EP1010939B1 - Brennkammer mit akustisch gedämpftem Brennstoffversorgungssystem - Google Patents
Brennkammer mit akustisch gedämpftem Brennstoffversorgungssystem Download PDFInfo
- Publication number
- EP1010939B1 EP1010939B1 EP98811230A EP98811230A EP1010939B1 EP 1010939 B1 EP1010939 B1 EP 1010939B1 EP 98811230 A EP98811230 A EP 98811230A EP 98811230 A EP98811230 A EP 98811230A EP 1010939 B1 EP1010939 B1 EP 1010939B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- volume
- fuel supply
- supply system
- burner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/36—Details, e.g. burner cooling means, noise reduction means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2210/00—Noise abatement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00014—Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
Definitions
- the present invention relates to the field of burners, in particular the burner for use in gas turbines. It concerns a burner with a fuel supply system, in which the fuel supply system is fuel transported to the burner, the fuel in the burner into a combustion chamber is injected where the fuel is burned.
- Burners of gas turbines serve the fuel and the combustion air in a controlled manner and controllably inject into a combustion chamber and there to burn the fuel.
- the burners can be used in many different ways Arrangement in the wall of the combustion chamber, and will be charged with fuel by means of a fuel supply system.
- the injection The fuel in the burner must be in order to optimally control the combustion process in the various operating states of the turbine ensure controllable and done in the best possible way.
- More and more strict regulations regarding emissions of combustion processes make a highly specialized and complicated injection and mixing of combustion air and fuel in the Burner essential.
- EP-B1-0 321 809 describes a so-called double-cone burner become known for liquid and gaseous fuels without a premix section, in which combustion air supplied from the outside through at least two inlet slots tangentially between displaced, hollow half-cones enters and flows there towards the combustion chamber, and in which on the Combustion chamber facing away, tapered side of the half-cones fuel centrally or from distribution channels that run along the air inlet slots Rows of holes are injected transversely into the incoming air.
- acoustic oscillations which also under the term "singing flame” are known. These are mostly oscillations, which from the interaction of inflows of the combustion mixture and the actual combustion process in the combustion chamber.
- These largely coherently periodic pressure fluctuations can, for example with a burner of the type mentioned above under typical operating conditions to acoustic vibrations with frequencies of about 80 to 100 Hz to lead. Since these frequencies have typical fundamental eigenmodes of Combustion chambers of gas turbines can collapse, make them thermoacoustic Oscillations are a problem.
- WO93 / 10401 is a device for suppressing combustion vibrations known in a combustion chamber of a gas turbine plant.
- Fuel supply lines of the burner acoustically effective elements such as Helmholtz resonators or resonance pipes arranged.
- the invention is therefore based on the object, a burner with at least a fuel supply system through which a fuel flow to the burner is supplied, the supplied fuel is injected via fuel nozzles, and then burned in a combustion chamber provide who is able to train and reinforce periodic To prevent pressure fluctuations in the combustion chamber at least partially.
- a first preferred embodiment of the invention is characterized in that that the means at least a first, immediately upstream of the fuel nozzles arranged volume comprise, through which volume the fuel flow flows, and that this first volume is upstream over a first Narrowing with the fuel delivery system located further upstream communicates.
- This first volume is essentially preferred chosen smaller than a certain critical volume, and especially continues the cross-sectional area of the first constriction is smaller than a certain critical Cross-sectional area formed.
- Another embodiment of the invention is characterized in that a second volume is arranged upstream of the first constriction which the fuel stream flows, and that this second volume upstream via a second constriction with the one located further upstream Fuel supply system is connected.
- This arrangement allows the effective prevention of the coupling under special, essentially unchangeable Design specifications of the burner and the fuel supply system.
- the fuel supply system can be viewed acoustically, as shown in FIG. 1, as a throttle, that is to say as an opening 10 with a negligible length and cross-sectional area A F , through which fuel the density ⁇ F from a large volume at pressure p F into another large one Volume, the combustion chamber 11, flows at pressure p l . It is assumed that the following applies: p F > p l . In addition, it is assumed that the fuel supply volume has a constant pressure p F , while the pressure in the injection space p l can be subject to fluctuations.
- the pressure fluctuations in the injection space therefore have a directly linear effect to fluctuations in fuel injection speed 12 and vice versa, i.e. there is a direct coupling of the two sizes.
- ⁇ 1 the critical fuel injection velocity u FC here compared to simple injection systems at least to the value
- the use of check valves with a second, upstream opening of variable cross-sectional area In this case, the pressure drop across the fuel supply system can be kept to a minimum even for very low fuel injection speeds.
- a fuel nozzle of cross-sectional area AF with an upstream fuel supply line of length L and cross-sectional area AT forms an acoustic coupling of the shape leads, where c F represents the speed of sound in the fuel gas.
- FIG. 3 schematically shows a burner of the applicant's type EV17i, such as that installed in a applicant's type GT26 gas turbine.
- the fuel is supplied to the burner 14 via a fuel supply line 15.
- the line 15 initially opens into an annular distribution chamber 16, from which fuel distribution channels run along the conical outer surface of the double-cone burner.
- These distribution channels have, on the side facing the burner, a plurality of fuel nozzles 10 through which the fuel can flow into the burner and thus into the combustion chamber 11.
- the diameter of the fuel feed 15 is approximately 38 mm, although according to the above criterion it should not be more than 21 mm.
- a simple way of acoustically hardening the specified structure is the introduction of a Helmholtz volume with a suitable cross-sectional area A and length l between the fuel supply line 15 and the fuel nozzles 10, as is shown schematically in FIG. 2b). It is of great advantage to set the dimensioning of the volume and the constriction in such a way that at least one resonance of the fuel supply system coincides with the most important fundamental acoustic natural frequency of the combustion chamber.
- the response function a ( ⁇ ) can be calculated.
- Size unit value print bar 18 Nozzle cross-sectional area m 2 0.000111 Temperature of methane K 323 Mass flow of methane kg / s 0167 Length of the line m 2 Diameter of the pipe m 0038 Length of the first volume m 0.1 Cross-sectional area of the first volume m 2 6.5e-3
- the damping factor a ( ⁇ ) (attenuation factor) as a function of the frequency of the pressure fluctuations under consideration for the conditions listed in Table 1 is shown in FIG.
- FIG. 4 shows that the damping occurs only in narrow areas around the resonance frequencies of the fuel supply system. It can also be clearly seen from FIG.
- the fuel supply system behaves like a simple and almost completely undamped throttle, and thus the resonance behavior of the fuel supply system does not at all match that of the combustion chamber is coordinated.
- a line constriction 17 as also shown in FIG. 3, is now introduced into the fuel supply line 15, the resonance frequency of the fuel supply system shifts and widens in the range from 90 to 100 Hz and the minimum value of a at this frequency is approximately 0.35-0.4.
- This is done by simply using an insert 17 (or a constriction in the line caused in another way) of 300 mm in length and an inside diameter of 21 mm.
- a further improvement can be achieved with the values given in table 2 by increasing the length of the insert 17 from 300 mm to 500 mm and additionally reducing the first volume from 650 cm 3 to 400 cm 3 .
- the resulting absorption profile is shown in FIG. 6, it shows in the resonance range from 90 to 100Hz an absorption of remarkable 90% in Compared to the simple throttle.
- the acoustic hardening of a burner of the type EV18 from the applicant, as it is installed in a gas turbine of the type GT26, is to serve as a further exemplary embodiment.
- the fuel is fed to the burner 14 via annular fuel distribution lines 18, which jointly supply the burners arranged in a ring in the annular combustion chamber of the turbine.
- the fuel branches off from the annular fuel distribution line 18 via a second constriction 19 and enters a volume which is normally formed by the volumes 20 and 22 without the partition wall 23 shown in FIG. 8 and the first constriction 21.
- the fuel is guided through the fuel distribution channels 22 along the cone of the burner 14 and passes through the fuel nozzles 10 into the combustion chamber 11, where it is mixed with combustion air.
- the easiest way to do this is to arrange two volumes upstream of the fuel nozzle 10 and connected to the fuel supply line via two constrictions, as is shown schematically in FIG.
- a possible technical implementation is shown in Figure 8.
- a partition 23 separates the large volume into the fuel distribution channels 22 and a second volume 20, and a constriction 21 which is wound around the burner and is designed as a line connects the two volumes.
- the absorption characteristic in FIG. 9 is obtained.
- Size unit value print bar 18 Nozzle cross-sectional area m 2 9.08e-5 Temperature of methane K 323 Mass flow of methane kg / s 0133 Length of the second narrowing m 00:04 Cross-sectional area of the second constriction m 2 0.000314 Second volume m 3 0.0015 Length of the first narrowing m 1.2 Cross-sectional area of the first constriction m 2 0.000314 First volume m 3 0.00015
- this arrangement and dimensioning are used a perfect damping of the two volumes connected in series acoustic coupling with the natural frequency of the combustion chamber of approx. 90 Hz a considerable width of the resonance condition, with a deviation of approx. ⁇ 30Hz namely 2/3 are still absorbed by the resonance condition.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Description
- Fig. 1
- zeigt eine schematische Darstellung einer Drossel zwecks Einführung der im weiteren verwendeten Terminologie;
- Fig. 2
- zeigt schematisch in a) eine Drossel mit vorgeschalteter Verengung und in b) eine Drossel vorgeschaltetem Volumen;
- Fig. 3
- zeigt eine schematische Darstellung eines Brenners des Typs EV17i der Anmelderin mit akustischen Dämpfungsmitteln im Brennstoffversorgungssystem;
- Fig. 4
- zeigt das Ankopplungsverhalten zwischen Druckschwankungen und Brennstoffstromschwankungen für einen Brenner des Typs EV17i der Anmelderin ohne akustische Dämpfungsmittel im Brennstoffversorgungssystem;
- Fig. 5 und 6
- zeigen das Ankopplungsverhalten zwischen Druckschwankungen und Brennstoffstromschwankungen für einen Brenner des Typs EV17i der Anmelderin mit verschiedenen akustischen Dämpfungsmitteln im Brennstoffversorgungssystem,
- Fig. 7
- zeigt schematisch eine Drossel mit zwei vorgeschalteten Volumina;
- Fig. 8
- zeigt schematisch einen Brenner des Typs EV18 der Anmelderin, wie er in einer Turbine des Typs GT26 der Anmelderin eingebaut ist, mit akustischen Dämpfungsmitteln im Brennstoffversorgungssystem; und
- Fig. 9
- zeigt das Ankopplungsverhalten zwischen Druckschwankungen und Brennstoffstromschwankungen für einen Brenner des Typs EV18 der Anmelderin, wie er in einer Turbine des Typs GT26 der Anmelderin eingebaut ist, mit akustischen Dämpfungsmitteln im Brennstoffversorgungssystem.
Grösse | Einheit | Wert |
Druck | bar | 18 |
Düsenquerschnittsfläche | m2 | 0.000111 |
Temperatur von Methan | K | 323 |
Massenfluss von Methan | kg/s | 0.167 |
Länge der Leitung | m | 2 |
Durchmesser der Leitung | m | 0.038 |
Länge des ersten Volumens | m | 0.1 |
Querschnittsfläche des ersten Volumens | m2 | 6.5e-3 |
Grösse | Einheit | Wert |
Druck | bar | 18 |
Düsenquerschnittsfläche | m 2 | 0.000111 |
Temperatur von Methan | K | 323 |
Massenfluss von Methan | kg/s | 0.167 |
Länge der Leitung | m | 0.5 |
Durchmesser der Leitung | m | 0.021 |
Länge des ersten Volumens | m | 0.1 |
Querschnittsfläche des ersten Volumens | m2 | 4.0e-3 |
Grösse | Einheit | Wert |
Druck | bar | 18 |
Düsenquerschnittsfläche | m2 | 0.000111 |
Temperatur von Methan | K | 323 |
Massenfluss von Methan | kg/s | 0.167 |
Länge der Leitung | m | 1 |
Durchmesser der Leitung | m | 0.021 |
Länge des ersten Volumens | m | 0.05 |
Querschnittsfläche des ersten Volumens | m2 | 2.0e-3 |
Grösse | Einheit | Wert |
Druck | bar | 18 |
Düsenquerschnittsfläche | m2 | 9.08e-5 |
Temperatur von Methan | K | 323 |
Massenfluss von Methan | kg/s | 0.133 |
Länge der zweiten Verengung | m | 0.04 |
Querschnittsfläche der zweiten Verengung | m2 | 0.000314 |
Zweites Volumen | m3 | 0.0015 |
Länge der ersten Verengung | m | 1.2 |
Querschnittsfläche der ersten Verengung | m2 | 0.000314 |
Erstes Volumen | m3 | 0.00015 |
- 10
- Brennstoffdüse
- 11
- Brennkammer
- 12
- Brennstoffinjektionsgeschwindigkeit, Brennstoffstrom
- 13
- erstes Volumen
- 14
- Brenner
- 15
- Brennstoffzufuhrleitung
- 16
- ringförmiger Verteilraum
- 17
- Leitungsverengung
- 18
- ringförmige Brennstoffverteilleitung
- 19
- zweite Verengung
- 20
- zweites Volumen
- 21
- erste Verengung
- 22
- Brennstoffverteilkanal, erstes Volumen
- 23
- Trennwand
Claims (10)
- Brenner (14) einer Brennkammer mit wenigstens einem Brennstoffversorgungssystem (15, 16, 18, 20, 22), durch welches dem Brenner (14) ein Brennstoffstrom (12) zuführbar ist und welches mit im Brenner (14) angeordneten Brennstoffdüsen (10) verbunden ist, wobei wenigstens ein erstes, unmittelbar stromaufwärts der Brennstoffdüsen (10) angeordnetes Helmholz-Volumen (16, 22) umfassen, durch welches Volumen (16, 22) der Brennstoffstrom fliesst, vorgesehen ist, weiches verhindert, dass in der Brennkammer auftretende periodische Druckschwankungen zu Schwankungen des Brennstoffstroms (12) im Brennstoffversorgungssystem (15, 16, 18, 20, 22) führen, und dass dieses erste Helmholz-Volumen (16, 22) stromaufwärts über eine erste Verengung (17, 21) mit dem weiter stromaufwärts angeordneten Brennstoffzufuhrsystem (15, 18, 20) in Verbindung steht, dadurch gekennzeichnet, dass
die erste Verengung (17) durch einen röhrenförmigen Einschub in eine stromaufwärts des ersten Helmholz-Volumens (16) angeordnete Brennstoffzufuhrleitung (15) oder durch einen verjüngten Leitungsabschnitt zwischen der Brennstoffzufuhrleitung (15) und dem ersten Helmholz-Volumen (16) gebildet ist. - Brenner (14) mit Brennstoffversorgungssystem (15,16,18,20,22) nach Anspruch 1,
dadurch gekennzeichnet, dass
die in der Brennkammer (11) auftretenden periodischen Druckschwankungen akustische Schwingungen sind, und dass diese im Bereich der akustischen Eigenschwingungen der Brennkammer (11) liegen. - Brenner (14) mit Brennstoffversorgungssystem (15,16,18,20,22) nach Anspruch 2,
dadurch gekennzeichnet, dass
die Schwankungen des Brennstoffstroms (12) im Brennstoffversorgungssystem (15,16,18,20,22) periodisch sind, und dass insbesondere die Frequenz dieser periodischen Schwankungen des Brennstoffstroms (12) im Bereich der akustischen Eigenschwingungen der Brennkammer (11) liegt. - Brenner (14) mit Brennstoffversorgungssystem (15,16,18,20,22) nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass
das erste Helmholz-Volumen (16,22) kleiner ist als ein kritisches Volumen (Vcrit), und dass das kritische Volumen (Vcrit) näherungsweise gegeben ist als der Quotient aus dem Produkt der Querschnittfläche (AF) der Öffnung der Brennstoffdüse (10) und dem Quadrat der Schallgeschwindigkeit (cF) im ersten Volumen (16,22), und dem Produkt der Kreisfrequenz (ω) der akustischen Schwingung und der Strömungsgeschwindigkeit (uF) des Brennstoffstroms (12). - Brenner (14) mit Brennstoffversorgungssystem (15,16,18,20,22) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass
die erste Verengung (17,21) eine Querschnittfläche (AT) aufweist, welche im wesentlichen kleiner oder gleich dem Produkt aus der Querschnittsfläche (AF) der Brennstoffdüse (10) und inverser Machzahl (1/M=cF/uF) ist. - Brenner (14) mit Brennstoffversorgungssystem (15,16,18,20,22) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass
die Dimensionierungen von erstem Helmholz-Volumen (16,22) und erster Verengung (17,21) derart gewählt sind, dass eine Resonanz der Absorption des Brennstoffversorgungssystems im wesentlichen im Bereich der Eigenmoden der Brennkammer (11) liegt. - Brenner (14) mit Brennstoffversorgungssystem (15,16,18,20,22) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass
das erste Helmholz-Volumen (16) durch einen ringförmigen Verteilraum und durch stromabwärts davon angeordnete, wenigstens teilweise ausserhalb des Brenners (14) verlaufende Verteilkanäle gebildet wird, und dass der Brennstoff aus den Verteilkanälen durch die Brennstoffdüsen (10) in die Brennkammer (11) strömt. - Brenner (14) mit Brennstoffversorgungssystem (18,20,22) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass
stromaufwärts der ersten Verengung (21) ein zweites Helmholz-Volumen (20) angeordnet ist, durch welches der Brennstoffstrom (12) fliesst, und dass dieses zweite Helmholz-Volumen (20) stromaufwärts über eine zweite Verengung (19) mit dem weiter stromaufwärts angeordneten Brennstoffzufuhrsystem (18) in Verbindung steht. - Brenner (14) mit Brennstoffversorgungssystem (15,16,18,20,22) nach Anspruch 8,
dadurch gekennzeichnet, dass
die Dimensionierungen von erstem Helmholz-Volumen (22) und zweitem Helmholz-Volumen (20) und erster Verengung (21) und zweiter Verengung (19) derart gewählt sind, dass eine Resonanz der Absorption des Brennstoffversorgungssystems im wesentlichen im Bereich der Eigenmoden der Brennkammer (11) liegt. - Brenner (14) mit Brennstoffversorgungssystem (18,20,22) nach einem der Ansprüche 8
oder 9, dadurch gekennzeichnet, dass
die erste Verengung (21) als Leitung geringen Querschnitts ausgebildet ist, welche das erste Helmholz-Volumen (22) mit dem vom ersten Helmholz-Volumen (22) mit einer Trennwand (23) abgetrennten zweiten Helmholz-Volumen (20) verbindet.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE59810760T DE59810760D1 (de) | 1998-12-15 | 1998-12-15 | Brennkammer mit akustisch gedämpftem Brennstoffversorgungssystem |
EP98811230A EP1010939B1 (de) | 1998-12-15 | 1998-12-15 | Brennkammer mit akustisch gedämpftem Brennstoffversorgungssystem |
US09/458,095 US6305927B1 (en) | 1998-12-15 | 1999-12-10 | Burner with acoustically damped fuel supply system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98811230A EP1010939B1 (de) | 1998-12-15 | 1998-12-15 | Brennkammer mit akustisch gedämpftem Brennstoffversorgungssystem |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1010939A1 EP1010939A1 (de) | 2000-06-21 |
EP1010939B1 true EP1010939B1 (de) | 2004-02-11 |
Family
ID=8236485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98811230A Expired - Lifetime EP1010939B1 (de) | 1998-12-15 | 1998-12-15 | Brennkammer mit akustisch gedämpftem Brennstoffversorgungssystem |
Country Status (3)
Country | Link |
---|---|
US (1) | US6305927B1 (de) |
EP (1) | EP1010939B1 (de) |
DE (1) | DE59810760D1 (de) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1342952A1 (de) * | 2002-03-07 | 2003-09-10 | Siemens Aktiengesellschaft | Brenner, Verfahren zum Betrieb eines Brenners und Gasturbine |
EP1342953A1 (de) * | 2002-03-07 | 2003-09-10 | Siemens Aktiengesellschaft | Gasturbine |
US6820431B2 (en) * | 2002-10-31 | 2004-11-23 | General Electric Company | Acoustic impedance-matched fuel nozzle device and tunable fuel injection resonator assembly |
US7832211B2 (en) * | 2002-12-02 | 2010-11-16 | Mitsubishi Heavy Industries, Ltd. | Gas turbine combustor and a gas turbine equipped therewith |
US8028512B2 (en) | 2007-11-28 | 2011-10-04 | Solar Turbines Inc. | Active combustion control for a turbine engine |
JP5357631B2 (ja) * | 2009-06-09 | 2013-12-04 | 三菱重工業株式会社 | 燃料ノズル、これを備えた燃焼器及びガスタービン |
US8474265B2 (en) | 2009-07-29 | 2013-07-02 | General Electric Company | Fuel nozzle for a turbine combustor, and methods of forming same |
US8322140B2 (en) * | 2010-01-04 | 2012-12-04 | General Electric Company | Fuel system acoustic feature to mitigate combustion dynamics for multi-nozzle dry low NOx combustion system and method |
EP2397760B1 (de) * | 2010-06-16 | 2020-11-18 | Ansaldo Energia IP UK Limited | Dämpfungsanordnung und Verfahren zu deren Entwurf |
US9127837B2 (en) * | 2010-06-22 | 2015-09-08 | Carrier Corporation | Low pressure drop, low NOx, induced draft gas heaters |
US9188340B2 (en) * | 2011-11-18 | 2015-11-17 | General Electric Company | Gas turbine combustor endcover with adjustable flow restrictor and related method |
US9400108B2 (en) | 2013-05-14 | 2016-07-26 | Siemens Aktiengesellschaft | Acoustic damping system for a combustor of a gas turbine engine |
DE102019110258A1 (de) | 2019-04-15 | 2020-10-15 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Injektorvorrichtung für eine Triebwerksvorrichtung, Triebwerksvorrichtung und Luft- und/oder Raumfahrzeug |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1702731A (en) * | 1929-02-19 | Method of and apparatus for combustion otf | ||
US804002A (en) * | 1903-10-10 | 1905-11-07 | Eugene Alfred Javal | Gas-blowpipe. |
US2765004A (en) * | 1953-07-21 | 1956-10-02 | Harold W Williams | Dropper assembly |
US2943641A (en) * | 1956-01-30 | 1960-07-05 | Richfield Oil Corp | Device for attenuating pulsative flow in gases |
US3807527A (en) * | 1973-03-14 | 1974-04-30 | Tenneco Inc | Pulse converter for exhaust system |
US4464314A (en) * | 1980-01-02 | 1984-08-07 | Surovikin Vitaly F | Aerodynamic apparatus for mixing components of a fuel mixture |
JPS57108512A (en) * | 1980-12-26 | 1982-07-06 | Babcock Hitachi Kk | Gas burner |
US4760695A (en) * | 1986-08-28 | 1988-08-02 | United Technologies Corporation | Acoustic oscillatory pressure control for ramjet |
CH674561A5 (de) | 1987-12-21 | 1990-06-15 | Bbc Brown Boveri & Cie | |
EP0611434A1 (de) * | 1991-11-15 | 1994-08-24 | Siemens Aktiengesellschaft | Einrichtung zur unterdrückung von verbrennungsschwingungen in einer brennkammer einer gasturbinenanlage |
US5349813A (en) * | 1992-11-09 | 1994-09-27 | Foster Wheeler Energy Corporation | Vibration of systems comprised of hot and cold components |
US5494438A (en) * | 1994-02-08 | 1996-02-27 | National Science Council | Sudden expansion combustion chamber with slotted inlet port |
IT1278601B1 (it) * | 1994-07-05 | 1997-11-24 | Necchi Compressori | Silenziatore per motocompressore, per apparati frigoriferi |
DE19504610C2 (de) * | 1995-02-13 | 2003-06-18 | Alstom | Vorrichtung zur Dämpfung thermoakustischer Druckschwingungen |
DE19542918A1 (de) * | 1995-11-17 | 1997-05-22 | Asea Brown Boveri | Vorrichtung zur Dämpfung thermoakustischer Druckschwingungen |
US6058709A (en) * | 1996-11-06 | 2000-05-09 | The United States Of America Represented By The United States Department Of Energy | Dynamically balanced fuel nozzle and method of operation |
DE19649486A1 (de) * | 1996-11-29 | 1998-06-04 | Abb Research Ltd | Brennkammer |
-
1998
- 1998-12-15 DE DE59810760T patent/DE59810760D1/de not_active Expired - Lifetime
- 1998-12-15 EP EP98811230A patent/EP1010939B1/de not_active Expired - Lifetime
-
1999
- 1999-12-10 US US09/458,095 patent/US6305927B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US6305927B1 (en) | 2001-10-23 |
DE59810760D1 (de) | 2004-03-18 |
EP1010939A1 (de) | 2000-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60007946T2 (de) | Eine Brennkammer | |
EP1010939B1 (de) | Brennkammer mit akustisch gedämpftem Brennstoffversorgungssystem | |
DE10205839B4 (de) | Vormischbrenner zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen | |
EP0985882B1 (de) | Schwingungsdämpfung in Brennkammern | |
EP0571782B1 (de) | Verfahren zum Betrieb einer Brennkammer einer Gasturbine | |
DE69308383T2 (de) | Verfahren und Vorrichtung zum Verhindern der Konzentrierungschwingungen von Luft-Kraftstoff in einer Brennkammer | |
EP1864056B1 (de) | Vormischbrenner für eine gasturbinenbrennkammer | |
EP2318672A1 (de) | Verfahren zum einstellen eines helmholtz-resonators sowie helmholtz-resonator zur durchführung des verfahrens | |
DE19948674B4 (de) | Verbrennungseinrichtung, insbesondere für den Antrieb von Gasturbinen | |
EP1199516A1 (de) | Brenner | |
EP1730447A1 (de) | Brenner | |
EP1828684A1 (de) | Vormischbrenner mit mischstrecke | |
EP0276696A2 (de) | Hybridbrenner für Vormischbetrieb mit Gas und/oder Öl, insbesondere für Gasturbinenanlagen | |
EP0687860A2 (de) | Brennkammer mit Selbstzündung | |
EP0592717A1 (de) | Gasbetriebener Vormischbrenner | |
EP0719983A1 (de) | Verfahren und Vorrichtung zum Zuleiten eines gasförmigen Brennstoffs in einen Vormischbrenner | |
EP0971172B1 (de) | Brennkammer für eine Gasturbine mit schalldämpfender Wandstruktur | |
EP1463911B1 (de) | Brenner mit gestufter brennstoffeinspritzung | |
EP0481111A1 (de) | Brennkammer einer Gasturbine | |
EP1738112B1 (de) | Raketentriebwerk mit dämpfung von schwingungen der brennkammer durch resonatoren | |
EP0974788A1 (de) | Vorrichtung zur gezielten Schalldämpfung innerhalb einer Strömungsmaschine | |
DE19939235B4 (de) | Verfahren zum Erzeugen von heissen Gasen in einer Verbrennungseinrichtung sowie Verbrennungseinrichtung zur Durchführung des Verfahrens | |
WO2005121649A2 (de) | Injektor für flüssigbrennstoff sowie gestufter vormischbrenner mit diesem injektor | |
EP0742411B1 (de) | Luftzuströmung zu einer Vormischbrennkammer | |
EP0882932B1 (de) | Brennkammer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20001027 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM POWER (SCHWEIZ) AG |
|
AKX | Designation fees paid |
Free format text: DE FR GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM |
|
17Q | First examination report despatched |
Effective date: 20020325 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59810760 Country of ref document: DE Date of ref document: 20040318 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040520 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20041112 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59810760 Country of ref document: DE Representative=s name: UWE ROESLER, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20120802 AND 20120808 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59810760 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Effective date: 20120713 Ref country code: DE Ref legal event code: R081 Ref document number: 59810760 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH Effective date: 20120713 Ref country code: DE Ref legal event code: R081 Ref document number: 59810760 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH Effective date: 20120713 Ref country code: DE Ref legal event code: R081 Ref document number: 59810760 Country of ref document: DE Owner name: ALSTOM TECHNOLOGY LTD., CH Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH Effective date: 20120713 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: ALSTOM TECHNOLOGY LTD., CH Effective date: 20120918 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59810760 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 59810760 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 59810760 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: ALSTOM TECHNOLOGY LTD, CH Effective date: 20161110 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20161222 Year of fee payment: 19 Ref country code: DE Payment date: 20161213 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20161222 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59810760 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 59810760 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170824 AND 20170830 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Effective date: 20171221 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59810760 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171215 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180703 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171215 |