[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1008722B1 - Verfahren zur Herstellung eines geschweissten Rotors einer Strömungsmaschine - Google Patents

Verfahren zur Herstellung eines geschweissten Rotors einer Strömungsmaschine Download PDF

Info

Publication number
EP1008722B1
EP1008722B1 EP98811218A EP98811218A EP1008722B1 EP 1008722 B1 EP1008722 B1 EP 1008722B1 EP 98811218 A EP98811218 A EP 98811218A EP 98811218 A EP98811218 A EP 98811218A EP 1008722 B1 EP1008722 B1 EP 1008722B1
Authority
EP
European Patent Office
Prior art keywords
rotor
ring
welded
hollow passage
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98811218A
Other languages
English (en)
French (fr)
Other versions
EP1008722A1 (de
Inventor
Wilhlem Dr. Endres
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to EP03100886A priority Critical patent/EP1342882B1/de
Priority to DE59809583T priority patent/DE59809583D1/de
Priority to EP98811218A priority patent/EP1008722B1/de
Priority to US09/456,333 priority patent/US6519849B2/en
Publication of EP1008722A1 publication Critical patent/EP1008722A1/de
Priority to US10/323,663 priority patent/US6687994B2/en
Application granted granted Critical
Publication of EP1008722B1 publication Critical patent/EP1008722B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/063Welded rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49321Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49323Assembling fluid flow directing devices, e.g., stators, diaphragms, nozzles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49325Shaping integrally bladed rotor

Definitions

  • the invention relates to a method for producing a welded rotor of a turbomachine according to the preamble of claim 1.
  • a generic welded rotor for a turbomachine, for example for a gas turbine system, is described in European publication EP 0 844 367 A1.
  • the rotor has hollow channels 5, 5a, 5b etc. which extend circumferentially about the rotor axis between two rotor disks welded to one another.
  • the hollow channels rotating around the rotor axis reference is made to the above-mentioned European publication, to which reference is also made with regard to all details not shown in further detail which are necessary for the technical understanding of the cooling system on which the welded rotor is based.
  • a specially designed insert ring 20 is provided, which at least partially delimits each hollow channel on one side and is firmly welded to the rotor disks via appropriate welds.
  • the structural design of the cavity geometry and the shape of the insert rings is selected such that conventional welding techniques can be used to produce the weld seams. While this corresponds to the desire for the simplest possible manufacturing techniques and conditions in the production and manufacture of welded rotors, the manufacture of the insert rings specially adapted to the geometry of the hollow channels requires a high degree of precision and alignment accuracy during assembly, which in turn leads to a considerable measure of manufacturing costs accept.
  • the insert rings also each have a spacer which projects into the interior of the hollow channel and hinders the free propagation of the cooling medium within the hollow channel.
  • the invention has for its object to develop a method for producing a welded rotor of a turbomachine such that, on the one hand, the individual parts required for the assembly of the rotor are as simple and inexpensive to manufacture as possible and, on the other hand, are conveniently available within the rotor to be welded.
  • the advantages which are obtained, for example, with the aid of electron beam welding, should be able to be fully utilized with the method according to the invention.
  • the manufacturing process should work reliably at a higher process speed than is the case with the previously known methods for producing generic, welded rotors.
  • the method according to the invention for producing a welded rotor of a turbomachine, through which a cooling medium flows through rotor-internal inflow and outflow ducts and is composed of a plurality of rotor disks, which are connected to one another by weld seams running radially or largely radially to the rotor axis and in each case one rotating around the rotor axis Include a cavity that interrupts the weld seams in such a way that a weld seam facing the rotor directly adjoins the cavity is explained below.
  • the method according to the invention for producing a generic welded rotor of a turbomachine does not provide for a division of the ring element, but instead uses a one-piece ring to close off the cavity on its peripheral outside.
  • the method described below offers the possibility of carrying out the joining process with conventional welding techniques, for example with the aid of inert gas, induction, ultrasound or arc welding, to name just a few alternative welding techniques.
  • a one-piece ring is inserted between two rotor disks to be welded before the two rotor disks are firmly welded together.
  • the one rotor disk provides a fixed abutment surface against which the one-piece ring abuts with one of its two opposite side flanks.
  • the other rotor disk is designed such that the one-piece ring can be pushed at least a portion over the other rotor disk.
  • the other rotor disk adjacent to the cavity which is formed by joining the two rotor disks together, has an outside diameter that is smaller than the inside diameter of the one-piece ring.
  • the two rotor disks to be used with one another are welded along at least one weld seam, which extends from the hollow channel, which is enclosed by both rotor disks and extends in the direction of the rotor axis.
  • the one-piece ring is displaced in the direction of the rotor disk, which in the region of the hollow channel has the outside diameter described above, which is somewhat smaller than the inside diameter of the ring.
  • the ring is fixed in its position described above by local spot welding.
  • other measures can also be taken to keep the ring in a position distant from the hollow channel during welding.
  • the ring is released from its spot weld and pressed with one of its two side flanks against the fixed stop surface of the rotor disk.
  • the welding process to be carried out below can be carried out by means of electron beam welding, of course, conventional welding techniques can also be used.
  • the ring When the ring is in contact with the stop face of the rotor disk, it is welded to the rotor disk. If conventional welding techniques are used, the lower area between the fixed stop surface and the ring, the so-called root area, is first welded. In this way, sufficient fixing of the ring to the stop surface of one rotor disk is ensured. Subsequently, the ring is partially or completely welded to the other rotor disk, so that the hollow channel which is open on one side is completely closed by the ring and the subsequent welding processes becomes. Finally, the remaining gap between the fixed abutment surface of the one rotor disk is completely filled with the ring.
  • the manufacturing method according to the invention described above relates to a simplified assembly of welded rotors which provide cooling channels within the rotor shaft for cooling purposes, through which cooling steam is driven. It is of crucial advantage to take advantage of the advantages associated with electron welding technology.
  • the invention is exemplified below without restricting the general inventive concept on the basis of exemplary embodiments with reference to the drawing.
  • the single figure shows a schematic cross-sectional representation through a welded rotor with a hollow channel with a one-piece ring as a sealing element of the hollow channel.
  • the single figure shows in a highly schematic representation a cross section through the adjacent areas of two rotor disks 1, 2 to the hollow channel 5 through which a cooling medium is driven.
  • the hollow channel 5 is delimited on the one hand by the rotor disks 1 and 2, which are firmly connected to one another under the hollow channel 5 via a weld seam 14. Open to the left and right of the hollow channel 5 Cooling channels 4, which pass through the rotor disks 1 and 2 accordingly and are introduced or discharged into the hollow channel 5 by the coolant.
  • Discharge grooves are concave contours that directly adjoin a weld seam elevation and serve a smooth transition from the weld seam to the contour of the adjoining molded part (see figure with the relief grooves 18).
  • the rotor disks 1 and 2 are available. In the area adjacent to the hollow channel 5, the rotor disk 2 has an outer contour whose outer diameter 12 corresponds approximately to or less than or equal to the inner diameter 13 of the one-piece ring element 8. In this way, the ring element 8 can be displaced at least a little over the rotor disk 2 to the right.
  • the one-piece ring 8 is pushed over the rotor disk 2 and temporarily secured there, for example with the aid of a spot weld connection.
  • the rotor disk 1 is then placed on the rotor disk 2 and the weld seam 14 is welded, which can subsequently be checked with the aid of quality inspection methods known per se. This is how it usually forms a rough surface elevation on the weld seam surface, which can be reworked to a smooth surface using suitable ablation techniques, such as grinding or turning.
  • the ring 8 After completion of the weld seam 14, which, as already mentioned above, can be produced using conventional welding techniques, the ring 8 is shifted to the left until the ring abuts a centering lip 17 of the rotor disk 1 (see the detailed illustration in the figure) , For a first fixation, it is sufficient if the ring 8 and the rotor disk 1 are welded together in the root area, which normally takes place under protective gas conditions. Immediately afterwards, the weld seam 15 can be filled out. Finally, the weld 16 is filled, which firmly connects the ring 8 to the rotor disc 2.
  • the displaceability of the ring 8 over the outer contour of the rotor disk 2 makes it possible to produce three weld seams in a conventional manner in order to finally close a cavity 5 between the rotor disks 1 and 2.
  • the necessary space is usually available at the end of rotor parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

    Technisches Gebiet
  • Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines geschweißten Rotors einer Strömungsmaschine gemäß dem Oberbegriff des Anspruchs 1.
  • Stand der Technik
  • Ein gattungsgemäßer geschweißter Rotor für eine Strömungsmaschine, bspw. für eine Gasturbinenanlage, ist in der europäischen Druckschrift EP 0 844 367 A1 beschrieben. Der Rotor weist zu Kühlzwecken Hohlkanäle 5, 5a, 5b etc. auf, die sich umlaufend um die Rotorachse zwischen zwei miteinander verschweißten Rotorscheiben erstrecken. Auf die technische Notwendigkeit der um die Rotorachse umlaufenden Hohlkanäle sei auf die vorstehend genannte europäische Druckschrift verwiesen, auf die im übrigen hinsichtlich aller nicht weiter im Detail dargestellten Einzelheiten, die zum technischen Verständnis des dem geschweißten Rotor zugrundeliegenden Kühlsystems notwendig sind, verwiesen wird.
  • Zur peripheren Abdichtung der Hohlkanäle 5, 5a, 5b, die zu Kühlzwecken den vorstehend beschriebenen Rotor umlaufen (siehe hierzu Fig.1 der vorstehend genannten europäischen Druckschrift) ist jeweils ein speziell ausgebildeter Einsatzring 20 vorgesehen, der jeden Hohlkanal wenigstens teilweise einseitig begrenzt und über entsprechende Schweißnähte mit den Rotorscheiben fest verschweißt ist.
  • Die konstruktive Auslegung der Hohlraumgeometrie sowie die Gestalt der Einsatzringe ist derart gewählt, daß zur Herstellung der Schweißnähte mit konventionellen Schweißtechniken gearbeitet werden kann. Zwar entspricht dies bei der Produktion und Herstellung von geschweißten Rotoren dem Wunsch nach möglichst einfachen Herstellungstechniken und -bedingungen, doch erfordert die Herstellung der speziell an die Geometrie der Hohlkanäle angepaßten Einsatzringe eine hohe Präzision und Ausrichtungsgenauigkeit während der Montage, wodurch die Herstellungskosten wiederum ein beachtliches Maß annehmen. Die Einsatzringe weisen zudem je einen Distanzsteg auf, der in das Innere des Hohlkanals hineinragt und die freie Ausbreitung des Kühlmediums innerhalb des Hohlkanals behindert. Diese Maßnahmen sind aus Gründen einer vereinfachten Montage unter Verwendung konventioneller Schweißtechniken gewählt worden. Es bilden sich jedoch unweigerlich Toträume aus, in denen sich das Kühlmedium fangen bzw. ansammeln kann, wodurch
    Materialschäden nicht ausgeschlossen werden können.
  • DARSTELLUNG DER ERFINDUNG
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung eines geschweißten Rotors einer Strömungsmaschine derart weiterzubilden, daß zum einen die für die Montage des Rotors erforderlichen Einzelteile möglichst einfach und kostengünstig in der Herstellung und zum anderen innerhalb des zu verschweißenden Rotors komfortabel zu Verfügen sind. Insbesondere sollen die Vorteile, die man beispielsweise mit Hilfe des Elektronenstrahlschweißens erhält, mit dem erfindungsgemäßen Verfahren vollständig genutzt werden können. Das Herstellverfahren soll zuverlässig mit einer höheren Prozeßgeschwindigkeit arbeiten, als es bei den bisher bekannten Methoden für die Herstellung gattungsgemäßer, geschweißter Rotoren, der Fall ist.
  • Die Lösung der der Erfindung zugrundeliegenden Aufgabe ist im Patentansprüch 1 angegeben. Den Erfindungsgedanken vorteilhaft weiterbildende Merkmale sind Gegenstand der Unteransprüche.
  • Das erfindungsgemäße Verfahren zur Herstellung eines geschweißten Rotors einer Strömungsmaschine, der durch rotorinteme Zu- und Abströmkanäle von einem Kühlmedium durchströmt wird und aus mehreren Rotorscheiben zusammengesetzt ist, die durch radial oder weitgehend radial zur Rotorachse verlaufende Schweißnähte miteinander verbunden werden und jeweils einen um die Rotorachse umlaufenden Hohlraum miteinander einschließen, der die Schweißnähte derart unterbricht, daß eine rotorseitig zugewandte Schweißnaht unmittelbar an den Hohlraum angrenzt, wird im folgenden erläutert.
  • Das erfindungsgemäße Verfahren zur Herstellung eines gattungsgemäßen geschweißten Rotors einer Strömungsmaschine sieht keine Teilung des Ringelementes vor, sondern verwendet für das Abschließen des Hohlraumes an seiner peripheren Außenseite einen einteiligen Ring. Überdies bietet das im weiteren beschriebene Verfahren die Möglichkeit den Fügevorgang auch mit konventionellen Schweißtechniken durchzuführen, bspw. mit Hilfe des Schutzgas-, Induktions-, Ultraschall-, oder Lichtbogen-Schweißen, um nur einige alternative Schweißtechniken zu nennen.
  • Hierzu wird ein einteiliger Ring zwischen zwei zu verschweißenden Rotorscheiben eingebracht, noch bevor die beiden Rotorscheiben fest miteinander verschweißt werden. Dabei sieht die eine Rotorscheibe eine feste Anschlagfläche vor, an die der einteilige Ring mit einer seiner beiden gegenüberliegenden Seitenflanke bündig anstößt. Die andere Rotorscheibe ist dagegen derart ausgebildet, daß der einteilige Ring wenigstens ein Teilstück über die andere Rotorscheibe geschoben werden kann. Hierbei weist die andere Rotorscheibe angrenzend zum Hohlraum, der durch Aneinanderfügen beider Rotorscheiben gebildet wird, einen Außendurchmesser auf, der kleiner als der Innendurchmesser des einteiligen Ringes ist.
  • Die beiden miteinander zu verfügenden Rotorscheiben werden entlang wenigstens einer Schweißnaht, die sich ausgehend vom Hohlkanal, der von beiden Rotorscheiben eingeschlossen wird und in Richtung Rotorachse erstreckt, verschweißt. Während dieses Schweißvorganges ist der einteilige Ring in Richtung der Rotorscheibe verschoben, die im Bereich des Hohlkanals den vorstehend beschriebenen Außendurchmesser aufweist, der etwas kleiner als der Innendurchmesser des Ringes ist.
  • Auf diese Weise ist ein von außen zugängliches Schweißen an der Nahtstelle zwischen der einen und der anderen Rotorscheibe möglich, zumal der Schweißvorgang durch den nach oben hin offenen Hohlkanal erfolgt.
  • Für diesen Vorgang ist es von Vorteil, wenn der Ring durch lokales Punktschweißen in seiner vorstehend beschriebenen Position fixiert ist. Selbstverständlich können auch andere Maßnahmen getroffen werden, um den Ring in einer vom Hohlkanal entfernten Lage während des Schweißens zu halten.
  • Im weiteren wird der Ring von seiner Punktschweißstelle gelöst und mit einer seiner beiden Seitenflanken an die feste Anschlagfläche der Rotorscheibe gepreßt. Der im folgenden durchzuführende Schweißvorgang kann ebenso wie im vorstehend beschriebenen Fall mittels Elektronenstrahlschweißen erfolgen, selbstverständlich können auch konventionelle Schweißtechniken eingesetzt werden.
  • Im Zustand des an die Anschlagfläche der Rotorscheibe anliegenden Rings wird dieser mit der Rotorscheibe verschweißt. Im Falle der Verwendung konventioneller Schweißtechniken wird zunächst der untere Bereich zwischen der festen Anschlagfläche und dem Ring, der sogenannte Wurzelbereich, verschweißt. Auf diese Weise ist eine ausreichende Fixierung des Rings an die Anschlagfläche der einen Rotorscheibe gewährleistet. Nachfolgend wird der Ring mit der anderen Rotorscheibe teilweise oder ganz verschweißt, so daß der einseitig offene Hohlkanal durch den Ring und die nachfolgenden Schweißvorgänge vollständig geschlossen wird. Abschließend wird der verbliebene Zwischenspalt zwischen der festen Anschlagfläche der einen Rotorscheibe mit dem Ring vollständig aufgefüllt.
  • Das vorstehend beschriebenen erfindungsgemäßen Herstellverfahren betrafft eine vereinfachte Montage von geschweißten Rotoren, die innerhalb der Rotorwelle zu Kühlzwecken Kühlkanäle vorsehen, durch die Kühldampf getrieben wird. Von entscheidendem Vorteil ist das Zunutzemachen der mit der Elektronenschweißtechnik verbundenen Vorteile.
  • Kurze Beschreibung der Figuren
  • Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung exemplarisch. Die einzige Figur eine zeigt schematisierte Querschnittsdarstellung durch einen verschweißten Rotor mit Hohlkanal mit einem einteiligen Ring als Abdichtelement des Hohlkanals.
  • Wege zur Ausführung der Erfindung, gewerbliche Verwendbarkeit
  • Die einzige Figur zeigt in stark schematisierter Darstellung einen Querschnitt durch die angrenzenden Bereiche zweier Rotorscheiben 1, 2 an den Hohlkanal 5, durch den ein Kühlmedium getrieben wird. Der Hohlkanal 5 wird einerseits durch die Rotorscheiben 1 und 2 begrenzt, die unter dem Hohlkanal 5 über eine Schweißnaht 14 fest miteinander verbunden sind. Links und rechts an den Hohlkanal 5 münden Kühlkanäle 4, die die Rotorscheiben 1 und 2 entsprechend durchsetzen und durch die Kühlmittel in den Hohlkanal 5 ein- bzw. ausgeleitet wird.
  • Zur Herstellung der in Figur dargestellten miteinander verschweißten Rotorscheiben 1 und 2 werden diese zunächst entlang der Schweißnaht 14 miteinander fest verfügt. Dieser Schweißvorgang kann entweder mit konventionellen Schweißtechniken oder mit Elektronenstrahlschweißen erhalten werden.
  • Um axial gerichtete Spannungen auszugleichen, können überdies an sich bekannte Entlasungsnuten vorgesehen werden, um die mechanischen Beanspruchungen auf die einzelnen Schweißnuten zu reduzieren. Entlasungsnuten sind konkave Konturen, die sich unmittelbar an eine Schweißnahtüberhöhung anschließen und einem geschmeidigen Übergang von der Schweißnaht an die Kontur des sich daran anschließenden Formteil dienen (siehe Figur mit den Entlastungsnuten 18).
  • Nachfolgend wird anhand von der beigefügten Fig die vorliegende erfindung beschrieben, die zum einen mit konventionellen Schweißtechniken auskommt und zum anderen die Verwendung eines einteiligen Rings zum Abschluß des Hohlkanals von seiner peripheren Außenseite her vorsieht.
  • Zu verfügen sind die Rotorscheiben 1 und 2. Die Rotorscheibe 2 weist im Bereich an den Hohlkanal 5 angrenzend eine Außenkontur auf, deren Außendurchmesser 12 etwa kleiner oder gleich dem Innendurchmesser 13 des einteilig ausgebildeten Ringelementes 8 entspricht. Auf diese Weise kann das Ringelement 8 wenigstens ein Stück weit über die Rotorscheibe 2 nach rechts verschoben werden.
  • Zum Verfügen der in der Figur dargestellten Rotorscheiben 1 und 2 sind drei Schweißnähte 14, 15 und 16 vorgesehen.
  • Zunächst wird der einteilige Ring 8 über die Rotorscheibe 2 geschoben und dort provisorisch befestigt, beispielsweise mit Hilfe einer Punktschweißverbindung. Anschließend wird die Rotorscheibe 1 an die Rotorscheibe 2 gelegt und die Schweißnaht 14 geschweißt, die nachfolgend mit Hilfe an sich bekannter Qualitätsüberprüfungsmethoden überprüft werden kann. So bildet sich für gewöhnlich an der Schweißnahtoberfläche eine rauhe Oberflächenüberhöhung aus, die mit Hilfe geeignter Abtragungstechniken, wie beispielsweise Schleifen oder Drehen, zu einer glatten Oberfläche nachbearbeitet werden kann.
  • Nach Fertigstellung der Schweißnaht 14, die, wie vorstehend bereits erwähnt, mit Hilfe konventioneller Schweißtechniken erzeugt werden kann, wird der Ring 8 nach links verschoben, bis der Ring an einer Zentrierlippe 17 der Rotorscheibe 1 bündig anstößt (siehe hierzu die Detaildarstellung in der Figur). Für eine erste Fixierung ist es ausreichend, wenn der Ring 8 und die Rotorscheibe 1 im Wurzelbereich miteinander verschweißt werden, was normalerweise unter Schutzgasbedingungen erfolgt. Unmittelbar daran anschließend kann die Schweißnaht 15 ausgefüllt werden.
    Schließlich wird die Schweißnaht 16 aufgefüllt, die den Ring 8 mit der Rotorscheibe 2 fest verbindet.
  • Durch die Verschiebbarkeit des Rings 8 über die Außenkontur der Rotorscheibe 2 ist es möglich, drei Schweißnähte auf konventionelle Art und Weise herzustellen, um schließlich einen Hohlraum 5 zwischen den Rotorscheiben 1 und 2 zu schließen. Dernötige Raum ist meist am Ende von Rotorteilen vorhanden.
  • Die vorstehend beschriebenen erfindungsgemäßen Verfahren führen zu geschweißten Rotoren mit umlaufenden Hohlkanälen, in denen keine, das Kühlmedium innerhalb des Hohlraums beim Ausbreiten behindernde Flächenelemente vorgesehen sind.
  • Bezugszeichenliste
  • 1
    Rotorscheibe
    2
    Rotorscheibe
    3
    Schweißnaht
    4
    Kühlkanal
    5
    Hohlkanal
    6
    Offener Bereich des Hohlraums
    7
    Spalt
    8
    Ringelement
    9
    Stoßfläche
    10
    Umfangsnaht
    11
    Zentrierlippe
    12
    Außendurchmesser der Rotorscheibe 2
    13
    Innendurchmesser des Rings
    14,15,16
    Schweißnähte
    17
    Zentrierlippe
    18
    Entlastungsnut

Claims (6)

  1. Verfahren zur Herstellung eines geschweißten Rotors einer Strömungsmaschine, der durch rotorinteme Zu- und Abströmungskanäle von einem Kühlmedium durchströmt wird und aus mehreren Rotorscheiben (1, 2) zusammengesetzt ist, die durch radial oder weitgehend radial zur Rotorachse verlaufende Schweißnähte (14, 15, 16) miteinander verbunden werden und jeweils einen um die Rotorachse verlaufenden Hohlkanal (5) miteinander einschließen, der die Schweißnähte (14, 15, 16) derart unterbricht, daß eine rotorseitig zugewandte Schweißnaht unmittelbar an den Hohlkanal (5) angrenzt, dadurch gekennzeichnet, daß zwischen zwei zu verschweißenden Rotorscheiben (1, 2) ein einteiliger Ring (8) eingebracht wird, der einseitig gegen eine Zentrierlippe (17) an der einen Rotorscheibe (1) anstößt und in Richtung der anderen Rotorscheibe (2) bewegbar ist, daß die zwei unmittelbar aneinandergrenzende Rotorscheiben (1, 2) entlang wenigstens einer Schweißnaht (14), die sich ausgehend von dem Hohlkanal (5), der von beiden Rotorscheiben (1, 2) eingeschlossen wird, in Richtung Rotorachse erstreckt, miteinander verschweißt werden, wobei der Ring (8) in Richtung der anderen Rotorscheibe (2) verschoben ist, daß der rotorseitig abgewandte Bereich (6) des Hohlkanals an seiner peripheren Außenseite wenigstens teilweise offen ausgebildet ist, über den der Ring (8) derart positioniert wird, daß der Ring (8) mit der einen Rotorscheine (1) und anschließend mit der anderen Rotorscheibe (2) verschweißt wird.
  2. Verfahren nach Ansprüch 1, dadurch gekennzeichnet, daß die ausgehend von dem Hohlkanal (5), der von beiden Rotorscheiben (1, 2) eingeschlossen wird, in Richtung Rotorachse erstreckende Schweißnaht (14) als Flächenschweißnaht ausgebildet wird.
  3. Verfahren nach Anspruch 1 oder 2 dadurch gekennzeichnet, daß vor dem Verschweißen beider Rotorscheiben (1, 2) der Ring (8) beabstandet von der einen Rotorscheibe (1) und in einer Stellung, in der der Hohlkanal (5) einseitig geöffnet ist, an der anderen Rotorscheibe (2) provisorisch befestigt wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die provisorische Befestigung des Rings (8) an der anderen Rotorscheibe (2) durch Punktschweißen erfolgt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Schweißnähte (14, 15, 16) mit Elektronenstrahlschweißen oder mit konventionellem Schweißen gefertigt werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die andere Rotorscheibe (2) im Bereich des Hohlkanals (5) einen Durchmesser aufweist, der kleiner als der innere Ringdurchmesser ist.
EP98811218A 1998-12-10 1998-12-10 Verfahren zur Herstellung eines geschweissten Rotors einer Strömungsmaschine Expired - Lifetime EP1008722B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP03100886A EP1342882B1 (de) 1998-12-10 1998-12-10 Verfahren zur Herstellung eines geschweissten Rotors einer Strömungsmaschine
DE59809583T DE59809583D1 (de) 1998-12-10 1998-12-10 Verfahren zur Herstellung eines geschweissten Rotors einer Strömungsmaschine
EP98811218A EP1008722B1 (de) 1998-12-10 1998-12-10 Verfahren zur Herstellung eines geschweissten Rotors einer Strömungsmaschine
US09/456,333 US6519849B2 (en) 1998-12-10 1999-12-08 Method for the manufacture of a welded rotor of a fluid-flow machine
US10/323,663 US6687994B2 (en) 1998-12-10 2002-12-20 Method for the manufacture of a welded rotor of a fluid-flow machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98811218A EP1008722B1 (de) 1998-12-10 1998-12-10 Verfahren zur Herstellung eines geschweissten Rotors einer Strömungsmaschine

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP03100886A Division EP1342882B1 (de) 1998-12-10 1998-12-10 Verfahren zur Herstellung eines geschweissten Rotors einer Strömungsmaschine
EP03100886A Division-Into EP1342882B1 (de) 1998-12-10 1998-12-10 Verfahren zur Herstellung eines geschweissten Rotors einer Strömungsmaschine

Publications (2)

Publication Number Publication Date
EP1008722A1 EP1008722A1 (de) 2000-06-14
EP1008722B1 true EP1008722B1 (de) 2003-09-10

Family

ID=8236478

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03100886A Expired - Lifetime EP1342882B1 (de) 1998-12-10 1998-12-10 Verfahren zur Herstellung eines geschweissten Rotors einer Strömungsmaschine
EP98811218A Expired - Lifetime EP1008722B1 (de) 1998-12-10 1998-12-10 Verfahren zur Herstellung eines geschweissten Rotors einer Strömungsmaschine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03100886A Expired - Lifetime EP1342882B1 (de) 1998-12-10 1998-12-10 Verfahren zur Herstellung eines geschweissten Rotors einer Strömungsmaschine

Country Status (3)

Country Link
US (2) US6519849B2 (de)
EP (2) EP1342882B1 (de)
DE (1) DE59809583D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179342B2 (en) 2003-10-14 2007-02-20 Alstom Technology Ltd. Thermally loaded component, and process for producing the component

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7281901B2 (en) * 2004-12-29 2007-10-16 Caterpillar Inc. Free-form welded power system component
US7473475B1 (en) * 2005-05-13 2009-01-06 Florida Turbine Technologies, Inc. Blind weld configuration for a rotor disc assembly
US20070189894A1 (en) * 2006-02-15 2007-08-16 Thamboo Samuel V Methods and apparatus for turbine engine rotors
DE502006007968D1 (de) * 2006-08-25 2010-11-11 Siemens Ag Drallgekühlte Rotor-Schweissnaht
US20090060735A1 (en) * 2007-08-31 2009-03-05 General Electric Company Turbine rotor apparatus and system
US8997498B2 (en) 2011-10-12 2015-04-07 General Electric Company System for use in controlling the operation of power generation systems

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE787441A (fr) * 1971-08-23 1973-02-12 Alsthom Cgee Rotor soude
CH563833A5 (de) * 1974-10-28 1975-07-15 Bbc Brown Boveri & Cie
GB1549070A (en) * 1977-12-12 1979-08-01 Rolls Royce Gas turbine engine compressor rotor construction
AT374397B (de) * 1980-07-21 1984-04-10 Puschner Manfred Dr Verfahren zur kontinuierlichen herstellung von fuelldraehten, fuelldrahtelektroden od. dgl.
US4598449A (en) * 1981-12-21 1986-07-08 United Technologies Corporation Beam for a containment structure
US5221821A (en) * 1992-01-10 1993-06-22 Crompton & Knowles Corporation Method for producing an extruder barrel assembly
DE4324034A1 (de) * 1993-07-17 1995-01-19 Abb Management Ag Gasturbine mit gekühltem Rotor
US5593274A (en) * 1995-03-31 1997-01-14 General Electric Co. Closed or open circuit cooling of turbine rotor components
JP2941698B2 (ja) * 1995-11-10 1999-08-25 三菱重工業株式会社 ガスタービンロータ
GB2307520B (en) * 1995-11-14 1999-07-07 Rolls Royce Plc A gas turbine engine
US5632600A (en) * 1995-12-22 1997-05-27 General Electric Company Reinforced rotor disk assembly
DE19648185A1 (de) * 1996-11-21 1998-05-28 Asea Brown Boveri Geschweisster Rotor einer Strömungsmaschine
DE19713268B4 (de) * 1997-03-29 2006-01-19 Alstom Gekühlte Gasturbinenschaufel
DE19738065A1 (de) * 1997-09-01 1999-03-04 Asea Brown Boveri Turbinenschaufel einer Gasturbine
EP0972910B1 (de) * 1998-07-14 2003-06-11 ALSTOM (Switzerland) Ltd Berührungsloses Abdichten von Spalten in Gasturbinen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179342B2 (en) 2003-10-14 2007-02-20 Alstom Technology Ltd. Thermally loaded component, and process for producing the component

Also Published As

Publication number Publication date
US6687994B2 (en) 2004-02-10
US6519849B2 (en) 2003-02-18
EP1342882A3 (de) 2004-05-06
DE59809583D1 (de) 2003-10-16
EP1342882A2 (de) 2003-09-10
US20020092165A1 (en) 2002-07-18
EP1008722A1 (de) 2000-06-14
US20030084568A1 (en) 2003-05-08
EP1342882B1 (de) 2006-05-17

Similar Documents

Publication Publication Date Title
DE69202590T2 (de) Segmentierte Bürstendichtung und Verfahren zur Herstellung.
DE10013429C5 (de) Ausgleichgetriebe
EP3251787B1 (de) Verfahren zur herstellung eines bauteils einer rotationsmaschine sowie bauteil hergestellt nach einem solchen verfahren
WO2009049596A1 (de) Verfahren zur herstellung einer blisk oder eines blings, mittels eines angeschweissten schaufelfusses
EP0604754A1 (de) Läufer einer Turbine
DE2830358A1 (de) Verdichterlaufrad, insbesondere radialverdichterlaufrad fuer stroemungsmaschinen
DE3604677C2 (de)
DE102004032975A1 (de) Verfahren zum Verbinden von Schaufelblättern mit Schaufelfüßen oder Rotorscheiben bei der Herstellung und/oder Reparatur von Gasturbinenschaufeln oder integral beschaufelten Gasturbinenrotoren
DE2527313B2 (de) Gehäuse für axial durchströmte Turbomaschinen
WO2021089069A1 (de) Arbeitszylinder und verfahren zu dessen herstellung
EP2703604A1 (de) Baugruppe einer Axialturbomaschine und Verfahren zur Herstellung einer solchen Baugruppe
EP1008722B1 (de) Verfahren zur Herstellung eines geschweissten Rotors einer Strömungsmaschine
DE10356243B4 (de) Verfahren zum Herstellen einer Düsenkasteneinrichtung für eine Dampfturbine
DE3209512A1 (de) Rundschalttisch
DE4222583C2 (de) Verfahren zur Herstellung von Gebläsescheiben aus Titan unter Anwendung einer Diffusionsbindung
EP1940581B1 (de) Verfahren zur herstellung einer schweissverbindung
EP2219819B1 (de) Verfahren zum herstellen eines integral beschaufelten rotors
EP2871418B1 (de) Gasturbinenbrennkammer sowie Verfahren zu deren Herstellung
DE102005033362A1 (de) Axialdampfturbinenanordnung
EP3156588A1 (de) Reparaturverfahren für dichtsegmente
EP0882545A2 (de) Verfahren zum Reparieren von integral gegossenen Leitkränzen einer Turbine
EP2404036A1 (de) Verfahren zur herstellung eines integral beschaufelten rotors
EP2860352A1 (de) Rotor, zugehöriges Herstellungsverfahren und Laufschaufel
DE102006061448B4 (de) Verfahren zur Herstellung einer Blisk oder eines Blings einer Gasturbine und danach hergestelltes Bauteil
DE102011102251A1 (de) Verfahren zur Herstellung einer integral beschaufelten Rotorscheibe, integral beschaufelte Rotorscheibe, Rotor und Strömungsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001027

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM POWER (SCHWEIZ) AG

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

17Q First examination report despatched

Effective date: 20020716

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59809583

Country of ref document: DE

Date of ref document: 20031016

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040104

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59809583

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59809583

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59809583

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59809583

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59809583

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171229

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59809583

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20181209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20181209