromatic polyesters from e.g. Terephthalic acid, butanediol and adipic acid, polyhydroxybutyric acid, polylactides and copolymers thereof,
  • Polyester urethanes e.g. EP-A 593 975.
  • mixtures according to the invention of polyether ester amide and fillers and reinforcing materials and, if appropriate, further additives can be prepared by mixing the respective constituents in a known manner and in the customary manner
  • Temperatures e.g. at 180 ° C to 300 ° C, in conventional units such as internal kneaders, extruders, twin-screw extruders, melt-compounded or melt-extruded.
  • polyether ester amides of the present invention and their mixtures mentioned above can be used in injection molding, as a fiber or film or in the non-woven sector
  • melt-blown can be used in particular for the production of films, for example by bubble extrusion.
  • caprolactam 28.2 g of adipic acid, 29.5 g of butanediol and 78.4 g of polyethylene glycol 200 are combined with titanium tetraisopropylate as a catalyst and heated to 240 ° C. under nitrogen. After water has been removed, the pressure is gradually reduced to 1 mbar.
  • caprolactam 256.6 g of caprolactam, 66.0 g of adipic acid, 20.4 g of 1,4-butanediol, 108.0 g of polyethylene glycol (PEG 400, from BASF) and 3.03 g of trimethylolpropane are used with titanium tetraisopropylate as a catalyst under nitrogen heated to 250 ° C. With easing the distillation rate is slowly applied to a water jet vacuum, followed by an oil pump vacuum (approx. 1 mbar). It is polycondensed at this temperature for 3 h and cooled.
  • PEG 400 polyethylene glycol
  • an oil pump vacuum approximately 1 mbar
  • is obtained 3.0 (1% by weight in m-cresol at 25 ° C).
  • the melting point is 155.4 ° C, the crystallization temperature 92.9 ° C (DS C measurements).
  • caprolactam 253 g of adipic acid, 156 g of 1,4-butanediol and 1,380 g of PEG 400 are heated to 250 ° C. in trimethylolpropane using titanium tetraisopropylate as a catalyst under nitrogen.
  • water jet vacuum is slowly applied, followed by an oil pump vacuum (approx. 1 mbar). It is polycondensed at this temperature for 3 h and cooled.
  • a high molecular weight polymer with ⁇ re ⁇ 3.0 (1% by weight in m-cresol at 25 ° C.) is obtained.
  • the melting point is 118J ° C, the crystallization temperature 73.3 ° C (according to DSC).
  • a high molecular weight polymer with ⁇ re j 2.8 (1% by weight in m-cresol at 25 ° C.) is obtained.
  • the melting point is 118J ° C, the crystallization temperature 41.4 ° C (DSC measurements).
  • Example 1 420
  • Example 2 1120
  • Example 3 780
  • Example 4 920 Comparative example: 210

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyamides (AREA)

Abstract

Polyetheresteramide, die eine statistische Anordnung der Ester- und Amidsegmente aufweisen und wobei die Alkoholkomponente aus monomeren und oligomeren Diolen besteht sowie ein Verfahren zu deren Herstellung und die daraus hergestellten Artikel.

Description

Polyetheresteramide
DE-A 25 23 991, DE-A 28 02 989, DE-A 28 56 787 beschreiben Copolyetherester- amide, die ausgehend von kurzkettigen, säureendständigen Polyamideinheiten, bevorzugt auf Basis PA 11 , durch Kondensation mit hydroxylfunktionellen Poly- ethern und monofunktionellen Säuren hergestellt werden.
Diese Herstellmethode ist sehr aufwendig und unsicher, da die Herstellung mehr- stufig ist und die Stöchiometrie nur schwer eingehalten werden kann, um wirklich hochmolekulare Polymere (M w > 15.000) zu erhalten.
DE-A 31 45 998 beschreibt Polyetheresteramide aus Aminocarbonsäuren, Dicarbon- säuren und langkettigen Polyethern. Die erhaltenen Polymere zeichnen sich durch geringe Molekulargewichte aus und sind nicht geeignet, daraus z.B. Folien zu extru- dieren.
EP-A 0 163 902 und EP-A 0 095 893 beschreiben Polyetheresteramide aus Lactamen oder Aminocarbonsäuren, Dicarbonsäuren und langkettigen Polyethern.
US-A 4 230 838 beschreibt Polyetheresteramide aus einem säureterminierten Polyamid, Dicarbonsäuren und Polytetramethylenglykol.
Die obengenannten Anmeldungen und das US-Patent beschreiben blockartig aufge- baute Polyetheresteramide, die hohe Elastizitäten aufweisen, die Eigenschaften der hohen Wasserdampfdurchlässigkeit dieser Polyetheresteramide wird jedoch nicht erwähnt.
In EP-A 0 378 015 werden Polyetheresteramide mit guter Wasserdampfdurchlässig- keit beschrieben, die wiederum blockartig aufgebaut sind und aus säureterminierten
Polyamiden und hydroxylfunktionellen Polyethern hergestellt werden. Es ist schwie- rig, die Stöchiometrie genau einzuhalten, um Polymere mit hohen Molekulargewichten zu erhalten. Polymere mit niedrigeren Molekulargewichten sind für Folienextrusion nur schlecht geeignet.
Die Aufgabe der Erfindung ist die Bereitstellung von Polyetheresteramiden, die eine hohe Wasserdampfdurchlässigkeit aufweisen, für den Einsatz in der Folienextrusion geeignet sind und einfach und sicher herstellbar sowie schnell kristallisierend sind.
Die erfindungsgemäßen Polyetheresteramide sind weiterhin auch biologisch ab- baubar bzw. kompostierbar.
Es wurde gefunden, daß Polyetheresteramide aufgebaut aus Lactamen, Dicarbonsäuren und einem Gemisch aus kurzkettigen und langkettigen Diolen, die eine statistische Anordnung der Ester- und Amidsegmente aufweisen, diesen Anforde- rungen genügen.
Die Herstellung dieser Polyesteramide ist wesentlich einfacher als die bisher beschriebenen Methoden, da keine mehrstufige Fahrweise notwendig ist (vorherige Synthese von säureterminierten kurzkettigen Polyamiden) und die Stöchiometrie der Synthese durch den zusätzlichen Einsatz von kurzkettigen Diolverbindungen sehr gut einzuhalten ist und damit sehr hochmolekulare Polyetheresteramide erhalten werden, die hervorragend für Extrusionsanwendungen geeignet sind.
Gegenstand der Erfindung sind daher Polyetheresteramide, die eine statistische Anordnung der Ester- und Amidsegmente aufweisen und wobei die Alkoholkomponente aus monomeren und oligomeren Diolen besteht.
Der Gehalt an oligomerem Diol, bezogen auf den Gesamtgehalt der Alkoholkomponente beträgt im allgemeinen 3 bis 99, vorzugsweise 5 bis 80 Mol-%, besonders bevorzugt 15 bis 80 Mol-%, insbesondere 15 bis 50 Mol-%. Die Polyetheresteramide sind vorzugsweise aufgebaut aus den folgenden Monomeren:
Oligomere Polyole bestehend aus Polyethylenglykolen, Polypropylenglykolen, statis- tisch oder blockartig aufgebauten Polyglykolen aus Mischungen aus Ethylenoxid oder Propylenoxid, oder Polytetrahydrofurane mit Molekulargewichten (Gewichtsmittel) zwischen 100 und 10.000 und
monomere Diole, vorzugsweise C2-Cj2-Alkyl-Diole, insbesondere C2-C,5-Alkyl- diole, beispielsweise und bevorzugt Ethylengykol, 1 ,4-Butandiol, 1,3-Propandiol,
1 ,6-Hexandiol,
und mindestens einem Monomer ausgewählt aus der Gruppe der
Dicarbonsäuren, vorzugsweise C2-C12-, besonders bevorzugt C2-Cö-Alkyldicarbon- säuren, beispielsweise und bevorzugt Oxalsäure, Bernsteinsäure, Adipinsäure, auch in Form ihrer jeweiligen Ester (Methyl-, Ethyl- usw.),
Alkylhydroxycarbonsäuren mit vorzugsweise 2 bis 12 Kohlenstoffatomen in der Alkylkette und Lactone wie beispielsweise und bevorzugt Caprolacton u.a.,
Aminoalkohole vorzugsweise mit 2 bis 12 Kohlenstoffatomen in der Alkylkette, beispielsweise und bevorzugt Ethanolamin, Propanolamin,
cyclische Lactame vorzugsweise mit 5 bis 12, bevorzugt 6 bis 11 C-Atomen. wie beispielsweise und bevorzugt ε-Caprolactam oder Laurinlactam usw.,
ω -Aminocarbonsäuren vorzugsweise mit 6 bis 12 C-Atomen in der Alkylkette wie beispielsweise und bevorzugt Aminocapronsäure usw., Mischungen (1 :1 Salze) aus C2-Cj2 _Alkyldicarbonsäuren, beispielsweise und bevorzugt Adipinsäure, Bernsteinsäure und C2-Ci2-Nlkyldiaminen, vorzugsweise C4-C6- Dialkylaminen, beispielsweise und bevorzugt Hexamethylendiamin, Diaminobutan.
Ebenso können sowohl hydroxyl- oder säureterminierte Polyester mit Molekulargewichten zwischen 300 und 10.000 als esterbildende Komponente eingesetzt werden.
Die erfindungsgemäßen Polyetheresteramide können weiterhin 0,05 bis 5 Gew.-%, bevorzugt 0,1 bis 1 Gew.-% an Verzweigern enthalten. Diese Verzweiger können z.B. trifunktionelle Alkohole wie Trimethylolpropan oder Glycerin, tetrafunktionelle
Alkohole wie Pentaerythrit, trifunktionelle Carbonsäuren wie Citronensäure oder auch tri- oder tetrafunktionelle Hydroxycarbonsäuren sein. Die Verzweiger erhöhen die Schmelzviskosität der erfindungsgemäßen Polyetheresteramide soweit, daß Extrusionsblasformen mit diesen Polymeren möglich wird.
Der Anteil der Ether- und Esteranteile im Polymer beträgt im allgemeinen 5 bis 85, vorzugsweise 20 bis 80 Gew.-%, bezogen auf das Gesamtpolymer.
Die erfindungsgemäßen Polyetheresteramide haben im allgemeinen ein mittleres Molekulargewicht (Mw ermittelt nach Gelchromatographie im Kresol gegen Standard Polystyrol) von 10.000 bis 300.000, vorzugsweise von 15.000 bis 150.000, insbesondere 15.000 bis 100.000.
Die Synthese kann sowohl nach der „Polyamidmethode" durch stöchiometrisches Mischen der Ausgangskomponenten gegebenenfalls unter Zusatz von Wasser und anschließendem Entfernen von Wasser aus dem Reaktionsgemisch als auch nach der „Polyestermethode" durch Zugabe eines Überschusses an Diol mit Veresterung der Säuregruppen und nachfolgender Umesterung bzw. Unamidierung dieser Ester erfolgen. In diesem zweiten Fall wird neben Wasser auch der Überschuß an Glykol wieder abdestilliert. Die Reaktion findet im allgemeinen bei Temperaturen von 180 bis 280°C und unter vermindertem Druck, vorzugsweise < 5 mbar, insbesondere < 1 mbar statt.
Bei der Herstellung der erfmdungsgemäßen Polyetheresteramide kann man geeignete Katalysatoren zur Katalyse der Veresterungs- bzw. Amidierungsreaktionen einsetzen.
Dazu gehören z.B. Titanverbindungen für die Veresterungen bzw. Phosphorverbindungen für die Amidierungsreaktionen. Diese Katalysatoren sind aus dem Stand der Technik bekannt.
Die Polyetheresteramide gemäß vorliegender Erfindung können mit Füll- und
Verstärkungsstoffen und üblichen Additiven gemischt werden. In der Regel können bis zu 80 Gew.-% (bezogen auf Polyetheresteramid) Füll- und Verstärkungsstoffe zugesetzt werden.
Als Füll- und Verstärkungsstoffe werden im allgemeinen anorganische Materialien eingesetzt. Dies sind faserige Verstärkungsstoffe, wie Glas und Kohlenstoffasern, und mineralische Füllstoffe, z.B. Talkum, Glimmer, Kreide, Kaolin, Wollastonit, Gips, Quarz, Dolomit, Silikate.
Die Füll- und Verstärkungsstoffe können auch oberflächenbehandelt sein.
Glasfasern haben im allgemeinen einen Faserdurchmesser zwischen 8 und 14 μm und können als Endlosfasern oder als geschnittene oder gemahlene Glasfasern eingesetzt werden, wobei die Fasern mit einem geeigneten Schlichtesystem und einem Haftvermittler bzw. Haftvermittlersystem auf Silanbasis ausgerüstet sein können.
Die Polyetheresteramide können weiterhin 1 bis 90, vorzugsweise 10 bis 60, insbesondere 15 bis 50, Gew. -Teile (bezoden auf Polyetheresteramid) Stärke, modifizierte Stärke, Cellulose und/oder modifizierte Cellulose, enthalten. Als Stärke kann bei- spielsweise die in WO 96/31 561 beschriebene Stärke eingesetzt werden. Als übliche Additive kommen ferner in Fage:
UV-Stabilisatoren, Antioxidantien, Pigmente, Farbstoff, Nukleiermittel, Kristallisationsbeschleuniger bzw. -verzögerer, Fließhilfsmittel, Gleitmittel, Entformungs- mittel, Flammschutzmittel, Hydrophobierungsmittel. Weiterhin können Weich- macher und/oder Schlagzähmodifikatoren zugesetzt werden.
Die erfindungsgemäßen Polyetheresteramide können auch mit biologisch abbaubaren Polymeren als Blend eingesetzt werden. Dazu zählen z.B. aliphatische Polyester wie Polycaprolacton, aliphatisch-aromatische Polyester aus z.B. Terephthalsäure, Butan- diol und Adipinsäure, Polyhydroxybuttersäure, Polylactide und Copolymere daraus,
Polyesterurethane (z.B. EP-A 593 975).
Die erfindungsgemäßen Mischungen aus Polyetheresteramid und Füll- und Verstärkungsstoffen und gegebenenfalls weiteren Additiven können hergestellt werden, indem man die jeweiligen Bestandteile in bekannter Weise mischt und bei üblichen
Temperaturen, z.B. bei 180°C bis 300°C, in üblichen Aggregaten wie Innenknetern, Extrudern, Doppelwellenschnecken, schmelzcompoundiert oder schmelzextrudiert.
Die Polyetheresteramide der vorliegenden Erfindung und deren obengenannten Mischungen können im Spritzguß, als Faser oder Folie oder im Non-woven-Bereich
(spun-bond oder melt-blown) insbesondere zur Herstellung von Folien, beispielsweise durch Blasextrusion, verwendet werden.
Beispiele
Beispiel 1
246,6 g Caprolactam, 28,2 g Adipinsäure, 29,5 g Butandiol und 78,4 g Polyethylen- glykol 200 werden mit Titantetraisopropylat als Katalysator zusammengegeben und unter Stickstoff auf 240°C erhitzt. Nach dem Abdestülieren von Wasser wird der Druck stufenweise bis auf 1 mbar abgesenkt.
Nach 3 h Polykondensationszeit erhält man ein farbloses hochmolekulares Material
(relative Viskosität von 2,9 gemessen in 1 gew.-%iger Lösung in m-Kresol bei 25°C) mit einem Schmelzpunkt von 134°C. M w = 25.000, gemessen mittels GPC in Kresol gegen Polystyrol als Standard
Beispiel 2
710 g AH-Salz, 253 g Adipinsäure, 184 g Diethylenglykol und 1380 g Polyethylen- glykol 400 werden mit Titantetraisopropylat als Katalysator zusammengegeben und unter Stickstoff auf 240°C erhitzt. Nach dem Abdestülieren von Wasser wird der Druck stufenweise bis auf 1 mbar abgesenkt.
Nach 3 h Polykondensationszeit erhält man ein farbloses hochmolekulares Material (relative Viskosität von 3,2, gemessen in 1 gew.-%iger Lösung in m-Kresol bei 25°C) mit einem Schmelzpunkt von 186°C. M w = 28.000, gemessen mittels GPC in Kresol gegen Polystyrol als Standard
Beispiel 3
256,6 g Caprolactam, 66,0 g Adipinsäure, 20,4 g 1 ,4-Butandiol, 108,0 g Poly- ethylenglykol (PEG 400, Fa. BASF), 3,03 g Trimethylolpropan werden mit Titantetraisopropylat als Katalysator unter Stickstoff auf 250°C erwärmt. Bei nachlassen- der Destillationsgeschwindigkeit wird langsam Wasserstrahlvakuum, anschließend Ölpumpenvakuum (ca. 1 mbar) angelegt. Es wird bei dieser Temperatur 3 h polykondensiert und abgekühlt.
Man erhält ein hochmolekulares Polymer mit ηre| 3,0 (1 gew.-%ig in m-Kresol bei 25°C). Der Schmelzpunkt beträgt 155,4°C, die Kristallisationstemperatur 92,9°C (DS C-Messungen) .
Beispiel 4
653 g Caprolactam, 253 g Adipinsäure, 156 g 1,4-Butandiol und 1 380 g PEG 400 werden in Trimethylolpropan mit Titantetraisopropylat als Katalysator unter Stickstoff auf 250°C erwärmt. Bei nachlassender Destillationsgeschwindigkeit wird langsam Wasserstrahlvakuum, anschließend Ölpumpenvakuum (ca. 1 mbar) angelegt. Es wird bei dieser Temperatur 3 h polykondensiert und abgekühlt.
Man erhält ein hochmolekulares Polymer mit ηreι 3,0 (1 gew.-%ig in m-Kresol bei 25°C).
Der Schmelzpunkt eträgt 118J°C, die Kristallisationstemperatur 73,3°C (lt. DSC).
Vergleichsversuch
557 g Caprolactam, 287,8 g Adipinsäure, 221,0 g 1 ,4-Butandiol und 6,6 g Trimethylolpropan werden mit Titantetraisopropylat als Katalysator unter Stickstoff auf 250°C erwärmt. Bei nachlassender Destillationsgeschwindigkeit wird langsam Wasserstrahlvakuum, anschließend Ölpumpenvakuum (ca. 1 mbar) angelegt. Es wird bei dieser Temperatur 3 h polykondensiert und abgekühlt.
Man erhält ein hochmolekulares Polymer mit ηrej 2,8 (1 gew.-%ig in m-Kresol bei 25°C).
Der Schmelzpunkt eträgt 118J°C, die Kristallisationstemperatur 41,4°C (DSC- Messungen).
Die Wasserdampfdurchlässigkeit bei 23°C/85 % relativer Feuchte, gemessen an einer
20 μm dicken Folie nach DIN 53 122 Teil 1 beträgt:
Beispiel 1: 420 Beispiel 2: 1120 Beispiel 3: 780
Beispiel 4: 920 Vergleichsbeispiel: 210

Claims

Patentansprüche
1. Polyetheresteramide, die eine statistische Anordnung der Ester- und Amidsegmente aufweisen und wobei die Alkoholkomponente aus monomeren und oligomeren Diolen besteht.
2. Polyetheresteramide gemäß Anspruch 1, wobei der Esteranteil 5 bis 85 Gew.-%, der Amidanteil 15 bis 95 Gew.-%, jeweils bezogen auf das Gesamtpolymer, betragen.
3. Polyetheresteramide gemäß Anspruch 1, wobei der Gehalt an oligomerem Diol, bezogen auf den Gesamtgehalt der Alkoholkomponente 3 bis 99 Mol-% beträgt.
4. Polyetheresteramide gemäß Anspruch 1, wobei der Gehalt an oligomerem
Diol 5 bis 50 Mol-% beträgt.
5. Polyetheresteramide gemäß Anspruch 1, aufgebaut aus den folgenden Monomeren:
Oligomere Polyole bestehend aus Polyethylenglykolen, Polypropylengly- kolen, statistisch oder blockartig aufgebauten Polyglykolen aus Mischungen aus Ethylenoxid oder Propylenoxid, oder Polytetrahydrofurane mit Molekulargewichten (Gewichtsmittel) zwischen 100 und 10.000 und
monomere Diole
und mindestens einem Monomer ausgewählt aus der Gruppe der Dicarbonsäuren, Alkylhydroxycarbonsäuren, Lactone, Aminoalkohole, cyclische Lactame, ω -Aminocarbonsäuren, Mischungen (1:1 Salze) aus C2-C ^-Alkyldicarbonsäuren und C2-C12-Dialkylaminen.
6. Polyetheresteramide gemäß Anspruch 5, aufgebaut aus den folgenden
Monomeren:
Oligomere Polyole bestehend aus Polyethylenglykolen, Polypropylengly- kolen, statistisch oder blockartig aufgebauten Polyglykolen aus Mischungen aus Ethylenoxid oder Propylenoxid, oder Polytetrahydrofurane mit Molekulargewichten (Gewichtsmittel) zwischen 100 und 10.000 und C2-Ci2- Alkyl-Diole, und mindestens ein Monomer ausgewählt aus der Gruppe der C2-C 12- Alkyldicarbonsäuren, C2-C \ 2-Alkylhydroxycarbonsäuren, Aminoalkohole mit 2 bis 12 C-Atomen in der Alkylkette, cyclische Lactame mit 5 bis 12 C-Atomen, ω -Aminocarbonsäuren mit 6 bis 12 C-Atomen, Mischungen (1:1 Salze) aus C2-C12- Alkyldicarbonsäuren und C2-C12-Dialkylaminen.
7. Mischung aus Polyetheresteramiden gemäß Anspruch 1 mit Füll- und Verstärkungsstoffen und gegebenenfalls üblichen Additiven.
8. Verwendung der Polyetheresteramide und der Mischungen gemäß Anspruch 1 und 6 zur Herstellung von Spritzgußartikeln, Folien, Fasern oder Non- Woven Material.
9. Spritzgußartikel, Folien, Faser und Non-Woven Material erhältlich aus Polyetheresteramiden gemäß Anspruch 1 bis 7.
EP98956937A 1997-12-03 1998-11-20 Polyetheresteramide Withdrawn EP1036107A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE1997153534 DE19753534A1 (de) 1997-12-03 1997-12-03 Schnell kristallisierende, biologisch abbaubare Polyesteramide
DE1997153532 DE19753532A1 (de) 1997-12-03 1997-12-03 Polyetheresteramide
DE19753532 1997-12-03
DE19753534 1997-12-03
PCT/EP1998/007458 WO1999028371A1 (de) 1997-12-03 1998-11-20 Polyetheresteramide

Publications (1)

Publication Number Publication Date
EP1036107A1 true EP1036107A1 (de) 2000-09-20

Family

ID=26042113

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98956937A Withdrawn EP1036107A1 (de) 1997-12-03 1998-11-20 Polyetheresteramide

Country Status (9)

Country Link
US (1) US6344535B1 (de)
EP (1) EP1036107A1 (de)
JP (1) JP2001525433A (de)
KR (1) KR20010032718A (de)
CN (1) CN1278839A (de)
AU (1) AU1339699A (de)
CA (1) CA2312479A1 (de)
NO (1) NO20002677D0 (de)
WO (1) WO1999028371A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11242456B2 (en) 2018-01-23 2022-02-08 Solutia Inc. Interlayers comprising polyesteramide compositions

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027905A1 (de) * 2000-06-06 2001-12-13 Bayer Ag Biologisch abbaubare Formmassen mit sehr guter Fließfähigkeit sowie deren Herstellung und Verwendung
US7776314B2 (en) 2002-06-17 2010-08-17 Grunenthal Gmbh Abuse-proofed dosage system
PL1842533T3 (pl) * 2003-08-06 2013-08-30 Gruenenthal Gmbh Postać aplikacyjna zabezpieczona przed nadużyciem
US20070048228A1 (en) * 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
DE102004020220A1 (de) * 2004-04-22 2005-11-10 Grünenthal GmbH Verfahren zur Herstellung einer gegen Missbrauch gesicherten, festen Darreichungsform
DE102005005446A1 (de) 2005-02-04 2006-08-10 Grünenthal GmbH Bruchfeste Darreichungsformen mit retardierter Freisetzung
US8075872B2 (en) * 2003-08-06 2011-12-13 Gruenenthal Gmbh Abuse-proofed dosage form
DE10361596A1 (de) * 2003-12-24 2005-09-29 Grünenthal GmbH Verfahren zur Herstellung einer gegen Missbrauch gesicherten Darreichungsform
DE10336400A1 (de) * 2003-08-06 2005-03-24 Grünenthal GmbH Gegen Missbrauch gesicherte Darreichungsform
DE102004032051A1 (de) * 2004-07-01 2006-01-19 Grünenthal GmbH Verfahren zur Herstellung einer gegen Missbrauch gesicherten, festen Darreichungsform
US8685431B2 (en) * 2004-03-16 2014-04-01 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
KR20070033344A (ko) * 2004-06-03 2007-03-26 노바몬트 에스.피.에이. 유기성 폐기물 수거용 통풍 시스템
DE102004032049A1 (de) * 2004-07-01 2006-01-19 Grünenthal GmbH Gegen Missbrauch gesicherte, orale Darreichungsform
DE102004032103A1 (de) * 2004-07-01 2006-01-19 Grünenthal GmbH Gegen Missbrauch gesicherte, orale Darreichungsform
DE102005005449A1 (de) * 2005-02-04 2006-08-10 Grünenthal GmbH Verfahren zur Herstellung einer gegen Missbrauch gesicherten Darreichungsform
US20070106034A1 (en) * 2005-11-03 2007-05-10 Annett Linemann Process to make copolymers having polyamide blocks and polyether blocks
DE102007011485A1 (de) * 2007-03-07 2008-09-11 Grünenthal GmbH Darreichungsform mit erschwertem Missbrauch
KR100909749B1 (ko) * 2007-11-19 2009-07-29 도레이새한 주식회사 비직물조직 소재로 가공한 차량용 도막 보호용 커버 및그의 제조 방법
RU2493830C2 (ru) * 2008-01-25 2013-09-27 Грюненталь Гмбх Лекарственная форма
NZ588863A (en) * 2008-05-09 2012-08-31 Gruenenthal Chemie Process for the preparation of an intermediate powder formulation and a final solid dosage form under usage of a spray congealing step
FR2936803B1 (fr) * 2008-10-06 2012-09-28 Arkema France Copolymere a blocs issu de matieres renouvelables et procede de fabrication d'un tel copolymere a blocs.
NZ596668A (en) 2009-07-22 2013-09-27 Gruenenthal Chemie Oxidation-stabilized tamper-resistant dosage form
TW201105316A (en) 2009-07-22 2011-02-16 Gruenenthal Gmbh Hot-melt extruded pharmaceutical dosage form
US9579285B2 (en) * 2010-02-03 2017-02-28 Gruenenthal Gmbh Preparation of a powdery pharmaceutical composition by means of an extruder
AU2011297901B2 (en) 2010-09-02 2014-07-31 Grunenthal Gmbh Tamper resistant dosage form comprising inorganic salt
MX2013002293A (es) 2010-09-02 2013-05-09 Gruenenthal Gmbh Forma de dosificacion resistente a alteracion que comprende un polimero anionico.
PL2736497T3 (pl) 2011-07-29 2018-01-31 Gruenenthal Gmbh Tabletka odporna na ingerencję, zapewniająca natychmiastowe uwalnianie leku
NO2736495T3 (de) 2011-07-29 2018-01-20
CN102382301B (zh) * 2011-08-11 2013-05-08 浙江雅迪纤维有限公司 一种可熔融纺丝的氨纶树脂及其生产方法
WO2013127831A1 (en) 2012-02-28 2013-09-06 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
CN104394851B (zh) 2012-04-18 2017-12-01 格吕伦塔尔有限公司 抗篡改和抗剂量‑倾泻药物剂型
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
MX371432B (es) 2013-05-29 2020-01-30 Gruenenthal Gmbh Forma de dosificacion resistente al uso indebido que contiene una o mas particulas.
BR112015029616A2 (pt) 2013-05-29 2017-07-25 Gruenenthal Gmbh forma de dosagem resistente à adulteração com perfil de liberação bimodal
MX368846B (es) 2013-07-12 2019-10-18 Gruenenthal Gmbh Forma de dosificación resistente a la alteración que contiene polímero de acetato de etilen-vinilo.
CN103524732B (zh) * 2013-09-22 2015-12-09 株洲时代新材料科技股份有限公司 聚醚酯酰胺的生产方法以及由此得到的聚醚酯酰胺的应用
CA2931553C (en) 2013-11-26 2022-01-18 Grunenthal Gmbh Preparation of a powdery pharmaceutical composition by means of cryo-milling
JP2017518980A (ja) 2014-05-12 2017-07-13 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング タペンタドールを含む、改変防止即時放出カプセル製剤
EA201692388A1 (ru) 2014-05-26 2017-05-31 Грюненталь Гмбх Лекарственная форма в виде множества частиц, защищенная от вызываемого этанолом сброса дозы
CN104479127B (zh) * 2014-12-12 2016-10-19 东华大学 一种己内酰胺水解聚合物及其水解聚合方法
CA2983642A1 (en) 2015-04-24 2016-10-27 Grunenthal Gmbh Tamper-resistant dosage form with immediate release and resistance against solvent extraction
EP3346991A1 (de) 2015-09-10 2018-07-18 Grünenthal GmbH Schutz vor oraler überdosierung mit missbrauchssicheren formulierungen mit sofortiger freisetzung
CN105646876B (zh) 2016-04-08 2018-06-19 南京工业大学 一种有机催化制备聚酯酰胺的方法
CN109897370A (zh) 2019-02-25 2019-06-18 佛山金万达科技股份有限公司 一种生物基弹性体组合物及其制备的薄膜和层合物
FR3093725B1 (fr) * 2019-03-15 2021-10-01 Arkema France Copolymères à blocs rigides et à blocs souples branchés

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE793293A (fr) * 1971-12-23 1973-06-22 Bayer Ag Masses de polyamides antistatiques et leur procede de preparation
FR2273021B1 (de) 1974-05-31 1977-03-11 Ato Chimie
FR2378058A1 (fr) 1977-01-24 1978-08-18 Ato Chimie Copolyetheresteramides stables a l'hydrolyse
DE2712987C2 (de) * 1977-03-24 1981-09-24 Chemische Werke Hüls AG, 4370 Marl Verfahren zur Herstellung von thermoplastischen Polyetheresteramiden mit statistisch in der Polymerkette verteilten Einheiten der Ausgangskomponenten
FR2413417A1 (fr) 1977-12-30 1979-07-27 Ato Chimie Procede de synthese en continu de copolycondensats sequences poly(ether-ester-amide)
JPS5790017A (en) 1980-11-25 1982-06-04 Toray Ind Inc Production of polyether-ester-amide
JPS58206628A (ja) 1982-05-27 1983-12-01 Toray Ind Inc ポリエ−テルエステルアミドの製造方法
JPS60228533A (ja) 1984-04-27 1985-11-13 Toray Ind Inc ポリエ−テルエステルアミドの製造方法
JPS6445429A (en) * 1987-08-13 1989-02-17 Toray Industries Production of polyether ester amide
JPH02235045A (ja) 1989-03-08 1990-09-18 Konica Corp 写真用反射支持体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9928371A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11242456B2 (en) 2018-01-23 2022-02-08 Solutia Inc. Interlayers comprising polyesteramide compositions
US11578207B2 (en) 2018-01-23 2023-02-14 Solutia Inc. Interlayers comprising polyesteramide compositions
US11767429B2 (en) 2018-01-23 2023-09-26 Eastman Chemical Company Polyesteramides, processes for the preparation thereof, and polyesteramide compositions
US11845864B2 (en) 2018-01-23 2023-12-19 Solutia Inc. Interlayers comprising polyesteramide compositions

Also Published As

Publication number Publication date
JP2001525433A (ja) 2001-12-11
AU1339699A (en) 1999-06-16
US6344535B1 (en) 2002-02-05
WO1999028371A1 (de) 1999-06-10
NO20002677L (no) 2000-05-25
KR20010032718A (ko) 2001-04-25
NO20002677D0 (no) 2000-05-25
CN1278839A (zh) 2001-01-03
CA2312479A1 (en) 1999-06-10

Similar Documents

Publication Publication Date Title
WO1999028371A1 (de) Polyetheresteramide
DE60315313T2 (de) Polytrimethylenetherester
DE19753534A1 (de) Schnell kristallisierende, biologisch abbaubare Polyesteramide
DE2263046C3 (de) Verfahren zur Herstellung eines segmentierten thermoplastischen Copolyesterelastomeren
DE69215749T2 (de) In der Schmelze verarbeitbares Polyester-Amid das eine anisotrope Schmelze bilden kann
DE60119682T2 (de) Copolyester mit verbessertem dauerhaftem haftvermögen
EP0837088B1 (de) Haftvermittler für Polyamid-Verbunde
DE60036737T2 (de) Copolymere aus bioabbaubaren aliphatischen Polyestern
EP0802940A1 (de) Biologisch abbaubare polymere, verfahren zu deren herstellung sowie deren verwendung zur herstellung bioabbaubarer formkörper
DE2313903A1 (de) Verzweigte thermoplastische copolyester
ATE200501T1 (de) Biologisch abbaubare polymere, verfahren zu deren herstellung sowie deren verwendung zur herstellung bioabbaubarer formkörper
DE2265320B2 (de) Verfahren zum Herstellen eines segmentierten, thermoplastischen Mischpolyesterelastomeren
DE2348697A1 (de) Verfahren zur herstellung eines copolyesters
JP2862792B2 (ja) ポリマー混合物およびそれから製造される物品
DE2527885A1 (de) Verfahren zur herstellung von terpolymerisaten
DE4444948C2 (de) Teilkristalline Block-Copolyesterpolyamide und Verwendung
WO1999028384A1 (de) Polymerblend enthaltend polyolefine
EP0023248B1 (de) Formmasse aus einem hochmolekularen linearen Polyester
DE2545720A1 (de) Schnellkristallisierende blockcopolyester
JP3584579B2 (ja) 可塑化された脂肪族ポリエステル組成物及びその成型品
DE10018937A1 (de) Verwendung von Polyetheresteramiden zur Herstellung von dünnen Folien
DE2756167A1 (de) Blockcopolyester von polybutylenterephthalat
DE19753532A1 (de) Polyetheresteramide
DE10018936A1 (de) Polyetheresteramide zur Herstellung dünner Folien
DE3328567A1 (de) Verfahren zur herstellung von kerbschlagzaehen formmassen auf basis von poly(alkylenterephthalaten)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000703

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER AG

17Q First examination report despatched

Effective date: 20011206

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020618