[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1008803B1 - Feedwater preheater for steam power plants - Google Patents

Feedwater preheater for steam power plants Download PDF

Info

Publication number
EP1008803B1
EP1008803B1 EP19980811222 EP98811222A EP1008803B1 EP 1008803 B1 EP1008803 B1 EP 1008803B1 EP 19980811222 EP19980811222 EP 19980811222 EP 98811222 A EP98811222 A EP 98811222A EP 1008803 B1 EP1008803 B1 EP 1008803B1
Authority
EP
European Patent Office
Prior art keywords
preheater
heat exchange
partition
steam
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19980811222
Other languages
German (de)
French (fr)
Other versions
EP1008803A1 (en
Inventor
Mustafa Dr. Youssef
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to DE59807987T priority Critical patent/DE59807987D1/en
Priority to EP19980811222 priority patent/EP1008803B1/en
Priority to IDP991139D priority patent/ID24396A/en
Priority to AU64518/99A priority patent/AU762513B2/en
Publication of EP1008803A1 publication Critical patent/EP1008803A1/en
Application granted granted Critical
Publication of EP1008803B1 publication Critical patent/EP1008803B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/32Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines

Definitions

  • the invention relates to a preheater in a steam power plant for heating of water for the water-steam cycle of the power plant through heat exchange between tapping steam from turbines and water flowing in pipes.
  • the Invention deals with so-called duplex and multiplex preheaters, in which are two or more preheaters of different levels and pressures in one Housing are housed.
  • the preheaters are in series on the water side and connected on the steam side in parallel.
  • the invention particularly relates to Construction of bundle carriers and a partition wall, the two or more Separates the preheater within the preheater housing.
  • a duplex preheater is described, for example, in BWK, volume 37 (1985) No. 10, Oct., p. 387-396.
  • This preheater has two in its housing Heat exchange rooms each with a steam inlet connection and a tube bundle with associated water inlet and water outlet. In the two heat exchange rooms is with tapping steam of different temperature and different pressure headed. The pressure ranges of the heat exchange rooms are separated from each other by a self-closing partition.
  • the water chamber for the water to be warmed up through the tube bundle is divided into four compartments by two shirts, in which the Water inlets and water outlets of the two tube bundles are arranged.
  • DE 195 11 264 describes a duplex preheater with an elongated, cylindrical outer housing.
  • the first heat exchange room is in an elongated inner housing during the second heat exchange space through the Inside of the outer case and the outer of the inner case of the first Heat exchange room is formed.
  • the separation between the two pressure areas consists of a complete inner housing. This is on on one side by a semicircular and on the other side by a straight, vertical wall.
  • duplex preheater is disclosed in DE 195 37 478.
  • the preheater has a straight, vertical partition inside, which separates the two Separates heat exchange rooms or pressure areas.
  • This object is achieved by a duplex or multiplex preheater with an outer housing or steam jacket, in which two or more heat exchange modules are accommodated, each of which is separated from one another by a partition wall, a heat exchanger tube bundle supported by support plates being arranged in each heat exchange module.
  • the cross-section of the dividing wall between the heat exchange rooms is designed in a zigzag shape.
  • the dividing wall has a high middle part, which extends over the area of the support plates, and two short parts, which extend from both ends of the middle part under a bend to the middle part in each case towards the steam jacket and are welded to the steam jacket. Due to the pressure difference between the heat exchange rooms, there is a compressive force on the partition.
  • the partition is made zigzag and is therefore flexible, so that it yields to the compressive force by moving and bending only very slightly.
  • the zigzag shape of the partition wall allows the wall to move when the pressure is exerted, with the middle part of the partition wall shifting By moving the partition, the partition comes into contact with the support plates, which in turn come into contact with the steam jacket.
  • the partition is double-walled, in that at least over the area of the high central part of the partition two walls run parallel to one another and there is a space between them.
  • the support plates of the tube bundles have inner and outer wings, of which the inner ones extend to the partition wall and the outer ones to the steam jacket. They are arranged with respect to the partition wall and the steam jacket so that the partition wall comes into contact with the inner wings and the outer wings come into contact with the steam jacket. The pressure force is also transmitted to the steam jacket via the wings of the support plates.
  • sheets are arranged in the space between the individual walls, which come into contact with the walls of the partition when the pressure is applied.
  • the invention relieves the dividing wall of the compressive force by transmitting the compressive force from the dividing wall to the support plates and the jacket of the preheater housing.
  • This makes it possible to manufacture the walls of the double partition wall thinly and inexpensively with little material.
  • the zigzag shape of the partition has the advantage that it allows deformations due to thermal expansion.
  • the straight-line displacement of its long middle section has only a minor effect on the welds on the steam jacket.
  • the double-walled partition also has the advantage of thermal insulation. Compared to a single preheater, a duplex preheater causes additional heat losses. These are reduced by the thermal insulation of the double wall.
  • Figure 1 shows the exterior of a duplex preheater with an outer housing or steam jacket 1.
  • On the steam jacket 1 there are steam inlet connections 3 and 4 appropriate.
  • Steam is, for example, via the two steam inlet connections 3 from a first tap stage of a low-pressure turbine to a first one Preheater room in the interior of the jacket 1 passed while on the steam inlet nozzle 4 steam from a second tap stage of a low-pressure turbine, is passed into a second preheater room within the jacket 1.
  • a tube plate 15 is arranged in which Tubes of U-shaped tube bundles for the two heat exchangers are anchored.
  • the tube sheet 15 is connected to a water chamber 2 with four partial water chambers 11 ', 12', 13 ', 14' a water inlet nozzle 7 and one Water outlet connector 8.
  • the water to be heated passes through the water inlet connector 7 in a first partial water chamber 11 ', the water entry zone for the first stage preheater, and from there through the series Tube bundle. (The flow direction of the water from the partial water chambers into the Tube bundle and from this into the subchambers is with crosses or circles indicated.)
  • the tube bundles are via a second partial water chamber 12 ', the Water outlet zone of the first preheater, and a third partial water chamber 13 ', the water entry zone of the second preheater, connected to one another.
  • the Partial water chambers 11 'and 14' are formed by two shirts 16 and 17, the partial water chambers 12 'and 13' through the outer walls of the shirts 16 and 17 and the inner wall of the water chamber 2 are formed and are interconnected.
  • Figure 2 shows the interior of the duplex preheater with the inventive Partition 20 for dividing and separating the pressure areas of the two Heat exchanger and with the support plates 19 according to the invention for the Pipe bundle 11-14 to carry out the transfer of the pressure force to the Steam jacket 1.
  • the steam inlet connections 3 and 4 are again shown on the steam jacket 1, via which steam with a pressure P1 is conducted into the first heat exchanger space S1, or preheater first stage, and steam with a pressure P2 into a second heat exchanger space S2, or preheater second stage , where P1 ⁇ P2.
  • a U-shaped tube bundle is arranged in each of the two areas S1 and S2, the legs of which are designated by 11 and 12 in area S1 and by 13 and 14 in area S2.
  • the bleed steam from the low-pressure turbines which reaches areas S1 and S2 via inlet ports 3 and 4, flows through the tubes of the tube bundles.
  • baffles 22 can be attached to the inlet connection.
  • condensate is led into the area S2 via a cascade inlet connection.
  • the condensation of the steam forms condensate on the pipe surfaces, which collects in the lower area of the preheater.
  • the condensate in the area S2 is discharged via the condensate outlet connection 10 and can be pumped forward to the higher stage or can be supplied to the area S1 after throttling via a level control valve via the cascade inlet connection 5.
  • the condensate collected in the area S1 is discharged via the condensate outlet connection 9 and fed to the lower preheater stage or the condenser of the system.
  • Ventilation tubes 24 are attached in the bundle lanes in the interior of the tube bundle, via which the gases are sucked off.
  • the cover plates 23 serve to prevent a direct flow of steam into the bundle lane and the air extraction zone with the lowest pressure.
  • the tube bundles are supported by support plates 19.
  • the support plates 19 are in turn clamped together by tie rods and sleeves 18 which run in the longitudinal direction through the preheater.
  • the support plates 19 also lie on angles and rails 21 which are fastened in the lower region of the steam jacket 1. According to the invention, the support plates 19 have wings 19 'and 19 ".
  • the heat exchange areas S1 and S2 are formed by the partition 20 according to the invention and the surrounding jacket 1.
  • the partition 20 has a basic zigzag shape.
  • the partition 20 consists of three parts: a high middle part 20 ', which extends slightly beyond the area of the support plates 19, and two short parts 20 "which run in a bend from the high middle part 20' to the jacket 1 of the preheater ; the two short parts 20 "can be parallel. They are welded to the jacket 1 at the welding or clamping points 38 and 39.
  • the partition wall 20 is designed over a large part of the zigzag shape as a double wall, the first wall, which faces the heat exchange chamber with higher pressure, the maintenance of the pressure difference and the second wall, which faces the heat exchange chamber with low pressure Serves as thermal insulation.
  • the individual walls of the double wall are made of thin sheet metal, which is not intended to absorb the compressive force.
  • the sheet is made, for example, with thicknesses of 2-5 mm, of which the first wall is preferably made thicker than the second wall.
  • the insulation results in a reduction of the heat loss and a performance saving. For example, if there is a simple partition made of carbon steel, a heat flow of 1000-2000 kW can be transferred from the second preheater module to the first preheater module by heat conduction.
  • the individual walls are separated by a few spaces Millimeters wide.
  • Figure 3 shows the force on the partition, which results from the pressure difference between the areas S1 and S2.
  • the pressure force is indicated here with arrows.
  • the partition wall 20 yields to the compressive force by moving into the position indicated by the broken line; it only bends slightly. It essentially has the function of transmitting the compressive force to the support plates 19 and the jacket 1. In contrast to the prior art, it does not have the function of absorbing the force solely through a heavy load.
  • the bending points 36 and 37 practically move on circular lines, the welding points or clamping points 38 and 39 being the center points of the circles.
  • the high middle part 20 'of the partition wall moves slightly obliquely upwards due to the compressive force.
  • the first wall of the double wall comes into contact with the intermediate plates 30, which then come into contact with the second wall of the double wall.
  • the result is a parallel displacement of the middle part 20 'of both walls of the double wall.
  • the double wall touches the wings 19 'and transmits the compressive force to the support plates 19.
  • the wings 19 "at the outer edge of the support plates finally transmit the force to the jacket 1, which absorbs them due to its greater material thickness.
  • the compressive force is transmitted to the jacket both via the support plates 19 and the wings 19 ′, 19 ′′ and also absorbed by the welding points 38, 39. This prevents strong bending loads on the partition 20, in particular in the vicinity of the two welding points 38, 39.
  • the relief of the partition by support on the support plates and wings also allows the thin design of the partition with little material.
  • FIG. 4 shows a multiplex preheater using the example of a preheater with three preheater stages in one housing. It has partition walls according to the invention for dividing the pressure areas and support plates for transmitting the pressure forces between the preheater areas to the jacket of the preheater.
  • the multiplex preheater enclosed by the jacket 1 is divided into three pressure ranges S1, S2, S3, or preheaters first, second and third stage, in which pressures P1, P2 and P3 prevail, with P1 ⁇ P2 ⁇ P3.
  • Tapping steam is conducted into the three preheater areas via inlet connections 41, 42, 43. Similar to the duplex preheater, U-shaped tube bundles are arranged in each area through which the water to be heated flows.
  • the direction of flow through the bundle legs 44-49 is indicated by means of crosses and circles.
  • the tube bundles are in turn supported by support plates 19 which lie on angles and supports 21 in the lower region of the preheater housing.
  • the condensate resulting from the condensation of the steam on the pipe surfaces also collects in the lower area.
  • Condensate from a fourth stage preheater is led via the cascade inlet connection 6 into the area S3.
  • the condensate collected in area S3 is discharged via condensate outlet connection 50, after which it is fed via a connection 51 to the collected condensate in area S2.
  • the area S2 has a condensate outlet connection 52, via which the condensate is discharged from this area and led into the area S1 via the cascade inlet connection 5.
  • the condensate from this area is fed to the condenser of the power plant via a condensate outlet connection 53 in the area S1.
  • the dividing walls 54 and 55 between the areas S3 and S2 or S2 and S1 are similar to the dividing wall 20 in FIG. 2, with middle parts 54 ', 55' and short parts 54 ", 55" in a zigzag shape exhibit. They shift in a similar way to that shown in FIG. 3.
  • the support plates 19 have two or three blades on each side, depending on the size of the multiplex preheater.
  • the support plates in the middle preheater S2 have wings 19 'on both sides, which face the partition walls 54 and 55, respectively.
  • the water chamber for the multiplex preheater is designed in an analogous manner to the water chamber for the duplex preheater according to FIG. 1. Accordingly, the water chamber is divided into six partial water chambers with the help of two shirts and a water-side, zigzag-shaped partition, which ensures that the tube bundles are connected in series.
  • the first shirt encloses the partial chamber for the water entry into the bundle leg 44.
  • the water-side zigzag-shaped partition runs from the water chamber jacket 2 first between bundle tube zones 45 'and 47', then between bundle tube zones 46 'and 47' and finally between bundle tube zones 46 'and 48' to the jacket 2.
  • the second shirt encloses the partial chamber for the water outlet from the bundle tube zone 49 '.
  • the duplex and multiplex preheaters in the second or second and third preheater stage on a subcooler In order to reduce the length of the pipeline, especially the pipelines for Tapping steam from the low pressure turbine, which has a large diameter have, the duplex or multiplex preheater is preferably as close as possible the low pressure turbine arranged.
  • An arrangement of the duplex preheater in the Capacitor neck is an optimal solution in terms of saving Pipelines when the pressure losses of the low pressure turbine steam around the Duplex preheaters are not large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Technisches GebietTechnical field

Die Erfindung betrifft einen Vorwärmer in einer Dampfkraftanlage zur Aufwärmung von Wasser für den Wasser-Dampf-Kreislauf der Kraftanlage durch Wärmetausch zwischen Anzapfdampf aus Turbinen und in Rohren fliessendem Wasser. Die Erfindung befasst sich mit sogenannten Duplex- und Multiplex-Vorwärmern, in denen zwei oder mehr Vorwärmer verschiedener Stufen und Drücke in einem Gehäuse untergebracht sind. Wasserseitig sind die Vorwärmer jeweils in Serie und anzapfdampfseitig parallel geschaltet. Die Erfindung betrifft insbesondere die Konstruktion von Bündelträgern und einer Trennwand, welche die zwei oder mehr Vorwärmer innerhalb des Vorwärmergehäuses voneinander trennt.The invention relates to a preheater in a steam power plant for heating of water for the water-steam cycle of the power plant through heat exchange between tapping steam from turbines and water flowing in pipes. The Invention deals with so-called duplex and multiplex preheaters, in which are two or more preheaters of different levels and pressures in one Housing are housed. The preheaters are in series on the water side and connected on the steam side in parallel. The invention particularly relates to Construction of bundle carriers and a partition wall, the two or more Separates the preheater within the preheater housing.

Stand der TechnikState of the art

Ein Duplex-Vorwärmer ist zum Beispiel in BWK, Band 37 (1985) Nr. 10, Okt., S. 387-396 beschrieben. Dieser Vorwärmer weist in seinem Gehäuse zwei Wärmetauschräume auf mit je einem Dampfeintrittsstutzen und einem Rohrbündel mit dazugehörigem Wassereinlauf und Wasserauslauf. In die zwei Wärmetauschräume wird mit Anzapfdampf von unterschiedlicher Temperatur und unterschiedlichem Druck geleitet. Die Druckbereiche der Wärmetauschräume werden durch eine auf sich selbst schliessende Trennwand voneinander getrennt. Die Wasserkammer für das aufzuwärmende Wasser, das durch die Rohrbündel geleitet wird, ist durch zwei Hemden in vier Abteile unterteilt, in denen die Wassereinläufe und Wasserausläufe der beiden Rohrbündel angeordnet sind.A duplex preheater is described, for example, in BWK, volume 37 (1985) No. 10, Oct., p. 387-396. This preheater has two in its housing Heat exchange rooms each with a steam inlet connection and a tube bundle with associated water inlet and water outlet. In the two heat exchange rooms is with tapping steam of different temperature and different pressure headed. The pressure ranges of the heat exchange rooms are separated from each other by a self-closing partition. The water chamber for the water to be warmed up through the tube bundle is divided into four compartments by two shirts, in which the Water inlets and water outlets of the two tube bundles are arranged.

In der DE 195 11 264 ist ein Duplex-Vorwärmer beschrieben mit einem länglichen, zylindrischen Aussengehäuse. Der erste Wärmetauschraum befindet sich in einem länglichen Innengehäuse während der zweite Wärmetauschraum durch das Innere des Aussengehäuses und das äussere des Innengehäuses des ersten Wärmetauschraums gebildet ist. Die Trennung zwischen den beiden Druckbereichen besteht also aus einem vollständigen Innengehäuse. Dieses ist auf einer Seite durch eine halbkreisförmige und auf der anderen Seite durch eine gerade, vertikale Wand ausgebildet.DE 195 11 264 describes a duplex preheater with an elongated, cylindrical outer housing. The first heat exchange room is in an elongated inner housing during the second heat exchange space through the Inside of the outer case and the outer of the inner case of the first Heat exchange room is formed. The separation between the two pressure areas consists of a complete inner housing. This is on on one side by a semicircular and on the other side by a straight, vertical wall.

In der DE 195 37 478 ist ein weiterer Duplex-Vorwärmer offenbart. Der Vorwärmer weist in seinem Inneren eine gerade, vertikale Trennwand auf, welche die beiden Wärmetauschräume oder Druckbereiche voneinander trennt.Another duplex preheater is disclosed in DE 195 37 478. The preheater has a straight, vertical partition inside, which separates the two Separates heat exchange rooms or pressure areas.

Darstellung der ErfindungPresentation of the invention

Es ist die Aufgabe der Erfindung, einen Duplex- und Multiplex-Vorwärmer der eingangs genannten Art zu schaffen, die eine Bündelträgerkonstruktion und eine bzw. mehrere Trennwände zur Trennung der Wärmetauschräume oder Druckbereiche aufweist, die kostengünstig herzustellen und zu montieren sowie auch wärmeisolierend sind.
Diese Aufgabe wird durch einen Duplex- oder Multiplex-Vorwärmer gelöst mit einem Aussengehäuse oder Dampfmantel, in dem zwei oder mehr Wärmetauschmodule untergebracht sind, die jeweils durch eine Trennwand voneinander getrennt sind, wobei in jedem Wärmetauschmodul ein durch Stützplatten gestütztes Wärmetauscher-Rohrbündel angeordnet ist. Erfindungsgemäss ist hier die Trennwand zwischen den Wärmetauschräumen in ihrem Querschnitt zick-zack-förmig ausgebildet. Die Trennwand weist hierzu einen hohen Mittelteil auf, der sich über den Bereich der Stützplatten erstreckt, sowie zwei kurze Teile, die sich von beiden Enden des Mittelteils unter einer Biegung zum Mittelteil jeweils zum Dampfmantel hin erstrecken und mit dem Dampfmantel verschweisst sind. Aufgrund des Druckunterschieds zwischen den Wärmetauschräumen ergibt sich eine Druckkraft auf die Trennwand. Gemäss der Erfindung ist die Trennwand zick-zack-förmig gefertigt und ist dadurch flexibel, sodass sie der Druckkraft nachgibt, indem sie sich verschiebt und dabei nur sehr leicht biegt. Die Zick-zack-form der Trennwand gewährt bei Wirkung der Druckkraft eine Verschiebung der Wand, bei welcher der Mittelteil der Trennwand sich verschiebt
Durch die Verschiebung der Trennwand kommt die Trennwand mit den Stützplatten in Berührung, die wiederum mit dem Dampfmantel in Berührung kommen. Dadurch ergibt sich eine Übertragung der Druckkraft von der Trennwand auf den stärker ausgebildeten Dampfmantel, welcher die Kraft aufnimmt.
Durch die Kraftübertragung ist es insbesondere ermöglicht, die Trennwand aus dünneren Wänden zu fertigen.
In einer bevorzugten Ausführung ist die Trennwand doppelwandig ausgebildet, indem mindestens über den Bereich des hohen Mittelteils der Trennwand zwei Wände parallel zueinander verlaufen und zwischen ihnen ein Zwischenraum liegt. In einer erweiterten Ausführung weisen die Stützplatten der Rohrbündel innere und äussere Flügel auf, wovon die inneren sich zur Trennwand und die äusseren zum Dampfmantel hin erstrecken. Sie sind in bezug auf die Trennwand und den Dampfmantel so angeordnet, dass die Trennwand bei ihrer Verschiebung mit den inneren Flügeln und die äusseren Flügel mit dem Dampfmantel in Berührung kommen. Die Druckkraft wird auch hier über die Flügel der Stützplatten auf den Dampfmantel übertragen.
Um die Übertragung der Druckkraft von der einen zur anderen Wand der doppelwandigen Trennwand zu realisieren, sind im Zwischenraum zwischen den einzelnen Wänden Bleche angeordnet, die bei Wirkung der Druckkraft mit den Wänden der Trennwand in Berührung kommen.
Durch die Erfindung wird die Trennwand von der Druckkraft entlastet, indem die Druckkraft von der Trennwand auf die Stützplatten und den Mantel des Vorwärmergehäuses übertragen wird. Dadurch ist es ermöglicht, die Wände der Doppeltrennwand dünn und mit geringem Materialaufwand kostengünstig zu fertigen.
Die Zick-Zack-Form der Trennwand hat den Vorteil, dass sie Deformationen durch Wärmedehnungen erlaubt. Die geradlinige Verschiebung ihres langen Mittelteils wirkt sich nur in geringem Masse auf die Schweissstellen am Dampfmantel aus. Die doppelwandige Trennwand erbringt ferner den Vorteil einer Wärmeisolierung. Im Vergleich zu einem Einzel-Vorwärmer entstehen bei einem Duplex-Vorwärmer zusätzliche Wärmeverluste. Diese werden durch die Wärmeisolierung der Doppelwand verringert.
It is the object of the invention to provide a duplex and multiplex preheater of the type mentioned at the outset, which has a bundle carrier construction and one or more partition walls for separating the heat exchange spaces or pressure areas, which can be produced and assembled inexpensively and are also heat-insulating.
This object is achieved by a duplex or multiplex preheater with an outer housing or steam jacket, in which two or more heat exchange modules are accommodated, each of which is separated from one another by a partition wall, a heat exchanger tube bundle supported by support plates being arranged in each heat exchange module. According to the invention, the cross-section of the dividing wall between the heat exchange rooms is designed in a zigzag shape. For this purpose, the dividing wall has a high middle part, which extends over the area of the support plates, and two short parts, which extend from both ends of the middle part under a bend to the middle part in each case towards the steam jacket and are welded to the steam jacket. Due to the pressure difference between the heat exchange rooms, there is a compressive force on the partition. According to the invention, the partition is made zigzag and is therefore flexible, so that it yields to the compressive force by moving and bending only very slightly. The zigzag shape of the partition wall allows the wall to move when the pressure is exerted, with the middle part of the partition wall shifting
By moving the partition, the partition comes into contact with the support plates, which in turn come into contact with the steam jacket. This results in a transfer of the pressure force from the partition to the stronger steam jacket, which absorbs the force.
The power transmission makes it possible, in particular, to manufacture the partition wall from thinner walls.
In a preferred embodiment, the partition is double-walled, in that at least over the area of the high central part of the partition two walls run parallel to one another and there is a space between them. In an expanded version, the support plates of the tube bundles have inner and outer wings, of which the inner ones extend to the partition wall and the outer ones to the steam jacket. They are arranged with respect to the partition wall and the steam jacket so that the partition wall comes into contact with the inner wings and the outer wings come into contact with the steam jacket. The pressure force is also transmitted to the steam jacket via the wings of the support plates.
In order to transfer the pressure force from one wall to the other of the double-walled partition, sheets are arranged in the space between the individual walls, which come into contact with the walls of the partition when the pressure is applied.
The invention relieves the dividing wall of the compressive force by transmitting the compressive force from the dividing wall to the support plates and the jacket of the preheater housing. This makes it possible to manufacture the walls of the double partition wall thinly and inexpensively with little material.
The zigzag shape of the partition has the advantage that it allows deformations due to thermal expansion. The straight-line displacement of its long middle section has only a minor effect on the welds on the steam jacket. The double-walled partition also has the advantage of thermal insulation. Compared to a single preheater, a duplex preheater causes additional heat losses. These are reduced by the thermal insulation of the double wall.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Es zeigen:

  • Figur 1: eine seitliche Aussenansicht eines Duplex-Vorwärmers mit Wasserkammern und einem Aussengehäuse für zwei Wärmetauscher und einen Querschnitt durch die Wasserkammer des Duplex-Vorwärmers,
  • Figur 2: einen axialen Querschnitt eines Duplex-Vorwärmers zur Darstellung der Ausbildung der erfindungsgemässen Stützplatten und doppelwandigen Trennwand,
  • Figur 3: einen axialen Querschnitt desselben Duplex-Vorwärmers zur Darstellung der Verwendung der erfindungsgemässen Trennwand unter Wirkung der Druckkraft von einem zum andern Druckbereich,
  • Figur 4: ein Beispiel eines Multiplex-Vorwärmers mit drei Wärmetauschräumen getrennt durch erfindungsgemässe Trennwände und einen Querschnitt durch die Wasserkammer des Multiplex-Vorwärmers.
  • Show it:
  • FIG. 1: a side external view of a duplex preheater with water chambers and an outer housing for two heat exchangers and a cross section through the water chamber of the duplex preheater,
  • FIG. 2 shows an axial cross section of a duplex preheater to illustrate the design of the support plates and double-walled partition according to the invention,
  • FIG. 3 shows an axial cross section of the same duplex preheater to illustrate the use of the partition according to the invention under the effect of the pressure force from one pressure region to the other,
  • Figure 4: an example of a multiplex preheater with three heat exchange rooms separated by partitions according to the invention and a cross section through the water chamber of the multiplex preheater.
  • Weg der Ausführung der ErfindungWay of carrying out the invention

    Figur 1 zeigt das Äussere eines Duplex-Vorwärmers mit einem Aussengehäuse oder Dampfmantel 1. An dem Dampfmantel 1 sind Dampfeintrittsstutzen 3 und 4 angebracht. Über die beiden Dampfeintrittsstutzen 3 wird Dampf, beispielsweise aus einer ersten Anzapfstufe einer Niederdruckturbine, in einen ersten Vorwärmerraum im Innern des Mantels 1 geleitet während über den Dampfeintrittsstutzen 4 Dampf aus einer zweiten Anzapfstufe einer Niederdruckturbine, in einen zweiten Vorwärmerraum innerhalb des Mantels 1 geleitet wird. Anschliessend dem Dampfmantel 1 ist ein Rohrboden 15 angeordnet, in dem Rohre von U-förmigen Rohrbündeln für die beiden Wärmetauscher verankert sind. Dem Rohrboden 15 ist eine Wasserkammer 2 angeschlossen mit vier Teilwasserkammem 11', 12', 13', 14' einem Wassereintrittsstutzen 7 und einem Wasseraustrittssutzen 8. Das aufzuwärmende gelangt durch den Wassereintrittsstutzen 7 in eine erste Teilwasserkammer 11', die Wassereintrittszone für den Vorwärmer erster Stufe, und von dort durch die in Serie angeordneten Rohrbündel. (Die Fliessrichtung des Wassers von den Teilwasserkammern in die Rohrbündel und von diesen in die Teilkammern ist mit Kreuzen bzw. Kreisen angedeutet.) Die Rohrbündel sind über eine zweite Teilwasserkammer 12', der Wasseraustrittszone des ersten Vorwärmers, und eine dritte Teilwasserkammer 13', der Wassereintrittszone des zweiten Vorwärmers, miteinander verbunden. Nach durchfliessen der beiden Rohrbündel fliesst das Wasser in eine vierte Teilwasserkammer 14', der Wasseraustrittszone des zweiten Vorwärmers, und tritt schliesslich über den Wasseraustrittsstutzen 8 aus dem Duplex-Vorwärmer. Die Teilwasserkammern 11' und 14' sind durch zwei Hemden 16 bzw. 17 gebildet, wobei die Teilwasserkammern 12' und 13' durch die Aussenwände der Hemden 16 und 17 und die Innenwand der Wasserkammer 2 gebildet werden und miteinander verbunden sind.Figure 1 shows the exterior of a duplex preheater with an outer housing or steam jacket 1. On the steam jacket 1 there are steam inlet connections 3 and 4 appropriate. Steam is, for example, via the two steam inlet connections 3 from a first tap stage of a low-pressure turbine to a first one Preheater room in the interior of the jacket 1 passed while on the steam inlet nozzle 4 steam from a second tap stage of a low-pressure turbine, is passed into a second preheater room within the jacket 1. Following the steam jacket 1, a tube plate 15 is arranged in which Tubes of U-shaped tube bundles for the two heat exchangers are anchored. The tube sheet 15 is connected to a water chamber 2 with four partial water chambers 11 ', 12', 13 ', 14' a water inlet nozzle 7 and one Water outlet connector 8. The water to be heated passes through the water inlet connector 7 in a first partial water chamber 11 ', the water entry zone for the first stage preheater, and from there through the series Tube bundle. (The flow direction of the water from the partial water chambers into the Tube bundle and from this into the subchambers is with crosses or circles indicated.) The tube bundles are via a second partial water chamber 12 ', the Water outlet zone of the first preheater, and a third partial water chamber 13 ', the water entry zone of the second preheater, connected to one another. After flowing through the two tube bundles, the water flows into a fourth Partial water chamber 14 ', the water outlet zone of the second preheater, and occurs finally via the water outlet connection 8 from the duplex preheater. The Partial water chambers 11 'and 14' are formed by two shirts 16 and 17, the partial water chambers 12 'and 13' through the outer walls of the shirts 16 and 17 and the inner wall of the water chamber 2 are formed and are interconnected.

    Figur 2 zeigt das Innere des Duplex-Vorwärmers mit der erfindungsgemässen Trennwand 20 zur Unterteilung und Trennung der Druckbereiche der beiden Wärmetauscher und mit den erfindungsgemässen Stützplatten 19 für die Rohrbündel 11-14 zur Ausführung der Übertragung der Druckkraft auf den Dampfmantel 1.Figure 2 shows the interior of the duplex preheater with the inventive Partition 20 for dividing and separating the pressure areas of the two Heat exchanger and with the support plates 19 according to the invention for the Pipe bundle 11-14 to carry out the transfer of the pressure force to the Steam jacket 1.

    Es sind am Dampfmantel 1 wiederum die Dampfeintrittsstutzen 3 und 4 gezeigt, über die Dampf mit einem Druck P1 in den ersten Wärmetauscherraum S1, oder Vorwärmer erster Stufe, und Dampf mit einem Druck P2 in einen zweiten Wärmetauscherraum S2, oder Vorwärmer zweiter Stufe, geleitet wird, wobei P1<P2. In jedem der beiden Bereiche S1 und S2 sind ein U-förmiges Rohrbündel angeordnet, deren Schenkel mit 11 und 12 im Bereich S1 und mit 13 und 14 im Bereich S2 bezeichnet sind.
    Der Anzapfdampf von den Niederdruckturbinen, der über die Eintrittstutzen 3 und 4 in die Bereiche S1 und S2 gelangt, strömt die Rohre der Rohrbündel. Zum Schutz der Rohre können gegenüber den Eintrittsstutzen 3 und 4 Prallbleche 22 angebracht werden.
    Von einem Vorwärmer höherer (hier dritter) Stufe wird über einen Kaskadeneintrittsstutzen 6 Kondensat in den Bereich S2 geführt. An den Rohroberflächen bildet sich durch die Kondensation des Dampfes Kondensat, das sich im unteren Bereich des Vorwärmers sammelt. Das Kondensat im Bereich S2 wird über den Kondensataustrittstutzen 10 abgeleitet und kann vorwärts zur höheren Stufe gepumpt werden oder dem Bereich S1 nach einer Drosselung über ein NiveauRegelventil über den Kaskadeneintrittsstutzen 5 zugeführt werden. Das gesammelte Kondensat im Bereich S1 wird über den Kondensataustrittstutzen 9 abgeleitet und der unteren Vorwärmerstufe oder dem Kondensator der Anlage zugeführt.
    Zur Entfernung von nicht kondensierbaren Gasen (Luft) aus dem Vorwärmer sind in den Bündelgassen im Innern der Rohrbündel Entlüftungsrohre 24 angebracht, über welche die Gase abgesaugt werden.
    Die Abdeckbleche 23 dienen dazu, eine direkte Dampfströmung in die Bündelgasse und die Luftabsaugzone mit dem tiefsten Druck zu verhindern.
    In beiden Bereichen S1 und S2 sind jeweils die Rohrbündel durch Stützplatten 19 gestützt. Die Stützplatten 19 werden ihrerseits durch Tie-rods und Hülsen 18 zusammengespannt, die in Längsrichtung durch den Vorwärmer verlaufen. Die Stützplatten 19 liegen ferner auf Winkeln und Schienen 21, die im unteren Bereich des Dampfmantels 1 befestigt sind.
    Die Stützplatten 19 weisen erfindungsgemäss Flügel 19' und 19" auf. In dieser Ausführung erstrecken sich an jeder Stützplatte 19 zwei Flügel 19' zur Mitte des Vorwärmers hin und zwei weitere Flügel 19" vom äusseren Rand der Stützplatten 19 zum Mantel 1 hin.
    Die Wärmetauschbereiche S1 und S2 werden durch die erfindungsgemässe Trennwand 20 und den umschliessenden Mantel 1 gebildet. Die Trennwand 20, besitzt eine grundsätzliche Zick-Zack-Form. Die Trennwand 20 besteht aus drei Teilen: aus einem hohen Mittelteil 20', der sich leicht über den Bereich der Stützplatten 19 hinaus erstreckt, und zwei kurzen Teilen 20", die in einer Biegung vom hohen Mittelteil 20' zum Mantel 1 des Vorwärmers hin verlaufen; die beiden kurzen Teile 20" können parallel sein. Sie sind an den Schweiss- oder Einspannstellen 38 und 39 am Mantel 1 angeschweisst.
    Die Trennwand 20 ist über einen Grossteil der Zick-Zack-Form als Doppelwand ausgeführt, wobei die erste Wand, die dem Wärmetauschraum mit höherem Druck zugewandt ist, der Haltung der Druckdifferenz und die zweite Wand, die dem Wärmetauschraum mit niederem Druck zugewandt ist, der Wärmeisolation dient. Die einzelnen Wände der Doppelwand sind aus dünnem Blech gefertigt, das nicht zur Aufnahme der Druckkraft bestimmt ist. Das Blech ist beispielsweise mit Dicken von 2-5 mm gefertigt, wovon die erste Wand vorzugsweise dicker ausgeführt ist als die zweite Wand. Die Isolation erbringt eine Reduktion des Verlustwärmestroms und eine Leistungseinsparung.
    Besteht beispielsweise eine einfach ausgebildete Trennwand aus C-Stahl, kann ein Wärmestrom von 1000-2000 kW aus dem zweiten Vorwärmermodul durch Wärmeleitung in das erste Vorwärmermodul übertragen werden. Dafür müsste zusätzlich ein Dampfstrom von ca. 0.5-0.8 kg pro Sekunde um eine Stufe früher aus der Turbine angezapft werden. Dies würde zu einer Erhöhung des Wärmeverbrauchs der Dampfanlage von ca. 0.03 bis 0.05% führen. Diese Verluste können durch die Wahl eines rostfreien Materials für die Trennwand reduziert werden, was jedoch mit höheren Kosten verbunden wäre. Durch die Verwendung einer erfindungsgemässen, doppelt ausgebildeten Trennwand werden die erwähnten Wärmeverluste minimiert, sogar praktisch vermieden.
    The steam inlet connections 3 and 4 are again shown on the steam jacket 1, via which steam with a pressure P1 is conducted into the first heat exchanger space S1, or preheater first stage, and steam with a pressure P2 into a second heat exchanger space S2, or preheater second stage , where P1 <P2. A U-shaped tube bundle is arranged in each of the two areas S1 and S2, the legs of which are designated by 11 and 12 in area S1 and by 13 and 14 in area S2.
    The bleed steam from the low-pressure turbines, which reaches areas S1 and S2 via inlet ports 3 and 4, flows through the tubes of the tube bundles. To protect the pipes 3 and 4 baffles 22 can be attached to the inlet connection.
    From a preheater of a higher (here third) stage 6 condensate is led into the area S2 via a cascade inlet connection. The condensation of the steam forms condensate on the pipe surfaces, which collects in the lower area of the preheater. The condensate in the area S2 is discharged via the condensate outlet connection 10 and can be pumped forward to the higher stage or can be supplied to the area S1 after throttling via a level control valve via the cascade inlet connection 5. The condensate collected in the area S1 is discharged via the condensate outlet connection 9 and fed to the lower preheater stage or the condenser of the system.
    To remove non-condensable gases (air) from the preheater, ventilation tubes 24 are attached in the bundle lanes in the interior of the tube bundle, via which the gases are sucked off.
    The cover plates 23 serve to prevent a direct flow of steam into the bundle lane and the air extraction zone with the lowest pressure.
    In both areas S1 and S2, the tube bundles are supported by support plates 19. The support plates 19 are in turn clamped together by tie rods and sleeves 18 which run in the longitudinal direction through the preheater. The support plates 19 also lie on angles and rails 21 which are fastened in the lower region of the steam jacket 1.
    According to the invention, the support plates 19 have wings 19 'and 19 ". In this embodiment, two wings 19' on each support plate 19 extend towards the center of the preheater and two further wings 19" extend from the outer edge of the support plates 19 to the jacket 1.
    The heat exchange areas S1 and S2 are formed by the partition 20 according to the invention and the surrounding jacket 1. The partition 20 has a basic zigzag shape. The partition 20 consists of three parts: a high middle part 20 ', which extends slightly beyond the area of the support plates 19, and two short parts 20 "which run in a bend from the high middle part 20' to the jacket 1 of the preheater ; the two short parts 20 "can be parallel. They are welded to the jacket 1 at the welding or clamping points 38 and 39.
    The partition wall 20 is designed over a large part of the zigzag shape as a double wall, the first wall, which faces the heat exchange chamber with higher pressure, the maintenance of the pressure difference and the second wall, which faces the heat exchange chamber with low pressure Serves as thermal insulation. The individual walls of the double wall are made of thin sheet metal, which is not intended to absorb the compressive force. The sheet is made, for example, with thicknesses of 2-5 mm, of which the first wall is preferably made thicker than the second wall. The insulation results in a reduction of the heat loss and a performance saving.
    For example, if there is a simple partition made of carbon steel, a heat flow of 1000-2000 kW can be transferred from the second preheater module to the first preheater module by heat conduction. For this, a steam flow of approx. 0.5-0.8 kg per second would have to be tapped out of the turbine one stage earlier. This would lead to an increase in the heat consumption of the steam system of approx. 0.03 to 0.05%. These losses can be reduced by choosing a stainless steel material for the partition, but this would entail higher costs. By using a double-walled partition according to the invention, the heat losses mentioned are minimized, even practically avoided.

    Die einzelnen Wände sind dabei durch einen Zwischenraum von wenigen Millimetern Breite voneinander getrennt. Im Zwischenraum sind Zwischenbleche 30 angeordnet, die zusammen mit den Flügeln 19' der Übertragung der Druckkraft auf den dicker und stärker gefertigten Mantel 1 dienen, indem sie bei der Verschiebung der Trennwand mit ihr in Berührung kommen.The individual walls are separated by a few spaces Millimeters wide. There are intermediate plates in the gap 30 arranged together with the wings 19 'of the transmission of the compressive force serve on the thicker and more heavily manufactured jacket 1 by at Displacement of the partition come into contact with it.

    Figur 3 stellt die Kraft auf die Trennwand dar, die aus dem Druck-unterschied zwischen den Bereichen S1 und S2 resultiert. Die Druckkraft ist hier mit Pfeilen angedeutet. Der Einfachheit halber ist hier ihre Wirkung nur auf die links liegende Wand der Doppelwand gezeigt. Aufgrund ihrer Zick-Zack-Form gibt die Trennwand 20 der Druckkraft nach, indem sie sich in die mit der strichlierten Linie angedeuteten Position verschiebt; sie verbiegt sich dabei nur leicht. Sie hat im wesentlichen die Funktion, die Druckkraft auf die Stützplatten 19 und den Mantel 1 zu übertragen. Im Gegensatz zum Stand der Technik hat sie nicht die Funktion, die Kraft allein durch eine starke Belastung aufzunehmen. Bei der Kraftübertragung bewegen sich die Biegungspunkte 36 und 37 praktisch auf Kreislinien, wobei die Schweissstellen bzw. Einspannstellen 38 und 39 die Mittelpunkte der Kreise sind. Der hohe Mittelteil 20' der Trennwand verschiebt sich durch die Druckkraft leicht schräg aufwärts. Bei dieser Verschiebung kommt die erste Wand der Doppelwand mit den Zwischenblechen 30 in Berührung, welche dann mit der zweiten Wand der Doppelwand in Berührung kommen. Es resultiert eine parallele Verschiebung des Mittelteils 20' beider Wände der Doppelwand. Die Doppelwand berührt sodann die Flügel 19' und überträgt die Druckkraft auf die Stützplatten 19. Die Flügel 19" am äusseren Rand der Stützplatten übertragen schliesslich die Kraft auf den Mantel 1, der sie aufgrund seiner grösseren Materialdicke aufnimmt.
    Die Druckkraft wird sowohl über die Stützplatten 19 und die Flügel 19', 19" auf den Mantel übertragen als auch durch die Schweissstellen 38, 39 aufgenommen. Dadurch werden starke Biegebelastungen der Trennwand 20, insbesondere in der Nähe der beiden Schweissstellen 38, 39, vermieden. Die Entlastung der Trennwand durch Abstützung auf die Stützplatten und Flügel ermöglicht zudem die dünne Ausführung der Trennwand mit geringem Materialaufwand.
    Figure 3 shows the force on the partition, which results from the pressure difference between the areas S1 and S2. The pressure force is indicated here with arrows. For the sake of simplicity, their effect is shown here only on the wall on the left of the double wall. Due to its zigzag shape, the partition wall 20 yields to the compressive force by moving into the position indicated by the broken line; it only bends slightly. It essentially has the function of transmitting the compressive force to the support plates 19 and the jacket 1. In contrast to the prior art, it does not have the function of absorbing the force solely through a heavy load. When the force is transmitted, the bending points 36 and 37 practically move on circular lines, the welding points or clamping points 38 and 39 being the center points of the circles. The high middle part 20 'of the partition wall moves slightly obliquely upwards due to the compressive force. During this displacement, the first wall of the double wall comes into contact with the intermediate plates 30, which then come into contact with the second wall of the double wall. The result is a parallel displacement of the middle part 20 'of both walls of the double wall. The double wall then touches the wings 19 'and transmits the compressive force to the support plates 19. The wings 19 "at the outer edge of the support plates finally transmit the force to the jacket 1, which absorbs them due to its greater material thickness.
    The compressive force is transmitted to the jacket both via the support plates 19 and the wings 19 ′, 19 ″ and also absorbed by the welding points 38, 39. This prevents strong bending loads on the partition 20, in particular in the vicinity of the two welding points 38, 39 The relief of the partition by support on the support plates and wings also allows the thin design of the partition with little material.

    Figur 4 zeigt einen Multiplex-Vorwärmer am Beispiel eines Vorwärmers mit drei Vorwärmerstufen in einem Gehäuse. Er weist erfindungsgemässe Trennwände zur Unterteilung der Druckbereiche sowie Stützplatten auf zur Übertragung der Druckkräfte zwischen den Vorwärmerbereichen auf den Mantel des Vorwärmers. Der vom Mantel 1 umschlossene Multiplex-Vorwärmer ist in drei Druckbereiche S1, S2, S3, oder Vorwärmer erster, zweiter bzw. dritter Stufe, unterteilt, in denen Drücke P1, P2 bzw. P3 herrschen, wobei P1<P2<P3. Anzapfdampf wird über Eintrittsstutzen 41, 42, 43 in die drei Vorwärmerbereiche geleitet. Analog zum Duplex-Vorwärmer sind in jedem Bereich U-förmige Rohrbündel angeordnet, durch die das aufzuwärmende Wasser fliesst. Die Fliessrichtung durch die Bündelschenkel 44-49 ist anhand von Kreuzen und Kreisen angedeutet. Die Rohrbündel sind wiederum von Stützplatten 19 gestützt, die im unteren Bereich des Vorwärmergehäuses auf Winkeln und Stützen 21 liegen.
    Im unteren Bereich sammelt sich auch das aus der Kondensation des Dampfes an den Rohroberflächen resultierende Kondensat. Kondensat aus einem Vorwärmer vierter Stufe wird über den Kaskadeneintrittsstutzen 6 in den Bereich S3 geführt. Das gesammelte Kondensat im Bereich S3 wird über Kondensataustrittsstutzen 50 abgeleitet, wonach es über einen Stutzen 51 dem gesammelten Kondensat im Bereich S2 zugeführt wird. Der Bereich S2 weist einen Kondensataustrittsstutzen 52 auf, über den das Kondensat aus diesem Bereich abgeleitet und über den Kaskadeneintrittsstutzen 5 in den Bereich S1 geführt wird. Über einen Kondensataustrittsstutzen 53 im Bereich S1 wird das Kondensat aus diesem Bereich dem Kondensator der Kraftanlage zugeführt.
    Die Trennwände 54 und 55 zwischen den Bereich S3 und S2 bzw. S2 und S1 sind ähnlich ausgeführt wie die Trennwand 20 in Figur 2, wobei sie Mittelteile 54', 55' und kurze Teile 54", 55" in einer Zick-Zack-Form aufweisen. Sie verschieben sich in ähnlicher Weise, wie es in Figur 3 dargestellt ist. Die Stützplatten 19 weisen pro Seite jeweils zwei oder drei Flügel auf, je nach der Grösse des Multiplex-Vorwärmers. Die Stützplatten im mittleren Vorwärmer S2 weisen beidseits Flügel 19' auf, die Trennwänden 54 bzw. 55 zugewandt sind.
    Die Wasserkammer für den Multiplex-Vorwärmer ist in analoger Weise zur Wasserkammer für den Duplex-Vorwärmer gemäss Figur 1 ausgebildet. Entsprechend ist die Wasserkammer mit Hilfe von zwei Hemden und einer wasserseitigen, zick-zack-förmigen Trennwand in sechs Teilwasserkammern unterteilt, wodurch die Serienschaltung der Rohrbündel gewährleistet ist. Das erste Hemd umschliesst die Teilkammer für den Wassereintritt in den Bündelschenkel 44. Die wasserseitige zick-zack-förmige Trennwand verläuft vom Wasserkammermantel 2 zunächst zwischen Bündelrohrzonen 45' und 47', sodann zwischen Bündelrohr-zonen 46' und 47' und schliesslich zwischen Bündelrohrzonen 46' und 48' zum Mantel 2. Das zweite Hemd umschliesst die Teilkammer für den Wasseraustritt aus der Bündelrohrzone 49'.
    FIG. 4 shows a multiplex preheater using the example of a preheater with three preheater stages in one housing. It has partition walls according to the invention for dividing the pressure areas and support plates for transmitting the pressure forces between the preheater areas to the jacket of the preheater. The multiplex preheater enclosed by the jacket 1 is divided into three pressure ranges S1, S2, S3, or preheaters first, second and third stage, in which pressures P1, P2 and P3 prevail, with P1 <P2 <P3. Tapping steam is conducted into the three preheater areas via inlet connections 41, 42, 43. Similar to the duplex preheater, U-shaped tube bundles are arranged in each area through which the water to be heated flows. The direction of flow through the bundle legs 44-49 is indicated by means of crosses and circles. The tube bundles are in turn supported by support plates 19 which lie on angles and supports 21 in the lower region of the preheater housing.
    The condensate resulting from the condensation of the steam on the pipe surfaces also collects in the lower area. Condensate from a fourth stage preheater is led via the cascade inlet connection 6 into the area S3. The condensate collected in area S3 is discharged via condensate outlet connection 50, after which it is fed via a connection 51 to the collected condensate in area S2. The area S2 has a condensate outlet connection 52, via which the condensate is discharged from this area and led into the area S1 via the cascade inlet connection 5. The condensate from this area is fed to the condenser of the power plant via a condensate outlet connection 53 in the area S1.
    The dividing walls 54 and 55 between the areas S3 and S2 or S2 and S1 are similar to the dividing wall 20 in FIG. 2, with middle parts 54 ', 55' and short parts 54 ", 55" in a zigzag shape exhibit. They shift in a similar way to that shown in FIG. 3. The support plates 19 have two or three blades on each side, depending on the size of the multiplex preheater. The support plates in the middle preheater S2 have wings 19 'on both sides, which face the partition walls 54 and 55, respectively.
    The water chamber for the multiplex preheater is designed in an analogous manner to the water chamber for the duplex preheater according to FIG. 1. Accordingly, the water chamber is divided into six partial water chambers with the help of two shirts and a water-side, zigzag-shaped partition, which ensures that the tube bundles are connected in series. The first shirt encloses the partial chamber for the water entry into the bundle leg 44. The water-side zigzag-shaped partition runs from the water chamber jacket 2 first between bundle tube zones 45 'and 47', then between bundle tube zones 46 'and 47' and finally between bundle tube zones 46 'and 48' to the jacket 2. The second shirt encloses the partial chamber for the water outlet from the bundle tube zone 49 '.

    In einer erweiterten Ausführung weisen die Duplex- und Multiplex-Vorwärmer in der zweiten bzw. zweiten und dritten Vorwärmerstufe einen Unterkühler auf. Zwecks Reduktion von Rohrleitungslänge, insbesondere der Rohrleitungen für Anzapfdampf von der Niederdruckturbine, die einen grossen Durchmesser besitzen, ist der Duplex- oder Multiplex-Vorwärmer vorzugsweise möglichst nahe der Niederdruckturbine angeordnet. Eine Anordnung des Duplex-Vorwärmers im Kondensatorhals ist eine optimale Lösung bezüglich der Einsparung von Rohrleitungen, wenn die Druckverluste des Niederdruckturbinendampfes um den Duplex-Vorwärmer nicht gross sind. In an expanded version, the duplex and multiplex preheaters in the second or second and third preheater stage on a subcooler. In order to reduce the length of the pipeline, especially the pipelines for Tapping steam from the low pressure turbine, which has a large diameter have, the duplex or multiplex preheater is preferably as close as possible the low pressure turbine arranged. An arrangement of the duplex preheater in the Capacitor neck is an optimal solution in terms of saving Pipelines when the pressure losses of the low pressure turbine steam around the Duplex preheaters are not large.

    BezugszeichenlisteLIST OF REFERENCE NUMBERS

    11
    Dampfmantel, AussengehäuseSteam jacket, outer casing
    22
    WasserkammermantelWater chamber jacket
    33
    Dampfeintrittsstutzen (Turbinenanzapfdampf)Steam inlet connection (turbine tapping steam)
    44
    Dampfeintrittsstutzen (Turbinenanzapfdampf)Steam inlet connection (turbine tapping steam)
    55
    KaskadeneintrittsstutzenCascade inlet connection
    66
    Kaskadeneintrittsstutzen (aus Vorwärmer höherer Stufe)Cascade inlet connection (from preheater of higher level)
    77
    WassereintrittsstutzenWater inlet connection
    88th
    WasseraustrittsstutzenOutput nozzle
    99
    Kondensataustrittsstutzen aus Vorwärmer S1Condensate outlet connection from preheater S1
    1010
    Kondensataustrittsstutzen aus Vorwärmer S2Condensate outlet connection from preheater S2
    11-1411-14
    RohrbündelschenkelTube bundle leg
    11'11 '
    Wassereintrittszone Vorwärmer S1Water inlet zone preheater S1
    12'12 '
    Wasseraustrittszone aus Vorwärmer S1Water outlet zone from preheater S1
    13'13 '
    Wassereintrittszone Vorwärmer S2Water entry zone preheater S2
    14'14 '
    Wasseraustrittszone aus Vorwärmer S2Water outlet zone from preheater S2
    1515
    Rohrbodentube sheet
    1616
    Wassereintrittshemd (Teilwasserkammer) in WasserkammerWater entry shirt (partial water chamber) in water chamber
    1717
    Wasseraustrittshemd (Teilwasserkammer) in WasserkammerWater outlet shirt (partial water chamber) in water chamber
    1818
    Tie-Rods und HülsenTie rods and sleeves
    1919
    BündelstützplattenBundle support plates
    19'19 '
    Flügel an Stützplatte zur Mitte des VorwärmersWing on support plate to the middle of the preheater
    19"19 "
    Flügel an Stützplatten zum Mantel des VorwärmersWing on support plates to the jacket of the preheater
    2020
    Trennwand zwischen Wärmetauschräumen S1 und S2Partition between heat exchange rooms S1 and S2
    20'20 '
    Trennwand zwischen Wärmetauschräumen S1 und S2, hoher MittelteilPartition between heat exchange rooms S1 and S2, high middle section
    20"20 "
    Trennwand zwischen Wärmetauschräumen S1 und S2, kurze TeilePartition between heat exchange rooms S1 and S2, short parts
    2121
    Winkel und StützenAngles and supports
    2222
    Prallblechbaffle
    2323
    AbdeckblechCover plate
    2424
    Entlüftungsrohrevent pipes
    3030
    Zwischenblecheintermediate plates
    36,3736.37
    Biegungspunkteinflection points
    38,3938.39
    Schweissstellenwelds
    41-4341-43
    Eintrittsstutzen zu Multiplex-VorwärmerInlet connection to multiplex preheater
    44-4944-49
    Bündelschenkel in Multiplex-VorwärmerBundle legs in multiplex preheater
    5050
    Kondensataustrittsstutzen aus S3Condensate outlet connection from S3
    5151
    Kondensateintrittsstutzen zu S2Condensate inlet connection to S2
    5252
    Kondensataustrittsstutzen aus S2Condensate outlet connection from S2
    5353
    Kondensataustrittsstutzen aus S1Condensate outlet connection from S1
    5454
    Trennwand zwischen Druckbereichen S3 und S2Partition between pressure areas S3 and S2
    54'54 '
    Trennwand zwischen Druckbereichen S3 und S2, MittelteilPartition between pressure areas S3 and S2, middle part
    54"54 "
    Trennwand zwischen Druckbereichen S3 und S2, kurze TeilePartition between pressure areas S3 and S2, short parts
    5555
    Trennwand zwischen Druckbereichen S2 und S1Partition between pressure areas S2 and S1
    55'55 '
    Trennwand zwischen Druckbereichen S2 und S1, MittelteilPartition between pressure areas S2 and S1, middle part
    55"55 "
    Trennwand zwischen Druckbereichen S2 und S1, kurze TeilePartition between pressure areas S2 and S1, short parts
    5656
    Wasserseitige, zick-zack-förmige TrennwandWater-side, zigzag-shaped partition

    Claims (10)

    1. Preheater in steam power plant, with a steam jacket (1) accommodating at least two preheater stages, each with a heat exchange space (S1, S2, S3), turbine tapped steam of different pressure (P1, P2, P3) being conducted via steam inlet connection pieces (3, 4, 41, 42, 43) into each heat exchange space (S1, S2, S3), at least one partition (20, 54, 55) being arranged for subdividing the pressure regions of the heat exchange spaces (S1, S2, S3), and there being arranged in each heat exchange space (S1, S2, S3) of the at least two preheater stages tube bundles, through which water to be heated up flows and which are supported by supporting plates (19), characterized in that the at least one partition (20, 54, 55) is designed with a zigzag-shaped cross section, and it has in each case a high middle part (20'), which extends over the region of the supporting plates (19), and two short parts (20", 54", 55"), which run in bends to the middle part (20', 54', 55'), extend from the ends of the middle part (20', 54', 55') as far as the steam jacket (1) and are welded to the latter, and the at least one partition (20, 54, 55), by virtue of its zigzag shape, is flexible, in that it yields to the pressure force between a heat exchange space of higher pressure and a heat exchange space of low pressure, is displaced and comes into contact with the supporting plates (19), the supporting plates (19) coming into contact with the steam jacket (1) and transmitting the pressure force to the latter.
    2. Preheater according to Claim 1, characterized in that, for the purpose of thermal insulation, the at least one partition (20, 54, 55) is of double-walled design, in that it has in each case two walls which are arranged parallel at least over the region of the high middle part (20', 54', 55') and are separated from one another by an interspace, and the two walls are in each case of thin design.
    3. Preheater according to Claim 2, characterized in that intermediate plates (30) are arranged between the parallel walls of the at least one partition (20, 54, 55).
    4. Preheater according to Claim 3, characterized in that the supporting plates (19) have first wings (19'), which in each case extend towards a partition (20, 54, 55), and further wings (19"), which in each case extend towards the steam jacket (1).
    5. Preheater according to Claim 4, characterized in that the supporting plates (19) are clamped together by means of tie rods with sleeves (18).
    6. Preheater according to Claim 5, characterized in that the supporting plates (19) are supported on angles and rails (21) in the lower region of the preheater.
    7. Preheater according to Claim 6, characterized in that the steam jacket (1) has a first cascade inlet connection piece (6) which leads condensate out of an external higher-stage preheater into the preheater.
    8. Preheater according to Claim 7, characterized in that the steam jacket (1) has further cascade inlet connection pieces (5, 51) which lead condensate from a heat exchange space of higher pressure into a heat exchange space of lower pressure.
    9. Preheater according to one of the preceding claims, characterized in that the preheater has a subcooler in each of the individual heat exchange spaces.
    10. Preheater according to one of the preceding claims, characterized in that the preheater has three preheater stages, each with a heat exchange space (S1, S2, S3), in which two partitions (54, 55) for subdividing the pressure regions of the heat exchange spaces (S1, S2, S3) are arranged.
    EP19980811222 1998-12-11 1998-12-11 Feedwater preheater for steam power plants Expired - Lifetime EP1008803B1 (en)

    Priority Applications (4)

    Application Number Priority Date Filing Date Title
    DE59807987T DE59807987D1 (en) 1998-12-11 1998-12-11 Preheater in steam power plants
    EP19980811222 EP1008803B1 (en) 1998-12-11 1998-12-11 Feedwater preheater for steam power plants
    IDP991139D ID24396A (en) 1998-12-11 1999-12-13 PRE-HEATING TOOLS ON VAPOR POWER
    AU64518/99A AU762513B2 (en) 1998-12-11 1999-12-13 Preheater in steam power plants

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP19980811222 EP1008803B1 (en) 1998-12-11 1998-12-11 Feedwater preheater for steam power plants

    Publications (2)

    Publication Number Publication Date
    EP1008803A1 EP1008803A1 (en) 2000-06-14
    EP1008803B1 true EP1008803B1 (en) 2003-04-16

    Family

    ID=8236480

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP19980811222 Expired - Lifetime EP1008803B1 (en) 1998-12-11 1998-12-11 Feedwater preheater for steam power plants

    Country Status (4)

    Country Link
    EP (1) EP1008803B1 (en)
    AU (1) AU762513B2 (en)
    DE (1) DE59807987D1 (en)
    ID (1) ID24396A (en)

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US11859832B2 (en) 2021-06-22 2024-01-02 2078095 Ontario Limited Gray water heat recovery apparatus and method

    Family Cites Families (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19511264C2 (en) 1995-03-27 1998-06-10 Siemens Ag Heat exchanger
    DE19537478C1 (en) 1995-10-09 1996-12-12 Siemens Ag Multi-stage steam turbine power generation plant

    Also Published As

    Publication number Publication date
    AU762513B2 (en) 2003-06-26
    EP1008803A1 (en) 2000-06-14
    ID24396A (en) 2000-07-13
    DE59807987D1 (en) 2003-05-22
    AU6451899A (en) 2000-06-15

    Similar Documents

    Publication Publication Date Title
    EP2161525B1 (en) Modular heat exchanger
    EP2322854B1 (en) Heat exchanger for creating steam for solar power plants
    DE102010008175B4 (en) Heat exchanger
    DE102006018688B4 (en) Method for bending multiport tubes for heat exchangers
    DE2624126A1 (en) HEAT EXCHANGER
    DE2033128B2 (en) Heat exchange unit with heat exchangers in which rows of tubes are enclosed by an intermediate jacket within an outer jacket
    WO2014146795A1 (en) Pipe bundle recuperator on a sintering furnace and thermal transfer method having a sintering furnace and having a pipe bundle recuperator
    DE1601240A1 (en) Ribbed heat exchanger
    DE102011118164B4 (en) Heat exchanger and method for operating a heat exchanger
    EP3516179B1 (en) Method and arrangement for heat energy recovery in systems comprising at least one reformer
    DE102004046587B4 (en) heat exchangers
    EP1008803B1 (en) Feedwater preheater for steam power plants
    DE1932027A1 (en) Heat exchanger
    DE10333463C5 (en) Tube heat exchanger
    DE102008038658A1 (en) Tube heat exchanger
    WO2023099444A1 (en) Heat exchanger and heat pump having at least one such heat exchanger
    EP0177904A2 (en) Device for exchange of heat between two gases conducted in cross-flow to each other
    AT513300B1 (en) heat exchangers
    EP0908669B1 (en) Low pressure feedwater preheater
    WO2012049318A1 (en) Heat exchanger
    DE202019103964U1 (en) Heat exchanger
    DE102014015508B4 (en) heat exchanger kit
    DE10341644A1 (en) Helical heat exchanger used in a heating device comprises a region in which an inlet enters the helix and a region in which an outlet exits the helix which do not overlap when viewed in the direction of the central axis of the helix
    DE2316937A1 (en) HEAT EXCHANGER ARRANGEMENT
    DE19511264C2 (en) Heat exchanger

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FI

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20001027

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM POWER (SCHWEIZ) AG

    AKX Designation fees paid

    Free format text: DE ES FI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM (SWITZERLAND) LTD

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): DE ES FI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030416

    REF Corresponds to:

    Ref document number: 59807987

    Country of ref document: DE

    Date of ref document: 20030522

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031030

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040119

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040701