[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1028929A1 - Metal-aluminium-nitride assembly with rare earth nitride present in the interface to ensure heat transfer - Google Patents

Metal-aluminium-nitride assembly with rare earth nitride present in the interface to ensure heat transfer

Info

Publication number
EP1028929A1
EP1028929A1 EP99941733A EP99941733A EP1028929A1 EP 1028929 A1 EP1028929 A1 EP 1028929A1 EP 99941733 A EP99941733 A EP 99941733A EP 99941733 A EP99941733 A EP 99941733A EP 1028929 A1 EP1028929 A1 EP 1028929A1
Authority
EP
European Patent Office
Prior art keywords
metal
nitride
alloy
aluminum nitride
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99941733A
Other languages
German (de)
French (fr)
Inventor
Thierry Baffie
François Saint-Antonin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1028929A1 publication Critical patent/EP1028929A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/52Pre-treatment of the joining surfaces, e.g. cleaning, machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/56Using constraining layers before or during sintering
    • C04B2237/567Using constraining layers before or during sintering made of metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/60Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers

Definitions

  • METAL-NITRU E ASSEMBLY OF ALUMINUM, WITH PRESENCE OF RARE EARTH (S) NITRIDE (S) AT THE INTERFACE TO ENSURE
  • the present invention relates to an assembly between a first element comprising aluminum nitride and a second element of metal or metal alloy, which ensures good heat transfer between the two elements.
  • Such an assembly the particularity of which is to conduct heat well between the two materials, can be used in various fields where high heat transfer is necessary. It can be used for example in
  • Document JP-A-05 171 317 [4] also illustrates the metallization of an aluminum nitride substrate by means of a copper alloy, with 5 to 25% by weight of rare earth and 0.5% to 10% by weight of another metal chosen from Fe, Co and Ni. A strong bond is thus obtained between the aluminum nitride substrate and the metallization layer with a high resistance to oxidation and to heat. As before, this document is not concerned with ensuring good thermal transfer at the interface between a ceramic element and a metallic element.
  • the previous documents and the literature relating to the metal-ceramic assembly do not address the problem of heat transfer at the interface between the ceramic and the metal or the metal alloy.
  • these assemblies must allow significant heat dissipation. This is particularly the case for electronic applications for which alumina is the most widely used ceramic to date.
  • Alumina has a thermal conductivity of 25 W / mK while aluminum nitride has a thermal conductivity of 170 to 200 W / mK
  • the gain provided by aluminum nitride on alumina is much lower than expected, due to the poor thermal conduction of the metal-aluminum nitride interface. This can be explained by the presence at the interface of compounds poor thermal conductors and many faults.
  • titanium and zirconium nitrides are TiN ! _ x with x varying from 0 to 0.49 and ZrN ! _ x with x varying from 0 to 0.2.
  • the existing data from references [6] and [7] on the thermal conductivities of titanium and zirconium nitrides show that these vary significantly depending on the nature of the nitride formed.
  • the thermal conductivity is 12.5 W / mK; for TiN 0.9 , it is 30.5 W / mK and for TiN of
  • the thermal conductivity increases with the nitrogen content of the nitride.
  • the present invention specifically relates to an assembly between aluminum nitride and metal or metal alloy, in which the composition of the interface can be controlled to obtain a high thermal transfer between the aluminum nitride element and the element. metallic or metallic alloy.
  • the subject of the invention is an assembly of a first element comprising aluminum nitride and a second element of metal or metal alloy, in which the interface between the two elements comprises at least one simple or complex nitride.
  • rare earth scandium and / or yttrium.
  • the interface is made of a simple or complex nitride of rare earth, scandium and / or yttrium, which has a high and controllable thermal conductivity because the composition of the rare earth nitrides cannot vary in proportions important.
  • the first element based on aluminum nitride can be made of a material chosen from polycrystalline aluminum nitride, monocrystalline aluminum nitride, an aluminum nitride-metal composite material or aluminum nitride-ceramic comprising at least 40% by volume of aluminum nitride.
  • the metal can be, for example, molybdenum
  • the ceramic can be, for example, titanium diboride TiB 2 .
  • the first element When the first element is made of monocrystalline or polycrystalline aluminum nitride, it may be a solid part or a deposit made on another support such as silicon.
  • the deposition is advantageously carried out by vapor deposition.
  • the second element is made of metal or a metal alloy which is a good conductor of heat.
  • This second element can advantageously be made of copper or a copper alloy, for example a copper alloy containing at least one precious metal chosen from Ag, Pt, Pd and Au.
  • the rare earth nitride included in the interface between the two elements can be a nitride of one or more of the rare earths belonging to the series La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. It is also possible to use scandium nitride and / or yttrium nitride.
  • the assembly between the two elements can be carried out: by simple brazing, reactive or using hydrides, or
  • the invention also relates to a method of assembling a first element comprising aluminum nitride and a second element of metal or metal alloy.
  • the brazing technique is used, and the method comprises the following steps: a) placing between the two elements to be assembled a sheet of brazing of a metal alloy comprising at least one metal chosen from rare earths, scandium and yttrium, and b) brazing the assembly thus obtained at a temperature of 700 to 1500 ° C or at a temperature between 20 and 100 ° C above the melting temperature of the alloy of the solder sheet, possibly in a nitrogen atmosphere.
  • the metal alloy of the sheet is preferably a metal alloy compatible with the second element, to which the metal or metals chosen from rare earths, scandium and yttrium are added.
  • the metal alloy of the sheet is preferably a copper alloy comprising at least one metal chosen from rare earths, scandium and yttrium, and optionally a metal or several precious metals chosen from Ag, Au, Pt and Pd, and which may contain up to 15% by weight of indium.
  • the metal alloy brazing sheet comprises up to 37% by weight of the metal belonging to the rare earth family, scandium and yttrium, and preferably 0.7 to 17% by weight.
  • the precious metal content may vary from
  • the presence of oxygen in the interface is prohibitive because it inevitably leads to a decrease in the thermal conductivity of the assembly by the formation of rare earth oxides and / or aluminum which have low thermal conductivities.
  • the metals used must be very pure and the aluminum nitride element can be polished or chemically treated before assembly to remove any layer of alumina on the surface.
  • the brazing sheet used in this first embodiment of the process of the invention can be prepared from metals by melting the desired brazing alloy which is then cold rolled in the form of a sheet.
  • the brazing alloy can be produced by induction melting in a cold crucible under a very good vacuum and cooled quickly. One can also use other techniques such as roll quenching to make these alloys.
  • the thickness of the solder sheet is generally 20 to 200 ⁇ m. It is also possible to produce the assembly according to the invention using a technique of depositing the rare earth or the rare earth nitride on the first element of the assembly. Also, according to a second embodiment of the method of the invention, it comprises the following steps: a) depositing on the first element at least one metal or metallic nitride chosen from rare earths, scandium, yttrium and their nitrides, under a nitrogen-based atmosphere, b) subjecting the first element thus coated to a heat treatment at a temperature of 1000 to 1900 ° C.
  • a third embodiment of the process of the invention comprises the following steps: a) depositing on the first element at least one metallic nitride chosen from the rare earth, yttrium and scandium nitrides, b) placing the second element to be assembled in contact with the deposit thus formed, and c) optionally subjecting the assembly thus obtained to a heat treatment, at a temperature of 700 to 1500 ° C.
  • a deposition technique is used to form the solder and the last step corresponds to soldering.
  • the assembly interface is formed in two stages, the temperature of the first step being chosen as a function of the melting temperature of the rare earth used to react the deposit with aluminum nitride.
  • the rare earth nitride is applied directly to the interface in a single step.
  • the deposition and any thermal treatment (s) are carried out under an oxygen-free atmosphere to avoid the formation of oxide which would adversely affect the thermal conductivity of the interface. .
  • the presence of oxygen on the elements to be assembled is also avoided.
  • the deposition of metals belonging to the rare earth family, of yttrium and scandium and / or of their nitrides can be carried out by conventional techniques such as chemical or physical vapor deposition.
  • the second element can be placed above the deposit, either in solid form, or by directly forming this element above the deposit by depositing the metal or the metal alloy forming this second element.
  • the deposition technique can be a conventional technique such as vapor deposition.
  • the interface formed between the first element and the second element of the assembly allows thermal transfer from one to the other with a minimum of losses, ensuring a strong transmission and minimal heat reflection.
  • the interface generally has the following structure: by moving from the second element to the first element, there is successively copper or its alloy, possibly a zone composed mainly copper and copper / rare earth intermetallic, a layer of rare earth nitride and aluminum nitride.
  • This assembly has the advantage of conducting heat well, which allows good thermal conduction of the metal such as copper to aluminum nitride. This is achieved first by the crystallographic compatibility of the materials which have small differences in lattice parameters, which allows good accommodation of the mechanical stresses due to the difference in coefficient of thermal expansion of the copper or the copper alloy. and rare earth nitride, on the one hand, and rare earth nitride and aluminum nitride, on the other hand.
  • Copper has a thermal conductivity of 400 W / mK and that of AIN is in practice from 170 to 200 W / mK
  • a copper plate is assembled with a polycrystalline aluminum nitride substrate.
  • the brazing process is used by placing between the aluminum nitride substrate and the copper plate a sheet of copper-yttrium alloy of approximately 150 ⁇ m in thickness comprising 5.5% by atom ( 7.5% by weight) of yttrium.
  • the copper plate is placed above the assembly and a molybdenum weight is placed above this plate which ensures mechanical contact between the substrate, the solder sheet and the copper plate.
  • the assembly is then introduced into a secondary vacuum oven, which has been swept beforehand by an inert gas in order to remove all traces of oxygen and water, and the assembly is heated to 1000 ° C. for 30 minutes.
  • a polycrystalline aluminum nitride substrate and a copper plate are assembled following the same procedure as in Example 1, but a sheet of copper alloy and dysprosium comprising 4 is used for the brazing. , 1% by atom (9.84% by weight) of dysprosium.
  • the alloy is pre-prepared by quenching on a roller and is in the form of a sheet 40 ⁇ m thick. This sheet is cleaned in an ultrasonic bath with alcohol, then with acetone.
  • the aluminum nitride substrate was polished to the micron and cleaned in an alcohol and acetone ultrasonic bath just before the assembly was carried out. Likewise, the copper plate is mechanically etched to overcome any layer of surface oxide.
  • Example 2 As in Example 1, the aluminum nitride substrate, the Cu-Dy alloy sheet and the copper plate are stacked, then the assembly is brazed in a secondary vacuum oven at a temperature at 1000 ° C for 30 minutes. An assembly is thus obtained with a high thermal conductivity.
  • an aluminum nitride substrate obtained by vapor deposition and a copper plate are assembled using a copper-silver-dysprosium alloy sheet comprising 57.5% of silver and 4.1% dysprosium atom.
  • the sheet alloy is pre-prepared in a cold crucible, then a part is rolled to make a sheet about 150 ⁇ m thick.
  • the copper-silver-dysprosium alloy sheet with a thickness of approximately 150 ⁇ m and the copper plate are placed above the aluminum nitride substrate, and a weight of molybdenum is placed over it to ensure mechanical contact between the elements. Brazing is carried out at 1000 ° C for 30 minutes, in a secondary vacuum oven as in the previous examples. The assembly obtained has good heat transfer properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

The invention concerns the assembling of a first element comprising aluminium nitride and a second metal or metal alloy element, wherein the interface between the two elements comprises at least a simple or complex rare earth, scandium and/or yttrium nitride. Said assembly can be obtained by soldering providing between the elements a soldering sheet made of an alloy comprising at least a rare earth, scandium and/or yttrium, for example a Cu-Y, Cu-Dy or CU-Ag-Dy alloy.

Description

ASSEMBLAGE METAL-NITRU E D'ALUMINIUM, AVEC PRESENCE DE NITRURE DE TERRE (S) RARE (S) A L'INTERFACE POUR ASSURER METAL-NITRU E ASSEMBLY OF ALUMINUM, WITH PRESENCE OF RARE EARTH (S) NITRIDE (S) AT THE INTERFACE TO ENSURE
LE TRANSFERT THERMIQUETHERMAL TRANSFER
DESCRIPTIONDESCRIPTION
Domaine techniqueTechnical area
La présente invention a pour objet un assemblage entre un premier élément comprenant du nitrure d'aluminium et un second élément en métal ou alliage métallique, qui permet d'assurer un bon transfert thermique entre les deux éléments.The present invention relates to an assembly between a first element comprising aluminum nitride and a second element of metal or metal alloy, which ensures good heat transfer between the two elements.
Un tel assemblage, dont la particularité est de bien conduire la chaleur entre les deux matériaux, peut être utilisé dans divers domaines où un transfert thermique élevé est nécessaire. II peut être utilisé par exemple dansSuch an assembly, the particularity of which is to conduct heat well between the two materials, can be used in various fields where high heat transfer is necessary. It can be used for example in
1 ' industrie de la micro-électronique et de l'électronique de puissance, ou encore dans tout système nécessitant une évacuation de chaleur entre un élément métallique et une céramique en nitrure d'aluminium.1 microelectronics and power electronics industry, or in any system requiring heat removal between a metal element and a ceramic aluminum nitride.
En effet, l'augmentation croissante de la densité des composants, en particulier de puissance, sur les circuits, génère des flux de chaleur de plus en plus importants. Les interfaces existant à l'heure actuelle entre éléments métalliques et céramiques ne permettent pas une évacuation suffisante de cette chaleur car l'interface entre les éléments constitue encore une barrière thermique. De ce fait, des systèmes complexes de refroidissement sont nécessaires. État de la technique antérieureIndeed, the increasing increase in the density of the components, in particular of power, on the circuits, generates heat flows more and more important. The interfaces existing at present between metallic and ceramic elements do not allow a sufficient evacuation of this heat because the interface between the elements still constitutes a thermal barrier. Therefore, complex cooling systems are required. State of the art
On connaît des procédés d'assemblage entre éléments métalliques et éléments en nitrure d'aluminium au moyen de nitrure de titane ou de zirconium. Ainsi, le document : TOMSIA A. P. et al,There are known methods of assembly between metallic elements and elements made of aluminum nitride by means of titanium nitride or zirconium. Thus, the document: TOMSIA A. P. et al,
Reactions and Microstructure at Selected Ceramic/Metal Interfaces - Mater. Manuf . Process. 9, (3), 547-561, 1994 [1], illustre la réalisation d'une brasure entre des alliages argent-cuivre et un substrat céramique à base de nitrure d'aluminium, dans lequel on forme à l'interface entre la céramique et le métal un nitrure de titane ou de zirconium. Dans ce document, on étudie surtout le mouillage de la céramique par l'alliage argent-cuivre contenant du titane et non le transfert thermique à l'interface.Reactions and Microstructure at Selected Ceramic / Metal Interfaces - Mater. Manuf. Process. 9, (3), 547-561, 1994 [1], illustrates the production of a solder between silver-copper alloys and a ceramic substrate based on aluminum nitride, in which one forms at the interface between the ceramic and metal a titanium or zirconium nitride. In this document, we mainly study the wetting of the ceramic by the silver-copper alloy containing titanium and not the thermal transfer at the interface.
Le document NICHOLAS M. G. et al , Some Observations on the Wetting and Bonding of Nitride Ceramics, J. Mater. Sci. 25, (6), 2679-2689, 1990 [2], montre également que des alliages de brasure à base d'argent, de cuivre et de titane mouillent des céramiques à base de nitrure d'aluminium et que la liaison obtenue qui contient du nitrure de titane est bonne. Comme précédemment, ce document ne se préoccupe pas du transfert thermique au niveau de l'interface. Le document JP-A-05 271 828 [3] illustre la métallisation d'un substrat en nitrure d'aluminium au moyen d'une composition comprenant du cuivre et 5 à 25 % en poids de terres rares, ce qui permet d'obtenir une bonne liaison entre la couche de métallisation et le substrat de nitrure d'aluminium. Dans ce document, la couche de métallisation est formée à partir de poudres de cuivre et d'une terre rare, ce qui lors de l'application à l'air conduit inévitablement à la formation d'oxyde de terre rare ayant une conductibilité thermique très faible. Une telle liaison ne peut donc assurer un bon transfert thermique à l'interface.The document NICHOLAS MG et al, Some Observations on the Wetting and Bonding of Nitride Ceramics, J. Mater. Sci. 25, (6), 2679-2689, 1990 [2], also shows that brazing alloys based on silver, copper and titanium wet ceramics based on aluminum nitride and that the bond obtained which contains titanium nitride is good. As before, this document is not concerned with heat transfer at the interface. Document JP-A-05 271 828 [3] illustrates the metallization of an aluminum nitride substrate by means of a composition comprising copper and 5 to 25% by weight of rare earths, which makes it possible to obtain a good bond between the metallization layer and the aluminum nitride substrate. In this document, the metallization layer is formed from copper powders and a rare earth, which during application to air inevitably leads to the formation of rare earth oxide having a very low thermal conductivity. Such a connection cannot therefore ensure good thermal transfer at the interface.
Le document JP-A-05 171 317 [4] illustre également la métallisation d'un substrat de nitrure d'aluminium au moyen d'un alliage de cuivre, avec 5 à 25 % en poids de terre rare et 0,5 % à 10 % en poids d'un autre métal choisi parmi Fe, Co et Ni. On obtient ainsi une liaison forte entre le substrat de nitrure d'aluminium et la couche de métallisation avec une résistance élevée à l'oxydation et à la chaleur. Comme précédemment, ce document ne se préoccupe pas d'assurer un bon transfert thermique à l'interface entre un élément en céramique et un élément métallique.Document JP-A-05 171 317 [4] also illustrates the metallization of an aluminum nitride substrate by means of a copper alloy, with 5 to 25% by weight of rare earth and 0.5% to 10% by weight of another metal chosen from Fe, Co and Ni. A strong bond is thus obtained between the aluminum nitride substrate and the metallization layer with a high resistance to oxidation and to heat. As before, this document is not concerned with ensuring good thermal transfer at the interface between a ceramic element and a metallic element.
Ainsi, les documents précédents et la littérature relative à l'assemblage métal-céramique n'abordent pas le problème du transfert thermique à l'interface entre la céramique et le métal ou l'alliage métallique. Or, dans de nombreuses applications, ces assemblages doivent permettre une évacuation importante de chaleur. C'est le cas en particulier des applications électroniques pour lesquelles l'alumine est la céramique la plus largement utilisée à ce jour. L'alumine présente une conductibilité thermique de 25 W/m.K alors que le nitrure d'aluminium présente une conductibilité thermique de 170 à 200 W/m.K. Cependant, jusqu'à présent le gain apporté par le nitrure d'aluminium sur l'alumine est très inférieur à ce que l'on pouvait espérer, en raison de la faible conduction thermique de l'interface métal-nitrure d'aluminium. Ceci peut s'expliquer par la présence à l'interface de composés mauvais conducteurs thermiques et de nombreux défauts .Thus, the previous documents and the literature relating to the metal-ceramic assembly do not address the problem of heat transfer at the interface between the ceramic and the metal or the metal alloy. However, in many applications, these assemblies must allow significant heat dissipation. This is particularly the case for electronic applications for which alumina is the most widely used ceramic to date. Alumina has a thermal conductivity of 25 W / mK while aluminum nitride has a thermal conductivity of 170 to 200 W / mK However, so far the gain provided by aluminum nitride on alumina is much lower than expected, due to the poor thermal conduction of the metal-aluminum nitride interface. This can be explained by the presence at the interface of compounds poor thermal conductors and many faults.
Dans le cas des interfaces comportant du nitrure de titane ou du nitrure de zirconium tels que ceux des références [1] et [2], ces nitrures ne permettent pas de contrôler le transfert thermique entre les deux éléments. En effet, ces nitrures ont un domaine d'existence en composition très large, comme il apparaît dans le document : MASSALSKI T.B. , Binary Alloy Phase Diagrams, 2nd Edition, Vol. 1, pages 1084,In the case of interfaces comprising titanium nitride or zirconium nitride such as those of references [1] and [2], these nitrides do not make it possible to control the heat transfer between the two elements. Indeed, these nitrides have a very wide range of existence, as it appears in the document: MASSALSKI T.B., Binary Alloy Phase Diagrams, 2nd Edition, Vol. 1, pages 1084,
2714, 2707 et 2717, 1990, [5]. D'après le document :2714, 2707 and 2717, 1990, [5]. According to the document :
KOSOLAPOVA T. Ya, Handbook of High TempératureKOSOLAPOVA T. Ya, Handbook of High Temperature
Compounds : Properties, Production, Application,Compounds: Properties, Production, Application,
Hémisphère Publishing Corporation, New York, p.179-180 et p. 383, 1990 [6], les formules de ces nitrures de titane et de zirconium sont TiN!_x avec x variant de 0 à 0,49 et ZrN!_x avec x variant de 0 à 0,2. Les données existantes des références [6] et [7] sur les conductibilités thermiques des nitrures de titane et de zirconium montrent que celles-ci varient notablement en fonction de la nature du nitrure formé .Hemisphere Publishing Corporation, New York, p.179-180 and p. 383, 1990 [6], the formulas of these titanium and zirconium nitrides are TiN ! _ x with x varying from 0 to 0.49 and ZrN ! _ x with x varying from 0 to 0.2. The existing data from references [6] and [7] on the thermal conductivities of titanium and zirconium nitrides show that these vary significantly depending on the nature of the nitride formed.
Ainsi, pour TiN0,83 à 27°C, la conductibilité thermique est de 12,5 W/m.K. ; pour TiN0,9, elle est de 30,5 W/m.K. et pour TiN deThus, for TiN 0, from 83 to 27 ° C, the thermal conductivity is 12.5 W / mK; for TiN 0.9 , it is 30.5 W / mK and for TiN of
41,8 W/m.K. Ainsi, la conductibilité thermique augmente avec la teneur en azote du nitrure.41.8 W / m.K. Thus, the thermal conductivity increases with the nitrogen content of the nitride.
Dans le cas du zirconium, comme il ressort du document : Samsonov G.V. et VINITSKI I.M. Handbook of Refractory Compounds, Plénum Press, New York, p. 195, 1980, [7], la conductibilité thermique du nitrure ZrN0 , 92 est de 28 , 2 W/m . K à 27 °C . Le problème posé par un interface réalisé à partir de ces nitrures est donc qu'il ne permet pas un contrôle de la conductibilité thermique en raison de la possibilité de former un nitrure à stoechiometrie variable.In the case of zirconium, as appears from the document: Samsonov GV and VINITSKI IM Handbook of Refractory Compounds, Plenum Press, New York, p. 195, 1980 [7], the thermal conductivity of ZrN 0 nitride, 92 is 28 2 W / m. K at 27 ° C. The problem posed by an interface produced from these nitrides is therefore that it does not allow a control of the thermal conductivity due to the possibility of forming a nitride with variable stoichiometry.
La présente invention a précisément pour objet un assemblage entre nitrure d'aluminium et métal ou alliage métallique, dans lequel on peut contrôler la composition de l'interface pour obtenir un transfert thermique élevé entre l'élément en nitrure d'aluminium et l'élément métallique ou en alliage métallique.The present invention specifically relates to an assembly between aluminum nitride and metal or metal alloy, in which the composition of the interface can be controlled to obtain a high thermal transfer between the aluminum nitride element and the element. metallic or metallic alloy.
Exposé de l'inventionStatement of the invention
Aussi, l'invention a pour objet un assemblage d'un premier élément comprenant du nitrure d'aluminium et d'un second élément en métal ou alliage métallique, dans lequel l'interface entre les deux éléments comprend au moins un nitrure simple ou complexe de terre rare, de scandium et/ou d'yttrium.Also, the subject of the invention is an assembly of a first element comprising aluminum nitride and a second element of metal or metal alloy, in which the interface between the two elements comprises at least one simple or complex nitride. rare earth, scandium and / or yttrium.
Dans cet assemblage, l'interface est réalisé en un nitrure simple ou complexe de terre rare, de scandium et/ou d'yttrium, qui présente une conductibilité thermique élevée et contrôlable car la composition des nitrures de terres rares ne peut varier dans des proportions importantes. En effet, classiquement, les nitrures de terre rare sont définis par la formule rNi_x avec x = 0 à 0,1.In this assembly, the interface is made of a simple or complex nitride of rare earth, scandium and / or yttrium, which has a high and controllable thermal conductivity because the composition of the rare earth nitrides cannot vary in proportions important. Indeed, conventionally, the rare earth nitrides are defined by the formula rNi_ x with x = 0 to 0.1.
Dans cet assemblage, le premier élément à base de nitrure d'aluminium peut être réalisé en un matériau choisi parmi le nitrure d'aluminium polycristallin, le nitrure d'aluminium monocristallin, un matériau composite nitrure d'aluminium-métal ou nitrure d'aluminium-céramique comportant au moins 40 % en volume de nitrure d'aluminium.In this assembly, the first element based on aluminum nitride can be made of a material chosen from polycrystalline aluminum nitride, monocrystalline aluminum nitride, an aluminum nitride-metal composite material or aluminum nitride-ceramic comprising at least 40% by volume of aluminum nitride.
Dans ces composites, le métal peut être par exemple le molybdène, et la céramique peut être par exemple le diborure de titane TiB2.In these composites, the metal can be, for example, molybdenum, and the ceramic can be, for example, titanium diboride TiB 2 .
Lorsque le premier élément est en nitrure d'aluminium monocristallin ou polycristallin, il peut s'agir d'une pièce massive ou d'un dépôt réalisé sur un autre support tel que le silicium. Le dépôt est avantageusement réalisé par dépôt en phase vapeur.When the first element is made of monocrystalline or polycrystalline aluminum nitride, it may be a solid part or a deposit made on another support such as silicon. The deposition is advantageously carried out by vapor deposition.
Dans l'assemblage de l'invention, le second élément est en métal ou en alliage métallique bon conducteur de la chaleur. Ce second élément peut être réalisé avantageusement en cuivre ou en alliage de cuivre, par exemple en alliage de cuivre contenant au moins un métal précieux choisi parmi Ag, Pt , Pd et Au.In the assembly of the invention, the second element is made of metal or a metal alloy which is a good conductor of heat. This second element can advantageously be made of copper or a copper alloy, for example a copper alloy containing at least one precious metal chosen from Ag, Pt, Pd and Au.
Le nitrure de terre rare inclus dans l'interface entre les deux éléments peut être un nitrure d'une ou plusieurs des terres rares appartenant à la série La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb et Lu. On peut aussi utiliser le nitrure de scandium et/ou le nitrure d'yttrium.The rare earth nitride included in the interface between the two elements can be a nitride of one or more of the rare earths belonging to the series La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. It is also possible to use scandium nitride and / or yttrium nitride.
L'assemblage entre les deux éléments peut être effectué : par brasage simple, réactif ou utilisant des hydrures, ouThe assembly between the two elements can be carried out: by simple brazing, reactive or using hydrides, or
- par métallisation (dépôt chimique ou physique en phase vapeur) . Aussi, l'invention a également pour objet un procédé d'assemblage d'un premier élément comprenant du nitrure d'aluminium et d'un second élément en métal ou alliage métallique. Selon un premier mode de réalisation, on utilise la technique de brasage, et le procédé comprend les étapes suivantes : a) disposer entre les deux éléments à assembler une feuille de brasure en alliage métallique comprenant au moins un métal choisi parmi les terres rares, le scandium et l' yttrium, et b) réaliser le brasage de l'ensemble ainsi obtenu à une température de 700 à 1500°C ou à une température comprise entre 20 et 100°C au-dessus de la température de fusion de l'alliage de la feuille de brasure, éventuellement dans une atmosphère d'azote.- by metallization (chemical or physical vapor deposition). Also, the invention also relates to a method of assembling a first element comprising aluminum nitride and a second element of metal or metal alloy. According to a first embodiment, the brazing technique is used, and the method comprises the following steps: a) placing between the two elements to be assembled a sheet of brazing of a metal alloy comprising at least one metal chosen from rare earths, scandium and yttrium, and b) brazing the assembly thus obtained at a temperature of 700 to 1500 ° C or at a temperature between 20 and 100 ° C above the melting temperature of the alloy of the solder sheet, possibly in a nitrogen atmosphere.
Dans ce procédé, l'alliage métallique de la feuille est de préférence un alliage métallique compatible avec le second élément, auquel on ajoute le ou les métaux choisis parmi les terres rares, le scandium et l' yttrium. Lorsque le second élément est en cuivre ou en alliage de cuivre, l'alliage métallique de la feuille est de préférence un alliage de cuivre comprenant au moins un métal choisi parmi les terres rares, le scandium et l' yttrium, et éventuellement un métal ou plusieurs métaux précieux choisis parmi Ag, Au, Pt et Pd, et pouvant contenir jusqu'à 15 % en poids d' indium. Généralement, la feuille de brasure en alliage métallique comprend jusqu'à 37 % en poids du métal appartenant à la famille des terres rares, du scandium et de l' yttrium, et de préférence 0,7 à 17 % en poids. La teneur en métal précieux peut varier deIn this process, the metal alloy of the sheet is preferably a metal alloy compatible with the second element, to which the metal or metals chosen from rare earths, scandium and yttrium are added. When the second element is made of copper or a copper alloy, the metal alloy of the sheet is preferably a copper alloy comprising at least one metal chosen from rare earths, scandium and yttrium, and optionally a metal or several precious metals chosen from Ag, Au, Pt and Pd, and which may contain up to 15% by weight of indium. Generally, the metal alloy brazing sheet comprises up to 37% by weight of the metal belonging to the rare earth family, scandium and yttrium, and preferably 0.7 to 17% by weight. The precious metal content may vary from
0 à 72 % en poids. Dans ce procédé, on évite la formation d'oxydes de terres rares et d'aluminium en effectuant le brasage dans une atmosphère exempte d'oxygène.0 to 72% by weight. In this process, the formation of rare earth oxides and aluminum is avoided by brazing in an oxygen-free atmosphere.
En effet, la présence d'oxygène dans l'interface est rédhibitoire car elle entraîne inévitablement une baisse de la conductibilité thermique de l'assemblage par formation d'oxydes de terres rares et/ou d'aluminium qui ont des conductibilités thermiques faibles. Pour éviter la présence d'oxygène, il est important de réaliser les éléments à assembler, la feuille de brasure et le brasage en atmosphère exempte d'oxygène afin d'avoir des interfaces propres. Les métaux utilisés doivent être très purs et l'élément en nitrure d'aluminium peut être poli ou traité chimiquement avant assemblage pour s'affranchir de toute couche d'alumine en surface.Indeed, the presence of oxygen in the interface is prohibitive because it inevitably leads to a decrease in the thermal conductivity of the assembly by the formation of rare earth oxides and / or aluminum which have low thermal conductivities. To avoid the presence of oxygen, it is important to produce the elements to be assembled, the solder sheet and the soldering in an oxygen-free atmosphere in order to have clean interfaces. The metals used must be very pure and the aluminum nitride element can be polished or chemically treated before assembly to remove any layer of alumina on the surface.
La feuille de brasure utilisée dans ce premier mode de réalisation du procédé de l'invention peut être préparée à partir des métaux en élaborant par fusion l'alliage de brasage voulu qui est ensuite laminé à froid sous forme d'une feuille. L'alliage de brasage peut être élaboré par fusion par induction en creuset froid sous un très bon vide et refroidi rapidement. On peut aussi utiliser d'autres techniques telles que la trempe sur rouleau pour réaliser ces alliages .The brazing sheet used in this first embodiment of the process of the invention can be prepared from metals by melting the desired brazing alloy which is then cold rolled in the form of a sheet. The brazing alloy can be produced by induction melting in a cold crucible under a very good vacuum and cooled quickly. One can also use other techniques such as roll quenching to make these alloys.
L'épaisseur de la feuille de brasure est généralement de 20 à 200 μm. On peut aussi réaliser l'assemblage conforme à l'invention en utilisant une technique de dépôt de la terre rare ou du nitrure de terre rare sur le premier élément de l'assemblage. Aussi, selon un second mode de réalisation du procédé de l'invention, celui-ci comprend les étapes suivantes : a) déposer sur le premier élément au moins un métal ou nitrure métallique choisi parmi les terres rares, le scandium, l' yttrium et leurs nitrures, sous une atmosphère à base d'azote, b) soumettre le premier élément ainsi revêtu à un traitement thermique à une température de 1000 à 1900°C pour faire réagir le dépôt avec le nitrure d'aluminium, éventuellement dans une atmosphère d'azote, c) disposer au-dessus de l'élément ainsi traité le second élément de façon qu'il soit en contact avec le dépôt, et d) soumettre éventuellement l'ensemble à un second traitement thermique à une température de 700 à 1500°C. Selon un troisième mode de réalisation du procédé de l'invention, celui-ci comprend les étapes suivantes : a) déposer sur le premier élément au moins un nitrure métallique choisi parmi les nitrures de terres rares, d'yttrium et de scandium, b) disposer au contact du dépôt ainsi formé le second élément à assembler, et c) soumettre éventuellement l'ensemble ainsi obtenu à un traitement thermique, à une température de 700 à 1500°C.The thickness of the solder sheet is generally 20 to 200 μm. It is also possible to produce the assembly according to the invention using a technique of depositing the rare earth or the rare earth nitride on the first element of the assembly. Also, according to a second embodiment of the method of the invention, it comprises the following steps: a) depositing on the first element at least one metal or metallic nitride chosen from rare earths, scandium, yttrium and their nitrides, under a nitrogen-based atmosphere, b) subjecting the first element thus coated to a heat treatment at a temperature of 1000 to 1900 ° C. to react the deposit with aluminum nitride, optionally in an atmosphere d nitrogen, c) placing the second element above the element thus treated so that it is in contact with the deposit, and d) optionally subjecting the assembly to a second heat treatment at a temperature of 700 to 1500 ° C. According to a third embodiment of the process of the invention, it comprises the following steps: a) depositing on the first element at least one metallic nitride chosen from the rare earth, yttrium and scandium nitrides, b) placing the second element to be assembled in contact with the deposit thus formed, and c) optionally subjecting the assembly thus obtained to a heat treatment, at a temperature of 700 to 1500 ° C.
Dans ces deux derniers modes de réalisation, on utilise une technique de dépôt pour former la brasure et la dernière étape correspond à un brasage.In these last two embodiments, a deposition technique is used to form the solder and the last step corresponds to soldering.
Dans le second mode de réalisation, on forme l'interface de l'assemblage en deux étapes, la température de la première étape étant choisie en fonction de la température de fusion de la terre rare utilisée pour faire réagir le dépôt avec le nitrure d' aluminium. Dans le troisième mode de réalisation, on applique directement le nitrure de terre rare à l'interface en une seule étape.In the second embodiment, the assembly interface is formed in two stages, the temperature of the first step being chosen as a function of the melting temperature of the rare earth used to react the deposit with aluminum nitride. In the third embodiment, the rare earth nitride is applied directly to the interface in a single step.
Dans ces deux derniers modes de réalisation, on réalise le dépôt et le (s) traitement (s) thermique (s) éventuels sous une atmosphère exempte d'oxygène pour éviter la formation d'oxyde qui nuirait à la conductibilité thermique de l'interface. Comme précédemment, on évite aussi la présence d'oxygène sur les éléments à assembler. Le dépôt des métaux appartenant à la famille des terres rares, de l' yttrium et du scandium et/ou de leurs nitrures peut être effectué par des techniques classiques telles que le dépôt chimique ou physique en phase vapeur. Dans les deux derniers modes de réalisation décrits ci-dessus, le second élément peut être disposé au dessus du dépôt, soit sous forme massive, soit en formant directement cet élément au-dessus du dépôt par dépôt du métal ou de l'alliage métallique formant ce second élément.In these latter two embodiments, the deposition and any thermal treatment (s) are carried out under an oxygen-free atmosphere to avoid the formation of oxide which would adversely affect the thermal conductivity of the interface. . As before, the presence of oxygen on the elements to be assembled is also avoided. The deposition of metals belonging to the rare earth family, of yttrium and scandium and / or of their nitrides can be carried out by conventional techniques such as chemical or physical vapor deposition. In the last two embodiments described above, the second element can be placed above the deposit, either in solid form, or by directly forming this element above the deposit by depositing the metal or the metal alloy forming this second element.
Dans le cas du cuivre ou des alliages de cuivre, la technique de dépôt peut être une technique classique telle que le dépôt en phase vapeur.In the case of copper or copper alloys, the deposition technique can be a conventional technique such as vapor deposition.
Dans le cas où le second élément est formé directement par dépôt sur l'ensemble, il n'est généralement pas nécessaire d'effectuer l'étape d) ou c) de traitement thermique. Avec les procédés d'assemblage décrits ci- dessus, l'interface constitué entre le premier élément et le second élément de l'assemblage permet de réaliser un transfert thermique de l'un vers l'autre avec un minimum de pertes, en assurant une forte transmission et une réflexion minimale de la chaleur.In the case where the second element is formed directly by deposition on the assembly, it is generally not necessary to carry out step d) or c) of heat treatment. With the assembly methods described above, the interface formed between the first element and the second element of the assembly allows thermal transfer from one to the other with a minimum of losses, ensuring a strong transmission and minimal heat reflection.
Dans le cas où le second élément est en cuivre ou en alliage de cuivre, l'interface possède généralement la structure suivante : en se déplaçant du second élément vers le premier élément, on trouve successivement du cuivre ou son alliage, éventuellement une zone composée majoritairement de cuivre et d' intermétalliques cuivre/terre rare, une couche de nitrure de terre rare et du nitrure d'aluminium. Cet assemblage présente l'avantage de bien conduire la chaleur, ce qui permet une bonne conduction thermique du métal tel que le cuivre vers le nitrure d'aluminium. Ceci est réalisé d'abord par la compatibilité cristallographique des matériaux qui possèdent de faibles différences de paramètres de maille, ce qui permet une bonne accommodation des contraintes mécaniques dues à la différence de coefficient d'expansion thermique du cuivre ou de l'alliage de cuivre et du nitrure de terre rare, d'une part, et du nitrure de terre rare et du nitrure d'aluminium, d'autre part.In the case where the second element is made of copper or a copper alloy, the interface generally has the following structure: by moving from the second element to the first element, there is successively copper or its alloy, possibly a zone composed mainly copper and copper / rare earth intermetallic, a layer of rare earth nitride and aluminum nitride. This assembly has the advantage of conducting heat well, which allows good thermal conduction of the metal such as copper to aluminum nitride. This is achieved first by the crystallographic compatibility of the materials which have small differences in lattice parameters, which allows good accommodation of the mechanical stresses due to the difference in coefficient of thermal expansion of the copper or the copper alloy. and rare earth nitride, on the one hand, and rare earth nitride and aluminum nitride, on the other hand.
Le cuivre a une conductibilité thermique de 400 W/m.K et celle de AIN est en pratique de 170 à 200 W/m.K. Le fait que le nitrure de terre rare formé à l'interface soit à stoechiometrie fixe, c'est-à-dire qu'il existe sur un domaine de composition très étroit contrairement au nitrure de titane et au nitrure de zirconium, contribue à la bonne conductibilité thermique de l'assemblage.Copper has a thermal conductivity of 400 W / mK and that of AIN is in practice from 170 to 200 W / mK The fact that the rare earth nitride formed at the interface has a fixed stoichiometry, that is to say that it exists over a very narrow range of composition unlike titanium nitride and nitride of zirconium, contributes to the good thermal conductivity of the assembly.
D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture des exemples suivants, donnés bien entendu à titre illustratif et non limitatif.Other characteristics and advantages of the invention will appear better on reading the following examples, given of course by way of non-limiting illustration.
Exposé détaillé des modes de réalisationDetailed description of the embodiments
Exemple 1Example 1
Dans cet exemple, on assemble une plaque de cuivre avec un substrat de nitrure d'aluminium polycristallin.In this example, a copper plate is assembled with a polycrystalline aluminum nitride substrate.
Pour cet assemblage, on utilise le procédé de brasage en disposant entre le substrat de nitrure d'aluminium et la plaque de cuivre une feuille d'alliage de cuivre-yttrium d'environ 150 μm d'épaisseur comprenant 5,5 % en atome (7,5 % en poids) d'yttrium. On dispose la plaque de cuivre au-dessus de l'assemblage et on place au-dessus de cette plaque un poids en molybdène permettant d'assurer le contact mécanique entre le substrat, la feuille de brasure et la plaque de cuivre.For this assembly, the brazing process is used by placing between the aluminum nitride substrate and the copper plate a sheet of copper-yttrium alloy of approximately 150 μm in thickness comprising 5.5% by atom ( 7.5% by weight) of yttrium. The copper plate is placed above the assembly and a molybdenum weight is placed above this plate which ensures mechanical contact between the substrate, the solder sheet and the copper plate.
On introduit alors l'ensemble dans un four sous-vide secondaire, qui a été balayé au préalable par un gaz inerte afin d'éliminer toute trace d'oxygène et d'eau, et on chauffe l'ensemble à 1000°C pendant 30 minutes.The assembly is then introduced into a secondary vacuum oven, which has been swept beforehand by an inert gas in order to remove all traces of oxygen and water, and the assembly is heated to 1000 ° C. for 30 minutes.
On obtient ainsi un assemblage de la plaque de cuivre et du substrat de nitrure d'aluminium qui présente une conductibilité thermique élevée. Exemple 2This produces an assembly of the copper plate and the aluminum nitride substrate which has a high thermal conductivity. Example 2
Dans cet exemple, on assemble un substrat en nitrure d'aluminium polycristallin et une plaque de cuivre en suivant le même mode opératoire que dans l'exemple 1, mais on utilise pour la brasure une feuille d'alliage de cuivre et de dysprosium comprenant 4,1 % en atome (9,84 % en poids) de dysprosium. L'alliage est pré-élaboré par trempe sur rouleau et il se présente sous la forme d'une feuille de 40 μm d'épaisseur. On nettoie cette feuille dans un bain d'ultrasons à l'alcool, puis à l'acétone.In this example, a polycrystalline aluminum nitride substrate and a copper plate are assembled following the same procedure as in Example 1, but a sheet of copper alloy and dysprosium comprising 4 is used for the brazing. , 1% by atom (9.84% by weight) of dysprosium. The alloy is pre-prepared by quenching on a roller and is in the form of a sheet 40 μm thick. This sheet is cleaned in an ultrasonic bath with alcohol, then with acetone.
Le substrat de nitrure d'aluminium a été poli au micron et nettoyé dans un bain d'ultrasons à l'alcool et à l'acétone juste avant la réalisation de l'assemblage. De même, la plaque de cuivre est décapée mécaniquement pour s'affranchir de toute couche d'oxyde de surface.The aluminum nitride substrate was polished to the micron and cleaned in an alcohol and acetone ultrasonic bath just before the assembly was carried out. Likewise, the copper plate is mechanically etched to overcome any layer of surface oxide.
Comme dans l'exemple 1, on empile le substrat en nitrure d'aluminium, la feuille d'alliage Cu-Dy et la plaque de cuivre, puis on réalise le brasage de l'ensemble dans un four sous-vide secondaire à une température de 1000°C, pendant 30 minutes. On obtient ainsi un assemblage avec une conductibilité thermique élevée.As in Example 1, the aluminum nitride substrate, the Cu-Dy alloy sheet and the copper plate are stacked, then the assembly is brazed in a secondary vacuum oven at a temperature at 1000 ° C for 30 minutes. An assembly is thus obtained with a high thermal conductivity.
Exemple 3Example 3
Dans cet exemple, on réalise l'assemblage d'un substrat en nitrure d'aluminium obtenu par dépôt en phase vapeur et d'une plaque de cuivre en utilisant une feuille d'alliage cuivre-argent-dysprosium comprenant 57,5 % d'argent et 4,1 % en atome de dysprosium. L'alliage de la feuille est pré-élaboré en creuset froid, puis une partie est laminée pour fabriquer une feuille d'environ 150 μm d'épaisseur.In this example, an aluminum nitride substrate obtained by vapor deposition and a copper plate are assembled using a copper-silver-dysprosium alloy sheet comprising 57.5% of silver and 4.1% dysprosium atom. The sheet alloy is pre-prepared in a cold crucible, then a part is rolled to make a sheet about 150 μm thick.
On dispose successivement au-dessus du substrat de nitrure d'aluminium la feuille d'alliage cuivre-argent-dysprosium d'une épaisseur d'environ 150 μm et la plaque de cuivre, et on place au-dessus un poids en molybdène pour assurer le contact mécanique entre les éléments. On réalise le brasage à 1000°C pendant 30 minutes, dans un four sous-vide secondaire comme dans les exemples précédents. L'assemblage obtenu présente de bonnes propriétés de transfert thermique.The copper-silver-dysprosium alloy sheet with a thickness of approximately 150 μm and the copper plate are placed above the aluminum nitride substrate, and a weight of molybdenum is placed over it to ensure mechanical contact between the elements. Brazing is carried out at 1000 ° C for 30 minutes, in a secondary vacuum oven as in the previous examples. The assembly obtained has good heat transfer properties.
Références citéesReferences cited
[1] : TOMSIA A. P. et al, Reactions and Microstructure at Selected Ceramic/Metal Interfaces - Mater. Manuf . Process. 9, (3), 547-561, 1994. [2] : NICHOLAS M. G. et al , Some Observations on the Wetting and Bonding of Nitride Ceramics, J. Mater. Sci . 25, (6), 2679-2689, 1990.[1]: TOMSIA A. P. et al, Reactions and Microstructure at Selected Ceramic / Metal Interfaces - Mater. Manuf. Process. 9, (3), 547-561, 1994. [2]: NICHOLAS M. G. et al, Some Observations on the Wetting and Bonding of Nitride Ceramics, J. Mater. Sci. 25, (6), 2679-2689, 1990.
[3] : JP-A-05 271 828.[3]: JP-A-05 271 828.
[4] : JP-A-05 171 317[4]: JP-A-05 171 317
[5] : MASSALSKI T.B. , Binary Alloy Phase Diagrams, 2nd Edition, Vol. 1, 2 and 33, p. 1084, 2707, 2714 et 2717, 1990.[5]: MASSALSKI T.B., Binary Alloy Phase Diagrams, 2nd Edition, Vol. 1, 2 and 33, p. 1084, 2707, 2714 and 2717, 1990.
[6] : KOSOLAPOVA T. Ya, Handbook of High Température Compounds : Properties, Production, Application, Hémisphère Publishing Corporation, New York, p.179-180 et p. 383, 1990.[6]: KOSOLAPOVA T. Ya, Handbook of High Temperature Compounds: Properties, Production, Application, Hémisphère Publishing Corporation, New York, p.179-180 and p. 383, 1990.
[7] : Samsonov G.V. et VINITSKI I.M. Handbook of Refractory Compounds, Plénum Press, New York, p. 195, 1980. [7]: Samsonov G.V. and VINITSKI I.M. Handbook of Refractory Compounds, Plenum Press, New York, p. 195, 1980.

Claims

REVENDICATIONS
1. Assemblage d'un premier élément comprenant du nitrure d'aluminium et d'un second élément en métal ou alliage métallique, dans lequel l'interface entre les deux éléments comprend au moins un nitrure simple ou complexe de terre rare, de scandium et/ou d'yttrium.1. Assembly of a first element comprising aluminum nitride and a second element of metal or metal alloy, in which the interface between the two elements comprises at least one simple or complex nitride of rare earth, scandium and / or yttrium.
2. Assemblage selon la revendication 1, dans lequel le premier élément est en un matériau choisi parmi le nitrure d'aluminium polycristallin, le nitrure d'aluminium monocristallin, un matériau composite métal-nitrure d'aluminium ou céramique- nitrure d'aluminium comportant au moins 40 % en volume de nitrure d'aluminium.2. Assembly according to claim 1, in which the first element is made of a material chosen from polycrystalline aluminum nitride, monocrystalline aluminum nitride, a composite metal-aluminum nitride or ceramic-aluminum nitride material comprising at least 40% by volume of aluminum nitride.
3. Assemblage selon la revendication 1 ou 2 dans lequel le second élément est en cuivre ou en alliage de cuivre contenant au moins un métal précieux choisi parmi Ag, Pt, Pd et Au. 3. The assembly of claim 1 or 2 wherein the second element is made of copper or a copper alloy containing at least one precious metal chosen from Ag, Pt, Pd and Au.
4. Assemblage selon l'une quelconque des revendications 1 à 3 , dans lequel le nitrure de terre rare est le nitrure d'yttrium ou de dysprosium.4. An assembly according to any one of claims 1 to 3, wherein the rare earth nitride is yttrium or dysprosium nitride.
5. Procédé d'assemblage d'un premier élément comprenant du nitrure d'aluminium et d'un second élément en métal ou alliage métallique, qui comprend les étapes suivantes : a) disposer entre les deux éléments à assembler une feuille de brasure en alliage métallique comprenant au moins un métal choisi parmi les terres rares, le scandium et 1 'yttrium, et b) réaliser le brasage de l'ensemble ainsi obtenu à une température de 700 à 1500°C C ou à une température comprise entre 20 et 100°C au-dessus de la température de fusion de l'alliage de la feuille de brasure, éventuellement dans une atmosphère d'azote.5. A method of assembling a first element comprising aluminum nitride and a second element of metal or metal alloy, which comprises the following steps: a) placing between the two elements to be assembled a sheet of alloy brazing metallic comprising at least one metal chosen from rare earths, scandium and yttrium, and b) carrying out the brazing of the assembly thus obtained at a temperature of 700 to 1500 ° C. or at a temperature of between 20 and 100 ° C above the melting temperature of the alloy of the solder sheet, optionally in a nitrogen atmosphere.
6. Procédé selon la revendication 5, dans lequel on réalise le brasage dans une atmosphère d'azote.6. The method of claim 5, wherein the brazing is carried out in a nitrogen atmosphere.
7. Procédé selon la revendication 5 ou 6, dans lequel l'alliage métallique de la feuille est un alliage de cuivre comprenant au moins un métal choisi parmi les terres rares, le scandium et l' yttrium. 7. The method of claim 5 or 6, wherein the metal alloy of the sheet is a copper alloy comprising at least one metal selected from rare earths, scandium and yttrium.
8. Procédé selon la revendication 5 ou 6, dans lequel l'alliage métallique de la feuille est un alliage de cuivre, d'au moins un métal précieux choisi parmi Ag, Au, Pt et Pd, et d'au moins un métal choisi parmi les terres rares, le scandium et l' yttrium, contenant éventuellement jusqu'à 15 % en poids d' indium.8. The method of claim 5 or 6, wherein the metal alloy of the sheet is an alloy of copper, at least one precious metal chosen from Ag, Au, Pt and Pd, and at least one metal chosen among the rare earths, scandium and yttrium, possibly containing up to 15% by weight of indium.
9. Procédé pour assembler un premier élément comprenant du nitrure d' aluminium à un second élément en métal ou alliage métallique, qui comprend les étapes suivantes : a) déposer sur le premier élément au moins un métal ou nitrure métallique choisi parmi les terres rares, le scandium, l' yttrium et leurs nitrures, sous une atmosphère à base d'azote, b) soumettre le premier élément ainsi revêtu à un premier traitement thermique à une température de 1000 à 1900°C pour faire réagir le dépôt avec le nitrure d'aluminium, et c) disposer au-dessus de l'élément ainsi traité le second élément de façon qu'il soit en contact avec le dépôt. 9. Method for assembling a first element comprising aluminum nitride to a second metal or metal alloy element, which comprises the following steps: a) depositing on the first element at least one metal or metallic nitride chosen from rare earths, scandium, yttrium and their nitrides, under a nitrogen-based atmosphere, b) subjecting the first element thus coated to a first heat treatment at a temperature of 1000 to 1900 ° C. to react the deposit with the nitride d aluminum, and c) placing above the element thus treated the second element so that it is in contact with the deposit.
10. Procédé selon la revendication 9, dans lequel on réalise le premier traitement thermique dans une atmosphère d'azote.10. The method of claim 9, wherein the first heat treatment is carried out in a nitrogen atmosphere.
11. Procédé pour assembler un premier élément comprenant du nitrure d'aluminium à un second élément en métal ou alliage métallique, qui comprend les étapes suivantes : a) déposer sur le premier élément au moins un nitrure métallique choisi parmi les nitrures de terres rares, d'yttrium et de scandium, et b) disposer au contact du dépôt ainsi formé le second élément à assembler.11. Method for assembling a first element comprising aluminum nitride to a second metal or metal alloy element, which comprises the following steps: a) depositing on the first element at least one metallic nitride chosen from rare earth nitrides, yttrium and scandium, and b) placing the second element to be assembled in contact with the deposit thus formed.
12. Procédé selon l'une quelconque des revendications 9 à 11, qui comprend de plus une étape complémentaire consistant à soumetttre l'ensemble à un traitement thermique, à une température de 700 à 1500°C.12. Method according to any one of claims 9 to 11, which further comprises an additional step consisting in subjecting the assembly to a heat treatment, at a temperature of 700 to 1500 ° C.
13. Procédé selon l'une quelconque des revendications 9 à 12, dans lequel on dispose le second élément à assembler sur le premier élément muni dudit dépôt, en formant directement ce second élément au- dessus dudit dépôt par dépôt du métal ou de l'alliage métallique destiné à former ce second élément.13. Method according to any one of claims 9 to 12, in which the second element is arranged to be assembled on the first element provided with said deposit, by directly forming this second element above said deposit by depositing the metal or the metal alloy intended to form this second element.
14. Procédé selon l'une quelconque des revendications 5 à 13, dans lequel le second élément est en cuivre ou en alliage de cuivre et d'au moins un métal précieux choisi parmi Ag, Pt, Pd et Au. 14. Method according to any one of claims 5 to 13, wherein the second element is made of copper or a copper alloy and at least one precious metal chosen from Ag, Pt, Pd and Au.
EP99941733A 1998-09-11 1999-09-10 Metal-aluminium-nitride assembly with rare earth nitride present in the interface to ensure heat transfer Withdrawn EP1028929A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9811339A FR2783185B1 (en) 1998-09-11 1998-09-11 METAL-ALUMINUM NITRIDE ASSEMBLY, WITH PRESENCE OF RARE EARTH (N) NITRIDE (S) AT THE INTERFACE TO PROVIDE THERMAL TRANSFER
FR9811339 1998-09-11
PCT/FR1999/002156 WO2000015578A1 (en) 1998-09-11 1999-09-10 Metal-aluminium-nitride assembly with rare earth nitride present in the interface to ensure heat transfer

Publications (1)

Publication Number Publication Date
EP1028929A1 true EP1028929A1 (en) 2000-08-23

Family

ID=9530324

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99941733A Withdrawn EP1028929A1 (en) 1998-09-11 1999-09-10 Metal-aluminium-nitride assembly with rare earth nitride present in the interface to ensure heat transfer

Country Status (4)

Country Link
EP (1) EP1028929A1 (en)
JP (1) JP2002524388A (en)
FR (1) FR2783185B1 (en)
WO (1) WO2000015578A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318648A (en) * 1986-07-11 1988-01-26 Toshiba Corp Circuit board using aluminum nitride
EP0640039A4 (en) * 1992-05-12 1995-04-19 Carborundum Co Thin film metallization and brazing of aluminum nitride.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0015578A1 *

Also Published As

Publication number Publication date
FR2783185B1 (en) 2000-10-13
WO2000015578A1 (en) 2000-03-23
JP2002524388A (en) 2002-08-06
FR2783185A1 (en) 2000-03-17

Similar Documents

Publication Publication Date Title
CA2196589C (en) Titanium nitride doped with boron, substrate coating based on this new compound, with good hardness conferring very good resistance to wear, and parts bearing such a coating
EP1140416B1 (en) Brazing composition and method for brazing parts made of alumina-based materials with said composition
EP1722004B1 (en) Substrate with a metallization bonding layer
Tsukimoto et al. Formation of Ti diffusion barrier layers in thin Cu (Ti) alloy films
EP0861916A1 (en) Process for making a stainless steel strip rich in aluminium especially suitable for a catalytic converter support for a motor vehicle
EP0820969B1 (en) Reactive brazing composition and process for alumina-containing ceramic materials
EP0738787B1 (en) Method of making a metal object covered with diamond
EP1440045B1 (en) Metallization and/or brazing method, using a silicon alloy, for oxide ceramic parts which are non-wettable by said alloy
CA2031459C (en) Surface structure of ceramics substrate and method of manufacturing the same
EP1028929A1 (en) Metal-aluminium-nitride assembly with rare earth nitride present in the interface to ensure heat transfer
FR2873114A1 (en) METAL-CERAMIC BONDING ARTICLE AND METHOD OF MANUFACTURING
Lingwal et al. Scanning magnetron-sputtered TiN coating as diffusion barrier for silicon devices
EP0640039A1 (en) Thin film metallization and brazing of aluminum nitride
JPH07122724A (en) Ohmic electrode of n-type cubic boron nitride semiconductor and its formation
FR2585730A1 (en) Process for deposition of metals as a thin layer on a nonmetallic substrate, with intermediate deposition of hydrides by reactive cathodic sputtering
EP0501095A1 (en) Process for metallising metal containing dielectric surfaces
Apblett et al. Stress generation in thin Cu‐Ti films in vacuum and hydrogen
FR3030506A1 (en) METALLIC CERAMIC PIECE, PROCESS FOR PREPARING THE SAME, AND METHOD FOR ASSEMBLING THE SAME WITH A METAL OR CERAMIC PIECE.
Yanagimoto et al. Fabrication of copper film on aluminum nitride by novel electroless plating
EP0635585B1 (en) Process for producing a thick and strongly adhering metallic layer on sintered aluminium nitride and metallised product thus obtained
FR3130664A1 (en) METHOD FOR ASSEMBLING BY BRAZING A GALLIUM GARNET CERAMIC PART ONTO A METALLIC PART OR ON ANOTHER GALLIUM GARNET CERAMIC PART
Sommadossi et al. Development of Cu/Cu interconnections using an indium interlayer
NL1023174C2 (en) Bonding ceramic substrate containing silicon to metallic material, by providing intermediate, reactive solder and metal layers on substrate and then heating
Rafalski et al. Enhanced adhesion of copper films to SiO2, PSG and BPSG by refractory metal additions
FR2689315A1 (en) Heat sink substrate mfr. for power electronics - by ceramic laser ablation onto metal plate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000422

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010921

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020422