[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1023526A1 - Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage - Google Patents

Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage

Info

Publication number
EP1023526A1
EP1023526A1 EP98958189A EP98958189A EP1023526A1 EP 1023526 A1 EP1023526 A1 EP 1023526A1 EP 98958189 A EP98958189 A EP 98958189A EP 98958189 A EP98958189 A EP 98958189A EP 1023526 A1 EP1023526 A1 EP 1023526A1
Authority
EP
European Patent Office
Prior art keywords
steam
gas
steam turbine
turbine
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98958189A
Other languages
English (en)
French (fr)
Other versions
EP1023526B1 (de
Inventor
Martin Krill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1023526A1 publication Critical patent/EP1023526A1/de
Application granted granted Critical
Publication of EP1023526B1 publication Critical patent/EP1023526B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle

Definitions

  • the invention relates to a gas and steam turbine system with a waste gas steam generator connected downstream of a gas turbine, the heating surfaces of which are connected to the water / steam cycle of a steam turbine. It also relates to a method for operating such a gas and steam turbine system.
  • the heat contained in the expanded working fluid (flue gas) from the gas turbine is used to generate steam for the steam turbine.
  • the heat transfer takes place in a heat recovery steam generator connected downstream of the gas turbine, in which heating surfaces in the form of tubes or tube bundles are arranged. These in turn are connected in the water-steam cycle of the steam turbine.
  • the water-steam cycle usually comprises several, for example two, pressure stages, each pressure stage having a preheating and an evaporator heating surface.
  • the steam generated in the waste heat steam generator is fed to the steam turbine, where it relaxes while performing work.
  • the steam turbine can include a number of pressure stages, the number and design of which are adapted to the design of the heat recovery steam generator.
  • the steam released in the steam turbine is usually fed to a condenser and condenses there.
  • the condensate formed during the condensation of the steam is fed back into the waste heat steam generator as feed water, so that a closed water-steam cycle is created.
  • the condenser of such a gas and steam turbine plant is usually m of the type of a heat exchanger with a Cooling medium can be applied, which extracts heat from the steam for condensation. Water is usually provided as the cooling medium; alternatively, the condenser can also be designed as an air condenser acted upon with air as cooling medium.
  • the invention has for its object to provide a gas and steam turbine system of the type mentioned above, which has a particularly high system efficiency even in different operating conditions.
  • a method for operating such a gas and steam turbine plant is to be specified, with which a particularly high plant efficiency can be achieved.
  • the invention is based on the consideration that for a particularly high level of efficiency in the system process heat m should be used to the greatest extent possible.
  • the heat extracted from the steam during its condensation should - at least in part - be returned to the system process. Due to the temperature level of the steam during its condensation of approximately 60 ° C., the transfer of the heat extracted in this way is particularly favorable for the intake air to be supplied to the gas turbine.
  • the preheating of the intake air of the gas turbine By preheating the intake air of the gas turbine, the total mass flow of fuel-air mixture that can be supplied to the gas turbine per unit of time is reduced, so that the maximum output that can be achieved by the gas turbine is lower than if the intake air is not preheated. As it turned out, however, the preheating of the intake air decreases by supplying the condensation warm the fuel consumption stronger than the maximum achievable power output, so that the overall efficiency increases.
  • the condenser can be supplied with bleed steam from the steam turbine in the manner of an additional condenser.
  • the capacitor can be used in a particularly favorable manner to provide a fast power reserve, which may also be required, for example, in a shorter reaction time to support the network frequency in the power network fed by the gas and steam turbine system.
  • the steam supply to the condenser is interrupted, so that the entire steam flow is conducted through the main condenser. This prevents preheating of the intake air for the gas turbine, which leads to a rapid increase in the maximum power supplied by the gas turbine.
  • the gas turbine is usually associated with a compressor, to which the intake air for the gas turbine can be supplied via an intake air line.
  • the condenser is directly connected to this intake air line on the coolant side.
  • the condenser is expediently designed as an air condenser, losses due to conversion processes being kept particularly low due to the one-stage heat transfer from the condensing steam to the intake air.
  • the condenser on the coolant side is connected via an intermediate cooling circuit to a heat exchanger which in turn is connected on the secondary side to the intake air line upstream of the gas turbine.
  • a heat exchanger which in turn is connected on the secondary side to the intake air line upstream of the gas turbine.
  • the operating parameters of the steam flow conducted through the condenser can be kept approximately constant in a particularly simple manner, so that such a system can be operated particularly reliably.
  • the intake air can also be preheated to the maximum temperature that can be reached for the respective operating condition, even for the operating state of the system.
  • a condensate preheater is expediently connected downstream of the main condenser, condensate flowing out of the condenser, as seen in the flow direction of the condensate, after the condensate preweater, the water-steam circuit of the steam turbine being feedable.
  • the residual heat remaining in the condensate after the condensation of the steam can thus be introduced into the water-steam cycle in a particularly advantageous manner.
  • the above-mentioned object is achieved by preheating the intake air to be supplied to the gas turbine via heat removed during the condensation of steam flowing out of the steam turbine.
  • the condensate obtained in the condensation is advantageously mixed with preheated condensate conducted in the water-steam circuit of the steam turbine.
  • the advantages achieved by the invention are, in particular, that the transmission of the condensate tion of the steam withdrawn heat on the intake air for the gas turbine this heat is made usable for the plant process.
  • Such a gas and steam turbine system thus has a particularly high system efficiency. Due to the comparatively slightly reduced maximum power output of the gas turbine, a favorable efficiency of the gas and steam turbine can be achieved particularly in the partial load range of the gas turbine.
  • such a gas and steam turbine system also has comparatively lower pollutant emissions.
  • the so-called switchover point is relevant for the pollutant emissions of a gas and steam turbine plant, which indicates the output at which the gas turbine is to be switched from diffusion operation to premix operation.
  • the gas and steam turbine system with preheated intake air for the gas turbine has a comparatively lower switchover point, so that it can be operated even in the case of comparatively low load conditions in the premixing mode which is more favorable for low pollutant emissions.
  • Figure 1 shows schematically a gas and steam turbine system
  • Figure 2 schematically shows an alternative embodiment of a gas and steam turbine system.
  • the gas and steam turbine system 1 and 1 'shown schematically in each of FIGS. 1, 2 comprises a gas turbine system 1 a and a steam turbine system 1 b.
  • the gas turbine Läge la includes a gas turbine 2 with a coupled air compressor 4.
  • the air compressor 4 is connected on the inlet side to an intake air line 5.
  • the gas turbine 2 is preceded by a combustion chamber 6, which is connected to a fresh air line 8 of the air compressor 4.
  • a fuel line 10 opens into the combustion chamber 6 of the gas turbine 2.
  • the gas turbine 2 and the air compressor 4 as well as a generator 12 sit on a common shaft 14.
  • the steam turbine system 1b comprises a steam turbine 20 with a coupled generator 22 and, in a water-steam circuit 24, a main condenser 26 connected downstream of the steam turbine 20 and a heat recovery steam generator 30.
  • the steam turbine 20 consists of a first pressure stage or a high-pressure part 20a and a second pressure stage or one
  • An exhaust pipe 34 is connected to an inlet 30a of the heat recovery steam generator 30 for supplying working medium AM 1 or flue gas relaxed in the gas turbine 2 to the heat recovery steam generator 30.
  • the relaxed working medium AM 'from the gas turbine 2 leaves the heat recovery steam generator 30 via its outlet 30b in the direction of a chimney (not shown).
  • the waste heat steam generator 30 comprises a high-pressure preheater or economizer 36, which is connected to a high-pressure drum 42 via a line 40 which can be shut off with a valve 38.
  • the high-pressure drum 42 is connected to a high-pressure evaporator 44 arranged in the waste heat steam generator 30 to form a water-steam cycle 46.
  • the high-pressure drum 42 is connected to a high-pressure superheat arranged in the waste heat steam generator 30.
  • zer 48 connected, which is connected on the output side to the steam outlet 49 of the high pressure part 20a of the steam turbine 20.
  • the steam outlet 50 of the high pressure part 20a of the steam turbine 20 is connected via a steam line 52 (“cold CLOSE”) to an intermediate heater 54, the outlet 56 of which is connected to the steam 60 via a steam line 58 of the medium pressure part 20b of the steam turbine 20.
  • Whose steam outlet 62 is connected via an overflow line 64 to the steam 66 of the low pressure part 20c of the steam turbine 20.
  • the steam outlet 68 of the low pressure part 20c of the steam turbine 20 is connected to the main condenser 26 via a steam line 70. This is connected to the economizer 36 via a feed water line 72, which is connected to a feed water pump 74 and a condensate preheater 76, so that a closed water-steam circuit 24 is formed.
  • heating surfaces are each assigned to a medium or a low-pressure stage of the water-steam circuit 24. These heating surfaces are connected in a suitable manner to the steam let 60 of the medium pressure part 20b of the steam turbine 20 or to the steam outlet 66 of the low pressure part 20c of the steam turbine 20.
  • the gas and steam turbine system 1, 1 ' is designed to achieve a particularly high degree of efficiency.
  • intake air A to be supplied to the steam turbine 20, connected downstream on the steam side and designed as an additional condenser, can be cooled above the gas turbine system 1 a.
  • the condenser 80 is connected downstream of the steam turbine 20 via a bleed steam line 84 which can be shut off with a valve 82.
  • the condenser 80 is connected to the feed water line 72 via a condenser line 86, so that a Water-steam side parallel connection of the capacitor 80 to the main capacitor 26 associated with the steam turbine 20 results.
  • the condensate line 86 is connected to the feed water line 72 at a feed point 88.
  • the feed point 88 is arranged behind the condensate preheater 76, viewed in the flow direction of the condenser K flowing out of the main condenser 26.
  • the steam quantity ratio between the partial steam flow supplied to the main condenser 26 and the partial steam flow supplied to the condenser 80 can be set via the valve 82. By varying this steam quantity ratio, the intake air A can be preheated to the maximum achievable temperature for the current output of the gas and steam turbine system 1, 1 '.
  • the gas and steam turbine system 1 according to FIG. 1 is designed for a one-stage heat exchange between the partial steam flow to be condensed in the condenser 80 and the intake air A to be supplied to the gas turbine system la.
  • an air condenser is provided as the condenser 80, which can be acted upon with cooling air as the cooling medium.
  • the condenser 80 is connected directly into the intake air line 5 on the coolant side.
  • the losses resulting from the condensation of heat in the condenser 80 to the intake air A as a result of conversion processes are kept particularly low.
  • a two-stage heat transfer from the steam to be condensed in the condenser 80 to the intake air A is provided.
  • a separate heat exchanger 90 is connected in the intake air line 5 in the gas and steam turbine system 1 'according to FIG. 2.
  • the separate heat exchanger 90 is connected on the primary side to an intermediate circuit 92, to which the condenser 80 is connected on the coolant side. Guided in the intermediate circuit 92
  • Heat transfer medium W can be circulated by means of a circulation pump 94 connected in the intermediate circuit 92.
  • a partial steam flow taken from the low-pressure part 20c of the steam turbine 20 is conducted as bleed steam through the condenser 80.
  • This partial steam flow is condensed in the condenser 80, the steam being condensed heat extracted from its condensation is transferred to the intake air A for the gas turbine system la.
  • the condensate obtained in the condensation of the steam in the condenser 80 is mixed with the preheated condensate K flowing out of the main condenser 26.
  • the gas and steam turbine system 1, 1 'thus has a particularly high system efficiency.
  • the preheating of the intake air A for the gas turbine system la also has the effect that the total mass flow of the working medium AM which can be supplied to the gas turbine 2 is lower than if the intake air A is not preheated.
  • the operation of the gas and steam turbine system 1, 1 'with preheating of the intake air A by condensation of bleed steam in the condenser 80 is therefore particularly suitable for the part-load range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Eine Gas- und Dampfturbinenanlage (1, 1') mit einem einer Gasturbine (6) rauchgasseitig nachgeschalteten Abhitzedampferzeuger (30), dessen Heizflächen in den Wasser-Dampf-Kreislauf (24) einer Dampfturbine (20) geschaltet sind, soll für einen besonders hohen Anlagenwirkungsgrad ausgelegt sein. Dazu ist erfindungsgemäss ein der Dampfturbine (20) dampfseitig nachgeschalteter Kondensator (80) über der Gasturbine (2) zuzuführende Ansaugluft (A) kühlbar.

Description

Beschreibung
Gas- und Dampfturbmenanlage und Verfahren zum Betreiben einer derartigen Anlage
Die Erfindung bezieht sich auf eine Gas- und Dampfturbmenanlage mit einem einer Gasturbine rauchgasseitig nachgeschalteten Abhitzedampferzeuger, dessen Heizflachen m den Wasser- Dampf-Kreislauf einer Dampfturbine geschaltet sind. Sie be- trifft weiter ein Verfahren zum Betreiben einer derartigen Gas- und Dampfturbmenanlage .
Bei einer Gas- und Dampfturbmenanlage wird die im entspannten Arbeitsmittel (Rauchgas) aus der Gasturbine enthaltene Warme zur Erzeugung von Dampf für die Dampfturbine genutzt. Die Wärmeübertragung erfolgt in einem der Gasturbine rauchgasseitig nachgeschalteten Abhitzedampferzeuger, in dem Heizflächen Form von Rohren oder Rohrbundeln angeordnet sind. Diese wiederum sind m den Wasser-Dampf-Kreislauf der Dampf- turbine geschaltet. Der Wasser-Dampf-Kreislauf umfaßt üblicherweise mehrere, beispielsweise zwei, Druckstufen, wobei jede Druckstufe eine Vorwarm- und eine Verdampferheizflache aufweist .
Der im Abhitzedampferzeuger erzeugte Dampf wird der Dampfturbine zugeführt, wo er sich arbeitsleistend entspannt. Die Dampfturbine kann dabei eine Anzahl von Druckstufen umfassen, die ihrer Zahl und Auslegung an die Auslegung des Abhitzedampferzeugers angepaßt sind. Der in der Dampfturbine ent- spannte Dampf wird üblicherweise einem Kondensator zugeführt und kondensiert dort. Das bei der Kondensation des Dampfes entstehende Kondensat wird dem Abhitzedampferzeuger als Speisewasser erneut zugeführt, so daß ein geschlossener Wasser- Dampf-Kreislauf entsteht.
Der Kondensator einer derartigen Gas- und Dampfturbmenanlage ist üblicherweise m der Art eines Wärmetauschers mit einem Kuhlmedium beaufschlagbar, das dem Dampf zur Kondensation Warme entzieht. Als Kuhlmedium ist dabei üblicherweise Wasser vorgesehen; alternativ kann der Kondensator aber auch als em m t Luft als Kuhlmedium beaufschlagter Luftkondensator ausge- bildet sein.
Der Erfindung liegt die Aufgabe zugrunde, eine Gas- und Dampfturbmenanlage der obengenannten Art anzugeben, die auch bei verschiedenen Betπebszustanden einen besonders hohen An- lagenwirkungsgrad aufweist. Zudem soll em Verfahren zum Betreiben einer derartigen Gas- und Dampfturbmenanlage angegeben werden, mit dem e besonders hoher Anlagenwirkungsgrad erreichbar ist.
Diese Aufgabe wird für eine Gas- und Dampfturbmenanlage der obengenannten Art erf dungsgemaß gelost, indem einem der Dampfturbine zugeordneten Hauptkondensator wasser-dampfseitig em weiterer Kondensator parallel geschaltet ist, der über der Gasturbine zuzuführende Ansaugluft kuhlbar ist.
Die Erfindung geht von der Überlegung aus, daß für einen besonders hohen Anlagenwirkungsgrad im Anlagenprozeß anfallende Warme m größtmöglichen Umfang nutzbar gemacht werden sollte. Dabei sollte auch die dem Dampf bei seiner Kondensation ent- zogene Warme - zumindest teilweise - den Anlagenprozeß ruckgefuhrt werden. Aufgrund des Temperaturniveaus des Dampfes bei seiner Kondensation von etwa 60 °C ist die Überführung der dabei entzogenen Warme die der Gasturbine zuzuführende Ansaugluft besonders gunstig.
Durch die Vorwarmung der Ansaugluft der Gasturbine verringert sich der der Gasturbine insgesamt pro Zeiteinheit zufuhrbare Gesamtmassenstrom an Brennstoff-Luft-Gemisch, so daß die durch die Gasturbine maximal erreichbare Leistungsabgabe ge- rmger ist als beim Verzicht auf die Vorwarmung der Ansaugluft. Wie sich allerdings herausgestellt hat, sinkt bei der Vorwarmung der Ansaugluft durch Zufuhrung der Kondensations- warme der Brennstoffverbrauch starker als die maximal erreichbare Leistungsabgabe, so daß der Gesamtwirkungsgrad steigt .
Der Kondensator kann dabei der Art eines Zusatzkondensators mit Anzapfdampf aus der Dampfturbine beaufschlagt sein. In einer derartigen Anordnung ist der Kondensator auf besonders gunstige Weise zur Bereitstellung einer schnellen Leistungsreserve nutzbar, die beispielsweise auch m kürzerer Reaktionszeit zur Stutzung der Netzfrequenz im von der Gas- und Dampfturbmenanlage bespeisten Stromnetz erforderlich sein kann. Zur Aktivierung der Leistungsreserve wird dabei die Dampfzufuhr zum Kondensator unterbrochen, so daß der gesamte Dampfstrom über αen Hauptkondensator gefuhrt wird. So- mit unterbleibt die Vorwarmung der Ansaugluft für die Gasturbine, was zu einem rascnen Anstieg der von der Gasturbine gelieferten Maxi alleistung fuhrt.
Üblicherweise ist der Gasturbine em Verdichter zugeordnet, dem die Ansaugluft für die Gasturbine über eine Ansaugluft- leitung zufuhrbar ist. In vorteilhafter Weiterbildung ist der Kondensator kuhlmittelseitig direkt diese Ansaugluftlei- tung geschaltet. Bei einer derartigen Ausgestaltung ist der Kondensator zweckmaßigerwe se als Luftkondensator ausgebil- det, wobei aufgrund der einstufigen Wärmeübertragung vom kondensierenden Dampf auf die Ansaugluft Verluste infolge von Umwandlungsprozessen besonders gering gehalten sind.
In alternativer vorteilhafter Weiterbildung ist der Kondensa- tor kuhlmittelseitig über einen Zwischenkuhlkreis an einen Wärmetauscher angeschlossen, der seinerseits sekundarseitig m die der Gasturbine vorgeschaltete Ansaugluftleitung geschaltet ist. Bei einer derartigen Anordnung ist der Transport der bei der Kondensation auf em im Zwischenkuhlkreis geführtes Medium übertragenen Warme auch über große Strecken in vergleichsweise einfacher Weise möglich. Das Dampfmengenverhaltnis zwischen den dem Kondensator und dem Hauptkondensator zuzuleitenden Dampfstromen ist zweckma- ßigerweise einstellbar, vorzugsweise m Abhängigkeit vom Lastzustand der Gas- und Dampfturbmenanlage. Der über den Hauptkondensator geführte Dampfstrom wird beim Betrieb einer derartigen Anlage üblicher Weise unter Verwendung eines externen Kuhlmittels kondensiert. Durch die Emstellbarkeit des Dampfmengenverhaltnisses zwischen den Dampfstromen können dabei die Betriebsparameter des über den Kondensator gefuhr- ten Dampfstromes auf besonders einfache Weise annähernd konstant gehalten werden, so daß eine derartige Anlage besonders zuverlässig betreibbar ist. Zudem ist dadurch auch für eden Betriebszustand der Anlage die Ansaugluft auf die für den jeweiligen Betrieszustand maximal erreichbare Temperatur vor- warmbar.
Zweckmaßigerweise ist dabei dem Hauptkondensator ein Konden- satvorwarmer nachgeschaltet, wobei aus dem Kondensator abströmendes Kondensat Stromungsrichtung des Kondensats ge- sehen nach dem Kondensatvorwamer den Wasser-Dampf-Kreislauf der Dampfturbine emspeisbar ist. Somit ist die nach der Kondensation des Dampfes im Kondensat verbliebene Restwarme auf besonders gunstige Weise den Wasser-Dampf-Kreislauf einbringbar .
Bezüglich des Verfahrens zum Betreiben der Gas- und Dampfturbmenanlage wird die genannte Aufgabe gelost, indem der Gasturbine zuzuführende Ansaugluft über bei der Kondensation von aus der Dampfturbine abströmendem Dampf entnommene Warme vorgewärmt wird.
Das bei der Kondensation gewonnene Kondensat wird dabei vor- teilhafterweise im Wasser-Dampf-Kreislauf der Dampfturbine geführtem vorgewärmtem Kondensat zugemischt.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß durch die Übertragung der bei der Kondensa- tion des Dampfes entnommenen Warme auf die Ansaugluft für die Gasturbine diese Warme für den Anlagenprozeß nutzbar gemacht wird. Eine derartige Gas- und Dampfturbmenanlage weist somit einen besonders hohen Anlagenwirkungsgrad auf. Aufgrund der vergleichsweise geringfügig verminderten maximalen Leistungsabgabe der Gasturbine ist em gunstiger Wirkungsgrad der Gas- und Dampfturbine dabei besonders im Teillastbereich der Gasturbine erreichbar.
Wie sich weiterhin herausgestellt hat, weist eine derartige Gas- und Dampfturbmenanlage auch vergleichsweise geringere Schadstoffemissionen auf. Neben anderen Großen ist für die Schadstoffemissionen einer Gas- und Dampfturbmenanlage der sogenannte Umschaltpunkt relevant, der angibt, bei welcher Leistung die Gasturbine vom Diffusionsbetrieb auf den Vor- mischbetrieb umzustellen ist. Die Gas- und Dampfturbmenanlage mit vorgewärmter Ansaugluft für die Gasturbine weist einen vergleichsweise niedrigeren Umschaltpunkt auf, so daß sie auch bei vergleichsweise niedrigen Lastzustanden im für ge- ringe Schadstoffemissionen g nstigeren Vormischbetπeb betreibbar ist.
Ausfuhrungsbeispiele der Erfindung werden anhand einer Zeichnung naher erläutert. Darm zeigen
Figur 1 schematisch eine Gas- und Dampfturbmenanlage, und
Figur 2 schematisch eine alternative Ausfuhrungsform ei- ner Gas- und Dampfturbmenanlage.
Gleiche Teile sind in beiden Figuren mit denselben Bezugszeichen versehen.
Die in den Figuren 1, 2 jeweils schematisch dargestellte Gas- und Dampfturbmenanlage 1 bzw. 1' umfaßt eine Gasturbinenanlage la und eine Dampfturbmenanlage Ib. Die Gasturbmenan- läge la umfaßt eine Gasturbine 2 mit angekoppeltem Luftverdichter 4. Der Luftverdichter 4 ist eingangsseitig an eine Ansaugluftleitung 5 angeschlossen. Der Gasturbine 2 ist eine Brennkammer 6 vorgeschaltet, die an eine Frischluftleitung 8 des Luftverdichters 4 angeschlossen ist. In die Brennkammer 6 der Gasturbine 2 mündet eine Brennstoffleitung 10. Die Gasturbine 2 und der Luftverdichter 4 sowie ein Generator 12 sitzen auf einer gemeinsamen Welle 14.
Die Dampfturbinenanlage lb umfaßt eine Dampfturbine 20 mit angekoppeltem Generator 22 und in einem Wasser-Dampf-Kreislauf 24 einen der Dampfturbine 20 nachgeschalteten Hauptkondensator 26 sowie einen Abhitzedampferzeuger 30. Die Dampfturbine 20 besteht aus einer ersten Druckstufe oder einem Hochdruckteil 20a und einer zweiten Druckstufe oder einem
Mitteldruckteil 20b sowie einer dritten Druckstufe oder einem Niederdruckteil 20c, die über eine gemeinsam Welle 32 den Generator 22 antreiben.
Zum Zuführen von in der Gasturbine 2 entspanntem Arbeitsmittel AM1 oder Rauchgas in den Abhitzedampferzeuger 30 ist eine Abgasleitung 34 an einen Eingang 30a des Abhitzedampferzeugers 30 angeschlossen. Das entspannte Arbeitsmittel AM' aus der Gasturbine 2 verläßt den Abhitzedampferzeuger 30 über dessen Ausgang 30b in Richtung auf einen nicht näher dargestellten Kamin.
Der Abhitzedampferzeuger 30 umfaßt in einer ersten Druckstufe oder Hochdruckstufe des Wasser-Dampf-Kreislaufs 24 einen Hochdruckvorwärmer oder Economizer 36, der über eine mit einem Ventil 38 absperrbare Leitung 40 an eine Hochdrucktrommel 42 angeschlossen ist. Die Hochdrucktrommel 42 ist mit einem im Abhitzedampferzeuger 30 angeordneten Hochdruckverdampfer 44 zur Bildung eines Wasser-Dampf-Umlaufs 46 verbunden. Zum Abführen von Frischdampf F ist die Hochdrucktrommel 42 an einen im Abhitzedampferzeuger 30 angeordneten Hochdrucküberhit- zer 48 angeschlossen, der ausgangsseitig mit dem Dampfemlaß 49 des Hochdruckteils 20a der Dampfturbine 20 verbunden ist.
Der Dampfauslaß 50 des Hochdruckteils 20a der Dampfturbine 20 ist über eine Dampfleitung 52 ("kalte ZU") mit einem Zwi- schenuberhitzer 54 verbunden, dessen Ausgang 56 über eine Dampfleitung 58 an den Dampfe laß 60 des Mitteldruckteils 20b der Dampfturbine 20 angeschlossen ist. Dessen Dampfauslaß 62 ist über eine Überströmleitung 64 mit dem Dampfe laß 66 des Niederdruckteils 20c der Dampfturbine 20 verbunden. Der Dampfauslaß 68 des Niederdruckteils 20c der Dampfturbine 20 ist über eine Dampfleitung 70 an den Hauptkondensator 26 angeschlossen. Dieser ist über eine Speisewasserleitung 72, m die eine Speisewasserpumpe 74 und em Kondensatvorwarmer 76 geschaltet sind, mit dem Economizer 36 verbunden, so daß ein geschlossen Wasser-Dampf-Kreislauf 24 entsteht.
In den Ausfuhrungsbeispielen gemäß den Figuren 1, 2 ist somit lediglich die erste Druckstufe des Wasser-Dampf-Kreislaufs 24 detailliert dargestellt. Im Abhitzedampferzeuger 30 sind jedoch noch weitere, nicht naher dargestellte Heizflachen angeordneten, die jeweils einer Mittel- oder einer Niederdruckstufe des Wasser-Dampf-Kreislaufs 24 zugeordneten sind. Diese Heizflächen sind m geeigneter Weise mit dem Dampfe laß 60 des Mitteldruckteils 20b der Dampfturbine 20 oder mit dem Dampfemlaß 66 des Niederdruckteils 20c der Dampfturbine 20 verbunden.
Die Gas- und Dampfturbmenanlage 1, 1' ist zur Erzielung ei- nes besonders hohen Wirkungsgrades ausgelegt. Dazu ist em der Dampfturbine 20 dampfseitig nachgeschalteter, als Zusatzkondensator ausgebildeter Kondensator 80 über der Gasturbinenanlage la zuzuführende Ansaugluft A kuhlbar. Der Kondensator 80 ist der Dampfturbine 20 über eine mit einem Ventil 82 absperrbare Anzapfdampfleitung 84 nachgeschaltet. Ausgangsseitig ist der Kondensator 80 über eine Kondensatorleitung 86 an die Speisewasserleitung 72 angeschlossen, so daß sich eine wasser-dampf-seitige Parallelschaltung des Kondensators 80 zu dem der Dampfturbine 20 zugeordneten Hauptkondensator 26 ergibt. Die Kondensatleitung 86 ist dabei mit der Speisewasserleitung 72 an einer Einspeisestelle 88 verbunden. Die Ein- speisestelle 88 ist in Strömungsrichtung des aus dem Hauptkondensator 26 abströmenden Kondensators K gesehen hinter dem Kondensatvorwärmer 76 angeordnet. Über das Ventil 82 ist das Dampfmengenverhältnis zwischen dem dem Hauptkondensator 26 zugeleiteten Dampfteilstrom und dem dem Kondensator 80 zuge- leiteten Dampfteilstrom einstellbar. Durch eine Variation dieses Dampfmengenverhältnisses kann für die jeweils aktuelle Leistungsabgabe der Gas- und Dampfturbinenanlage 1, 1' die Ansaugluft A bis zur maximal erreichbaren Temperatur vorgewärmt werden.
Die Gas- und Dampfturbinenanlage 1 gemäß Figur 1 ist für einen einstufigen Wärmetausch zwischen dem im Kondenstor 80 zu kondensierenden Dampfteilstrom und der der Gasturbinenanlage la zuzuführenden Ansaugluft A ausgebildet. Dazu ist als Kon- densator 80 ein Luftkondensator vorgesehen, der mit Kühlluft als Kühlmedium beaufschlagbar ist. Der Kondensator 80 ist in diesem Fall kuhlmittelseitig direkt in die Ansaugluftleitung 5 geschaltet. Bei der Gas- und Dampfturbinenanlage 1 sind die bei der Wärmeübertragung vom im Kondensator 80 kondensieren- den Dampf auf die Ansaugluft A infolge von Umwandlungsprozessen entstehenden Verluste besonders gering gehalten.
Im Ausführungsbeispiel gemäß Figur 2 ist hingegen eine zweistufige Wärmeübertragung vom im Kondensator 80 zu kondensie- renden Dampf auf die Ansaugluft A vorgesehen. Dazu ist bei der Gas- und Dampfturbinenanlage 1' gemäß Figur 2 in die Ansaugluftleitung 5 ein separater Wärmetauscher 90 geschaltet. Der separate Wärmetauscher 90 ist primärseitig an einen Zwischenkreis 92 angeschlossen, mit dem der Kondensator 80 kühl- mittelseitig verbunden ist. Im Zwischenkreis 92 geführtes
Wärmeträgermedium W ist dabei mittels einer in den Zwischenkreis 92 geschalteten Umwälzpumpe 94 umwälzbar. Beim Betrieb der Gas- und Dampfturbinenanlage 1 oder der Gas- und Dampfturbinenanlage 1" wird ein aus dem Niederdruckteil 20c der Dampfturbine 20 entnommener Dampfteilstrom als Anzapfdampf über den Kondensator 80 geführt. Dieser Dampfteil- ström wird im Kondenstor 80 kondensiert, wobei die den Dampf bei seiner Kondensation entzogene Wärme auf die Ansaugluft A für die Gasturbinenanlage la übertragen wird. Das bei der Kondensation des Dampfes im Kondensator 80 gewonnene Kondensat wird dem aus dem Hauptkondensator 26 abströmenden, vorge- wärmten Kondensat K beigemischt.
Durch die Übertragung der dem Dampfteilstrom bei seiner Kondensation im Kondensator 80 entzogenen Wärme auf die Ansaugluft A für die Gasturbinenanlage la wird diese Wärme in den Energieumwandlungsprozeß der Gas- und Dampfturbinenanlage 1 bzw. der Gas- und Dampfturbinenanlage 1' zurückgeführt. Die Gas- und Dampfturbinenanlage 1, 1' weist somit einen besonders hohen Anlagenwirkungsgrad auf. Andererseits bewirkt die Vorwärmung der Ansaugluft A für die Gasturbinenanlage la aber auch, daß der Gesamtmassenstrom des der Gasturbine 2 zuführbaren Arbeitsmediums AM geringer ist als beim Verzicht auf die Vorwärmung der Ansaugluft A. Die bei Betrieb der Gasturbine 2 erreichbare maximale Leistungsabgabe ist somit vergleichsweise geringer. Der Betrieb der Gas- und Dampfturbi- nenanlage 1, 1' mit Vorwärmung der Ansaugluft A durch Kondensation von Anzapfdampf im Kondensator 80 eignet sich somit besonders für den Teillastbereich. Zudem ist bei dieser Betriebsart in besonders einfacher Form eine schnelle Leistungsreserve der Gas- und Dampfturbinenanlage 1, 1' gewähr- leistet, da nämlich bei einer Schnellabschaltung der Vorwärmung der Ansaugluft A aufgrund des dann vergleichsweise erhöhten lieferbaren Gesamtmassenstroms an Arbeitsmedium AM für die Gasturbine 2 eine rasche Erhöhung der Leistungsabgabe der Gasturbine 2 ermöglicht ist.

Claims

Patentansprüche
1. Gas- und Dampfturbinenanlage (1, 1') mit einem einer Gasturbine (6) rauchgasseitig nachgeschalteten Abhitzedampf- erzeuger (30) , dessen Heizflächen in den Wasser-Dampf-Kreislauf (24) einer Dampfturbine (20) geschaltet sind, wobei einem der Dampfturbine (20) zugeordneten Hauptkondensator (26) wasser-dampf-seitig ein weiterer Kondensator (80) parallel geschaltet ist, der über der Gasturbine (2) zuzuführende An- saugluft (A) kühlbar ist.
2. Gas- und Dampfturbinenanlage (1, 1') nach Anspruch 1, bei der einem der Gasturbine (2) zugeordneten Verdichter eine Ansaugluftleitung (5) vorgeschaltet ist, in die der weitere Kondensator (80) kuhlmittelseitig direkt geschaltet ist.
3. Gas- und Dampfturbinenanlage (1, 1') nach Anspruch 1, bei der der weitere Kondensator (80) kuhlmittelseitig über einen Zwischenkuhlkreis (54) an einen Wärmetauscher (90) ange- schlössen ist, der sekundärseitig in eine Ansaugluftleitung
(5) geschaltet ist, die einem der Gasturbine (2) zugeordneten Verdichter vorgeschaltet ist.
4. Gas- und Dampfturbinenanlage (1, 1') nach einem der An- sprüche 1 bis 3, bei der das Dampfmengenverhältnis der dem weiteren Kondensator (80) und dem Hauptkondensator (26) zuzuleitenden Dampfströme einstellbar ist.
5. Gas- und Dampfturbinenanlage (1, 1') nach einem der An- sprüche 1 bis 4, deren Hauptkondensator (26) ein Kondensatvorwärmer (76) nachgeschaltet ist, wobei aus dem weiteren Kondensator (80) abströmendes Kondensat in Strömungsrichtung des Kondensats gesehen nach dem Kondensatvorwämer (76) in den Wasser-Dampf-Kreislauf (24) der Dampfturbine (20) einspeisbar ist.
6. Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage (1, 1') nach einem der Ansprüche 1 bis 5, bei dem der Gasturbine zuzuführende Ansaugluft (A) über bei der Kondensation von aus der Dampfturbine (20) abströmendem Dampf entnommene Wärme vorgewärmt wird.
7. Verfahren nach Anspruch 6, bei dem das bei der Kondensation gewonnene Kondensat vorgewärmtem Kondensat zugemischt wird, das im Wasser-Dampf-Kreislauf (24) der Dampfturbine (20) geführt wird.
EP98958189A 1997-10-15 1998-10-05 Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage Expired - Lifetime EP1023526B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19745272A DE19745272C2 (de) 1997-10-15 1997-10-15 Gas- und Dampfturbinenanlage und Verfahren zum Betreiben einer derartigen Anlage
DE19745272 1997-10-15
PCT/DE1998/002941 WO1999019608A1 (de) 1997-10-15 1998-10-05 Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage

Publications (2)

Publication Number Publication Date
EP1023526A1 true EP1023526A1 (de) 2000-08-02
EP1023526B1 EP1023526B1 (de) 2003-02-12

Family

ID=7845457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98958189A Expired - Lifetime EP1023526B1 (de) 1997-10-15 1998-10-05 Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage

Country Status (12)

Country Link
US (1) US6244035B1 (de)
EP (1) EP1023526B1 (de)
JP (1) JP4153662B2 (de)
KR (1) KR100563517B1 (de)
CN (1) CN1143949C (de)
DE (2) DE19745272C2 (de)
DK (1) DK1023526T3 (de)
ES (1) ES2192799T3 (de)
ID (1) ID24437A (de)
RU (1) RU2200850C2 (de)
UA (1) UA53748C2 (de)
WO (1) WO1999019608A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4080019A1 (de) * 2021-04-20 2022-10-26 General Electric Company Wärmerückgewinnungssystem und -verfahren für gasturbinen

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050034446A1 (en) * 2003-08-11 2005-02-17 Fielder William Sheridan Dual capture jet turbine and steam generator
ITRM20040275A1 (it) * 2004-06-03 2004-09-03 Agridea Patents Ltd Impianto di riscaldamento di ambienti adibiti a serre con il calore del vapore di scarico di turbine.
US7367177B2 (en) * 2004-12-14 2008-05-06 Siemens Power Generation, Inc. Combined cycle power plant with auxiliary air-cooled condenser
EP1736638A1 (de) * 2005-06-21 2006-12-27 Siemens Aktiengesellschaft Verfahren zum Hochfahren einer Gas- und Dampfturbinenanlage
KR100724801B1 (ko) * 2005-12-22 2007-06-04 한국항공우주연구원 가스터빈엔진의 흡기유동 시험장치
US8002714B2 (en) 2006-08-17 2011-08-23 Ethicon Endo-Surgery, Inc. Guidewire structure including a medical guidewire and method for using a medical instrument
US7934383B2 (en) * 2007-01-04 2011-05-03 Siemens Energy, Inc. Power generation system incorporating multiple Rankine cycles
RU2326247C1 (ru) * 2007-01-23 2008-06-10 Михаил Юрьевич Кудрявцев Способ работы парогазовой энергетической установки с замкнутым контуром циркуляции газа
EP2101051A1 (de) * 2008-03-12 2009-09-16 Siemens Aktiengesellschaft Speicherung elektrischer Energie mit Wärmespeicher und Rückverstromung mittels eines thermodynamischen Kreisprozesses
US7730712B2 (en) * 2008-07-31 2010-06-08 General Electric Company System and method for use in a combined cycle or rankine cycle power plant using an air-cooled steam condenser
FR2935737B1 (fr) 2008-09-10 2013-02-15 Suez Environnement Dispositif de cogeneration amelioree
EP2199547A1 (de) * 2008-12-19 2010-06-23 Siemens Aktiengesellschaft Abhitzedampferzeuger sowie ein Verfahren zum verbesserten Betrieb eines Abhitzedampferzeugers
ITVE20090055A1 (it) * 2009-10-02 2011-04-03 Giovanni Parise Aumento di efficienza degli impianti termoelettrici
EP2369145A1 (de) * 2010-03-09 2011-09-28 Siemens Aktiengesellschaft Stromerzeugungssystem und -verfahren
EP2372111A1 (de) * 2010-03-27 2011-10-05 Alstom Technology Ltd Niederdruckturbine mit zwei unabhängigen Kondensationssystemen
US20120017597A1 (en) * 2010-07-23 2012-01-26 General Electric Company Hybrid power generation system and a method thereof
EP2503111B1 (de) * 2011-03-25 2016-03-02 Caterpillar Motoren GmbH & Co. KG Modulares Wärmeausgabesystem, direktes organisches Rankine-Kreislaufsystem und biomassenkombiniertes Kreislaufstromerzeugungssystem
DE102011006390A1 (de) * 2011-03-30 2012-10-04 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Durchlaufdampferzeugers und zur Durchführung des Verfahrens ausgelegter Dampferzeuger
US8505309B2 (en) * 2011-06-14 2013-08-13 General Electric Company Systems and methods for improving the efficiency of a combined cycle power plant
EP2568128B1 (de) * 2011-09-07 2016-04-06 Alstom Technology Ltd Verfahren zum Betrieb eines Kombikraftwerks
ES2635107T3 (es) 2013-02-05 2017-10-02 General Electric Technology Gmbh Central termoeléctrica de vapor con una segunda turbina de baja presión y un sistema de condensación adicional y procedimiento para la operación de dicha central termoeléctrica de vapor
FI127597B (fi) * 2013-03-05 2018-09-28 Loeytty Ari Veli Olavi Menetelmä ja laitteisto korkean hyötysuhteen saavuttamiseksi avoimessa kaasuturbiini(kombi)prosessissa
WO2014146861A1 (en) * 2013-03-21 2014-09-25 Siemens Aktiengesellschaft Power generation system and method to operate
DE102013211376B4 (de) * 2013-06-18 2015-07-16 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Regelung der Eindüsung von Wasser in den Rauchgaskanal einer Gas- und Dampfturbinenanlage
US20160040596A1 (en) * 2014-08-08 2016-02-11 General Electric Company Turbomachine system including an inlet bleed heat system and method of operating a turbomachine at part load
JP6519839B2 (ja) * 2014-09-18 2019-05-29 三菱日立パワーシステムズ株式会社 冷却設備、及びこれを備えるコンバインドサイクルプラント
US9828884B2 (en) * 2016-02-25 2017-11-28 General Electric Technology Gmbh System and method for preheating a heat recovery steam generator
DE102016217886A1 (de) * 2016-09-19 2018-03-22 Siemens Aktiengesellschaft Anlage und Verfahren mit einer Wärmekraftanlage und einem Prozessverdichter
WO2018114113A1 (de) * 2016-12-22 2018-06-28 Siemens Aktiengesellschaft Kraftwerksanlage mit gasturbinenansaugluftsystem
FI20210068A1 (fi) * 2021-11-10 2023-05-11 Loeytty Ari Veli Olavi Menetelmä ja laitteisto energiatehokkuuden parantamiseksi nykyisissä kaasuturbiini kombilaitoksissa

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE706170C (de) * 1938-09-01 1941-05-19 Aeg Insbesondere fuer Flugzeuge bestimmte Hochdruckdampferzeugungsanlage
FR985094A (fr) * 1949-03-25 1951-07-13 Turbine mixte, à vapeur et à gaz
US3150487A (en) * 1963-04-08 1964-09-29 Gen Electric Steam turbine-gas turbine power plant
US4267692A (en) * 1979-05-07 1981-05-19 Hydragon Corporation Combined gas turbine-rankine turbine power plant
WO1995016105A1 (en) * 1993-12-10 1995-06-15 Cabot Corporation An improved liquefied natural gas fueled combined cycle power plant
JP3681434B2 (ja) * 1995-04-25 2005-08-10 重昭 木村 コージェネレーション装置およびコンバインドサイクル発電装置
CN1112505C (zh) * 1995-06-01 2003-06-25 特雷克特贝尔Lng北美公司 液化天然气作燃料的混合循环发电装置及液化天然气作燃料的燃气轮机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9919608A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4080019A1 (de) * 2021-04-20 2022-10-26 General Electric Company Wärmerückgewinnungssystem und -verfahren für gasturbinen

Also Published As

Publication number Publication date
DE59807207D1 (de) 2003-03-20
JP4153662B2 (ja) 2008-09-24
ID24437A (id) 2000-07-20
EP1023526B1 (de) 2003-02-12
DE19745272C2 (de) 1999-08-12
DK1023526T3 (da) 2003-06-02
DE19745272A1 (de) 1999-04-29
ES2192799T3 (es) 2003-10-16
CN1270656A (zh) 2000-10-18
WO1999019608A1 (de) 1999-04-22
CN1143949C (zh) 2004-03-31
UA53748C2 (uk) 2003-02-17
KR100563517B1 (ko) 2006-03-27
JP2001520342A (ja) 2001-10-30
RU2200850C2 (ru) 2003-03-20
KR20010024500A (ko) 2001-03-26
US6244035B1 (en) 2001-06-12

Similar Documents

Publication Publication Date Title
EP1023526A1 (de) Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage
EP0591163B1 (de) Kombinierte gas- und dampfturbinenanlage
EP0597305B2 (de) Verfahren zum Betrieb einer Kombianlage
EP0778397B1 (de) Verfahren zum Betrieb einer mit einem Abhitzedampferzeuger und einem Dampfverbraucher kombinierten Gasturbogruppe
EP0523467B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
WO1995009300A1 (de) Vorrichtung zur kühlung des kühlmittels der gasturbine einer gas- und dampfturbinenanlage
EP2368021A1 (de) Abhitzedampferzeuger sowie ein verfahren zum verbesserten betrieb eines abhitzedampferzeugers
WO2000020728A1 (de) Gas- und dampfturbinenanlage
EP0515911B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und entsprechende Anlage
WO1997043523A1 (de) Gas- und dampfturbinenanlage sowie verfahren zu deren betrieb
WO2000011325A1 (de) Gas- und dampfturbinenanlage
WO2000004285A2 (de) Gas- und dampfturbinenanlage
EP0981681B1 (de) Gas- und dampfturbinenanlage und verfahren zur kühlung des kühlmittels der gasturbine einer derartigen anlage
EP1076761B1 (de) Gas- und dampfturbinenanlage
EP0523466A1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP0840837B1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage
DE19612921A1 (de) Kraftwerksanlage und Verfahren zum Betrieb einer Kraftwerksanlage
WO1995025880A1 (de) Verfahren zum betreiben eines abhitzedampferzeugers sowie danach arbeitender abhitzedampferzeuger
DE10004187C1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
EP1404947B1 (de) Verfahren zum betreiben einer dampfkraftanlage sowie dampfkraftanlage zur durchführung des verfahrens
WO1997007323A1 (de) Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage sowie abhitzedampferzeuger für eine gas- und dampfturbinenanlage
DE19736888A1 (de) Verfahren zum Betreiben eines Durchlaufdampferzeugers und Durchlaufdampferzeuger zur Durchführung des Verfahrens sowie Gas- und Dampfturbinenanlage
DE19936655A1 (de) Gasturbinenanlage mit Brennstoffvorwärmung sowie Kombikraftwerk mit einer solchen Gasturbinenanlage
DE19609607A1 (de) Kombi-Kraftwerksanlage und Verfahren zu ihrem Betrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK ES FI FR GB LI NL SE

17Q First examination report despatched

Effective date: 20011205

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE DK ES FI FR GB LI NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 59807207

Country of ref document: DE

Date of ref document: 20030320

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2192799

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031113

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20121022

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121031

Year of fee payment: 15

Ref country code: FI

Payment date: 20121011

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20121009

Year of fee payment: 15

Ref country code: GB

Payment date: 20121011

Year of fee payment: 15

Ref country code: ES

Payment date: 20121119

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20121009

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130110

Year of fee payment: 15

Ref country code: DE

Payment date: 20121216

Year of fee payment: 15

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140501

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20131031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59807207

Country of ref document: DE

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131005

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131006

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131005

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20141107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131006