[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1026704A2 - Oberflächenmodifizierter Isolator und Verfahren zur Modifizierung der Oberfläche eines Isolators - Google Patents

Oberflächenmodifizierter Isolator und Verfahren zur Modifizierung der Oberfläche eines Isolators Download PDF

Info

Publication number
EP1026704A2
EP1026704A2 EP99125571A EP99125571A EP1026704A2 EP 1026704 A2 EP1026704 A2 EP 1026704A2 EP 99125571 A EP99125571 A EP 99125571A EP 99125571 A EP99125571 A EP 99125571A EP 1026704 A2 EP1026704 A2 EP 1026704A2
Authority
EP
European Patent Office
Prior art keywords
insulator
preparation
iii
tin
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99125571A
Other languages
English (en)
French (fr)
Other versions
EP1026704B1 (de
EP1026704A3 (de
Inventor
Peter Dr. Jenkner
Eckhard Just
Johannes Liebermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH, Siemens AG filed Critical Degussa GmbH
Publication of EP1026704A2 publication Critical patent/EP1026704A2/de
Publication of EP1026704A3 publication Critical patent/EP1026704A3/de
Application granted granted Critical
Publication of EP1026704B1 publication Critical patent/EP1026704B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • H01B19/04Treating the surfaces, e.g. applying coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31598Next to silicon-containing [silicone, cement, etc.] layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31609Particulate metal or metal compound-containing
    • Y10T428/31612As silicone, silane or siloxane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a surface-modified insulator Process for surface modification of an insulator and its use a preparation containing fluoroorganosilane and / or siloxane therefor.
  • Isolators are used in many places in technology, for example as High voltage insulators in substations or in transmission lines. It is desirable that insulators be used under difficult operating conditions, especially when contaminated by dirt, salt or other deposits as long as possible the high technical Requirements met.
  • a foreign layer deposited on the surface of the insulator affects the electrical insulation.
  • countermeasures are complex designs with large screen overhang and long Creepage distances selected. They must also be heavily soiled Surfaces are cleaned manually at regular intervals.
  • EP 0 497 189 B1 teaches a process for producing a water and oil repellent adsorbed film, in which a pretreated by roughening Substrate surface, which is also aksive on its surface Has hydrogen groups with a non-aqueous solution surface-active material is brought into contact, the active Material a fluorocarbon group and a chlorosilyl group or one Contains fluorocarbon group and an alkoxy group.
  • chlorinated hydrocarbons are used as solvents, which today are comparatively expensive and are also extremely harmful to health. Examples of applications include high voltage insulators and Spark plugs mentioned.
  • a coating of the mentioned type under difficult operating conditions not permanent, because the Bonding to the insulator is not sufficient.
  • Such water, solvent or dispersant Compositions are generally considered to be hydrophobic and at the same time oleophobic and dirt-repellent finish from Substrates or for special modification of the surface properties of the substrates used, for example for metals, metal oxides, fillers, Pigments, glass, enamel, ceramics, building materials, structures, fibers, textiles, Natural materials, plastics, paints.
  • This modification can also be to form a protective layer against UV radiation, mechanical, act thermal and chemical influences.
  • scratch-resistant, anti-corrosive, antiicing, antifouling, or antibacterial antithrombic properties can be achieved.
  • Organofunctional groups have said fluoroorganofunctional Siloxanes as a rule Si-bonded hydroxyl or alkoxy groups, the one enable later connection to the substrate. However, here too not satisfactory, d. H. permanent connection of the coating reached the substrate.
  • fluoroalkylsilanes are used for coating the Surface of inorganic fillers use, which in turn in an insulating high polymer material for the production of water-repellent dielectric materials are dispersed.
  • a such procedure is usually very complex and for the Modification of the entire surface of workpieces, in particular glass or ceramic, not applicable.
  • the present invention is therefore based on the object of an isolator with a water, oil and dirt-repellent coating with satisfied providing adhesive properties.
  • composition fluoroorganofunctional silanes and / or siloxanes receives, the majority of silanol groups containing fluoroorganofunctional silanes and / or siloxanes, if one at least one fluorine-functional chlorosiloxane or alkoxysilane, optionally further organochlorosiloxanes or organoalkoxysilanes, at least a metal salt of aluminum (III), tin (II) tin (IV) iron (III) or titanium (III) and at least one mineral acid in the presence of a small amount Water, preferably 1 ppm by weight to 2% by weight, mixes, if appropriate partially hydrolyzed and optionally condensed or oligomerized.
  • the Metal salt can be used in combination with the mineral acid and in particular act as a catalyst when using said preparation.
  • Figures 1 to 3 show preferred embodiments of insulators, cf. also the legend.
  • the insulator can be made of a ceramic, glass or one insulating plastic.
  • the ceramics e.g. B. a clay ceramic Porcelain or a steatite, can be unglazed or with a glaze in Be provided in the form of a glass-like melt.
  • Said preparation stands out when used for coating of the insulator, also called the insulator base, by a special rapid and complete reaction with the usually polar, i.e. H. hydrophilic surface of the insulator.
  • the application of the said Preparation causes a homogeneous, highly cross-linked on the isolator Coating that excellently even under the influence of weather, such as rain, heat, cold, UV exposure, completely and permanently chemical remains bound and this is advantageous for long-term behavior is.
  • a coating can be produced in a simple and economical manner on insulators so that the surface of the modified insulator a particularly good beading effect, a high roll angle and thus also has a low tendency to become contaminated.
  • the inherently hydrophilic The surface of a glaze or a glass is thereby suitably Water-repellent, like a coating with silicone, but it is coating according to the invention much more resistant.
  • coatings according to the invention have in excellently oleophobic, d. H. Oil repellent properties.
  • the coating according to the invention is further characterized by a excellent pH resistance, thermal resistance and special UV resistance out.
  • the coating according to the invention their excellent adhesion to the substrate surface especially as Surface coating for a high voltage insulator for use in the Transmission of electrical energy indoors and outdoors is suitable. This can significantly improve the behavior of the foreign layer and an increase in the breakdown voltage, especially below Moisture exposure to precipitation (rain, fog, spray - especially in the maritime sector). This means that even complex, mostly manual cleaning work is significantly reduced become.
  • An object of the present invention is therefore a surface-modified Insulator, which by coating the insulator body with a Preparation is available that contains at least one fluoroorganofunctional silane and / or siloxane, at least one mineral acid and at least one Metal salt of aluminum (III), tin (II) tin (IV) iron (III) or titanium (III) contains.
  • Said preparation preferably contains a mineral acid from the series Hydrogen chloride, nitric acid, phosphoric acid or sulfuric acid.
  • said preparation has one Metal salt content of 0.01 to 10 wt .-% and a content of Mineral acid from 0.001 to 5% by weight, with the metal salt being chlorides, Nitrates, phosphates, hydrogen phosphates, dihydrogen phosphates, sulfates or Hydrogen sulfates preferred.
  • the said preparation suitably also contains a dissolving or Dispersant.
  • a dissolving or Dispersant can contain a aromatic or aliphatic hydrocarbon or an alcohol or Have water or a mixture thereof.
  • Methanol, ethanol, n-propanol, i-propanol, n-butanol, acetone, cyclohexane, n-hexane or toluene used as a solvent As a rule, the solution or dispersant the remaining proportions of said preparation to 100%.
  • an insulator is preferably coated by Dipping, spraying, painting or polishing, if necessary, the Follow coating after thermal treatment.
  • it can treated workpiece in a heating oven for a period of 1 minute up to 24 hours at 50 to 350 ° C, particularly preferably over 20 to Heated to 150 ° C for 60 minutes.
  • the isolator obtained advantageously has a fluoroorganofunctional one and metal salt-containing coating, which is usually 0.1 to 1,000 nm is thick.
  • the thickness of the layer mentioned is preferably 0.5 to 50 nm, particularly preferably at 1 to 15 nm.
  • the present invention thus also relates to a method for Modification of the surface of an insulator, which is characterized by that you have a preparation that contains at least one fluoroorganofunctional silane and / or siloxane, at least one mineral acid and at least one Metal salt of aluminum (III), tin (II) tin (IV) iron (III) or titanium (III) contains, applies to the insulator body and, if necessary, thermally aftertreated.
  • the metal salt is preferably used for said preparations solid or liquid or dissolved form.
  • metal salt metal chlorides are preferred - in particular aluminum (III) chloride, Tin (II) chloride, tin (IV) chloride, titanium (III) chloride and iron (III) chloride,
  • the metal salt is suitably used in a total amount of 0.01 up to 10% by weight, based on the finished preparation.
  • the coating process according to the invention is carried out d. H. for surface modification of insulators, as follows:
  • the insulator or base body to be treated can be pre-cleaned.
  • the cleaning can mechanically and / or chemically, for example by brushing, Neutralization with acid or alkali at a pH from 0 to 14 and optionally subsequent rinsing with demineralized water or degreasing the Substrate surface with an appropriate solvent. So you can Prepare used or new insulator for treatment. You can use the isolator, suitably an unused one, but also according to the invention without carrying out a special pre-cleaning to treat.
  • the insulator is usually coated by Dipping, spraying, brushing or polishing in said preparation or by a combination of the coating methods mentioned.
  • the treatment time is usually a few seconds up to approx. 1 hour, preferably at about 1 to 20 minutes, the duration in some Cases for the homogeneity of the coating, but usually not for the thickness of which is decisive.
  • Treatment can be a Drying time from 10 seconds to 24 hours at temperatures of 50 up to 350 ° C. Drying usually takes place at 100 to 200 ° C over a period of 10 to 120 minutes.
  • the drying process can be done in air, in vacuum or under a protective gas, for example under argon or nitrogen.
  • the base body of the insulator can be, for example, ceramic, glass, enamel, Metal oxides or plastics, d. H. organic polymers such as casting resins different chemical functions and compositions, e.g. B. Epoxy resin or silicone, e.g. B. silicone rubber act.
  • the metal salt present in the preparation used results in Connection with the mineral acid the binding and condensation of the fluorine-functional silane or siloxane to the insulator in surprising good, lasting and therefore advantageous way.
  • Cast resin plates, glazed and unglazed porcelain test specimens are used as substrates.
  • the porcelain used is identical for all substrates.
  • a gray and a brown glaze are used as glazes, which differ only in the color pigments used in each case.
  • the gray glaze contains metal oxides of cobalt as color pigments.
  • the brown glaze contains metal oxides of iron, chromium and magnesium as color pigments.
  • fluoroalkylsilane systems are used.
  • composition is 1.0% by weight of DS F 8261, 1.0% by weight of H 2 O, 0.2% by weight of hydrochloric acid, 0.12% by weight of SnCl 2 x6H 2 O and 97, 68% by weight ethanol.
  • the solution is used after a ripening time of 24 h.
  • hydrophobic properties are checked by a static contact angle measurement (H 2 O) in accordance with DIN EN 828.
  • the coated test specimens are boiled in demineralized water for 5 h. After that, the hydrophobicity is again determined by a static Contact angle measurement checked.
  • the ceramic of the insulators is an alumina porcelain from Type C120 according to DIN-EN 60 672. Porcelain or ceramics from others Composition makes no difference.
  • the coated long rod insulator was made by dipping it into a preparation as already described in Example 1.
  • the isolators are each in one suitable room and hung with a predetermined intensity of rain sprinkled at a given angle.
  • the breakdown voltages are determined from an oscillogram. There will be five each Rollover tests carried out.
  • the determined breakdown voltage for the uncoated long rod insulator was 376 kV, the breakdown voltage determined for the coated Isolator was 405 kV. This means that the coated insulator despite smaller creepage distance (11 shielding ribs) only with a higher voltage showed a rollover. Technically, the result means a profit of 9.1% of the voltage to be insulated per mm of insulation length.
  • the shape of the connector caps doesn't matter. This type is often used as a rail isolator.
  • the ceramic is again a C120 alumina porcelain.
  • the high-voltage insulators are included Washed trisodium phosphate. Then the High-voltage insulators preconditioned according to IEC 507 (1991). The preconditioned high-voltage insulators are subjected to a standing test each subjected to predetermined salt mass concentration in air. Each The exam lasts at least one hour, provided that none is found Rollover instead. It is at a test voltage of 15 kV (AC voltage) each the maximum standing salt mass concentration determined in accordance with IEC 507 (1991), page 19, d. H. the highest Standing salt mass concentration at which the examined High voltage insulator with a maximum of one flashover in three attempts shows within the one-hour trial period.
  • the determined standing salt mass concentration lies with the coated one High voltage insulator one salt level higher than IEC 507 (1991) with the uncoated high voltage insulator.
  • the isolators designed according to Example 3 become one Salt spray test according to Example 4 subjected. So it becomes an 11-shielded coated long rod insulator with a 22-shielded, uncoated long rod insulator compared.
  • the 11-shielded, coated long rod insulator shows the same Standing salt content like the 22-shielded, uncoated long rod insulator. This means in practice that the coating has a creepage distance of can be saved at least 30%.
  • FIG. 1 shows an insulator 1 in the form of a high-voltage insulator partially broken representation shown.
  • the insulator 1 has one Insulator body 2 made of a ceramic K and connection caps 4 for Connection and / or for carrying current-carrying lines.
  • the Base body 2 is a substantially cylindrical stem 5 with a Number of plate-shaped ribs 6 formed thereon.
  • the Ceramic K not shown here, is superficial with a glaze overdrawn.
  • On the surface of the glazed ceramic K des Insulator body 2 is a water and oil repellent Coating B according to the invention by dipping the insulator body 2 applied in a preparation as described in Example 1.
  • Figure 2 is also a partially broken representation coated according to the invention, designed as a high-voltage insulator Isolator 7 shown.
  • the number of Ribs 6 of the insulator base body 2 made of ceramic K are reduced.
  • the length of the Insulators 7 and 1 are identical here. However, there are only two ribs 6 available.
  • FIG. 3 shows an isolator 10 designed as a high-voltage isolator, where compared to the insulators 1 and 7 according to Figure 1 and Figure 2 of Insulator body 2 made of ceramic K is reduced to the shank 5.
  • Umbrellas to increase the leakage current leakage between the two Connection caps 4 are not provided here.
  • the insulator 10 is additionally protected against dust deposits.
  • the isolator 10 is considerably cheaper to produce, since the ceramic material K of the screens 6 is saved.
  • the manufacturing costs for the insulator 10 are also significantly lower than for insulators 1 and 7, since the complex shape for the screens 6 not applicable.
  • the expensive twisting off of the screens 6 from the still unbaked, soft molded body 2 is eliminated.

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Insulators (AREA)
  • Insulating Bodies (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Die vorliegende Erfindung betrifft oberflächenmodifizierte Isolatoren (1, 7, 10), die durch Beschichten eines Isolatorgrundkörpers (2) mit einer Zubereitung, die mindestens ein fluororganofunktionelles Silan und/oder Siloxan, mindestens eine Mineralsäure und mindestens ein Metallsalz von Aluminium(III), Zinn(II), Zinn(IV), Eisen(III) oder Titan(lll) als Katalysator enthält, erhältlich sind, ein Verfahren zu ihrer Herstellung sowie die Verwendung der besagten Zubereitung für die Beschichtung von Isolatoren (1, 7, 10).

Description

Die vorliegende Erfindung betrifft einen oberflächenmodifizierten Isolator, ein Verfahren zur Oberflächenmodifizierung eines Isolators und die Verwendung einer fluororganosilan- und/oder -siloxanhaltigen Zubereitung hierfür.
Isolatoren werden in der Technik vielerorts eingesetzt, beispielsweise als Hochspannungsisolatoren in Umspannwerken oder in Übertragungsleitungen. Es ist erwünscht, dass Isolatoren unter erschwerten Einsatzbedingungen, insbesondere bei Fremdschichtbelastung durch Schmutz, durch Salz oder sonstige Ablagerungen möglichst lange den hohen technischen Anforderungen genügen.
Eine auf der Oberfläche des Isolators abgelagerte Fremdschicht beeinträchtigt das elektrische Isolationsvermögen. Als Gegenmaßnahmen werden aufwendige Bauformen mit großer Schirmausladung und langen Kriechwegen gewählt. Darüber hinaus müssen stark verschmutzte Oberflächen in regelmäßigen Abständen manuell gereinigt werden.
Aus "Elektrotechnische Zeitschrift - A", Band 96 (1995), Seiten 126 bis 128, ist es bekannt, auf die Oberfläche eines Isolators zusätzlich eine hydrophobe Beschichtung aus Silikon aufzubringen. Auf diese Weise wird erreicht, daß die Oberfläche des Isolators Wasser abstößt. Ein Fremdschichtaufbau durch in Wasser gelöste Partikel wird dadurch vermieden. Durch das hydrophobe Verhalten behält weiter ein mit Fremdschicht verschmutzter Isolator seine elektrischen Eigenschaften, da sich keine geschlossenen Wasserfilme oder Feuchtezonen bilden können. Die Betriebsdauer des Isolators wird verlängert. Nachteiligerweise ist jedoch eine derartige Silikonisierung der Oberfläche nicht dauerhaft und muß von Zeit zu Zeit erneuert werden. Dies bedeutet einen hohen Wartungsaufwand und einen teuren Anlagenstillstand. Das nötige Silikonmaterial ist zudem teuer.
Die EP 0 497 189 B1 lehrt ein Verfahren zur Herstellung eines Wasser und Öl abweisenden adsorbierten Films, in dem eine durch Aufrauen vorbehandelte Substratoberfläche, die an ihrer Oberfläche ferner über aksive Wasserstoffgruppen verfügt, mit einer nicht wässrigen Lösung eines oberflächenaktiven Materials in Kontakt gebracht wird, wobei das aktive Material eine Fluorkohlenstoffgruppe und eine Chlorsilylgruppe oder eine Fluorkohlenstoffgruppe und eine Alkoxygruppe enthält. Insbesondere werden hierbei Chlorkohlenwasserstoffe als Lösemittel eingesetzt, die heute vergleichsweise teuer und darüber hinaus äußerst gesundheitsschädlich sind. Als Anwendungsbeispiele sind unter anderem Hochspannungsisolatoren und Zündkerzen erwähnt. Nachteiligerweise ist auch hier eine Beschichtung der genannten Art unter erschwerten Einsatzbedingungen nicht von Dauer, da die Haftanbindung an den Isolator nicht genügt.
Darüber hinaus ist bekannt, durch eine gezielte Säure oder Basen kontrollierte Hydrolyse und Kondensation oder Cokondensation fluororganofunktioneller Chlor- bzw. Alkoxysilane sowie gegebenenfalls weiterer Eduktkomponenten eine Zusammensetzung herzustellen, die ein fluororganofunktionelles Siloxan enthält. Zur Kontrolle des pH-Werts werden hierbei neben organischen oder anorganischen Säuren oder Basen auch saure oder basische Salze, wie Alkalicarbonat, Alkalihydrogensulfat, Alkalidihydrogenphosphat, Magnesiumhydroxid oder Aluminiumacetat, eingesetzt. Ferner ist bekannt, bei der Herstellung einer solchen Zusammensetzung beispielsweise Silicium-, aber auch Titan- oder Zirkontetrachlorid oder entsprechende Metallsäureester als Eduktkomponenten einzusetzen.
Solche wasser-, lösemittel- oder dispergiermittelhaltigen Zusammensetzungen werden im Allgemeinen für eine hydrophobe und gleichzeitig oleophobe sowie Schmutz abweisende Ausstattung von Substraten oder zur besonderen Modifizierung der Oberflächeneigenschaften der Substrate eingesetzt, beispielsweise für Metalle, Metalloxide, Füllstoffe, Pigmente, Glas, Emaille, Keramik, Baustoffe, Bauwerke, Fasern, Textilien, Naturstoffe, Kunststoffe, Lacke. Bei dieser Modifizierung kann es sich ferner um die Bildung einer Schutzschicht gegen UV-Strahlung, mechanische, thermische und chemische Einflüsse handeln. Somit können beispielsweise kratzfeste, antikorrosive, antiicing, antifouling, antibakterielle oder antithrombische Eigenschaften erzielt werden. Neben den organofunktionellen Gruppen besitzen besagte fluororganofunktionelle Siloxane in der Regel Si-gebundene Hydroxy- bzw. Alkoxy-Gruppen, die eine spätere Anbindung an das Substrat ermöglichen sollen. Jedoch wird auch hier keine zufrieden stellende, d. h. dauerhafte Anbindung der Beschichtung an das Substrat erreicht.
Fluoralkylsilane finden gemäß EP 0 382 557 A1 für die Beschichtung der Oberfläche von anorganischen Füllkörpern Verwendung, welche ihrerseits in einem isolierenden hochpolymeren Material zur Herstellung von wasserabweisenden dielektrischen Materialien dispergiert werden. Eine solche Verfahrensweise ist in der Regel sehr aufwendig und für die Modifizierung der gesamten Oberfläche von Werkstücken, insbesondere solcher aus Glas oder Keramik, nicht anwendbar.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, einen Isolator mit einer Wasser, Öl sowie Schmutz abweisenden Beschichtung mit zufrieden stellenden Hafteigenschaften bereitzustellen.
Weiter ist es Aufgabe der Erfindung, ein Verfahren zur Modifizierung der Oberfläche eines Isolators anzugeben, mit dem sich die genannte Beschichtung herstellen läßt. Ferner ist es Aufgabe der Erfindung, eine Zubereitung zur Verwendung in dem Verfahren anzugeben, mit deren Hilfe sich die Beschichtung herstellen läßt.
Die genannten Aufgaben werden erfindungsgemäß durch die Merkmale der unabhängigen Patentansprüche gelöst. Weitere vorteilhafte Ausgestaltungen finden sich in den Unteransprüchen.
Überraschenderweise wurde gefunden, wie auch in einer beim Deutschen Patentamt hinterlegten Parallelanmeldung mit dem Titel "Zusammensetzung fluororganofunktioneller Silane und/oder Siloxane, Verfahren zu ihrer Herstellung und ihre Verwendung" beschrieben, dass man eine hochreaktive Zusammensetzung erhält, die zum überwiegenden Teil Silanol-Gruppen tragende fluororganofunktionelle Silane und/oder Siloxane enthält, wenn man mindestens ein fluororganofunktionelles Chlor- oder Alkoxysilan, gegebenenfalls weitere Organochlor- oder Organoalkoxysilane, mindestens ein Metallsalz von Aluminium(III), Zinn(II) Zinn(IV) Eisen(III) oder Titan(III) und mindestens eine Mineralsäure in Gegenwart einer geringen Menge an Wasser, vorzugsweise 1 Gew.-ppm bis 2 Gew.-%, mischt, gegebenenfalls partiell hydrolysiert und gegebenenfalls kondensiert bzw. oligomerisiert. Das Metallsalz kann dabei in Kombination mit der Mineralsäure und insbesondere bei der Anwendung der besagten Zubereitung als Katalysator wirken. Eine solche Zusammensetzung bzw. Zubereitung wird bei der vorliegenden Erfindung speziell für die Beschichtung des Isolators vorteilhaft verwendet.
Die Figuren 1 bis 3 zeigen bevorzugte Ausführungsformen von Isolatoren, vgl. hierzu auch die Legende.
Der Isolator kann dabei aus einer Keramik, aus Glas oder aus einem isolierenden Kunststoff sein. Die Keramik, z. B. eine Tonkeramik, ein Porzellan oder ein Steatit, kann dabei unglasiert oder mit einer Glasur in Form einer glasartigen Schmelze versehen sein.
Die besagte Zubereitung zeichnet sich bei Anwendung für das Beschichten des Isolators, auch Isolatorgrundkörper genannt, durch eine besonders rasche und vollständige Reaktion mit der in der Regel polaren, d. h. hydrophilen Oberfläche des Isolators aus. Die Anwendung der besagten Zubereitung bewirkt auf dem Isolator eine homogene, hochvernetzte Beschichtung, die in hervorragender Weise auch unter Witterungseinflüssen, wie Regen, Hitze, Kälte, UV-Belastung, vollständig und dauerhaft chemisch gebunden verbleibt und die hierdurch für das Langzeitverhalten von Vorteil ist.
Ferner kann man in einfacher und wirtschaftlicher Weise eine Beschichtung auf Isolatoren herstellen, sodass die Oberfläche des modifizierten Isolators einen besonders guten Abperleffekt, einen hohen Abrollwinkel und somit auch eine geringe Verschmutzungsneigung besitzt. Die von Haus aus hydrophile Oberfläche einer Glasur oder eines Glases wird dadurch geeigneterweise Wasser abweisend, wie bei einer Beschichtung mit Silikon, jedoch ist die erfindungsgemäße Beschichtung wesentlich beständiger.
Darüber hinaus besitzen erfindungsgemäße Beschichtungen in hervorragender Weise oleophobe, d. h. Öl abweisende Eigenschaften.
Die erfindungsgemäße Beschichtung zeichnet sich weiterhin durch eine hervorragende pH-Beständigkeit, thermische Resistenz sowie besondere UV-Beständigkeit aus.
Es wurde auch gefunden, dass die erfindungsgemäße Beschichtung wegen ihrer ausgezeichneten Haftung zur Substratoberfläche besonders als Oberflächenvergütung für einen Hochspannungsisolator für den Einsatz in der Übertragung elektrischer Energie im Innen- und Außenbereich geeignet ist. Es kann damit eine wesentliche Verbesserung des Fremdschichtverhaltens und eine Erhöhung der Überschlagsspannung, besonders unter Feuchtebelastung durch Niederschlag (Regen, Nebel-, Gischt -, insbesondere im maritimen Bereich) erzielt werden. Somit können auch aufwendige, zumeist manuell durchzuführende Reinigungsarbeiten signifikant reduziert werden.
Ein teures Beschichten mit Silikon kann entfallen. Hydrohob beschichtete Keramik-Isolatoren erlauben zudem gegenüber dem Stand der Technik die Wahl einfacherer und damit preisgünstigerer Bauformen bei der Herstellung. Die heute vorhandene große Typenvielfalt kann kostengünstig reduziert werden.
Ein Gegenstand der vorliegenden Erfindung ist daher ein oberflächenmodifizierter Isolator, der durch Beschichten des Isolatorgrundkörpers mit einer Zubereitung erhältlich ist, die mindestens ein fluororganofunktionelles Silan und/oder Siloxan, mindestens eine Mineralsäure und mindestens ein Metallsalz von Aluminium(III), Zinn(II) Zinn(IV) Eisen(III) oder Titan(III) enthält.
Bevorzugt enthält die besagte Zubereitung eine Mineralsäure aus der Reihe Chlorwasserstoff, Salpetersäure, Phosphorsäure oder Schwefelsäure.
In weiterer vorteilhafter Ausgestaltung weist die besagte Zubereitung einen Gehalt an Metallsalz von 0,01 bis 10 Gew.-% sowie einen Gehalt an Mineralsäure von 0,001 bis 5 Gew.-% auf, wobei man als Metallsalz Chloride, Nitrate, Phosphate, Hydrogenphosphate, Dihydrogenphosphate, Sulfate oder Hydrogensulfate bevorzugt.
Geeigneterweise enthält die besagte Zubereitung auch ein Löse- bzw. Dispergiermittel. Beispielsweise kann sie einen Gehalt an einem aromatischen oder aliphatischen Kohlenwasserstoff oder einem Alkohol oder Wasser oder einer Mischung daraus aufweisen. Bevorzugt werden jedoch Methanol, Ethanol, n-Propanol, i-Propanol, n-Butanol, Aceton, Cyclohexan, n-Hexan oder Toluol als Lösemittel eingesetzt. In der Regel ergänzt das Löse- bzw. Dispergiermittel die übrigen Anteile der besagte Zubereitung auf 100 %.
Erfindungsgemäß erfolgt das Beschichten eines Isolators bevorzugt durch Tauchen, Sprühen, Anstreichen oder Polieren, gegebenenfalls kann dem Beschichten eine thermische Nachbehandlung folgen. Hierbei kann das behandelte Werkstück in einem Wärmeofen über eine Zeitdauer von 1 Minute bis 24 Stunden auf 50 bis 350 °C, besonders vorzugsweise über 20 bis 60 Minuten auf 150 °C, erhitzt werden.
Der erhaltene Isolator besitzt vorteilhafterweise eine fluororganofunktionelle und Metallsalz enthaltende Beschichtung, die in der Regel 0,1 bis 1.000 nm dick ist. Vorzugsweise liegt die Dicke der genannten Schicht bei 0,5 bis 50 nm, besonders vorzugsweise bei 1 bis 15 nm.
Durch die erfindungsgemäße Beschichtung können die Oberflächeneigenschaften genannter Isolatoren bzw. Isolatorgrundkörper in dargelegter, vorteilhafter Weise modifiziert werden.
Somit ist auch Gegenstand der vorliegenden Erfindung ein Verfahren zur Modifizierung der Oberfläche eines Isolators, das dadurch gekennzeichnet ist, dass man eine Zubereitung, die mindestens ein fluororganofunktionelles Silan und/oder Siloxan, mindestens eine Mineralsäure und mindestens ein Metallsalz von Aluminium(III), Zinn(II) Zinn(IV) Eisen(III) oder Titan(III) enthält, auf den Isolatorgrundkörper aufbringt und gegebenenfalls thermisch nachbehandelt.
Die verwendete Zubereitung enthält vorzugsweise solche Silane und/oder Siloxane, die fluororganofunktionelle Gruppen, hier insbesondere fluoralkylfunktionelle Gruppen der Formel CF3(CF2)m(CH2)n- mit m = 0 bis 18 und n = 0 oder 2, beispielsweise Tridecylfluoroctyl- [(C6F13)-(CH2)2-], Heptadecafluordecyl- [(C8F17)(CH2)2-], Nonafluorhexyl- [(C4F9)-(CH2)2-], Heneicosafluordecyl- [(C10F21)-(CH2)2-], 3,3,3-Trifluorpropyl- [(CF3)-(CH2)2-] oder 3-(1,1,2,2-Tetrafluorethoxy)propyl- [(HC2F4)-O-(CH2)3-], gegebenenfalls Aminoalkyl-Gruppen, beispielsweise 3-Aminopropyl-, N-2-Aminoethyl-3-aminopropyl- oder N-2-Aminoethyl-N'-2-aminoethyl-3-aminopropyl-, sowie Vinyl-Gruppen, Methacryloxyalkyl-Gruppen, beispielsweise 3-Methacryloxypropyl-, sowie Alkyl-Gruppen, beispielsweise Methyl-, Propyl-, i-Propyl-, n-Butyl-, i-Butyl-, t-Butyl-, n-Pentyl-, n-Hexyl-, n-Octyl-, i-Octyl-, Hexadecyl-, oder Cycloalkyl-Gruppen, beispielsweise Cyclopentyl- oder Cyclohexyl-, oder Cycloalkylen-Gruppen, beispielsweise Cyclohexenyl-, Cyclooctenyl- oder Cyclododecadienyl-Gruppen, weiterhin Epoxyalkyl- und Epoxycycloalkyl-Gruppen, wie 3-Glycidyloxypropyl- oder 2,3-Epoxycyclohexyl-Gruppen, enthalten, wobei im Siloxan maximal eine der genannten organofunktionellen Gruppen an einem Silicium gebunden ist, dessen übrige Valenzen durch -O-Si-Bindungen oder OH-Gruppen, gegebenenfalls durch Alkoxy-Gruppen oder Chlor-Substituenten belegt werden.
Für die Herstellung besagter Zubereitung kann man beispielsweise folgende Silane einsetzen:
  • fluororganofunktionelle Silane der allgemeinen Formel I F3C(CF2)m(CH2)nSiR1yX(3-y) worin X ein Chlor oder eine RO-Gruppe ist und R einen linearen oder verzweigten Alkylrest mit 1 bis 4 C-Atomen darstellt, R1 eine lineare, verzweigte oder cyclische Alkylgruppe mit 1 bis 8 C-Atomen bedeutet, m = 0 bis 18, y = 0, 1 oder 2 und n = 0 oder 2 sind, wie 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluoroctyltrimethoxysilan, 3,3,4,4,5,5,-6,6,7,7,8,8,8-Tridecafluoroctyltrichlorsilan, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluoroctyltriethoxysilan, 3,3,4,4,5,5,6,6,7,7,8,8,9,g,10,10,10-Heptadecafluordecyltriethoxysilan, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heptadecafluordecyltrichlorsilan, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heptadecafluordecyltrimethoxysilan, 3,3,4,4,5,5,6,6,6-Nonafluorhexyltriethoxysilan, 3,3,4,4,5,5,6,6,6-Nonafluorhexyltrimethoxysilan, 3,3,4,4,-5,5,6,6,6-Nonafluorhexyltrichlorsilan, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,-11,11,12,12,12-Heneicosafluordodecyltriethoxysilan, 3,3,3-Trifluorpropyltrichlorsilan, 3,3,3-Trifluorpropyltrimethoxysilan, 3,3,3-Trifluorpropyltriethoxysilan, oder 3-(1,1,2,2-Tetrafluorethoxy)propyltrimethoxysilan oder 3-(1,1,2,2-Tetrafluorethoxy)propyltrichlorsilan und gegebenenfalls
  • weitere Silane, beispielsweise:
    aminofunktionelle Organosilane, wie 3-Aminopropyltriethoxysilan, 3-Aminopropyltrimethoxysilan, 2-Aminoethyl-3-aminopropyltrimethoxysilan, N-2-Aminoethyl-N'-2-aminoethyl-3-aminopropyltrimethoxysilan, Bis(3-tri-ethoxysilylpropyl)amin, Bis(3-trimethoxysilylpropyl)amin,
    epoxyfunktionelle Organosilane, wie 3-Glycidyloxypropyltrimethoxysilan, 3-Glycidyloxypropyltriethoxysilan, 2-(2,3-Epoxycyclohexyl)ethyltrimethoxysilan,
    Alkylsilane, wie Methyltrichlorsilan, Methyltrimethoxysilan, Methyltriethoxysilan, n-Propyltriethoxysilan, i-Propyltrimethoxysilan, Octyltrichlorsilan, Octyltriethoxysilan, i-Octyltrimethoxysilan, Hexadecyltrimethoxysilan, Octadecyltrichlorsilan,
    Cycloalkylsilane, wie Cyclohexyltrimethoxysilan, Cyclopentyltrichlorsilan, Cyclohexyltriethoxysilan,
    Cycloalkenylsilane, wie Cyclohexenylethyltriethoxysilan, Cyclododecadienyltrichlorsilan, Cyclooctenyltrimethoxysilan,
    sowie Tetraethoxysilan sowie Vinyltrimethoxysilan, Vinyltriethoxysilan, Vinyltris(methoxyethoxy)silan oder 3-Methacryloxypropyltrimethoxysilan sowie 3-Methacryloxypropyltriethoxysilan, um nur einige zu nennen.
Ferner setzt man für besagte Zubereitungen das Metallsalz bevorzugt in fester oder flüssiger oder gelöster Form ein. Als Metallsalz besonders bevorzugt sind Metallchloride - insbesondere Aluminium(III)chlorid, Zinn(II)chlorid, Zinn(IV)chlorid, Titan(III)chlorid sowie Eisen(III)chlorid, Geeigneterweise setzt man das Metallsalz in einer Gesamtmenge von 0,01 bis 10 Gew.-%, bezogen auf die fertige Zubereitung, ein.
Im Allgemeinen führt man das erfindungsgemäße Verfahren zum Beschichten, d. h. zur Oberflächenmodifizierung von Isolatoren, wie folgt durch:
Der zu behandelnde Isolator bzw. Isolatorgrundkörper, vgl. auch die Figuren 1 bis 3, kann einer Vorreinigung unterzogen werden. Die Reinigung kann mechanisch und/oder chemisch erfolgen, beispielsweise durch Abbürsten, Neutralisation mit Säure oder Lauge bei einem pH-Wert von 0 bis 14 und gegebenenfalls anschließendem Spülen mit VE-Wasser oder Entfetten der Substratoberfläche mit einem entsprechenden Lösemittel. So kann man einen bereits gebrauchten oder auch neuen Isolator für die Behandlung vorbereiten. Man kann den Isolator, geeigneterweise einen ungebrauchten, aber auch ohne eine besondere Vorreinigung durchzuführen erfindungsgemäß behandeln. Das Beschichten des Isolators erfolgt in der Regel durch Tauchen, Besprühen, Bestreichen oder Einpolieren der besagten Zubereitung oder durch eine Kombination der genannten Beschichtungsmethoden.
Die Behandlungszeit liegt üblicherweise bei wenigen Sekunden bis zu ca. 1 Stunde, bevorzugt bei ca. 1 bis 20 Minuten, wobei die Dauer in einigen Fällen für die Homogenität der Beschichtung, in der Regel jedoch nicht für deren Dicke ausschlaggebend ist. An die Behandlung kann eine Trocknungszeit von 10 Sekunden bis 24 Stunden bei Temperaturen von 50 bis 350 °C angeschlossen werden. Üblicherweise erfolgt die Trocknung bei 100 bis 200 °C über eine Zeit von 10 bis 120 Minuten. Der Trockenvorgang kann an Luft, im Vakuum oder unter einem Schutzgas erfolgen, beispielsweise unter Argon oder Stickstoff.
Bei der Substratoberfläche des zu behandelnden Isolators bzw. Isolatorgrundkörpers kann es sich beispielsweise um Keramik, Glas, Emaille, Metalloxide oder Kunststoffe, d. h. organische Polymere, wie Gießharze unterschiedlicher chemischer Funktionen und Zusammensetzungen, z. B. Epoxidharz, odei Silikone, z. B. Silikonkautschuk, handeln.
Das in der eingesetzten Zubereitung vorliegende Metallsalz bewirkt in Verbindung mit der Mineralsäure die Anbindung und Kondensation des fluororganofunktionellen Silans bzw. Siloxans an den Isolator in überraschend guter, dauerhafter und somit vorteilhafter Weise.
Die vorliegende Erfindung wird durch die nachfolgenden Beispiele näher erläutert:
Beispiel 1
Als Substrate werden Gießharzplatten, glasierte sowie unglasierte Porzellanprüfkörper eingesetzt. Die verwendeten Porzellane sind bei allen Substraten identisch. Als Glasuren werden eine graue und eine braune Glasur verwendet, die sich nur in den jeweils verwendeten Farbpigmenten unterscheiden. Die graue Glasur enthält neben SiO2, Al2O3 und Flussmitteln als Farbpigmente Metalloxide des Kobalts. Die braune Glasur enthält neben SiO2, Al2O3 und Flussmitteln als Farbpigmente Metalloxide von Eisen, Chrom und Magnesium. Es werden folgende Fluoralkylsilansysteme verwendet.
Zubereitung:
5,0g DS F 8261 (Tridecafluor-1,1,2,2-Tetrahydrooctyltriethoxysilan), 5,0g H2O, 1,0 g Salzsäure, 488,4 g Ethanol und 0,6 g Zinnchlorid werden 1 h lang in einer Glasflasche gerührt.
Somit beträgt die Zusammensetzung 1,0 Gew.-% DS F 8261, 1,0 Gew.-% H2O, 0,2 Gew.-% Salzsäure, 0,12 Gew.-% SnCl2x6H2O und 97,68 Gew.-% Ethanol.
Die Lösung wird nach einer Reifezeit von 24 h eingesetzt.
Beschichtungsvorgang:
Die zuvor mit Isopropanol gereinigten und mit HCl neutralisierten sowie danach mit VE-Wasser ("voll entsalztes Wasser") gespülten Werkstücke werden 5 min in die Zubereitung eingetaucht, danach zum Ablaufen der überschüssigen Lösung aufgestellt und anschließend bei 150°C über 1 h nachbehandelt. Bei den Gießharzplatten erfolgte die Nachbehandlung bei 100 °C über 1 h.
Prüfung der Hydrophobie:
Die hydrophoben Eigenschaften werden durch eine statische Randwinkelmessung (H2O) gemäß DIN EN 828 überprüft.
Überprüfung der Wasserbeständigkeit:
Die beschichteten Prüfkörper werden für 5 h in VE-Wasser gekocht. Danach wird die Hydrophobie wiederum durch eine statische Randwinkelmessung überprüft.
Ergebnisse:
Gießharzplatte stat. Randwinkel H2O (°) Nach 5 h Kochtest stat. Randwinkel H2O (°)
behandelt 103 100
unbehandelt 98 -
Glasierter Porzellankörper stat. Randwinkel H2O (°) Nach 5 h Kochtest stat. Randwinkel H2O (°)
behandelt 92 105
unbehandelt 41 -
Unglasierter Porzellankörper stat. Randwinkel H2O (°) Nach 5 h Kochtest stat. Randwinkel H2O (°)
behandelt 120 118
unbehandelt 18 -
Vergleichsbeispiel
Vergleichende Zusammenstellung der mit ORMOCER beschichteten ("organic modified ceramics"), glasierten Porzellanprüfkörper nach 5-h-Kochwassertest:
Glasierter Porzellankörper ORMOCERE (Typ) stat. Randwinkel H2O (°) Nach 5 h Kochtest stat. Randwinkel H2O (°)
behandelt KOE 74 73
behandelt ARA-1 86 69
unbehandelt - 41 -
Beispiel 2
Prüfkörper im Langzeit-Bewitterungstest: Die Überprüfung der Randwinkel erfolgt monatlich. Die Porzellanprüfkörper werden jeden Monat vom Bewitterungsstand geholt, gereinigt und 30 Minuten lang bei 100°C getrocknet. Anschließend wird der statische Randwinkel (H2O) gemessen.
Figure 00140001
Figure 00150001
Die Ergebnisse zeigen die hervorragende Langzeitbeständigkeit der erfindungsgemäßen Beschichtungen im Bewitterungstest.
Beispiel 3
Es wird ein unbeschichteter, glasierter keramischer Langstabisolator vom Typ VKL 75 gemäß DIN 48 006 mit einer Länge von 75 cm, mit einem im Wesentlichen zylindrischen Strunk und mit 22 gleichbeabstandeten tellerförmigen Schirmrippen mit einem beschichteten, glasierten keramischen Langstabisolator vom gleichen Typ, jedoch mit 11 gleichbeabstandeten Schirmrippen verglichen.
Bei der Keramik der Isolatoren handelt es sich um ein Tonerdeporzellan vom Typ C120 gemäß DIN-EN 60 672. Porzellane oder Keramiken anderer Zusammensetzung machen dabei jedoch keinen Unterschied.
Der beschichtete Langstabisolator wurde durch Tauchen in eine Zubereitung, wie bereits in Beispiel 1 beschrieben, hergestellt.
Das elektrische Isolationsvermögen der Isolatoren wird gemäß einer Regenprüfung nach IEC 60/1 (1998), Gerätevorschrift IEC 383-1 = VDE 0446, Teil 1, Mai 1997, geprüft. Hierbei werden die Isolatoren jeweils in einem geeigneten Raum aufgehängt und mit einem Regen vorgegebener Intensität unter einem vorgegebenen Winkel beregnet. Die Überschlagsspannungen werden aus einem Oszillogramm ermittelt. Es werden jeweils fünf Überschlagsversuche durchgeführt.
Ergebnis:
Die ermittelte Überschlagspannung für den unbeschichteten Langstabisolator betrug 376 kV, die ermittelte Überschlagsspannung für den beschichteten Isolator betrug 405 kV. Dies bedeutet, dass der beschichtete Isolator trotz kleinerem Kriechweg (11 Schirmrippen) erst bei einer höheren Spannung einen Überschlag zeigte. Technisch bedeutet das Ergebnis einen Gewinn von 9,1 % an zu isolierender Spannung je mm Isolierlänge.
Beispiel 4
Es werden glasierte keramische Hochspannungsisolatoren vom Typ L50/5 gemäß DIN 48 006 mit einem Strunkdurchmesser von 60 mm und fünf gleichbeabstandeten Schirmrippen geprüft. Die Form der Anschlußkappen spielt dabei keine Rolle. Dieser Typ wird häufig als Bahnisolator eingesetzt. Die Keramik ist wiederum ein Tonerdeporzellan vom Typ C120.
Es wird ein beschichteter Hochspannungsisolator und ein unbeschichteter Hochspannungsisolator einer Salznebelprüfung in Anlehnung an IEC 507 (1991) und VDE 0448, Teil 1, 1994, unterzogen. Die Beschichtung wurde in gleicher Weise wie in Beispiel 1 angegeben aufgebracht. Die Ergebnisse werden verglichen.
Zur Vorbereitung werden die Hochspannungsisolatoren mit Trinatriumphosphat gewaschen. Anschließend werden die Hochspannungsisolatoren gemäß IEC 507 (1991) vorkonditioniert. Die vorkonditionierten Hochspannungsisolatoren werden einer Stehprüfung bei jeweils vorgegebener Salzmassenkonzentration in Luft unterzogen. Jede Prüfung dauert mindestens eine Stunde, vorausgesetzt, es findet kein Überschlag statt. Es wird bei einer Prüfspannung von 15 kV (Wechselspannung) jeweils die maximale Stehsalzmassenkonzentration gemäß IEC 507 (1991), Seite 19, ermittelt, d. h. die höchste Stehsalzmassenkonzentration, bei welcher der untersuchte Hochspannungsisolator bei drei Versuchen maximal einen Überschlag innerhalb der einstündigen Versuchsdauer zeigt.
Ergebnis:
Die ermittelte Stehsalzmassenkonzentration liegt bei dem beschichteten Hochspannungsisolator um eine Salzstufe gemäß IEC 507 (1991) höher als bei dem unbeschichteten Hochspannungsisolator.
Beispiel 5
Die gemäß Beispiel 3 ausgebildeten Isolatoren werden einer Salznebelprüfung gemäß Beispiel 4 unterzogen. Es wird also ein 11-schirmiger, beschichteter Langstabisolator mit einem 22-schirmigen, unbeschichteten Langstabisolator verglichen.
Ergebnis:
Der 11-schirmige, beschichtete Langstabisolator zeigt denselben Stehsalzgehalt wie der 22-schirmige, unbeschichtete Langstabisolator. Dies bedeutet für die Praxis, dass durch die Beschichtung ein Kriechweg von mindestens 30 % eingespart werden kann.
Legende zu den Figuren 1 bis 3:
Die hier vorliegenden Abbildungen zeigen beispielhaft, aber nicht ausschließlich bevorzugte Ausführungsformen erfindungsgemäßer Isolatoren.
In Figur 1 ist ein als Hochspannungsisolator ausgebildeter Isolator 1 in teilweise aufgebrochener Darstellung gezeigt. Der Isolator 1 weist einen Isolatorgrundkörper 2 aus einer Keramik K sowie Anschlusskappen 4 zum Anschluss und/oder zur Führung von Strom führenden Leitungen auf. Der Grundkörper 2 ist als ein im Wesentlichen zylindrischer Strunk 5 mit einer Anzahl von darauf aufgebrachten tellerförmigen Rippen 6 ausgebildet. Die Keramik K ist, hier nicht näher dargestellt, mit einer Glasur oberflächlich überzogen. Auf der Oberfläche der glasierten Keramik K des Isolatorgrundkörpers 2 ist eine Wasser und Öl abweisende erfindungsgemäße Beschichtung B durch Tauchen des Isolatorgrundkörpers 2 in eine Zubereitung, wie in Beispiel 1 beschrieben, aufgebracht.
In Figur 2 ist ebenfalls in teilweise aufgebrochener Darstellung ein erfindungsgemäß beschichteter, als Hochspannungsisolator ausgebildeter Isolator 7 gezeigt. Gegenüber dem Isolator 1 gemäß Figur 1 ist die Anzahl der Rippen 6 des Isolatorgrundkörpers 2 aus Keramik K reduziert. Die Länge der Isolatoren 7 und 1 ist hierbei identisch. Es sind jedoch lediglich zwei Rippen 6 vorhanden.
In Figur 3 ist ein als Hochspannungsisolator ausgebildeter Isolator 10 gezeigt, wobei gegenüber den Isolatoren 1 und 7 gemäß Figur 1 bzw. Figur 2 der Isolatorgrundkörper 2 aus Keramik K auf den Strunk 5 reduziert ist. Schirme zur Erhöhung der Kriechstrecke eines Ableitstroms zwischen den beiden Anschlusskappen 4 sind hier nicht vorgesehen. Da horizontale Flächen fehlen, ist der Isolator 10 zusätzlich gegen Staubablagerungen geschützt. Gegenüber den Isolatoren 1 und 7 ist der Isolator 10 wesentlich günstiger herzustellen, da das keramische Material K der Schirme 6 eingespart wird. Die Herstellungskosten für den Isolator 10 sind zudem wesentlich niedriger als für Isolatoren 1 und 7, da die aufwendige Formgebung für die Schirme 6 entfällt. Das teuere Abdrehen der Schirme 6 aus dem noch ungebrannten, weichen Formkörper 2 entfällt.

Claims (13)

  1. Oberflächenmodifizierter Isolator (1, 7, 10) erhältlich durch Beschichten eines Isolatorgrundkörpers (2) mit einer Zubereitung, die mindestens ein fluororganofunktionelles Silan und/oder Siloxan, mindestens eine Mineralsäure und mindestens ein Metallsalz von Aluminium(III), Zinn(II), Zinn(IV) Eisen(III) oder Titan(III) enthält.
  2. Isolator (1, 7, 10) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Zubereitung eine Mineralsäure aus der Reihe Chlorwasserstoff, Salpetersäure, Phosphorsäure oder Schwefelsäure enthält.
  3. Isolator (1, 7, 10) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die Zubereitung ein Löse- oder Dispergiermittel oder eine Mischung davon enthält.
  4. Isolator (1, 7, 10) nach mindestens einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die Zubereitung mindestens ein Metallsalz aus der Reihe Chlorid, Nitrat, Sulfat, Hydrogensulfat, Phosphat, Hydrogenphosphat oder Dihydrogenphosphat enthält.
  5. Isolator (1, 7, 10) nach mindestens einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass die Zubereitung einen Gehalt an Metallsalz von 0,01 bis 10 Gew.- % aufweist.
  6. Isolator (1, 7, 10) nach mindestens einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass die Zubereitung einen Gehalt an Mineralsäure von 0,001 bis 5 Gew.-% aufweist.
  7. Isolator (1, 7, 10) nach mindestens einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass die Zubereitung Organosilane und/oder Organosiloxane enthält, die neben Si-gebundenen hyrolysierbaren Gruppen und/oder Hydroxygruppen und/oder gegebenenfalls nicht hydrolysierbaren Gruppen als fluororganofunktionelle Gruppe mindestens eine der Formel CF3(CF2)m(CH2)n- mit m = 0 bis 18 und n = 0 oder 2 tragen.
  8. Isolator (1, 7, 10) nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    dass die Beschichtung (B) 0,1 bis 1000 nm dick ist.
  9. Isolator (1, 7, 10) nach mindestens einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    dass der Isolatorgrundkörper (2) aus Keramik (K), Glas, Emaille, Metalloxid oder Kunststoff besteht.
  10. Verfahren zur Modifizierung der Oberfläche eines Isolators (1, 7, 10),
    dadurch gekennzeichnet,
    dass man eine Zubereitung, die mindestens ein fluororganofunktionelles Silan und/oder Siloxan, mindestens eine Mineralsäure und mindestens ein Metallsalz von Aluminium(III), Zinn(II) Zinn(IV) Eisen(III) oder Titan(III) enthält, auf einen Isolatorgrundkörper (2) des Isolators (1, 7, 10) aufbringt und gegebenenfalls thermisch nachbehandelt.
  11. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet,
    dass man die Zubereitung durch Tauchen, Sprühen, Anstreichen oder Polieren auf den Isolatorgrundkörper (2) aufbringt.
  12. Verfahren nach Anspruch 10 oder 11,
    dadurch gekennzeichnet,
    dass nach Aufbringen der Zubereitung eine Wärmebehandlung folgt.
  13. Verwendung einer Zubereitung, die mindestens ein fluororganofunktionelles Silan und/oder Siloxan, mindestens eine Mineralsäure und mindestens ein Metallsalz von Aluminium(III), Zinn(II), Zinn(IV) Eisen(III) oder Titan(III) enthält, für die Beschichtung (B) eines Isolators (1, 7, 10).
EP99125571A 1999-02-03 1999-12-21 Oberflächenmodifizierter Isolator und Verfahren zur Modifizierung der Oberfläche eines Isolators Expired - Lifetime EP1026704B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19904133A DE19904133B4 (de) 1999-02-03 1999-02-03 Oberflächenmodifizierter Isolator und Verfahren zur Modifizierung der Oberfläche eines Isolators
DE19904133 1999-02-03

Publications (3)

Publication Number Publication Date
EP1026704A2 true EP1026704A2 (de) 2000-08-09
EP1026704A3 EP1026704A3 (de) 2001-10-10
EP1026704B1 EP1026704B1 (de) 2005-09-07

Family

ID=7896166

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99125571A Expired - Lifetime EP1026704B1 (de) 1999-02-03 1999-12-21 Oberflächenmodifizierter Isolator und Verfahren zur Modifizierung der Oberfläche eines Isolators

Country Status (7)

Country Link
US (1) US6426150B1 (de)
EP (1) EP1026704B1 (de)
JP (1) JP2000222959A (de)
AT (1) ATE304210T1 (de)
BR (1) BR0000247A (de)
DE (2) DE19904133B4 (de)
NO (1) NO20000561L (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016180396A1 (de) * 2015-05-12 2016-11-17 Iph Institut "Prüffeld Für Elektrische" Gmbh Hochspannungskabelgarnitur und verfahren zum herstellen einer hochspannungskabelgarnitur

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320779A1 (de) 2003-05-09 2004-11-18 Degussa Ag Korrosionsschutz auf Metallen
DE10320765A1 (de) * 2003-05-09 2004-11-25 Degussa Ag Mittel zur Beschichtung von Metallen zum Schutz vor Korrosion
DE10336544A1 (de) * 2003-08-05 2005-02-24 Degussa Ag Zweikomponentenbeschichtungssystem für die Ausstattung glatter Oberflächen mit "Easy-to-clean" - Eigenschaften
DE10361893A1 (de) * 2003-12-19 2005-07-21 Degussa Ag Spezielles Verfahren zur Herstellung von Fluoralkylgruppen tragenden Siliciumverbindungen durch Hydrosilylierung
WO2005063413A1 (en) * 2003-12-19 2005-07-14 Omg Americas, Inc. Surface modifying catalyst
DE102004025767A1 (de) * 2004-05-26 2005-12-22 Degussa Ag Stabile Lösungen von N-substituierten Aminopolysiloxanen, deren Herstellung und Verwendung
DE102004037043A1 (de) * 2004-07-29 2006-03-23 Degussa Ag Blockkondensate organofunktioneller Siloxane, deren Herstellung, Verwendung sowie deren Eigenschaften
US20070202339A1 (en) * 2004-08-09 2007-08-30 Nippon Steel Chemical Co., Ltd. Epoxy Resin Composition And Epoxy-Polysiloxane Coating Composition
DE102005060401A1 (de) * 2005-12-15 2007-06-21 Degussa Gmbh Lagerstabile Beschichtungszusammensetzung für eine abriebfeste und witterungsbeständige Ausstattung glatter anorganischer Oberflächen mit "Easy-to-clean"-Eigenschaften
DE102005060402A1 (de) * 2005-12-15 2007-06-21 Degussa Gmbh Lagerstabile Beschichtungszusammensetzung für eine abriebfeste und witterungsbeständige Ausstattung glatter anorganischer Oberflächen mit "Easy-to-clean"Eigenschaften
SE529631C2 (sv) * 2006-12-05 2007-10-09 Abb Research Ltd Silikongummi med förbättrad hydrofob stabilitet
DE102007030672B4 (de) * 2007-07-02 2017-05-24 Hermes Holding Gmbh Verfahren zum Konservieren poröser Stoffe
CN101999151A (zh) * 2008-02-12 2011-03-30 Abb研究有限公司 表面改性的电绝缘系统
WO2012041661A1 (en) 2010-09-27 2012-04-05 Unilever Nv A composition and method for treating substrates
US9278374B2 (en) * 2012-06-08 2016-03-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Modified surface having low adhesion properties to mitigate insect residue adhesion
CN104276765B (zh) * 2013-07-08 2016-11-02 中国科学院重庆绿色智能技术研究院 超疏水透明玻璃的制备方法
WO2016091274A1 (en) * 2014-12-12 2016-06-16 Abb Technology Ag Apparatus for the generation, distribution and/or usage of electrical energy and component for such an apparatus
CA3015272A1 (en) 2016-03-16 2017-09-21 Construction Research & Technology Gmbh Surface applied corrosion inhibitor
DE102016210609A1 (de) * 2016-06-15 2017-12-21 Robert Bosch Gmbh Verfahren zum Beschichten eines Substrats, Ventil und Brennkraftmaschine mit einer Wassereinspritzvorrichtung
CN114999746B (zh) * 2022-07-20 2024-10-25 江西省萍乡市玻瓷高压绝缘子有限公司 一种防冰高压瓷绝缘子

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19904132A1 (de) * 1999-02-03 2000-08-10 Degussa Zusammensetzung fluororganofunktioneller Silane und/oder Siloxane, Verfahren zu ihrer Herstellung und ihre Verwendung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1814498A1 (de) * 1968-12-13 1970-06-25 Ruhrtal Elek Zitaetsgesellscha Oberflaechenbehandelte Isolatoren
GB1590723A (en) * 1976-08-03 1981-06-10 Raychem Ltd Hv insulation materials
JPH0719951B2 (ja) * 1988-09-08 1995-03-06 住友ベークライト株式会社 絶縁層形成用ペースト組成物
JPH02210710A (ja) * 1989-02-10 1990-08-22 Junkosha Co Ltd 耐湿性誘電体材料
CA2059733C (en) * 1991-01-23 1999-10-05 Kazufumi Ogawa Water- and oil-repelling film and method of manufacturing the same
JPH05319867A (ja) * 1992-05-25 1993-12-03 Nissan Motor Co Ltd ガラス基板の撥水処理剤およびその撥水処理法
US5459198A (en) * 1994-07-29 1995-10-17 E. I. Du Pont De Nemours And Company Fluoroinfused composites, articles of manufacture formed therefrom, and processes for the preparation thereof
US6156389A (en) * 1997-02-03 2000-12-05 Cytonix Corporation Hydrophobic coating compositions, articles coated with said compositions, and processes for manufacturing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19904132A1 (de) * 1999-02-03 2000-08-10 Degussa Zusammensetzung fluororganofunktioneller Silane und/oder Siloxane, Verfahren zu ihrer Herstellung und ihre Verwendung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 199016 Derwent Publications Ltd., London, GB; Class A21, AN 1990-120909 XP002157181 & JP 02 072700 A (SUMITOMO BAKELITE CO), 12. März 1990 (1990-03-12) *
DATABASE WPI Section Ch, Week 199402 Derwent Publications Ltd., London, GB; Class E11, AN 1994-012029 XP002157180 & JP 05 319867 A (CENTRAL GLASS CO LTD), 3. Dezember 1993 (1993-12-03) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016180396A1 (de) * 2015-05-12 2016-11-17 Iph Institut "Prüffeld Für Elektrische" Gmbh Hochspannungskabelgarnitur und verfahren zum herstellen einer hochspannungskabelgarnitur
CN107615608A (zh) * 2015-05-12 2018-01-19 Iph高能电工测试研究所有限公司 高压电缆附件以及生产高压电缆附件的方法
RU2681207C1 (ru) * 2015-05-12 2019-03-05 Ипх Институт "Прюффельд Фюр Электрише Хохляйстунгстехник" Гмбх Арматура для высоковольтного кабеля и способ изготовления арматуры для высоковольтного кабеля
US10476251B2 (en) 2015-05-12 2019-11-12 IPH Institut “Prueffeld fuer elektrische Hochleistungstechnik” GmbH Set of high-voltage cables and method for producing a set of high-voltage cables
CN107615608B (zh) * 2015-05-12 2020-11-27 Iph高能电工测试研究所有限公司 高压电缆附件以及生产高压电缆附件的方法

Also Published As

Publication number Publication date
EP1026704B1 (de) 2005-09-07
DE19904133A1 (de) 2000-09-28
DE19904133B4 (de) 2007-02-08
US6426150B1 (en) 2002-07-30
NO20000561D0 (no) 2000-02-03
EP1026704A3 (de) 2001-10-10
DE59912524D1 (de) 2005-10-13
NO20000561L (no) 2000-08-04
BR0000247A (pt) 2000-09-12
ATE304210T1 (de) 2005-09-15
JP2000222959A (ja) 2000-08-11

Similar Documents

Publication Publication Date Title
EP1026704B1 (de) Oberflächenmodifizierter Isolator und Verfahren zur Modifizierung der Oberfläche eines Isolators
EP1033395B1 (de) Zusammensetzung fluororganofunktioneller Silane und/oder Siloxane, Verfahren zu ihrer Herstellung und ihre Verwendung
EP3110566B1 (de) Verfahren zum beschichten von metallischen oberflächen von substraten und nach diesem verfahren beschichteten gegenstände
DE69710678T2 (de) Wasserabweisende Glasscheibe und Verfahren zu ihrer Herstellung
DE69513916T2 (de) Oberflächenbehandlungszusammensetzung
DE10320765A1 (de) Mittel zur Beschichtung von Metallen zum Schutz vor Korrosion
EP3153557B1 (de) Antikorrosive beschichtungszusammensetzung
DE112016001303T5 (de) Wasserabweisendes Nanobeschichtungsmittel mit antimikrobieller Wirkung für die Vakuumabscheidung sowie Beschichtungsverfahren unter Verwendung desselben
EP3482834B1 (de) Korrosionsschutzbeschichtung
DE102010022265A1 (de) Hydrophobe Beschichtung und Anwendung dazu
DE102007052764A1 (de) Hydrophobe und kratzfeste Lacke für metallische Oberflächen und bremsstaubabweisende Radbeschichtungen
EP1943319A1 (de) Herstellung von beschichteten substraten
DE19835916A1 (de) Isolator
DE19828231A1 (de) Verfahren zur Abscheidung optischer Schichten
EP2742513B1 (de) Beschichtung mit hoher koronabeständigkeit, sowie herstellungsverfahren dazu
DE112016001514T5 (de) Oberflächenbehandlungsmittel für Metallmaterial und Metallmaterial mit Oberflächenbehandlungsbeschichtung
KR102632654B1 (ko) 초발수성 애자의 제조 방법 및 이로부터 제조된 초발수성 애자
DE102012011597B4 (de) Hybridsiloxan-basierte Sol-Gel-Zusammensetzung, Verfahren zu deren Herstellung und deren Verwendung
WO2021028440A1 (de) Verminderung der korrosion von silberdrähten auf einem glassubstrat
DE102014008310B4 (de) Beschichtungszusammensetzung für die Herstellung einer staubabweisenden Beschichtung, Substrat mit Beschichtung, insbesondere Glas- oder Spiegeloberflächen, Herstellung der Beschichtungszusammensetzung und des beschichteten Substrats und Verwendung
DE10210849B4 (de) Verwendung eines Stoffes und ein Verfahren zur Beschichtung von Oberflächen von Körpern sowie Seltene-Erden-Magnetkörper mit einer entsprechenden Beschichtung
EP0949306B1 (de) Beschichtungszusammensetzung zur Herstellung von elektrisch leitfähigen Schichten
DE102007058712A1 (de) Modulares Sol-Gel-System und Verfahren zum Einstellen der Eigenschaften des Sol-Gel-Systems
DE2845540C2 (de) Nichtentflammbares Überzugsmittel und seine Verwendung
DE102005047046B4 (de) Verfahren zur Verhinderung der Bildung von Aminen oder anderer organischer Verbindungen auf Oberflächen von stickstoffisolierten Schaltgeräten und zugehöriges Schaltgerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

Owner name: DEGUSSA AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 01B 19/04 A, 7C 07F 7/08 B, 7C 07F 7/18 B, 7C 09C 3/12 B

17P Request for examination filed

Effective date: 20020319

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050907

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050907

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050907

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050907

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050907

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 59912524

Country of ref document: DE

Date of ref document: 20051013

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051207

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051207

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051207

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DEGUSSA AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: DEGUSSA AG

Effective date: 20051207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060207

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050907

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20060608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061020

EN Fr: translation not filed
BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20051231

Owner name: DEGUSSA A.G.

Effective date: 20051231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081219

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701