[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1017867B1 - Aluminium based alloy and method for subjecting it to heat treatment - Google Patents

Aluminium based alloy and method for subjecting it to heat treatment Download PDF

Info

Publication number
EP1017867B1
EP1017867B1 EP98952615.7A EP98952615A EP1017867B1 EP 1017867 B1 EP1017867 B1 EP 1017867B1 EP 98952615 A EP98952615 A EP 98952615A EP 1017867 B1 EP1017867 B1 EP 1017867B1
Authority
EP
European Patent Office
Prior art keywords
stage
carried out
hours
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98952615.7A
Other languages
German (de)
French (fr)
Other versions
EP1017867A1 (en
Inventor
Thomas PFANNENMÜLLER
Erwin Loechelt
Peter-Jürgen WINKLER
Sergej Mikhajlovich Mozharovskij
Dmitrij Sergejevich Galkin
Elena Glebovna Tolchennikova
Vladimir Mikhajlovich Chertovikov
Valentin Georgijevich Davydov
Evgenij Nikolajevich Kablov
Larisa Bagratovna Khokhlatova
Nikolay Ivanovich Kolobnev
Iosif Naumovich Fridlyander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
All Russian Scientific Research Institute of Aviation Materials
Original Assignee
EADS Deutschland GmbH
All Russian Scientific Research Institute of Aviation Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU97116302A external-priority patent/RU2126456C1/en
Priority claimed from RU98104394A external-priority patent/RU2133295C1/en
Application filed by EADS Deutschland GmbH, All Russian Scientific Research Institute of Aviation Materials filed Critical EADS Deutschland GmbH
Publication of EP1017867A1 publication Critical patent/EP1017867A1/en
Application granted granted Critical
Publication of EP1017867B1 publication Critical patent/EP1017867B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the invention relates to an aluminum-based alloy, preferably of the system Al-Li-Mg, which contains lithium, magnesium, zinc, zirconium and manganese and is in the field of metallurgy of alloys used as a material for constructions in aerospace engineering, in shipbuilding and mechanical engineering of terrestrial means of transport, including welded constructions.
  • the alloy according to the international patent application WO No. 92/03583 has the following chemical composition in percentage by mass: aluminum Base lithium 0.5 - 3.0 magnesium 0.5-10.0 zinc 0.1 - 5.0 silver 0.1 - 2.0
  • the alloy may contain up to 1.0% zirconium.
  • This alloy has a strength of 476 - 497 MPa, a yield strength of 368 - 455 MPa, a relative elongation of 7 - 9% and a density of 2.46 - 2.63 g / cm 3 .
  • the alloy is recommended as a structural material for aerospace products.
  • the disadvantages of this alloy are as follows:
  • the alloy is alloyed with silver, which increases product costs - from semi-finished products to finished products.
  • High zinc content alloys and added copper have reduced corrosion resistance, while in fusion welding they show an increased tendency to form defects and significant softening.
  • a comparable alloy for the entire field of application is from the U.S. Patent No. 4,636,357 known.
  • This alloy has the following chemical composition in percent by mass: aluminum Base lithium 2.0 - 3.0 magnesium 0.5 - 4.0 zinc 2.0 - 5.0 copper 0 - 2.0 zirconium 0 - 0.2 manganese 0 - 0.5 nickel 0 - 0.5 chrome 0 - 0.4
  • This alloy has a sufficiently high strength level 440 - 550 MPa and a yield strength of 350 - 410 MPa.
  • the disadvantages of this alloy are the low level of relative elongation of the alloy (1.0-7.0%) and the low fracture toughness, insufficient corrosion resistance and limited strength of welded joints compared to the strength of the base material.
  • the object of the present invention is to achieve an increase in the ductility of the alloy in the heat-treated state while maintaining high strength and ensuring high corrosion resistance and good weldability, with sufficiently high fracture toughness and thermal stability values after heating at 85 ° C should be guaranteed in the course of 1000 h.
  • a method for improving the fracture toughness of an aluminum-lithium alloy is out US 4840682 and US 5076859 known.
  • WO 96/18752 A1 describes a method of heat treating an aluminum-lithium alloy.
  • an alloy of the system AI-li-Mg having the following chemical composition in percent by mass: lithium 1.5 - 1.9 magnesium 4.1 - 6.0 zinc 0.1 - 1.5 zirconium 0.05 - 0.3 manganese 0.01-0.8 hydrogen 0.9x10 -5 -4.5x10 -5 and at least one element selected from the following group: beryllium 0.001-0.2 yttrium 0.01 - 0.5 scandium 0.01 - 0.3 aluminum rest
  • the hydrogen content causes a reduction in the longitudinal shrinkage during solidification to form solid finely divided particles of lithium hydride and avoids the formation of porosity in the material.
  • the magnesium content ensures the necessary level of strength properties and weldability. When the magnesium content falls below 4.1%, it will reduce the strength and grow the tendency of the alloy to hot cracking during both casting and welding. Increasing the magnesium content of the alloy above 6.0% reduces machinability in casting, hot and cold rolling, and plasticity characteristics of finished semi-finished products and articles thereof.
  • the necessary level of mechanical and corrosion properties and sufficient fracture toughness and weldability, compliance with the lithium content is essential.
  • the lithium content was lowered below 1.5%, the density of the alloy increased, the level of the strength properties and the modulus of elasticity decreased, and when the lithium content exceeded 1.9%, workability by cold working, weldability, plasticity characteristics and fracture toughness deteriorated.
  • Zirconium in the amount of 0.05-0.3% is a modifier in the casting of ingots and, together with the manganese (in the amount of 0.01-0.8%), ensures structural solidification in the semi-finished products as a result of the formation a polygonal or fine-grained structure.
  • the formation of a homogeneous fine-grained microstructure in semifinished products made of the alloy according to the invention causes an increase in deformability during cold rolling.
  • the invention relates to a method for the heat treatment of aluminum-based alloys, preferably of the system Al-Li-Mg.
  • the object of such a heat treatment process is to increase the ductility of the alloy while maintaining its high strength and at the same time to achieve high values of corrosion resistance and fracture toughness, but in particular the Preservation of these properties upon exposure of the material to increased temperature over a long period of time.
  • this method does not ensure the stability of the properties of lithium-containing aluminum alloys after low temperature heating at 85 ° C over 1000 hours, which simulates solar heating during long-term operation of aircraft. After heating to 85 ° C for 1000 h, the relative elongation and fracture toughness of lithium-containing alloys treated by this method are reduced by 25-30%.
  • this invention can also be carried out in such a way that cooling takes place at a cooling rate of 2 to 8 ° C. per hour for 10 to 30 hours.
  • inventive alloys having the feature of claim 1 have particularly advantageous properties in the sense of the task, if they were treated by the aforementioned method.
  • the first stage of artificial aging takes place at a temperature of 80-90 ° C over 3 - 12 h and a second stage at 110 - 185 ° C over 10 - 48 h.
  • a second stage of artificial aging can be carried out at a temperature of 110 to 125 ° C and a duration of 5 to 12 hours, these method parameters are preferably applied when the third aging stage is carried out according to claim 3.
  • billets of 70 mm diameter were cast.
  • the metal was melted in the resistance furnace.
  • After homogenization (500 ° C, 10 h) strips were pressed from the billets with a cross section of 15 x 65 mm.
  • the ingots were heated to a temperature of 380-450 ° C before being pressed.
  • Rolled blocks from the strips were heated to 360 - 420 ° C and hot rolled to 4 mm thick sheets, which then up to 2.2 mm Thickness have been cold rolled.
  • the cold-rolled sheets were quenched from a temperature of 400-500 ° C in water or air, with a degree of deformation up to 2%, and subjected to the heat treatments listed in Tab.
  • Alloys Nos. 3-10 are materials according to the invention Process for heat treatment of the investigated alloys Alloy no.
  • Heat treatment no. Heat treatment method 3, 5, 9 3 80 ° C, 4 h + 185 ° C, 10 h + 110 ° C, 8 h 8.10 4 90 ° C, 3 h + 110 ° C, 48 h + 90 ° C, 14 h 4, 7 5 85 ° C, 5 h + 145 ° C, 25 h + 110 ° C, 10 h 6 6 85 ° C, 12 h + 120 ° C, 12 h + 90 ° C, 12 h Properties of the investigated alloys Alloy no Heat treatment no.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Articles (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Steel (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Metal Rolling (AREA)

Description

Die Erfindung betrifft eine Legierung auf Aluminiumbasis, vorzugsweise des Systems AI-Li-Mg, welche Lithium, Magnesium, Zink, Zirkonium und Mangan enthält und liegt auf dem Gebiet der Metallurgie von Legierungen, welche als Werkstoff für Konstruktionen in der Luft- und Raumfahrttechnik, im Schiffbau und im Maschinenbau von erdgebundenen Transportmitteln, einschließlich Schweißkonstruktionen, verwendet werden.The invention relates to an aluminum-based alloy, preferably of the system Al-Li-Mg, which contains lithium, magnesium, zinc, zirconium and manganese and is in the field of metallurgy of alloys used as a material for constructions in aerospace engineering, in shipbuilding and mechanical engineering of terrestrial means of transport, including welded constructions.

Bekannt sind Legierungen des Systems Al-Li-Mg, welche eine verringerte Dichte und eine verhältnismäßig hohe Festigkeit aufweisen, jedoch eine geringe Verformbarkeit und verringerte Bruchzähigkeit haben. Die Legierung nach der US-Patentschrift Nr. 4,584,173 vom 22.04.86 hat beispielsweise folgende chemische Zusammensetzung, in Masseprozent: Aluminium Basis Lithium 2,1 - 2,9 Magnesium 3,0 - 5,5 Kupfer 0,2 - 0,7 und eines oder mehrere Elemente aus der Gruppe, die Zirkonium, Hafnium und Niob enthält: Zirkonium 0,05 - 0,25 Hafnium 0,10 - 0,50 Niob 0,05 - 0,30 und Zink 0 - 2,0 Titan 0 - 0,5 Mangan 0 - 0,5 Nickel 0 - 0,5 Chrom 0 - 0,5 Germanium 0 - 0,2 Wenn diese Legierung bei einer Temperatur von 530°C abgeschreckt wird und danach einem Reckrichten mit einem Verformungsgrad von 2% und einem künstlichen Altern bei 190°C im Verlauf von 4 - 16 h unterzogen wird, tritt der Nachteil auf, daß die Legierung geringe Plastizität im wärmebehandelten Zustand (relative Dehnung 3,1 - 4,5 %) und geringe Korrosionsbeständigkeit aufweist.Known alloys of the system Al-Li-Mg, which have a reduced density and a relatively high strength, but have a low ductility and reduced fracture toughness. The alloy after the U.S. Patent No. 4,584,173 from 22.04.86 has, for example, the following chemical composition, in percent by mass: aluminum Base lithium 2.1 - 2.9 magnesium 3.0 - 5.5 copper 0.2-0.7 and one or more elements of the group containing zirconium, hafnium and niobium: zirconium 0.05-0.25 hafnium 0.10 - 0.50 niobium 0.05-0.30 and zinc 0 - 2.0 titanium 0 - 0.5 manganese 0 - 0.5 nickel 0 - 0.5 chrome 0 - 0.5 germanium 0 - 0.2 When this alloy is quenched at a temperature of 530 ° C and thereafter subjected to stretching with a degree of deformation of 2% and artificial aging at 190 ° C over 4 to 16 hours, the disadvantage arises that the alloy has low plasticity in the heat-treated state (relative elongation 3.1 - 4.5%) and has low corrosion resistance.

Die Legierung nach der internationalen Patentanmeldung WO Nr. 92/03583 hat folgende chemische Zusammensetzung in Masseprozent: Aluminium Basis Lithium 0,5 - 3,0 Magnesium 0,5 - 10,0 Zink 0,1 - 5,0 Silber 0,1 - 2,0 The alloy according to the international patent application WO No. 92/03583 has the following chemical composition in percentage by mass: aluminum Base lithium 0.5 - 3.0 magnesium 0.5-10.0 zinc 0.1 - 5.0 silver 0.1 - 2.0

Bei einem Gesamtgehalt dieser Elemente von maximal 12% und, wenn ihr Gesamtgehalt 7,0 - 10,0 % beträgt, darf Lithium 2,5%, und Zink 2,0% nicht übersteigen; außerdem kann die Legierung bis zu 1,0% Zirkonium enthalten.For a maximum total content of these elements of 12% and, if their total content is 7.0 - 10.0%, lithium shall not exceed 2.5%, and zinc shall not exceed 2.0%; In addition, the alloy may contain up to 1.0% zirconium.

Diese Legierung weist eine Festigkeit von 476 - 497 MPa, eine Streckgrenze von 368 - 455 MPa, eine relative Dehnung von 7 - 9% und eine Dichte von 2,46 - 2,63 g/cm3 auf. Die Legierung wird als Strukturwerkstoff für Erzeugnisse in Luft- und Raumfahrt empfohlen. Die Nachteile dieser Legierung bestehen in Folgendem:This alloy has a strength of 476 - 497 MPa, a yield strength of 368 - 455 MPa, a relative elongation of 7 - 9% and a density of 2.46 - 2.63 g / cm 3 . The alloy is recommended as a structural material for aerospace products. The disadvantages of this alloy are as follows:

Die hohe Festigkeit kann gewährleistet werden:

  • durch einen hohen Lithiumgehalt, doch dabei verringert sich die Verformbarkeit und die Bruchzähigkeit der Legierung, ihre Bearbeitungsfähigkeit durch Kaltverformen, es entstehen Schwierigkeiten bei der Herstellung dünner Bleche, welche für Fluggeräte gebraucht werden;
  • durch einen hohen Zinkgehalt; dadurch steigt die Dichte der Legierung auf Werte von 2,60 - 2,63 g/cm3, was den Gewichtseinsparungseffekt des Erzeugnisses wesentlich verringert;
  • durch Recken des abgeschreckten Werkstoffes vor einer künstlichen Alterung mit einem Verformungsgrad von 5 - 6%, was zu einer Minderung der Kennwerte für die Bruchzähigkeit führt.
The high strength can be guaranteed:
  • by high lithium content, but it reduces the ductility and fracture toughness of the alloy, its workability by cold working, difficulties arise in the production of thin sheets, which are used for aircraft;
  • by a high zinc content; as a result, the density of the alloy increases to values of 2.60-2.63 g / cm 3 , which substantially reduces the weight-saving effect of the product;
  • by stretching the quenched material prior to artificial aging with a degree of deformation of 5 - 6%, which leads to a reduction in the characteristics of the fracture toughness.

Die Legierung ist mit Silber legiert, was die Produktkosten - von den Halbzeugen bis hin zu fertigen Erzeugnissen - erhöht.The alloy is alloyed with silver, which increases product costs - from semi-finished products to finished products.

Legierungen mit hohem Zinkgehalt und hinzugefügtem Kupfer weisen eine verminderte Korrosionsbeständigkeit auf, beim Schmelzschweißen zeigen sie eine erhöhte Neigung zur Bildung von Defekten und eine deutliche Entfestigung.High zinc content alloys and added copper have reduced corrosion resistance, while in fusion welding they show an increased tendency to form defects and significant softening.

Eine vergleichbare Legierung für das gesamte Anwendungsgebiet ist aus der US-Patent Nr. 4,636,357 bekannt. Diese Legierung hat folgende chemische Zusammensetzung in Masseprozent: Aluminium Basis Lithium 2,0 - 3,0 Magnesium 0,5 - 4,0 Zink 2,0 - 5,0 Kupfer 0 - 2,0 Zirkonium 0 - 0,2 Mangan 0 - 0,5 Nickel 0 - 0,5 Chrom 0 - 0,4 A comparable alloy for the entire field of application is from the U.S. Patent No. 4,636,357 known. This alloy has the following chemical composition in percent by mass: aluminum Base lithium 2.0 - 3.0 magnesium 0.5 - 4.0 zinc 2.0 - 5.0 copper 0 - 2.0 zirconium 0 - 0.2 manganese 0 - 0.5 nickel 0 - 0.5 chrome 0 - 0.4

Die Legierungverfestigung erfolgt durch eine Wärmebehandlung:

  • Abschrecken von einer Temperatur von 460°C, Recken mit einem Reckgrad von 0 - 3% und eine zweistufige Wärmebehandlung:
  • Die 1. Stufe bei 90°C, 16 h und die 2. Stufe bei 150°C, 24 h.
The alloy consolidation takes place by a heat treatment:
  • Quenching from a temperature of 460 ° C, stretching with a degree of stretching of 0 - 3% and a two-stage heat treatment:
  • The 1st stage at 90 ° C, 16 h and the 2nd stage at 150 ° C, 24 h.

Diese Legierung weist ein ausreichend hohes Festigkeitsniveau 440 - 550 MPa und eine Streckgrenze von 350 - 410 MPa auf.This alloy has a sufficiently high strength level 440 - 550 MPa and a yield strength of 350 - 410 MPa.

Die Nachteile dieser Legierung sind das niedrige Niveau der relativen Dehnung der Legierung (1,0 - 7,0%) und die geringe Bruchzähigkeit, unzureichende Korrosionsfestigkeit und die eingeschränkte Festigkeit von Schweißverbindungen im Vergleich zur Festigkeit des Grundmaterials.The disadvantages of this alloy are the low level of relative elongation of the alloy (1.0-7.0%) and the low fracture toughness, insufficient corrosion resistance and limited strength of welded joints compared to the strength of the base material.

Die Aufgabe der vorliegenden Erfindung ist es deshalb, eine Erhöhung der Duktilität der Legierung im wärmebehandelten Zustand unter Beibehaltung einer hohen Festigkeit und Gewährleistung einer hohen Korrosionsbeständigkeit und guten Schweißbarkeit zu erzielen, wobei ausreichend hohe Kennwerte für die Bruchzähigkeit und die thermische Stabilität nach Erwärmung bei 85 °C im Laufe von 1000 h gewährleistet sein sollen.The object of the present invention, therefore, is to achieve an increase in the ductility of the alloy in the heat-treated state while maintaining high strength and ensuring high corrosion resistance and good weldability, with sufficiently high fracture toughness and thermal stability values after heating at 85 ° C should be guaranteed in the course of 1000 h.

Ein Verfahren zur Verbesserung der Bruchzähigkeit einer Aluminium-Lithium-Legierung ist aus US 4840682 und US 5076859 bekannt. WO 96/18752 A1 beschreibt ein Verfahren der Wärmebehandlung einer Aluminium-Lithium-Legierung.A method for improving the fracture toughness of an aluminum-lithium alloy is out US 4840682 and US 5076859 known. WO 96/18752 A1 describes a method of heat treating an aluminum-lithium alloy.

Diese Aufgabe wird erfindungsgemäß gelöst von einer Legierung des Systems AI-li-Mg mit folgender chemischer Zusammensetzung in Masseprozent: Lithium 1,5 - 1,9 Magnesium 4,1 - 6,0 Zink 0,1 - 1,5 Zirkonium 0,05 - 0,3 Mangan 0,01-0,8 Wasserstoff 0,9 x 10-5-4,5 x 10-5 und zumindest einem aus der folgenden Gruppe ausgewählten Element: Beryllium 0,001 - 0,2 Yttrium 0,01 - 0,5 Scandium 0,01 - 0,3 Aluminium Rest This object is achieved according to the invention by an alloy of the system AI-li-Mg having the following chemical composition in percent by mass: lithium 1.5 - 1.9 magnesium 4.1 - 6.0 zinc 0.1 - 1.5 zirconium 0.05 - 0.3 manganese 0.01-0.8 hydrogen 0.9x10 -5 -4.5x10 -5 and at least one element selected from the following group: beryllium 0.001-0.2 yttrium 0.01 - 0.5 scandium 0.01 - 0.3 aluminum rest

Durch den Wasserstoffgehalt wird unter Bildung von festen feinverteilten Teilchen aus Lithiumhydrid eine Verringerung der Längsschwindung bei der Erstarrung bewirkt und die Bildung von Porosistät im Material vermieden.The hydrogen content causes a reduction in the longitudinal shrinkage during solidification to form solid finely divided particles of lithium hydride and avoids the formation of porosity in the material.

Der Magnesiumgehalt gewährleistet das notwendige Niveau an Festigkeitseigenschaften und die Schweißbarkeit. Bei Verringerung des Magnesiumsgehalts unter 4,1 % wird sich die Festigkeit vermindern und die Neigung der Legierung zu Heißrissen sowohl beim Gießen als auch beim Schweißen wachsen. Bei Vergrößerung des Magnesiumgehalts der Legierung über 6,0 % vermindern sich die Bearbeitungsfähigkeit beim Gießen, Warm- und Kaltwalzen sowie die Plastizitätskennwerte von fertigen Halbzeugen und Erzeugnissen daraus.The magnesium content ensures the necessary level of strength properties and weldability. When the magnesium content falls below 4.1%, it will reduce the strength and grow the tendency of the alloy to hot cracking during both casting and welding. Increasing the magnesium content of the alloy above 6.0% reduces machinability in casting, hot and cold rolling, and plasticity characteristics of finished semi-finished products and articles thereof.

Zur Gewährung der notwendigen Bearbeitbarkeit, insbesondere bei der Herstellung dünner Bleche, des notwendigen Niveaus von mechanischen sowie Korrosionseigenschaften und ausreichender Bruchzähigkeit sowie Schweißbarkeit ist die Einhaltung des Lithiumgehalts wesentlich. Bei Verringerung des Lithiumgehalts unter 1,5 % vergrößerte sich die Dichte der Legierung, verminderte sich das Niveau der Festigkeitseigenschaften und der Elastizitätsmodul, bei einem Lithiumgehalt über 1,9 % verschlechterte sich die Bearbeitbarkeit mittels Kaltverformung, die Schweißbarkeit, die Plastizitätskennwerte und die Bruchzähigkeit.To ensure the necessary machinability, especially in the production of thin sheets, the necessary level of mechanical and corrosion properties and sufficient fracture toughness and weldability, compliance with the lithium content is essential. When the lithium content was lowered below 1.5%, the density of the alloy increased, the level of the strength properties and the modulus of elasticity decreased, and when the lithium content exceeded 1.9%, workability by cold working, weldability, plasticity characteristics and fracture toughness deteriorated.

Zirkonium in der Menge von 0,05 - 0,3 % ist ein Modifikator beim Gießen von Barren und gewährleistet gemeinsam mit dem Mangan (in der Menge von 0,01 - 0,8 %) eine strukturelle Verfestigung in den Halbzeugen in Folge der Bildung eines polygonisierten oder feinkörnigen Gefüges.Zirconium in the amount of 0.05-0.3% is a modifier in the casting of ingots and, together with the manganese (in the amount of 0.01-0.8%), ensures structural solidification in the semi-finished products as a result of the formation a polygonal or fine-grained structure.

Insbesondere durch das Hinzufügen eines oder mehrerer der Elemente Beryllium, Yttrium, Scandium wird die Ausbildung eines homogenen feinkörnigen Gefüges in Halbzeugen aus der erfindungsgemäßen Legierung eine Erhöhung der Verformbarkeit beim Kaltwalzen bewirkt.In particular, by adding one or more of the elements beryllium, yttrium, scandium, the formation of a homogeneous fine-grained microstructure in semifinished products made of the alloy according to the invention causes an increase in deformability during cold rolling.

Im weiteren bezieht sich die Erfindung auf ein Verfahren zur Wärmebehandlung von Legierungen auf Aluminiumbasis, vorzugsweise des Systems Al-Li-Mg.Furthermore, the invention relates to a method for the heat treatment of aluminum-based alloys, preferably of the system Al-Li-Mg.

Aufgabe eines solchen Wärmebehandlungsverfahrens ist es, die Duktilität der Legierung unter Beibehaltung ihrer hohen Festigkeit anzuheben und gleichzeitig hohe Kennwerte für Korrosionsbeständigkeit und Bruchzähigkeit zu erreichen, insbesondere aber die Bewahrung dieser Eigenschaften bei Aussetzung des Materials einer erhöhten Termperatur über lange Zeitdauer.The object of such a heat treatment process is to increase the ductility of the alloy while maintaining its high strength and at the same time to achieve high values of corrosion resistance and fracture toughness, but in particular the Preservation of these properties upon exposure of the material to increased temperature over a long period of time.

Aus der US-Patentschrift Nr. 4,861,391 ist ein Verfahren zur Wärmebehandlung bekannt, welches ein Abschrecken mit schneller Abkühlung, Richten und zweistufiges Altern wie folgt aufweist:

  • Die 1. Stufe bei einer Temperatur nicht über 93°C, von einigen Stunden bis zu einigen Monaten; vorzugsweise, 66 - 85°C, mindestens 24 h.
  • Die 2. Stufe bei einer Temperatur von maximal 219 °C, von 30 Minuten bis zu einigen Stunden; vorzugsweise, 154 - 199°C, maximal 8 h.
From the U.S. Patent No. 4,861,391 For example, a method of heat treatment is known which comprises quenching with rapid cooling, straightening, and two-stage aging as follows:
  • The 1st stage at a temperature not exceeding 93 ° C, from a few hours to a few months; preferably, 66-85 ° C, at least 24 h.
  • The 2nd stage at a maximum temperature of 219 ° C, from 30 minutes to a few hours; preferably, 154 - 199 ° C, maximum 8 h.

Während die Festigkeitskennwerte und die Bruchzähigkeit erhöht werden, gewährleistet dieses Verfahren nicht die Stabilität der Eigenschaften von lithiumhaltigen Aluminiumlegierungen nach Niedrigtemperaturerwärmung bei 85 °C im Laufe von 1000 h, welche die Erwärmung durch die Sonne bei langdauerndem Betrieb von Fluggeräten simuliert. Nach Erwärmung auf 85°C über 1000 h verringern sich die relative Dehnung und die Bruchzähigkeit von nach dieser Methode behandelten lithiumhaltigen Legierungen um 25 - 30%.While the strength characteristics and fracture toughness are increased, this method does not ensure the stability of the properties of lithium-containing aluminum alloys after low temperature heating at 85 ° C over 1000 hours, which simulates solar heating during long-term operation of aircraft. After heating to 85 ° C for 1000 h, the relative elongation and fracture toughness of lithium-containing alloys treated by this method are reduced by 25-30%.

Erfindungsgemäß umfaßt ein Verfahren zur Lösung der gestellten Aufgabe die Verfahrensschritte

  • Erhitzen des Materials auf eine Temperatur von 400 bis 500 °C
  • Abschrecken in Wasser oder Luft - Richten mit einem Verformungsgrad bis zu 2 % und
  • künstliches Altern, wobei das künstliche Altern in 3 Stufen erfolgt, wovon die dritte Alterungsstufe bei 90 bis 110°C im Verlauf von 8 bis 14 h, stattfindet.
In accordance with the invention, a method for achieving the stated object comprises the method steps
  • Heating the material to a temperature of 400 to 500 ° C.
  • Quenching in water or air - straightening with a degree of deformation up to 2% and
  • artificial aging, wherein the artificial aging takes place in 3 stages, of which the third aging stage takes place at 90 to 110 ° C in the course of 8 to 14 hours.

Alternativ zur Durchführung der dritten Alterungsstufe bei einer konstanten Temperatur kann diese erfindungsgemäß auch in der Weise durchgeführt werden, daß ein Abkühlen mit einer Abkühlrate von 2 bis 8°C pro Stunde für 10 bis 30 h erfolgt.As an alternative to carrying out the third aging stage at a constant temperature, this invention can also be carried out in such a way that cooling takes place at a cooling rate of 2 to 8 ° C. per hour for 10 to 30 hours.

Es hat sich gezeigt, daß erfindungsgemäße Legierungen mit dem Merkmal des Patentanspruches 1 besonders vorteilhafte Eigenschaften im Sinne der Aufgabenstellung aufweisen, wenn sie nach dem vorgenannten Verfahren behandelt wurden.It has been shown that inventive alloys having the feature of claim 1 have particularly advantageous properties in the sense of the task, if they were treated by the aforementioned method.

Diese Verfahren zur Wärmebehandlung gewährleisten infolge der Anwendung einer dritten Alterungsstufe die thermische Stabilität der Legierungen nach langer Niedrigtemperatur-Auslagerung aufgrund der zusätzlichen Ausscheidung der dispersen Phase δ'-(Al3Li), welche gleichmäßig im Matrixvolumen verteilt ist. Das große Volumen der feinverteilten δ'-Phase reduziert die Li-Übersättigung des Mischkristalls und verhindert die δ'-Ausscheidung während der Auslagerung bei 85°C, 1000 h.These heat treatment processes, due to the use of a third aging step, ensure the thermal stability of the alloys after long low temperature aging due to the additional precipitation of the disperse phase δ '- (Al 3 Li) which is evenly distributed in the matrix volume. The large volume of the finely divided δ 'phase reduces Li supersaturation of the mixed crystal and prevents δ' precipitation during aging at 85 ° C, 1000 h.

Bei einer bevorzugten Ausführungsform der Verfahren nach Anspruch 2 oder Anspruch 3 erfolgt die erste Stufe der künstlichen Alterung bei einer Temperatur von 80 - 90°C im Verlauf von 3 - 12 h und eine zweite Stufe bei 110 - 185°C im Verlauf von 10 - 48 h.In a preferred embodiment of the method according to claim 2 or claim 3, the first stage of artificial aging takes place at a temperature of 80-90 ° C over 3 - 12 h and a second stage at 110 - 185 ° C over 10 - 48 h.

Durch das Einhalten dieser Grenzen werden besonders günstige Voraussetzungen für die Durchführung des künstlichen Alterns geschaffen und die Ergebnisse im Sinne der Aufgabenstellung mit großer Sicherheit erhalten.By adhering to these limits particularly favorable conditions for the implementation of artificial aging are created and obtained the results in the sense of the task with great certainty.

Schließlich kann alternativ eine zweite Stufe der künstlichen Alterung bei einer Temperatur von 110 bis 125°C und einer Dauer von 5 bis 12 h erfolgen, wobei diese Verfahrensparameter vorzugsweise anzuwenden sind, wenn die dritte Alterungsstufe entsprechend Patentanspruch 3 durchgeführt wird.Finally, alternatively, a second stage of artificial aging can be carried out at a temperature of 110 to 125 ° C and a duration of 5 to 12 hours, these method parameters are preferably applied when the third aging stage is carried out according to claim 3.

Ausführungsbeispiele:EXAMPLES

Von den Legierungen, deren chemische Zusammensetzung in Tab. 1 aufgeführt wird, wurden Barren von 70 mm Durchmesser gegossen. Das Metall wurde im Widerstandsofen erschmolzen. Nach der Homogenisierung (500 °C, 10 h) wurden aus den Barren Streifen mit einem Querschnitt von 15 x 65 mm gepreßt. Die Barren wurden vor dem Pressen auf eine Temperatur von 380 - 450 °C erwärmt. Walzblöcke aus den Streifen wurden auf 360 - 420 °C erwärmt und zu 4 mm dicken Blechen warmgewalzt, die dann bis auf 2,2 mm Dicke kaltgewalzt worden sind. Die kaltgewalzten Bleche wurden von einer Temperatur von 400 - 500 °C in Wasser oder an der Luft abgeschreckt, mit einem Verformungsgrad bis zu 2 % gerichtet und den in Tab. 2 aufgeführten Wärmebehandlungen unterzogen. Die Eigenschaften des Grundmaterials und der Schweißverbindungen wurden an Proben bestimmt, die aus diesen Blechen herausgeschnitten worden sind. (vergl. Tabelle 3) Tabelle Chemische Zusammensetzungen der untersuchten Kompositionen Legierung Nr. Li Mg Zn Zr Mn Hx 105 Be Y Sc Cr Cu Ni 1 2,2 1,2 5,0 - - - - - - 0,4 - - 2 2,4 3,8 3,9 0,18 0,50 - - - - - 0,96 0,2 3 1,5 6,0 0,1 0,15 0,60 0,9 0,2 - - 0,12 - - 4 1,9 5,2 0,8 0,10 0,01 4,5 0,001 - 0,01 - - - 5 1,7 4,1 1,5 0,30 0,05 2,5 - 0,25 - - - - 6 1,6 5,2 0,6 0,05 0,80 2,5 - 0,01 - 0,15 - - 7 1,85 4,8 0,5 0,09 0,20 3,5 - 0,50 - 0,50 - - 8 1,55 4,2 0,1 0,05 0,10 2,5 - - 0,30 - - - 9 1,9 4,7 0,1 0,15 0,35 2,5 0,1 - - 0,01 - - 10 1,5 4,3 0, 3 0,1 0,40 3,5 0,1 - - - - - Anmerkung: Die Legierungen Nr. 1 und 2 sind Vergleichsmaterialien
Die Legierungen Nr. 3 - 10 sind erfindungsgemäße Materialien
Tabelle 2 Verfahren zur Wärmebehandlung der untersuchten Legierungen Legierung Nr. Wärmebehandlung Nr. Wärmebehandlungsverfahren 3, 5, 9 3 80°C, 4 h + 185°C, 10 h + 110°C, 8 h 8,10 4 90°C, 3 h + 110°C, 48 h + 90°C, 14 h 4, 7 5 85°C, 5 h + 145°C, 25 h + 110°C, 10 h 6 6 85°C, 12 h + 120°C, 12 h + 90°C, 12 h Tabelle 3 Eigenschaften der untersuchten Legierungen Legierung Nr Wärmebehandlung Nr. σB, MPa σ0.2, MPa δ, % KCO, MPa√m (wo = 200 mm) Vor Auslagerung bei 85 ° C, 1000 h Nach Auslagerung bei 85 ° C, 1000 h 1 1 460 345 3,5 59,5 46,0 2 2 470 355 2,5 58,7 44,8 3 3 475 358 9,0 69,5 67,0 4, 7 5 473 347 8,0 68,3 66,8 5 3 458 345 8,5 67,8 66,7 6 6 450 338 10, 0 68,0 67,8 8, 10 4 452 340 9,5 66,8 65,9 9 3 460 345 9,0 65,5 63,3 Anmerkungen: Legierungen und Verfahren 1 und 2 sind Vergleichsmaterialien aus einem 2-stufigen Wärmebehandlungsverfahren.
Legierungen und Verfahren Nr. 3 - 10 entsprechen der Erfindung.
Of the alloys whose chemical composition is listed in Table 1, billets of 70 mm diameter were cast. The metal was melted in the resistance furnace. After homogenization (500 ° C, 10 h) strips were pressed from the billets with a cross section of 15 x 65 mm. The ingots were heated to a temperature of 380-450 ° C before being pressed. Rolled blocks from the strips were heated to 360 - 420 ° C and hot rolled to 4 mm thick sheets, which then up to 2.2 mm Thickness have been cold rolled. The cold-rolled sheets were quenched from a temperature of 400-500 ° C in water or air, with a degree of deformation up to 2%, and subjected to the heat treatments listed in Tab. The properties of the base material and welded joints were determined on samples cut from these sheets. (see Table 3) table Chemical compositions of the investigated compositions Alloy no. Li mg Zn Zr Mn Hx 10 5 Be Y sc Cr Cu Ni 1 2.2 1.2 5.0 - - - - - - 0.4 - - 2 2.4 3.8 3.9 0.18 0.50 - - - - - 0.96 0.2 3 1.5 6.0 0.1 0.15 0.60 0.9 0.2 - - 0.12 - - 4 1.9 5.2 0.8 0.10 0.01 4.5 0.001 - 0.01 - - - 5 1.7 4.1 1.5 0.30 0.05 2.5 - 0.25 - - - - 6 1.6 5.2 0.6 0.05 0.80 2.5 - 0.01 - 0.15 - - 7 1.85 4.8 0.5 0.09 0.20 3.5 - 0.50 - 0.50 - - 8th 1.55 4.2 0.1 0.05 0.10 2.5 - - 0.30 - - - 9 1.9 4.7 0.1 0.15 0.35 2.5 0.1 - - 0.01 - - 10 1.5 4.3 0, 3 0.1 0.40 3.5 0.1 - - - - - Note: Alloys Nos. 1 and 2 are comparative materials
Alloys Nos. 3-10 are materials according to the invention
Process for heat treatment of the investigated alloys Alloy no. Heat treatment no. Heat treatment method 3, 5, 9 3 80 ° C, 4 h + 185 ° C, 10 h + 110 ° C, 8 h 8.10 4 90 ° C, 3 h + 110 ° C, 48 h + 90 ° C, 14 h 4, 7 5 85 ° C, 5 h + 145 ° C, 25 h + 110 ° C, 10 h 6 6 85 ° C, 12 h + 120 ° C, 12 h + 90 ° C, 12 h Properties of the investigated alloys Alloy no Heat treatment no. σ B, MPa σ 0.2, MPa δ,% K CO , MPa√m (w o = 200 mm) Before aging at 85 ° C, 1000 h After aging at 85 ° C, 1000 h 1 1 460 345 3.5 59.5 46.0 2 2 470 355 2.5 58.7 44.8 3 3 475 358 9.0 69.5 67.0 4, 7 5 473 347 8.0 68.3 66.8 5 3 458 345 8.5 67.8 66.7 6 6 450 338 10, 0 68.0 67.8 8, 10 4 452 340 9.5 66.8 65.9 9 3 460 345 9.0 65.5 63.3 Notes: Alloys and Methods 1 and 2 are comparative materials from a 2-stage heat treatment process.
Alloys and methods Nos. 3 - 10 correspond to the invention.

Claims (5)

  1. Aluminium-based alloy which contains lithium, magnesium, zinc, zirconium and manganese, characterized in that the alloy additionally contains hydrogen and at least one element from the group consisting of beryllium, yttrium and scandium, with the following ratio of the components in per cent by mass: Lithium 1.5-1.9 Magnesium 4.1-6.0 Zinc 0.1-1.5 Zirconium 0.05-0.3 Manganese 0.01-0.8 Hydrogen 0.9 × 10-5-4.5 × 10-5
    at least one element selected from the following group: Beryllium 0.001-0.2 Yttrium 0.01-0.5 Scandium 0.01-0.3 Aluminium balance.
  2. Process for the heat treatment of aluminium-based alloys having lithium constituents according to Claim 1, which comprises the process steps
    - heating of the material to a temperature of 400-500°C
    - quenching in water or air
    - straightening with a degree of deformation of up to 2% and
    - artificial aging,
    characterized in that the artificial aging is carried out in three stages, with the second stage being carried out at a higher temperature than the first stage and the third aging stage being carried out at from 90 to 110°C over a period of from 8 to 14 hours.
  3. Process for the heat treatment of aluminium-based alloys according to Claim 1, which comprises the process steps:
    - heating of the material to a temperature of from 400 to 500°C
    - quenching in water or air
    - straightening with a degree of deformation of up to 2% and
    - artificial aging,
    characterized in that the artificial aging is carried out in three stages of which the third aging stage comprises cooling at a cooling rate of from 2 to 8°C per hour for from 10 to 30 hours.
  4. Process according to Claim 2 or Claim 3, characterized in that the first stage of the artificial aging is carried out at a temperature of 80-90°C over a period of 3-12 hours and a second stage is carried out at 110-185°C over a period of 10-48 hours.
  5. Process according to Claim 2 or Claim 3, characterized in that the first stage of the artificial aging is carried out at a temperature of 80-90°C over a period of 3-12 hours and a second stage is carried out at 110-125°C over a period of 5-12 hours.
EP98952615.7A 1997-09-22 1998-09-21 Aluminium based alloy and method for subjecting it to heat treatment Expired - Lifetime EP1017867B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
RU97116302A RU2126456C1 (en) 1997-09-22 1997-09-22 Aluminum-base alloy and method of its heat treatment
RU97116302 1997-09-22
RU98104394 1998-03-05
RU98104394A RU2133295C1 (en) 1998-03-05 1998-03-05 Aluminium-based alloy and method of thermal treatment thereof
PCT/EP1998/006010 WO1999015708A1 (en) 1997-09-22 1998-09-21 Aluminium based alloy and method for subjecting it to heat treatment

Publications (2)

Publication Number Publication Date
EP1017867A1 EP1017867A1 (en) 2000-07-12
EP1017867B1 true EP1017867B1 (en) 2013-11-06

Family

ID=26653936

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98952615.7A Expired - Lifetime EP1017867B1 (en) 1997-09-22 1998-09-21 Aluminium based alloy and method for subjecting it to heat treatment

Country Status (11)

Country Link
US (2) US6395111B1 (en)
EP (1) EP1017867B1 (en)
JP (1) JP4185247B2 (en)
KR (1) KR100540234B1 (en)
CN (1) CN1084799C (en)
AU (1) AU759402B2 (en)
BR (1) BR9812377B1 (en)
CA (1) CA2303595C (en)
ES (1) ES2445745T3 (en)
UA (1) UA66367C2 (en)
WO (1) WO1999015708A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030031580A1 (en) * 1995-02-24 2003-02-13 Guy-Michel Raynaud Product for a welded construction made of AlMgMn alloy having improved mechanical strength
EP1153152B1 (en) * 1998-12-18 2003-11-12 Corus Aluminium Walzprodukte GmbH Method for the manufacturing of an aluminium-magnesium-lithium alloy product
US7360676B2 (en) * 2002-09-21 2008-04-22 Universal Alloy Corporation Welded aluminum alloy structure
JP4231529B2 (en) * 2007-03-30 2009-03-04 株式会社神戸製鋼所 Aluminum alloy plate manufacturing method and aluminum alloy plate
CN100545285C (en) * 2008-02-27 2009-09-30 中国科学院长春应用化学研究所 A kind of millimeter-grade fin spacing radiation damp noise elimination alloy rod and direct extruding production
US8333853B2 (en) * 2009-01-16 2012-12-18 Alcoa Inc. Aging of aluminum alloys for improved combination of fatigue performance and strength
FR2975403B1 (en) * 2011-05-20 2018-11-02 Constellium Issoire MAGNESIUM LITHIUM ALUMINUM ALLOY WITH IMPROVED TENACITY
CN102912199A (en) * 2012-10-29 2013-02-06 虞海香 Aluminum alloy sheet for vehicle body
US20140127076A1 (en) * 2012-11-05 2014-05-08 Alcoa Inc. 5xxx-lithium aluminum alloys, and methods for producing the same
JP6385683B2 (en) 2014-02-07 2018-09-05 本田技研工業株式会社 Al alloy casting and manufacturing method thereof
RU2576283C1 (en) * 2014-09-05 2016-02-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Procedure for thermal treatment of items out of high strength aluminium alloys
WO2016130426A1 (en) 2015-02-11 2016-08-18 Scandium International Mining Corporation Scandium-containing master alloys and methods for making the same
FR3042508B1 (en) * 2015-10-15 2017-10-27 Constellium Issoire ALUMINUM-MAGNESIUM-ZIRCONIUM ALLOY THIN SHEETS FOR AEROSPATIAL APPLICATIONS
CN105483576A (en) * 2015-12-18 2016-04-13 西南铝业(集团)有限责任公司 Surface black and white spot control method in production of aluminum lithium alloy profile
CN105369170A (en) * 2015-12-18 2016-03-02 西南铝业(集团)有限责任公司 Aluminum lithium alloy profile black and white spot controlling method
KR20180046764A (en) * 2016-10-28 2018-05-09 금오공과대학교 산학협력단 Manufacturing method of hot stamping aluminuim case and hot stamping aluminuim case manufacturing by the method
CN114369777B (en) * 2022-01-12 2022-12-02 广东中色研达新材料科技股份有限公司 Heat treatment process for reducing room temperature parking effect of 6-series aluminum alloy
CN116103588A (en) * 2023-02-20 2023-05-12 西南铝业(集团)有限责任公司 Intermediate annealing process of 5A90 aluminum lithium alloy

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431467A (en) * 1982-08-13 1984-02-14 Aluminum Company Of America Aging process for 7000 series aluminum base alloys
US4636357A (en) 1982-10-05 1987-01-13 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Aluminum alloys
GB8327286D0 (en) 1983-10-12 1983-11-16 Alcan Int Ltd Aluminium alloys
DE3483607D1 (en) * 1983-12-30 1990-12-20 Boeing Co AGING AT RELATIVELY LOW TEMPERATURES OF LITHIUM-CONTAINING ALUMINUM ALLOYS.
US5226983A (en) * 1985-07-08 1993-07-13 Allied-Signal Inc. High strength, ductile, low density aluminum alloys and process for making same
US4861391A (en) 1987-12-14 1989-08-29 Aluminum Company Of America Aluminum alloy two-step aging method and article
US5422066A (en) * 1989-03-24 1995-06-06 Comalco Aluminium Limited Aluminum-lithium, aluminum-magnesium and magnesium-lithium alloys of high toughness
US5076859A (en) * 1989-12-26 1991-12-31 Aluminum Company Of America Heat treatment of aluminum-lithium alloys
GB9005365D0 (en) * 1990-03-09 1990-05-02 Alcan Int Ltd Spray cast aluminium-lithium alloys
GB9016694D0 (en) * 1990-07-30 1990-09-12 Alcan Int Ltd Ductile ultra-high strength aluminium alloy extrusions
US5133931A (en) * 1990-08-28 1992-07-28 Reynolds Metals Company Lithium aluminum alloy system
CA2190951A1 (en) * 1994-05-25 1995-11-30 William Troy Tack Aluminum-scandium alloys and uses thereof
GB9424970D0 (en) * 1994-12-10 1995-02-08 British Aerospace Thermal stabilisation of Al-Li alloy

Also Published As

Publication number Publication date
US20020056493A1 (en) 2002-05-16
UA66367C2 (en) 2004-05-17
US6395111B1 (en) 2002-05-28
KR20010015595A (en) 2001-02-26
CA2303595C (en) 2008-05-06
WO1999015708A1 (en) 1999-04-01
JP4185247B2 (en) 2008-11-26
WO1999015708B1 (en) 1999-06-03
BR9812377A (en) 2000-09-19
AU759402B2 (en) 2003-04-17
CN1271393A (en) 2000-10-25
US6461566B2 (en) 2002-10-08
AU1025099A (en) 1999-04-12
BR9812377B1 (en) 2011-05-31
CA2303595A1 (en) 1999-04-01
CN1084799C (en) 2002-05-15
JP2001517735A (en) 2001-10-09
ES2445745T3 (en) 2014-03-05
KR100540234B1 (en) 2006-01-10
EP1017867A1 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
EP1683882B1 (en) Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
EP1017867B1 (en) Aluminium based alloy and method for subjecting it to heat treatment
DE69212602T2 (en) HIGH-STRENGTH AL-CI ALLOY WITH LOW DENSITY
DE69117066T2 (en) IMPROVED AL-LI ALLOY SYSTEM
DE60202598T2 (en) ULTRA-HIGH-RESISTANCE EXTRACTOR-STAINLESS STAINLESS STEEL AND LONG-TERM STRIP MANUFACTURED THEREFROM
DE102013012259B3 (en) Aluminum material with improved precipitation hardening, process for its production and use of the aluminum material
DE69024418T2 (en) Titanium-based alloy and process for its superplastic shaping
DE68918377T2 (en) Reinforced composite material with aluminum matrix.
DE69325804T2 (en) HIGH-STRENGTH AL-LI ALLOY WITH LOW DENSITY AND HIGH TENSITY AT HIGH TEMPERATURES
EP0362351B1 (en) Process for producing an ODS sintered alloy and alloy obtainable by this process
DE69330679T2 (en) STRENGTH ANISOTROPY REDUCTION IN AL-LI ALLOYS BY COLD WORKING AND AGING
DE2517275B2 (en) Process for the production and further processing of a plastically deformable cast product based on an aluminum-silicon alloy and the use of the further processed cast product
DE10230709A1 (en) Weldable high strength Al-Mg-Si alloy
EP3176275B2 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
DE3024645A1 (en) TITANIUM ALLOY, ESPECIALLY TITANIUM-ALUMINUM ALLOY
DE2953182A1 (en) Aluminum alloy
DE3622433A1 (en) METHOD FOR IMPROVING THE STATIC AND DYNAMIC MECHANICAL PROPERTIES OF ((ALPHA) + SS) TIT ALLOYS
EP1518000B1 (en) Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product
DE69911648T2 (en) METHOD FOR PRODUCING AN ALUMINUM AUTOMATIC ALLOY
DE69825414T2 (en) Aluminum alloy and process for its preparation
EP1718778B1 (en) Material based on an aluminum alloy, method for the production thereof and its use
DE68913561T2 (en) Aluminum-lithium alloys.
DE2500084C3 (en) Process for the production of aluminum semi-finished products
WO2005003399A1 (en) Beta-titanium alloy, method for producing a hot-rolled product based on said alloy and the uses thereof
DE10163039C1 (en) Hot and cold formable component made of an aluminum alloy and process for its production

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VIAM ALL RUSSIAN INSTITUT OF AVIATION MATERIALS

Owner name: EADS DEUTSCHLAND GMBH

17Q First examination report despatched

Effective date: 20040219

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130515

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CHERTOVIKOV, VLADIMIR MIKHAJLOVICH

Inventor name: MOZHAROVSKIJ, SERGEJ MIKHAJLOVICH

Inventor name: KABLOV, EVGENIJ NIKOLAJEVICH

Inventor name: WINKLER, PETER-JUERGEN

Inventor name: KOLOBNEV,NIKOLAY IVANOVICH

Inventor name: GALKIN, DMITRIJ SERGEJEVICH

Inventor name: FRIDLYANDER, IOSIF NAUMOVICH

Inventor name: TOLCHENNIKOVA, ELENA GLEBOVNA

Inventor name: DAVYDOV, VALENTIN GEORGIJEVICH

Inventor name: KHOKHLATOVA, LARISA BAGRATOVNA

Inventor name: LOECHELT, ERWIN

Inventor name: PFANNENMUELLER, THOMAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 639558

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 59814541

Country of ref document: DE

Effective date: 20140102

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EADS DEUTSCHLAND GMBH

Owner name: VIAM ALL RUSSIAN INSTITUT OF AVIATION MATERIALS

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2445745

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140305

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140306

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 59814541

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

26N No opposition filed

Effective date: 20140807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 59814541

Country of ref document: DE

Effective date: 20140807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59814541

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140921

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59814541

Country of ref document: DE

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140921

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140207

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131106

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170928

Year of fee payment: 20

Ref country code: GB

Payment date: 20170921

Year of fee payment: 20

Ref country code: IT

Payment date: 20170926

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170922

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20171025

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180920

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 639558

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180920

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180922