[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1002061A1 - Varianten der 6 endo-1,4-beta-glukanase und diese enthaldende reinigungszusammensetzungen - Google Patents

Varianten der 6 endo-1,4-beta-glukanase und diese enthaldende reinigungszusammensetzungen

Info

Publication number
EP1002061A1
EP1002061A1 EP98929249A EP98929249A EP1002061A1 EP 1002061 A1 EP1002061 A1 EP 1002061A1 EP 98929249 A EP98929249 A EP 98929249A EP 98929249 A EP98929249 A EP 98929249A EP 1002061 A1 EP1002061 A1 EP 1002061A1
Authority
EP
European Patent Office
Prior art keywords
atom
humicola
endo
glucanase
cellulase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98929249A
Other languages
English (en)
French (fr)
Inventor
Henrik Lund
Jack Bech Nielsen
Martin Schulein
Bo Damgaard
Kim Vilbour Andersen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novozymes AS
Original Assignee
Novo Nordisk AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novo Nordisk AS filed Critical Novo Nordisk AS
Publication of EP1002061A1 publication Critical patent/EP1002061A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38645Preparations containing enzymes, e.g. protease or amylase containing cellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase

Definitions

  • the present invention relates to cleaning compositions, including laundry detergent compositions and fabric softener or fabric conditioning compositions, containing an endo-l,4- ⁇ - glucanase of the glycosyl hydrolase family 6, preferably an improved variant of a parent Humicola endoglucanase or Humicola- li e cellulase; the improved variants; and a method of con- structing the variants.
  • Performance of a cleaning composition for use in a washing or cleaning method, such as a laundry, dishwashing or sur- face cleaning method, is judged by a number of factors, including the ability to remove soils, the ability to prevent the re- deposition of the soils, or, in case of laundry, the ability to maintain the original colours of the washed garment and the ability to maintain fabric or garment durability.
  • the anti- harshening or softening effect of cellulase on fabrics and the fabric care (colour care/colour clarification) effect is known, e.g. from GB 1 368 599 and EP 269 168, along with other very beneficial cellulolytic effects such as particulate soil removal and de-pilling.
  • Fabric conditioning or fabric softener compositions in particular compositions to be used in the rinse cycle of laundry washing processes, are also well known.
  • such compositions contain a water-insoluble quaternary-ammonium fabric softening agent, the most commonly used having been di-long alkyl chain ammonium chloride.
  • Fabric conditioning compositions comprising cellulase have also been suggested, e.g. in US 5,445,747, in particular compositions using a specific ⁇ 43kD cellulase obtained from the fungus Humicola insolens .
  • CBD cellulose-binding domain
  • CAD catalytically active domain
  • Agaricus bisporus exoglucanase 3 (cel3) , Cellulomonas fimi endoglucanase A (cenA) , Cellulomonas fimi exoglucanase A (cbhA) , Microspora bispora endoglucanase A (celA) , Streptomyces halste- dii endoglucanase A (celA) , Streptomyces strain KSM-9 endoglucanase 1 (casA) , Thermomonospora fusca endoglucanase E-2 (celB) , Trichoderma reesei exoglucanase II (cbh2) , and probably Neocal- limastix patriciarum exoglucanase (celA) (Denman et al., 1996) and Orpinomyces ⁇ p.
  • the inverting mechanism involves protonation of the glycosidic oxygen of the scissile bond by an acidic amino acid residue (general acid catalyst) with concerted attack of a water ole- cule at the anomeric carbon.
  • the nucleophilicity of this water molecule is greatly increased through deprotonation by a basic amino acid residue (general basic catalyst) .
  • the partial positive charge formed at the anomeric carbon in the transition state is stabilised through resonance with the ring oxygen. This gives the transition state significant oxocarbonium ion character which is stabilised by electrostatic interactions with the nearby carboxylate side chains and by specific binding interactions with the sugar in its half-chair conformation.
  • glutamate and aspartate residues act directly as general acid or base catalysts in glycosidases (Damude et. al. 1996) .
  • the present invention re- lates to cleaning compositions comprising one or more enzymes having cellulolytic activity wherein at least 25% of the total weight of cellulolytic active enzyme protein derives from the presence of a Humicola endo-1, 4- ⁇ -glucanase or Humi cola-like cellulase (endo-type (Cel6B) or exo-type (Cel6A))of the glycosyl hydrolase family 6, the Humicola-like cellulase being an enzyme comprising a catalytically core domain having an amino acid sequence being at least 35% homologous to the appended SEQ ID NO: 4.
  • the invention provides a method of constructing a variant of a parent Humicola family 6 en- do-beta-l,4-glucanase or a Humicola-like family 6 cellulase which variant has endo-beta-l,4-glucanase activity and improved deter- gent compability as compared to the parent endo-beta-l,4-glucanase or cellulase; and variants provided by the method.
  • Fig. 3 shows the nucleotide sequence of pC6H from BamHI- Xbal disturb the translational initiation codon is underlined (see e- xample 3) .
  • Figure 4 Secondary structure elements (strand and helix only) of catalytic core domain of Humicola insolens Cel6B as determined by DSSP for the two independent molecules in the asymmetric unit. (H) ⁇ -helix, (3) 3-10-helix, (S) ⁇ -strand.
  • Figure 5 The loop regions encompassing the binding cleft in the catalytic core region of Humicola insolens Cel6B. (L) indicate the defined loop regions encompassing the binding cleft,
  • FIG. 6 shows the loop regions encompassing the binding cleft in Humicola insolens Cel6A as determined from sequence alignment to Humicola insolens EGIV (Cel6B) . The numbering refers to the mature full length protein.
  • Fig. 7 shows the loop regions encompassing the binding cleft in Humicola insolens Cel6A as determined from analysis of X-ray structure.
  • Fig. 8 Residues on the surface of Humicola insolens Cel6B catalytic core domain and Neocallimastix patriciarum catalytic core domain (Q12646) are shown in bold and underline (see example 6) .
  • FIG. 9 Residues on the surface of Humicola insolens Cel6B catalytic core domain and Orpinomyces sp .
  • CelA catalytic core domain (P78720) are shown in bold and underline (see example 6) .
  • FIG. 10 Residues on the surface of Humicola insolens Cel6B catalytic core domain and Orpinomyces sp .
  • CelC catalytic core domain (P78721) are shown in bold and underline (see exam- pie 6) .
  • Appendix 1 shows the structural coordinates of Humicola insolens EG VI (Cel6B) endo-beta-1, 4-glucanase.
  • Appendix 2 shows the structural coordinates of Humicola insolens Cel6A cellulase.
  • figure 1 a number of selected amino acid sequences of cellulases of different microbial origin are aligned.
  • P49* Deletion of a proline (P) at position 49 in the amino acid sequence of the cellulase from Humicola insolens is indicated as P49*.
  • Multiple mutations are separated by slash marks ("/") , e.g. Q119H/Q146R, representing mutations in positions 119 and 146 substituting glutamine (Q) with histidine (H) , and glutamine (Q) acid with arginine (R) , respectively.
  • a substitution is made by mutation in e.g. a cellulase derived from a strain of Humicola insolens , the product is designated e.g. "Humicola insolens/*49P" .
  • the term "endoglucanase” is intended to denote enzymes with cellulolytic activity, espe- cially endo-1, 4- ⁇ -glucanase activity, which are classified in EC 3.2.1.4 according to the Enzyme Nomenclature (1992) and are capable of catalysing (endo) hydrolysis of 1, 4- ⁇ -D-glucosidic link- ages in cellulose, lichenin and cereal ⁇ -D-glucans including
  • inverting type endoglucanase means an endo- ⁇ -l,4-glucanase which hydrolyses the gly- cosidic bond with net inversion of anomeric configuration, i.e. which operate via a direct displacement of the leaving group by water: one residue acts as a general acid and the other as a general base.
  • retaining type endoglu- canase means an endo- ⁇ -1, 4-glucanase" which hydrolyses the gly- cosidic bond with net retention of anomeric configuration, i.e. which utilizes a double-displacement mechanism involving a gly- cosyl-enzyme intermediate: one residue functions as general acid and general base while the other acts as a nucleophile and leav- ing group (McCarter et al., 1994).
  • the cleaning composition comprises a Humicola endo-1, 4- ⁇ -glucanase or Humicola-like cellulase of the glycosyl hydrolase family 6 in an amount corresponding to at least 25%, preferably at least 30%, more preferably at least 40%, even more preferably at least 90%, especially at least 98%, of the total weight of enzyme protein having cellulolytic activity.
  • the term "Humicola-like cellulase” denotes an endoglucanase or an exoglucanase (cellobiohydrolase) comprising a catalytically core domain which has an amino acid sequence being at least 35% homologous to SEQ ID NO: 4. This is explained in further detail below.
  • family 6 endoglucanase will usually be present in a mixture of other enzymes having cellulolytic activity. This mixture may either be a conventional fermentation product, possibly isolated and purified, from a single species of a microorganism.
  • examples of other cellulolytic enzymes usually present in a fungal cellulolytic mixture, i.e.
  • a cellulase complex produced by a fungal species are endo-l,4- ⁇ - glucanases of the glycosyl hydrolase families 5, 7, 12, or 45; and examples of other cellulolytic enzymes usually present in a bacterial cellulolytic mixture, i.e. a cellulase complex produced by a bacterial species, are endo-1, 4- ⁇ -glucanases of the glycosyl hydrolase families 5, 8, 9, 12, 41, 45 or 48.
  • the mixture may also be a mixture of monocomponent enzymes, preferably enzymes derived from bacterial or fungal species by using conventional recombinant techniques, which enzymes have been fermented and possibly isolated and purified separately and which may originate from different species, preferably fungal or bacterial species.
  • essentially all cellulolytic activity present in the composition of the invention re- suits from one single enzyme component, i.e. a monocomponent endo-l,4- ⁇ -glucanase of the glycosyl hydrolase family 6.
  • a monocomponent endo-l,4- ⁇ -glucanase of the glycosyl hydrolase family 6 are those derived from the species Humicola insolens (eg EG VI also denoted Cel6B) , Neocallimastix patriciarum, Orpinomyces sp .
  • Trichoderma reesei and Fusarium oxy ⁇ porum produces enzymes which are suitable as starting material for the protein engineering method by which well-performing family 6 endoglucanase variants can be constructed.
  • the family 6 endo-1, 4- ⁇ -glucanase comprises one or two cellulose-binding domains (CBD) operably linked to the catalytic domain.
  • a cellulose binding domain (CBD) is a polypeptide which has high affinity for or binds to water-insoluble forms of cellulose and chitin, including crystalline forms.
  • CBDs are found as integral parts of large protein complexes consisting of two or more different polypeptides, for example in hydrolytic enzymes (hydrolases) which typically are composed of a catalytic domain containing the active site for substrate hydrolysis, and a carbohydrate-binding domain or cellulose-binding domain (CBD) for binding to the insoluble matrix.
  • hydrolytic enzymes hydrolytic enzymes
  • Such enzymes can comprise more than one catalytic domain and one, two or three CBDs and optionally one or more polypeptide regions linking the CBD(s) with the catalytic domain (s) , the latter regions usually being denoted a "linker".
  • hydrolytic enzymes comprising a CBD are cellulases, xylanases, mannanases, arabinofuranosidases, acetyl esterases and chitinases.
  • CBDs have also been found in algae, e.g. the red alga Porphyra purpurea as a non-hydrolytic polysaccharide- binding protein, see Peter Tomme et al. "Cellulose-Binding Domains: Classification and Properties" in "Enzymatic Degradation of Insoluble Carbohydrates", John N. Saddler and Michael H. Penner (Eds.), ACS Symposium Series, No. 618, 1996.
  • most of the known CBDs are from cellulases and xylanases.
  • cellulose-binding domain is intended to be understood as defined by Tomme et al., op . cit . This definition classifies more than 120 cellulose-binding domains into 10 families (I-X) which may have different functions or roles in connection with the mechanism of substrate binding. However, it is anticipated that new family representatives and additional CBD families will appear in the future.
  • CBDs may be useful as a single domain polypeptide or as a dimer, a trimer, or a polymer; or as a part of a protein hybrid.
  • Chimeric protein hybrids are known in the art, see e.g. WO 90/00609, WO 94/24158 and WO 95/16782, and comprise a cellulose binding domain (CBD) from another origin, preferably from another microbial origin, than the chimeric protein as such, which CBD exists as an integral part of the protein.
  • CBD cellulose binding domain
  • the chimeric protein hybrids are enzyme hybrids, i.e. contain a catalytic domain together with the binding domain.
  • Chimaric protein hybrids and enzyme hybrids can be prepared by transforming into a host cell a DNA construct comprising at least a fragment of DNA encoding the cellulose- binding domain (CBD) ligated, with or without a linker, to a DNA sequence encoding the protein or enzyme and growing the host cell to express the fused gene.
  • CBD cellulose- binding domain
  • the recombinant fusion protein or enzyme hybrids may be described by the following formula:
  • recombinant fusion protein or enzyme hybrids having an internal CBD are also contemplated.
  • the structural part to be modified is the binding cleft, the loop region encompassing the binding cleft, or the side chain of the catalytic acid Aspl39.
  • the invention provides a method of constructing a variant of a parent Humicola-like family 6 cellulase, which variant has endo-beta-l,4-glucanase activity and improved detergent compatibility as compared to the parent cellulase, which method comprises i) comparing the three- dimensional structure of the Humicola endo-beta-l,4-glucanase with the structure of a Humicola-like cellulase, ii) identifying a part- of the Humicola-like cellulase structure which is different from the Humicola endo-beta-l,4-glucanase structure and which from structural or functional considerations is contemplated to be responsible for differences in the detergent compatibility of the Humicola endo-beta-1, 4-glucanase and Humicola-like cellulase, iii) modifying the part of the Humicola-like cellulase identified in ii) whereby a
  • the part of the Humicola-like cellulase is modified so as to resemble the corresponding part of the Humicola family 6 endo-beta-l,4-glucanase.
  • the modification is, in step iii) of the method, accomplished by deleting one or more amino acid residues of the part of the Humicola-like cellulase to be modified; or the modification is accomplished by replacing one or more amino acid residues of the part of the Humi ⁇ ola-like cellulase to be modified with the amino acid residues occupying corresponding positions in the Humicola endo-beta-l,4-glucanase; or the modification is accomplished by insertion of one or more amino acid residues present in the Humicola endo-beta-1, 4-glucanase into a corresponding position in the Humicola-like cellulase.
  • the parent Humicola endo-beta- 1,4-glucanase is derived from a strain of Humicola in ⁇ olen ⁇ , more preferably from the strain Humicola in ⁇ olens, DSM 1800.
  • improved detergent compability improved properties of the enzyme with respect to enzymatic activity and stability in commercial detergent compositions. More specifically, these improved properties are improved enzymatic performance or enzymatic activity at a high pH, preferably at a pH above 8, more preferably above 9, especially at a pH about or above 10; improved stability towards conventional commercial detergent composition ingredients such as anionic or non-ionic surfactants, cf. examples 4-7; improved thermal stability; and improved resistance to oxidation (ie improved compatibility towards conventional detergent composition ingredients such as bleaching agents) .
  • the three-dimensional structure of Humicola insolens Cel6B (EG VI) catalytic core domain The three-dimensional structure of the catalytic core domain of the Humicola insolens Cel6B fungal cellulase was solved by X-ray crystallographic methods. The extent of the catalytic core domain used for the experiment was the 347 amino acid resi- 5 dues starting from position 27 of SEQ ID NO: 4 (and including position 373 of SEQ ID NO:4).
  • the obtained three-dimensional structure is believed to be representative for the structure of the any fungal endoglucanase catalytic core domain belonging to family 6 of glycosyl hydrola-
  • PDB Protein Data Bank
  • E. E. Abola, F. C. Bernstein, S. H. Bryant, T. F. Koetzle, and J. Weng Protein Data Bank, in Crystallographic Databases-Information Content, Software Systems, Scientific Applications, F. H. Allen, G. Berger- hoff, and R. Sievers, eds., Data Commission of the International
  • the catalytic Br ⁇ n- sted acid (D139) and the catalytic base (D316) are located on e- ach side of a cleft at a distance of 9.12A and 9.64A for the two independent molecules respectively consistent with the catalytic mechanism occurring with inversion of the anomeric configurati- on.
  • a third acidic residue (D180) is located close to the Br ⁇ n- sted acid having the effect of stabilizing the protonated form of the D139 thereby making the enzyme active even at alkaline conditions.
  • the secondary structure of the core domain of the Humicola insolens Cel6B fungal cellulase as determined by the DSSP program (W.Kabsch & C.Sander, Dictionary of protein secondary structure : pattern recognition of hydrogen bond and geometrical features . Biopoly ers 22, 2577-2637 (1983)) is shown in figure 4.
  • the three-dimensional structure of the catalytic core domain of the Humicola insolens Cel6A cellulase was solved by X- ray crystallographic methods as described above and is shown in Appendix 2.
  • a binding cleft is defined as consisting of the largest cave (pocket) on the surface of an enzyme and can extend beyond this pocket.
  • WHAT IF G.Vriend, WHAT IF: a molecular modelling and drug design program . J.Mol. Graph. 8, 52-56, (1990) version 19980317-1938
  • the binding cleft in contact with the substrate can consist of more residues than those in the concave cleft detected above. Those can be detected by visual inspection of the three- dimensional structure e.g.
  • the complete binding cleft is defined as comprising of the following residues: N14, D16, K20, Y51, W52, S54 , L58, Y86, R91, D92, P138, D139, D180,
  • the loop regions encompassing the binding cleft Given the binding cleft as described above, the loop regions encompassing the binding cleft is defined as the regions of contiguous sequence not belonging to a ⁇ -helical region or a ⁇ - strand region in any of the determined structures. In this definition the 3-10 helices are included in the loop definition as they are not seen as an integral part of the inner core structure.
  • the binding cleft encompassing loops are defined as: L12, V13 , N14, S54 , N55, 156, F57, L58, L59, Y86, N87, L88, P89, D90, R91, D92, C93, S94, A95, G96, E97, S98, S99, G100, E101, L102, K103, L104, S105, Q106, N107, E137, P138, D139, V181, A182, N183, G188, W189, A190, D191, K192, N219, V220, S221, N222, Y223, N224, P225, Y226, S227, T228, S229, N230, P231, P232, P233, Y234, T235, S236, G237, S238, P239, S240, P241, D242, A271, L272, S273, G274, A275, R276, S
  • the Sub ⁇ et zone command of the Insightll program is applied.
  • the command detects residues or individual atoms within a defined distance from a predefined subset, groups of residues or groups of atoms.
  • the Sub ⁇ et li ⁇ t command can be used to investigate the result.
  • mutations/deletions of surface exposed residues are performed.
  • the mutation is towards a more negatively charged residue, and preferably from a potentially positively charged residue (His, Lys or Arg, more preferably Arg) .
  • His, Lys or Arg, more preferably Arg a potentially positively charged residue
  • a hydrogen bond involving the back bone amide proton is defined as those with an energy determined by DSSP smaller than or equal to -1.4 kcal/mole.
  • Unsatisfied hydrogen bond donors and/or acceptors as well as unpaired buried charged groups from potentially charged residues can destabilize an enzyme structure. Removing the unsatisfied partner by mutagenesis to a residue without these properties or mutation of neighboring residues to fulfill the unsatisfied hydrogen bond or salt bridge can most often stabilize the enzyme structure.
  • These unsatisfied hydrogen bond/salt bridge partners can be found using the WHAT CHECK routine which is an integral part of the WHAT IF program.
  • residues having their side chains exposed to the cavity in a favorable position for mutagenesis as judged visually using In ⁇ ightll V13, N14 , Y17, S18, L21, V40,
  • the mutations should preferably be made to surface exposed residues and preferably not more than 15A from the catalytic proton donor, more preferably not more than loA from the cataly- tic proton donor and most preferably nor more than ⁇ A from the catalytic proton donor.
  • Insertions/deletions should only be made in loop/turn regions and preferably not more than l ⁇ A from the catalytic proton donor .
  • Another method to alter the pH profile of an enzyme is to mutate the residues in or close to the binding cleft. This will create a variant enzyme where the electrostatics of the active site will be changed either directly due to altered charges or partial charges in the binding cleft, or due to altered geometry around the active site changing the degree of burial of the active site residues. These changes should be made not more than 5A from a residue in the binding cleft, and preferably not more than 2.5A from a residue in the binding cleft most preferably mutating residues in the binding cleft.
  • the present invention includes variants of sequences having at least 35% identity to the catalytic core domain of Humicola insolens Cel6B. Percent sequence identity is determined by conventional methods, by means of computer programs known in the art such as GAP provided in the GCG program package (Program Ma- nual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) as disclosed in Needleman, S.B.
  • the catalytic core domain of Humicola in ⁇ olen ⁇ Cel6B is defined as the 347 residues used for the X-ray structure determination (positions 27-374 of SEQ ID NO: 4).
  • the Profile /Structure alignment option of ClustalW is applied. Only the part of the sequence extending from the start of the GAP alignment to the catalytic core domain of Humicola in ⁇ olens Cel6B to the last residue aligning with to the catalytic core domain of Humicola in ⁇ olen ⁇ Cel6B are included.
  • the alignment in Fig. 4 is read as 1 st profile and the new sequence is read as 2 profile .
  • the option Align ⁇ equence ⁇ to 1 st profile is used to align a new sequence to the sequence alignment in Fig. 4. No alterations is made to the default parameters. From such an alignment residues in a new sequence at positions equivalent to positions in the catalytic core domain of Humicola in ⁇ olen ⁇ Cel6B can be identified.
  • An more preferred way of identifying equivalent residues between a "new" sequence ant the catalytic core domain of Humicola in ⁇ olen ⁇ Cel6B is to determine the three-dimensional X-ray structure fold of the "new" sequence and apply a structure based sequence alignment as implemented in the Modeler 97.0 program included in the Homology 97.0 package from MSI INC. using the MALIGN3D command with the GAP_PENALTIES_3D parameters set to 0.0 and 1.75 and the FIT_ATOMS set to CA. This alignment will find residues at structurally equivalent positions, i.e. having their CA atoms not more than 3.5A apart in a structural superposition. From this alignment equivalent residues in a "new" sequence can be identified. Increased color care activity by trimming of binding cleft loops.
  • the origin of this is thought to be a more open binding cleft caused by one or more of the binding cleft encompassing loops being shorter that in the other fungal family 6 cellulases, preferably one of the four longer loops: Y86-N107, N219-D242, L272-P287 or W308-F331 (Humicola in ⁇ olens Cel6B numbering) or equivalent regions as determined by the multiple sequence alignment, more preferably the regions N219-D242 or W308-F331 which are seen in the multiple sequence alignment to be different in length.
  • the extent of the loop regions can be trimmed (ie made shorter) by deletion of individual residues which together with mutation of neighboring residues can optimize the color care effect.
  • the loop manipulations can be performed using site directed mutagenesis, region specific random mutagenesis using spiked oligonucleotides, protein family shuffling or by other methods.
  • Cloning of cellulase-encoding DNA sequences and methods for generating mutations at specific sites within the cellulase-encoding sequence are mentioned in the following. Cloning a DNA sequence encoding a cellulase The DNA sequence encoding a parent cellulase may be isolated from any cell or microorganism producing the cellulase in question, using various methods well known in the art. First, a genomic DNA and/or cDNA library should be constructed using chromosomal DNA or messenger RNA from the organism that produces the cellulase to be studied.
  • homologous, labelled oligonucleotide probes may be synthesized and used to identify cellulase-encoding clones from a genomic library prepared from the organism in question.
  • a labelled oligonucleotide probe containing sequences homologous to a known cellulase gene could be used as a probe to identify cellulase-encoding clones, using hybridization and washing conditions of lower stringency.
  • a method for identifying cellulase-encoding clones involves inserting cDNA into an expression vector, such as a plasmid, transforming cellulase-negative fungi with the resulting cDNA library, and then plating the transformed fungi onto agar containing a substrate for cellulase, thereby allowing clones expressing the cellulase to be identified.
  • an expression vector such as a plasmid, transforming cellulase-negative fungi with the resulting cDNA library
  • plating the transformed fungi onto agar containing a substrate for cellulase thereby allowing clones expressing the cellulase to be identified.
  • the DNA sequence encoding the enzyme may be prepared synthetically by established standard methods, e.g. the phosphoroamidite method. In the phosphoroamidite method, oligonucleotides are synthesized, e.g.
  • the DNA sequence may be of mixed genomic and synthetic origin, mixed synthetic and cDNA origin or mixed genomic and cDNA origin, prepared by ligating fragments of synthetic, genomic or cDNA origin (as appropriate, the fragments corresponding to various parts of the entire DNA sequence) , in accordance with standard techniques.
  • the DNA sequence may also be prepared by polymerase chain reaction (PCR) using specific primers. Site-directed mutagenesis
  • the random mutagenesis of a DNA sequence encoding a parent cellulase may conveniently be performed by use of any method known in the art.
  • the random mutagenesis may be performed by use of a suitable physical or chemical mutagenizing agent, by use of a suitable oligonucleotide, or by subjecting the DNA sequence to PCR generated mutagenesis.
  • the random mutagenesis may be performed by use of any combination of these mutagenizing agents.
  • the mutagenizing agent may, e.g., be one which induces transitions, transversions, inversions, scrambling, deletions, and/or insertions .
  • Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) irradiation, hydrox lamine, N-methyl-N ' -nitro-N-nitrosoguanidine (MNNG) , O- methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS) , sodium bisulphite, formic acid, and nucleotide analogues.
  • UV ultraviolet
  • MNNG N-methyl-N ' -nitro-N-nitrosoguanidine
  • EMS ethyl methane sulphonate
  • sodium bisulphite formic acid
  • nucleotide analogues examples include ultraviolet (UV) irradiation, hydrox lamine, N-methyl-N ' -nitro-N-nitrosoguanidine (MNNG) , O- methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS) , sodium bis
  • the oligonucleotide may be doped or spiked with the three non-parent nucleotides during the synthesis of the oligonucleotide at the positions which are to be changed.
  • the doping or spiking may be done so that codons for unwanted amino acids are avoided.
  • the doped or spiked oligonucleotide can be incorporated into the DNA encoding the cellulase enzyme by any published technique, using e.g. PCR, LCR or any DNA polymerase and ligase.
  • PCR-generated mutagenesis When PCR-generated mutagenesis is used, either a chemically treated or non-treated gene encoding a parent cellulase enzyme is subjected to PCR under conditions that increase the mis- incorporation of nucleotides (Deshler 1992; Leung et al., Technique, Vol.l, 1989, pp. 11-15).
  • the DNA sequence to be mutagenized may conveniently be present in a genomic or cDNA library prepared from an organism expressing the parent cellulase enzyme.
  • the DNA sequence may be present on a suitable vector such as a plasmid or a bacteriophage, which as such may be incubated with or otherwise exposed to the mutagenizing agent.
  • the DNA to be mutagenized may also be present in a host cell either by being integrated in the genome of said cell or by being present on a vector harboured in the cell.
  • the DNA to be mutagenized may be in isolated form. It will be understood that the DNA sequence to be subjected to random mutagenesis is preferably a cDNA or a genomic DNA sequence.
  • the mutated DNA sequence may be amplify prior to the expression step or the screening step being performed. Such amplification may be performed in accordance with methods known in the art, the presently preferred method being PCR-generated amplification using oligonucleotide primers prepared on the basis of the DNA or amino acid sequence of the parent enzyme.
  • the mutated DNA is expressed by culturing a suitable host cell carrying the DNA sequence under conditions allowing expression to take place.
  • the host cell used for this purpose may be one which has been transformed with the mutated DNA sequence, optionally present on a vector, or one which was carried the DNA sequence encoding the parent enzyme during the mutagenesis treatment.
  • Suitable host cells are fungal hosts such as A ⁇ pergillus niger or Aspergillus oryzae.
  • the mutated DNA sequence may further comprise a DNA sequence encoding functions permitting expression of the mutated DNA sequence. Localized random mutagenesis
  • the random mutagenesis may advantageously be localized to a part of the parent cellulase in question. This may, e.g., be advantageous when certain regions of the enzyme have been identified to be of particular importance for a given property of the enzyme, and when modified are expected to result in a variant having improved properties. Such regions may normally be identified when the tertiary structure of the parent enzyme has been elucidated and related to the function of the enzyme.
  • a microorganism capable of expressing the mutated cellulase enzyme of interest is incubated on a suitable medium and under suitable conditions for the enzyme to be secreted, the medium being provided with a double filter comprising a first protein- binding filter and on top of that a second filter exhibiting a low protein binding capability.
  • the microorganism is located on the second filter.
  • the first filter comprising enzymes secreted from the microorganisms is separated from the second filter comprising the microorganisms.
  • the first filter is subjected to screening for the desired enzymatic activity and the corresponding microbial colonies present on the second filter are identified.
  • the filter used for binding the enzymatic activity may be any protein binding filter e.g.
  • the detecting compound may be immobilized by any immobilizing agent, e.g., agarose, agar, gelatine, polyacrylamide, starch, filter paper, cloth; or any combination of immobilizing agents.
  • immobilizing agent e.g., agarose, agar, gelatine, polyacrylamide, starch, filter paper, cloth; or any combination of immobilizing agents.
  • a DNA sequence encoding the variant produced by methods described above, or by any alternative methods known in the art can be expressed, in enzyme form, using an expression vector which typically includes control sequences encoding a promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a repressor gene or various activator genes.
  • the recombinant expression vector carrying the DNA sequence encoding a cellulase variant of the invention may be any vector which may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced.
  • the vector may be an autonomously replicating vector, i.e. a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g. a plasmid, a bacteriophage or an extrachromosomal element, minichromosome or an artificial chromosome.
  • Rhizomucor miehei aspartic proteinase A. niger neutral ⁇ -amylase, A. niger acid stable ⁇ -amylase, A. niger glucoamylase, Rhizomucor miehei lipase, A. oryzae alkaline protease, A. oryzae triose phosphate isomerase or A. nidulan ⁇ acetamidase.
  • suitable promoters for use in bacterial host cells include the promoter of the Bacillu ⁇ ⁇ tearothermophilu ⁇ maltogenic amylase gene, the Bacillu ⁇ licheniformis alpha- amylase gene, the Bacillus amyloliquefaciens alpha-amylase gene, the Bacillus subtili ⁇ alkaline protease gen, or the Bacillu ⁇ pumilu ⁇ xylosidase gene, or the phage Lambda P R or P promoters or the E. coli lac, trp or tac promoters.
  • the expression vector of the invention may also comprise a suitable transcription terminator and, in eukaryotes, poly- adenylation sequences operably connected to the DNA sequence encoding the cellulase variant of the invention. Termination and polyadenylation sequences may suitably be derived from the same sources as the promoter.
  • the vector may further comprise a DNA sequence enabling the vector to replicate in the host cell in question.
  • a DNA sequence enabling the vector to replicate in the host cell in question. Examples of such sequences are the origins of replication of plasmids pUC19, pACYC177, pUBHO, pE194, pAMBl and pIJ702.
  • the vector may also comprise a selectable marker, e.g. a gene, the product of which complements a defect in the host cell, such as one which confers antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracyclin resistance.
  • the vector may comprise A ⁇ pergillu ⁇ selection markers such as amdS, argB, niaD and sC, a marker giving rise to hygromycin resistance, or the selection may be accomplished by co-transformation, e.g. as described in WO 91/17243.
  • the procedures used to ligate the DNA construct of the invention encoding a cellulase variant, the promoter, terminator and other elements, respectively, and to insert them into suitable vectors containing the information necessary for replication, are well known to persons skilled in the art (cf., for instance, Sambrook et al. (1989)).
  • the cell of the invention either comprising a DNA construct or an expression vector of the invention as defined above, is advantageously used as a host cell in the recombinant production of a cellulase variant of the invention.
  • the cell may be transformed with the DNA construct of the invention encoding the variant, conveniently by integrating the DNA construct (in one or more copies) in the host chromosome.
  • This integration is generally considered to be an advantage as the DNA sequence is more likely to be stably maintained in the cell.
  • Integration of the DNA con- structs into the host chromosome may be performed according to conventional methods, e.g. by homologous or heterologous recombination.
  • the cell may be transformed with an expression vector as described above in connection with the different types of host cells.
  • the cell of the invention may be a cell of a higher organism such as a mammal or an insect, but is preferably a microbial cell, e.g. a bacterial or fungal cell.
  • Examples of bacterial host cells which on cultivation are capable of producing the enzyme of the invention may be a gram-positive bacteria such as a strain of Bacillu ⁇ , in particular Bacillu ⁇ alkalophilu ⁇ , Bacillu ⁇ amyloliquefacien ⁇ , Bacillu ⁇ brevi ⁇ , Bacillu ⁇ lautu ⁇ , Bacillu ⁇ lentu ⁇ , Bacillu ⁇ licheniformi ⁇ , Bacillu ⁇ circulan ⁇ , Bacillus coagulans , Bacillu ⁇ megatherium, Bacillu ⁇ ⁇ tearothermophilu ⁇ , Bacillu ⁇ ⁇ ubtili ⁇ and Bacillu ⁇ thuringien ⁇ is , a strain of Lactobacillus , a strain of Streptococcus , a strain of Streptomyces , in particular Streptomyces lividans and Streptomyces murinus , or the host cell may be a gram-negative bacteria such as a strain of E ⁇ cherichia
  • the enzyme When expressing the enzyme in a bacteria such as E ⁇ cherichia coli , the enzyme may be retained in the cytoplasm, typically as insoluble granules (known as inclusion bodies) , or may be directed to the periplasmic space by a bacterial secretion sequence. In the former case, the cells are lysed and the granules are recovered and denatured after which the enzyme is refolded by diluting the denaturing agent. In the latter case, the enzyme may be recovered from the periplasmic space by disrupting the cells, e.g. by sonication or osmotic shock, to release the contents of the periplasmic space and recovering the enzyme.
  • a ⁇ pergillu ⁇ or Fu ⁇ arium in particular A ⁇ pergillu ⁇ aw amor i , A ⁇ pergillu ⁇ nidulan ⁇ , A ⁇ pergillu ⁇ niger, A ⁇ pergillu ⁇ oryzae , and Fu ⁇ arium oxysporum, and a strain of Trichoderma , preferably Trichoderma harzianum , Trichoderma ree ⁇ ei and Trichoderma viride .
  • Fungal cells may be transformed by a process involving protoplast formation and transformation of the protoplasts followed by regeneration of the cell wall in a manner known per ⁇ e .
  • the use of a strain of A ⁇ pergillu ⁇ as a host cell is described in EP 238 023 (Novo Nordisk A/S) , the contents of which are hereby incorporated by reference.
  • Schizosaccharomyces pombe and a strain of Yarrowia ⁇ p . , in particular Yarrowia lipolytica .
  • the medium used to cultivate the cells may be any conventional medium suitable for growing the host cell in question and obtaining expression of the cellulase variant of the invention. Suitable media are available from commercial suppliers or may be prepared according to published recipes (e.g. as described in catalogues of the American Type Culture Collection) .
  • the cellulase variant secreted from the host cells may con- veniently be recovered from the culture medium by well-known procedures, including separating the cells from the medium by centrifugation or filtration, and precipitating proteinaceous components of the medium by means of a salt such as ammonium sulphate, followed by the use of chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.
  • colour clarification is meant the partly restoration of the initial colours of fabric or garment throughout multiple washing cycles.
  • de-pilling denotes removing of pills from the fabric surface.
  • soaking liquor denotes an aqueous liquor in which laundry may be immersed prior to being subjected to a conventional washing process.
  • the soaking liquor may contain one or more ingredients conventionally used in a washing or laundering process.
  • washing liquor denotes an aqueous liquor in which laundry is subjected to a washing process, i.e. usually a combined chemical and mechanical action either manually or in a washing machine.
  • the washing liquor is an aqueous solution of a powder or liquid detergent composition.
  • washing liquor denotes an aqueous liquor in which laundry is immersed and treated, conventionally immediately after being subjected to a washing process, in order to rinse the laundry, i.e. essentially remove the detergent solution from the laundry.
  • the rinsing liquor may contain a fabric conditioning or softening composition.
  • the present invention also relates to a process for machine treatment of fabrics which process comprises treating fabric during a rinse cycle of a machine washing process with a rinse solution containing the composition according to the invention.
  • the laundry subjected to the composition or the method of the present invention may be conventional washable laundry.
  • the major part of the laundry is sewn or unsewn fabrics, including knits, wovens, denims, yarns, and toweling, made from cotton, cotton blends or natural or manmade cellulosics (e.g. originating from xylan-containing cellulose fibers such as from wood pulp) or blends thereof.
  • blends are blends of cotton or rayon/viscose with one or more companion material such as wool, synthetic fibers (e.g.
  • polyamide fibers acrylic fibers, polyester fibers, polyvinyl alcohol fibers, polyvinyl chloride fibers, polyvinylidene chloride fibers, polyurethane fibers, polyurea fibers, aramid fibers) , and cellulose-containing fibers (e.g. rayon/viscose, ramie, flax/linen, jute, cellulose acetate fibers, lyocell) .
  • Cleaning composition according to claim 1 wherein the composi- tion is a fabric softener or fabric conditioning composition for the treatment of fabrics.
  • the cleaning compositions according to the present invention comprise a surfactant system, wherein the surfactant can be selected from nonionic and/or anionic and/or cationic 5 and/or ampholytic and/or zwitterionic and/or semi-polar surfactants.
  • the surfactant is typically present at a level from 0.1% to 60% by weight.
  • the surfactant is preferably formulated to be compatible
  • the surfactant is most preferably formulated in such a way that it promotes, or at least does not degrade, the stability of any enzyme in these compositions.
  • glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties (optionally the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside) .
  • the intersaccharide bonds can be, e.g. , between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
  • the preferred alkylpolyglycosides have the formula
  • compositions of the present invention typically include
  • Semi-polar nonionic surfactants are a special category of nonionic surfactants which include water-soluble amine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; watersoluble phosphine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety from about 10 to about 18 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from about 1 to about 3 carbon atoms.
  • Semi-polar nonionic detergent surfactants include the amine oxide surfactants having the formula:
  • R is an alkyl, hydroxyalkyl, or alkyl phenyl group or mixtures thereof containing from about 8 to about 22 carbon atoms;
  • R is an alkylene or hydroxyalkylene group containing from about 2 to about 3 carbon atoms or mixtures thereof;
  • x is from 0 to about 3 : and each R 5 is an alkyl or hydroxyalkyl group containing from about 1 to about 3 carbon atoms or a polyethylene oxide group containing from about 1 to about 3 ethylene oxide groups.
  • the R 5 groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure .
  • These amine oxide surfactants in particular include C ⁇ o _ Ci 8 alkyl dimethyl amine oxides and C 8 -C 12 alkoxy ethyl dihydroxy ethyl amine oxides.
  • the cleaning compositions of the present invention typically comprise from 0.2% to about 15%, preferably from about 1% to about 10% by weight of such semi- polar nonionic surfactants.
  • compositions according to the present invention may further comprise a builder system.
  • a builder system Any conventional builder system is suitable for use herein including aluminosilicate materials, silicates, polycarboxylates and fatty acids, materials such as ethylenediamine tetraacetate, metal ion
  • sequestrants such as aminopolyphosphonates, particularly ethylenediamine tetramethylene phosphonic acid and diethylene triamine pentamethylenephosphonic acid.
  • aminopolyphosphonates particularly ethylenediamine tetramethylene phosphonic acid and diethylene triamine pentamethylenephosphonic acid.
  • phosphate builders can also be used herein.
  • Suitable builders can be an inorganic ion exchange material, commonly an inorganic hydrated aluminosilicate material, more particularly a hydrated synthetic zeolite such as hydrated zeolite A, X, B, HS or MAP.
  • inorganic ion exchange material commonly an inorganic hydrated aluminosilicate material, more particularly a hydrated synthetic zeolite such as hydrated zeolite A, X, B, HS or MAP.
  • Another suitable inorganic builder material is layered
  • silicate e.g. SKS-6 (Hoechst) .
  • SKS-6 is a crystalline layered silicate consisting of sodium silicate (Na 2 Si 2 0 5 ) .
  • Suitable polycarboxylates containing one carboxy group include lactic acid, glycolic acid and ether derivatives thereof as disclosed in Belgian Patent Nos. 831,368, 821,369 and
  • Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, aleic acid, diglycollic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates described in German Offenle-enschrift
  • Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the
  • Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis , cis-cis-tetracarboxylates , cyclopentadienide pentacarboxylates, 2, 3 , 4, 5-tetrahydro-furan - cis, cis, cis- tetracarboxylates , 2 , 5-tetrahydro-furan-cis, discarboxylates, 2 , 2 , 5 , 5 , -tetrahydrof ran - tetracarboxylates, 1, 2 , 3 , 4 , 5 , 6-hexane - hexacarboxylates and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol.
  • polyhydric alcohols such as sorbitol, mannitol and xylitol.
  • Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No. 1,425,343. Of the above, the preferred polycarboxylates are hydroxy- carboxylates containing up to three carboxy groups per molecule, more particularly citrates.
  • Preferred builder systems for use in the present compositions include a mixture of a water-insoluble aluminosilicate builder such as zeolite A or of a layered silicate (SKS-6) , and a water-soluble carboxylate chelating agent such as citric acid.
  • a water-insoluble aluminosilicate builder such as zeolite A or of a layered silicate (SKS-6)
  • a water-soluble carboxylate chelating agent such as citric acid.
  • a suitable chelant for inclusion in the cleaning compositions in accordance with the invention is ethylenediamine-N,N' - disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
  • EDDS compounds are the free acid form and the sodium or magnesium salt thereof. Examples of such preferred sodium salts of EDDS include Na 2 EDDS and Na 4 EDDS. Examples of such preferred magnesium salts of EDDS include
  • MgEDDS and Mg 2 EDDS are the most preferred for inclusion in compositions in accordance with the invention.
  • Preferred builder systems include a mixture of a water- insoluble aluminosilicate builder such as zeolite A, and a water soluble carboxylate chelating agent such as citric acid.
  • builder materials that can form part of the builder system for use in granular compositions include inorganic materials such as alkali metal carbonates, bicarbonates, silicates, and organic materials such as the organic phosphonates , amino polyalkylene phosphonates and amino polycarboxylates .
  • inorganic materials such as alkali metal carbonates, bicarbonates, silicates
  • organic materials such as the organic phosphonates , amino polyalkylene phosphonates and amino polycarboxylates .
  • suitable water-soluble organic salts are the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated form each other by not more than two carbon atoms.
  • Polymers of this type are disclosed in GB-A-1, 596, 756.
  • Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000.
  • Detergency builder salts are normally included in amounts of from 5% to 80% by weight of the composition. Preferred levels of builder for liquid detergents are from 5% to 30%.
  • Preferred cleaning compositions in addition to the family 6 endo- ⁇ -l,4-glucanase, comprise other enzyme(s) which provides cleaning performance and/or fabric care benefits.
  • proteases include proteases, lipases, cutinases, amylases, other cellulases, peroxidases, oxidases (e.g. laccases) .
  • proteases Any protease suitable for use in alkaline solutions can be used. Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically or genetically modified mutants are included.
  • the protease may be a serine protease, preferably an alkaline microbial protease or a trypsin-like protease.
  • alkaline proteases are subtilisins, especially those derived from Bacillus, e.g., subtilisin Novo, subtilisin Carlsberg, subtilisin 309, subtilisin 147 and subtilisin 168 (described in WO 89/06279) .
  • trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270.
  • Preferred commercially available protease enzymes include those sold under the trade names Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Nordisk A/S (Denmark) , those sold under the tradename Maxatase, Maxacal, Maxapem, Properase, Purafect and Purafect OXP by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes.
  • Protease enzymes may be incorporated into the compositions in accordance with the invention at a level of from 0.00001% to 2% of enzyme protein by weight of the composition, preferably at a level of from 0.0001% to 1% of enzyme protein by weight of the composition, more preferably at a level of from 0.001% to 0.5% of enzyme protein by weight of the composition, even more preferably at a level of from 0.01% to 0.2% of enzyme protein by weight of the composition.
  • Lipases Any lipase suitable for use in alkaline solutions can be used. Suitable lipases include those of bacterial or fungal origin. Chemically or genetically modified mutants are included.
  • useful lipases include a Humicola lanuqinosa lipase, e.g., as described in EP 258 068 and EP 305 216, a Rhizomucor miehei lipase, e.g., as described in EP 238 023, a Candida lipase, such as a C. antarctica lipase, e.g., the C. antarctica lipase A or B described in EP 214 761, a Pseudomonas lipase such as a P. alcaligenes and P. pseudoalcaligenes lipase, e.g., as described in EP 218 272, a P.
  • a Humicola lanuqinosa lipase e.g., as described in EP 258 068 and EP 305 216
  • a Rhizomucor miehei lipase e.g., as described in EP 238 023
  • cepacia lipase e.g., as described in EP 331 376, a P. stutzeri lipase, e.g., as disclosed in GB 1,372,034, a P. fluorescens lipase, a Bacillus lipase , e.g., a B. subtilis lipase (Dartois et al., (1993), Biochemica et Biophysica acta 1131, 253-260) , a B. stearo- thermophilus lipase (JP 64/744992) and a B. pu ilus lipase (WO 91/16422) .
  • cloned lipases may be useful, including the Penicillium camembertii lipase described by Yamaguchi et al., (1991), Gene 103, 61-67), the Geotricum candidum lipase (Schimada, Y. et al., (1989), J. Biochem., 106, 383-388) , and various Rhizopus lipases such as a R. delemar lipase (Hass, M.J et al. , (1991), Gene 109, 117-113), a R. niveus lipase (Kugimiya et al., (1992), Biosci. Biotech. Biochem. 56, 716-719) and a R. oryzae lipase.
  • R. delemar lipase Hass, M.J et al. , (1991), Gene 109, 117-113
  • R. niveus lipase Kugi
  • cutinases may also be useful, e.g., a cutinase derived from Pseudomonas mendocina as described in WO 88/09367, or a cutinase derived from Fusarium solani pisi (e.g. described in WO 90/09446) .
  • lipases such as Ml LipaseTM, Luma fastTM and LipomaxTM (Genencor) , LipolaseTM and Lipolase UltraTM (Novo Nordisk A/S) , and Lipase P "Amano” (Amano Pharmaceutical Co. Ltd.).
  • the lipases are normally incorporated in the detergent composition at a level of from 0.00001% to 2% of enzyme protein by weight of the composition, preferably at a level of from 0.0001% to 1% of enzyme protein by weight of the composition, more preferably at a level of from 0.001% to 0.5% of enzyme protein by weight of the composition, even more preferably at a level of from 0.01% to 0.2% of enzyme protein by weight of the composition.
  • Amylases Any amylase (a and/or b) suitable for use in alkaline solutions can be used. Suitable amylases include those of bacterial or fungal origin. Chemically or genetically modified mutants are included. Amylases include, for example, a- amylases obtained from a special strain of B. licheniformis.
  • amylases are Duramyl TM, TermamylTM, FungamylTM and BANTM (available from Novo Nordisk A/S) and RapidaseTM and Maxamyl PTM (available from Genencor) .
  • amylases are normally incorporated in the detergent composition at a level of from 0.00001% to 2% of enzyme protein by weight of the composition, preferably at a level of from 0.0001% to 1% of enzyme protein by weight of the composition, more preferably at a level of from 0.001% to 0.5% of enzyme protein by weight of the composition, even more preferably at a level of from 0.01% to 0.2% of enzyme protein by weight of the composition.
  • Cellulases Any cellulase suitable for use in alkaline solutions can be used. Suitable cellulases include those of bacterial or fungal origin. Chemically or genetically modified mutants are included. Suitable cellulases are disclosed in US 4,435,307 which discloses fungal cellulases produced from Humicola insolens , in WO 96/34108 and WO 96/34092 which disclose bacterial alkalophilic cellulases (BCE 103) from Bacillus , and 5 in WO 94/21801, US 5,475,101 and US 5,419,778 which disclose EG III cellulases from Trichoderma . Especially suitable cellulases are the cellulases having colour care benefits. Examples of such cellulases are cellulases described in European patent application No. 0 495 257 and the endoglucanase of the present
  • CommerciIally avaiIlable cellulases i.nclude CelluzymeTM and CarezymeTM produced by a strain of Humicola insolen ⁇ (Novo Nordisk A/S), KAC-500(B)TM (Kao Corporation), and PuradaxTM (Genencor International) .
  • Peroxidases/Oxidases Peroxidases/Oxidases : Peroxidase enzymes are used in combination with hydrogen peroxide or a source thereof (e.g. a percarbonate, perborate or persulfate) . Oxidase enzymes are used
  • Peroxidase and/or oxidase enzymes are normally incorporated in the detergent composition at a level of from
  • Mixtures of the above mentioned enzymes are encompassed herein, in particular a mixture of a protease, an amylase, a lipase and/or a cellulase.
  • the hydrogen peroxide releasing agents can be used in combination with bleach activators such as tetra- acetylethylenediamine (TAED) , nonanoyloxybenzenesulfonate (NOBS, described in US 4,412,934), 3 , 5-trimethyl- hexsanoloxybenzenesulfonate (ISONOBS, described in EP 120 591) or pentaacetylglucose (PAG) , which are perhydrolyzed to form a peracid as the active bleaching species, leading to improved bleaching effect.
  • bleach activators such as tetra- acetylethylenediamine (TAED) , nonanoyloxybenzenesulfonate (NOBS, described in US 4,412,934), 3 , 5-trimethyl- hexsanoloxybenzenesulfonate (ISONOBS, described in EP 120 591) or pentaacetylglucose (PAG
  • bleach activators C8 (6-octanamido-caproyl) oxybenzene-sulfonate, C9(6- nonanamido caproyl) oxybenzenesulfonate and CIO (6-decanamido caproyl) oxybenzenesulfonate or mixtures thereof.
  • acylated citrate esters such as disclosed in European Patent Application No. 91870207.7.
  • bleaching agents including peroxyacids and bleaching systems comprising bleach activators and peroxygen bleaching compounds for use in cleaning compositions according to the invention are described in application USSN 08/136,626.
  • the hydrogen peroxide may also be present by adding an enzymatic system (i.e. an enzyme and a substrate therefore) which is capable of generation of hydrogen peroxide at the beginning or during the washing and/or rinsing process.
  • an enzymatic system i.e. an enzyme and a substrate therefore
  • Such enzymatic systems are disclosed in European Patent Application EP 0 537 381.
  • Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein.
  • One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and- /or aluminium phthalocyanines. These materials can be deposited upon the substrate during the washing process. Upon irradiation with light, in the presence of oxygen, such as by hanging clothes out to dry in the daylight, the sulfonated zinc phthalocyanine is activated and, consequently, the substrate is bleached.
  • Preferred zinc phthalocyanine and a photoactivated bleaching process are described in US 4,033,718.
  • detergent composition will contain about 0.025% to about 1.25%, by weight, of sulfonated zinc phthalocyanine.
  • Bleaching agents may also comprise a manganese catalyst.
  • the manganese catalyst may, e.g., be one of the compounds described in "Efficient manganese catalysts for low-temperature bleaching", Nature 369, 1994, pp. 637-639.
  • a suds suppressor exemplified by silicones, and silica-silicone mixtures.
  • Silicones can generally be represented by alkylated polysiloxane materials, while silica is normally used in finely divided forms exemplified by silica aerogels and xerogels and hydrophobic silicas of various types. Theses materials can be incorporated as particulates, in which the suds suppressor is advantageously releasably incorporated in a water-soluble or waterdispersible, substantially non surface-active detergent impermeable carrier.
  • the suds suppressor can be dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components.
  • a preferred silicone suds controlling agent is disclosed in US 3,933,672.
  • Other particularly useful suds suppressors are the self-emulsifying silicone suds suppressors, described in German Patent Application DTOS 2,646,126.
  • An example of such a compound is DC-544, commercially available form Dow Corning, which is a siloxane-glycol copolymer.
  • Especially preferred suds controlling agent are the suds suppressor system comprising a mixture of silicone oils and 2-alkyl-alkanols. Suitable 2-alkyl- alkanols are 2-butyl-octanol which are commercially available under the trade name Isofol 12 R.
  • Such suds suppressor system are described in European Patent Application EP 0 593 841.
  • compositions can comprise a silicone/ silica mixture in combination with fumed nonporous silica such as Aerosil R .
  • the suds suppressors described above are normally employed at levels of from 0.001% to 2% by weight of the composition, preferably from 0.01% to 1% by weight.
  • compositions may be employed such as soil-suspending agents, soil-releasing agents, optical brighteners, abrasives, bactericides, tarnish inhibitors, coloring agents, and/or encapsulated or nonencapsulated perfumes.
  • encapsulating materials are water soluble capsules which consist of a matrix of polysaccharide and polyhydroxy compounds such as described in GB 1,464,616.
  • Suitable water soluble encapsulating materials comprise dextrins derived from ungelatinized starch acid esters of substituted dicarboxylic acids such as described in US 3,455,838. These acid-ester dextrins are, preferably, prepared from such starches as waxy maize, waxy sorghum, sago, tapioca and potato. Suitable examples of said encapsulation materials include N-Lok manufactured by National Starch. The N-Lok encapsulating material consists of a modified maize starch and glucose. The starch is modified by adding monofunctional substituted groups such as octenyl succinic acid anhydride.
  • Antiredeposition and soil suspension agents suitable herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose, and homo- or co-polymeric polycarboxylic acids or their salts.
  • Polymers of this type include the polyacrylates and maleic anhydride-acrylic acid copolymers previously mentioned as builders, as well as copolymers of maleic anhydride with ethylene, methylvinyl ether or methacrylic acid, the maleic anhydride constituting at least 20 mole percent of the copolymer. These materials are normally used at levels of from 0.5% to 10% by weight, more preferably form 0.75% to 8%, most preferably from 1% to 6% by weight of the composition.
  • Preferred optical brighteners are anionic in character, examples of which are disodium 4 , 4 ' -bis-(2-diethanolamino-4- anilino -s- triazin-6-ylamino) stilbene-2: 2 • disulphonate, disodium 4, - 4 '-bis- (2-morpholino-4-anilino-s-triazin-6- ylamino-stilbene-2:2 ' - disulphonate, disodium 4,4' - bis- (2,4- dianilino-s-triazin-6-ylamino) stilbene-2:2 * - disulphonate, monosodium 4 ',4'' - bis- (2, 4-dianilino-s-tri-azin-6 ylamino) stilbene-2-sulphonate, disodium 4,4' -bis-(2-anilino-4- (N-methyl-N-2-hydroxyethylamino) -s-triazin-6-yla
  • polyethylene glycols particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000. These are used at levels of from 0.20% to 5% more preferably from 0.25% to 2.5% by weight.
  • Soil release agents useful in compositions of the present invention are conventionally copolymers or terpolymers of terephthalic acid with ethylene glycol and/or propylene glycol units in various arrangements. Examples of such polymers are disclosed in US 4,116,885 and 4,711,730 and EP 0 272 033.
  • a particular preferred polymer in accordance with EP 0 272 033 has the formula:
  • polyesters as random copolymers of dimethyl terephthalate, dimethyl sulfoisophthalate, ethylene glycol and 1, 2-propanediol, the end groups consisting primarily of sulphobenzoate and secondarily of mono esters of ethylene glycol and/or 1, 2-propanediol.
  • the target is to obtain a polymer capped at both end by sulphobenzoate groups, "primarily", in the present context most of said copolymers herein will be endcapped by sulphobenzoate groups.
  • some copolymers will be less than fully capped, 5 and therefore their end groups may consist of monoester of ethylene glycol and/or 1, 2-propanediol, thereof consist “secondarily” of such species.
  • the selected polyesters herein contain about 46% by weight of dimethyl terephthalic acid, about 16% by weight of 1,2- 10 propanediol, about 10% by weight ethylene glycol, about 13% by weight of dimethyl sulfobenzoic acid and about 15% by weight of sulfoisophthalic acid, and have a molecular weight of about 3.000.
  • the polyesters and their method of preparation are described in detail in EP 311 342.
  • Fabric softening agents can also be incorporated into cleaning compositions in accordance with the present invention. These agents may be inorganic or organic in type. Inorganic
  • Organic fabric softening agents include the water insoluble tertiary amines as disclosed in GB-A1 514 276 and EP 0 011 340 and their combination with mono Ci 2 ⁇ Ci 4 quaternary ammonium salts are disclosed in EP-B-0
  • the high molecular weight polyethylene oxide materials and the water soluble cationic materials are added at levels of from 0.1% to 2%, normally from 0.15% to 1.5% by weight. These materials are normally added to the spray dried portion of the composition, although in some instances it may be more convenient to add them as a dry mixed particulate, or spray them as molten liquid on to other solid components of the composition.
  • Especially suitable polymeric dye-transfer inhibiting agents are polyamine N-oxide polymers, copolymers of N-vinyl- pyrrolidone and N-vinylimidazole, polyvinylpyrrolidone polymers, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof.
  • the cleaning composition according to the invention can be in liquid, paste, gels, bars or granular forms.
  • Non-dusting granulates may be produced, e.g., as disclosed in US 4,106,991 and 4,661,452 (both to Novo Industri A/S) and may optionally be coated by methods known in the art.
  • waxy coating materials are poly(ethylene oxide) products (polyethyleneglycol, PEG) with mean molecular weights of 1000 to 20000; ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids.
  • film- forming coating materials suitable for application by fluid bed techniques are given in GB 1483591.
  • the liquid detergent compositions according to the present invention will contain a lower amount of water, compared to conventional liquid detergents.
  • the water content of the concentrated liquid detergent is less than 30%, more preferably less than
  • the cleaning composition is a granular detergent composition containing no more than 40%, preferably no more than 15%, by weight of inorganic filler salt.
  • compositions of the invention may for example, be formulated as hand and machine laundry detergent compositions including laundry additive compositions and compositions suitable for use in the pretreatment of stained fabrics, rinse added fabric softener compositions, and compositions for use in
  • compositions for the present invention are not necessarily meant to limit or otherwise define the scope of the invention.
  • LAS Sodium linear C 12 alkyl benzene sulphonate
  • TAS Sodium tallow alkyl sulphate
  • XYAS Sodium C lx - C l ⁇ alkyl sulfate
  • XYEZS C lx - Ciy sodium alkyl sulfate condensed with an average of Z moles of ethylene oxide per mole
  • Nonionic C ⁇ 3 - C 15 mixed ethoxylated/propoxylated fatty alcohol with an average degree of ethoxylation of 3.8 and an average degree of propoxylation of 4.5 sold under the tradename
  • Polyacrylate Polyacrylate homopolymer with an average molecular weight of 8,000 sold under the tradename PA30 by BASF
  • Gmbh Zeolite A Hydrated Sodium Aluminosilicate of formula
  • Percarbonate Anhydrous sodium percarbonate bleach of empirical formula 2Na 2 C0 3 .3H 2 0 2 TAED: Tetraacetyl ethylene diamine
  • DETPMP Diethylene triamine penta (methylene phosphonic acid) , marketed by Monsanto under the Tradename Dequest 2060
  • PVP Polyvinylpyrrolidone polymer
  • EDDS Ethylenediamine-N, N' -disuccinic acid, [S,S] isomer in the form of the sodium salt
  • Enzyme of the invention 0.1
  • Example III Granular fabric cleaning compositions in accordance with the invention which are especially useful in the laundering of coloured fabrics were prepared as follows:
  • Granular fabric cleaning compositions in accordance with the invention which provide "Softening through the wash” capability may be prepared as follows: 45AS - 10.0
  • Enzyme of the invention 0.10 0.05
  • the cellulolytic activity may be measured in endo-cellulase units (ECU), determined at pH 7.5, with carboxymethyl cellulose (CMC) as substrate.
  • ECU endo-cellulase units
  • CMC carboxymethyl cellulose
  • the ECU assay quantifies the amount of catalytic activity present in the sample by measuring the ability of the sample to 0 reduce the viscosity of a solution of carboxy-methylcellulose (CMC).
  • CMC carboxy-methylcellulose
  • the assay is carried out at 40°C; pH 7.5; 0.1M phosphate buffer; time 30 min; using a relative enzyme standard for reducing the viscosity of the CMC Hercules 7 LFD substrate; enzyme concentration approx. 0.15 ECU/ l.
  • the arch standard is defined 5 to 8200 ECU/g.
  • the relative tensile strength loss (%TSL) is quantified 5 versus "enzyme blank", i.e. an experiment where the fabric is incubated in buffer without any enzyme present and the cellulase is then classified into one of the following 4 groups:
  • inverting endoglucanases were 15 tested: a. " 43 kD EGV from the fungal species Humicola in ⁇ olen ⁇ , DSM 1800, belonging to family 45 of glycosyl hydrolases and described in detail in WO 91/17243. b. EGVI from the fungal species Humicola in ⁇ olen ⁇ , DSM 20 1800, belonging to the cellulase family 6 and having the amino acid sequence listed in SEQ ID NO: 4. The DNA sequence encoding for this enzyme is listed in SEQ ID NO: 3 (the coding region corresponding to positions 16-1356) .
  • Swatches of 7x7 cm swatches of black, woven cotton cloth were stapled to one common piece of cloth, and 7x7 cm swatches of blue knitted cotton cloth was stapled to another piece of cloth. This together with a standardised household load of laundry cloth was entered into a household washing machine.
  • TAKA-R 5' CCCCATCCTTTAACTATAGCGAAATGG
  • Humicola in ⁇ olen ⁇ Cel6A In order to alter Humicola in ⁇ olen ⁇ Cel6A to a Humicola endoglucanase type in order to create an enzyme having improved performance in colour clarification, mutations which reduce the length of one or more of the binding cleft encompassing loops was performed.
  • the extent of the binding cleft encompassing loops can be determined either from the multiple sequence alignment or by solving the three dimensional X-ray structure of Humicola in ⁇ olen ⁇ Cel6A and perform the same analysis as described for Humicola in ⁇ olen ⁇ EGIV (Cel6B) .
  • the four longer loops encompassing the binding cleft are in the numbering scheme of Humicola in ⁇ olen ⁇ Cel6A V173-N195, N307-D330, K360-G376 and W397-F435 (using Humicola in ⁇ olen ⁇ Cel6A numbering) when the multiple sequence alignment method is used and it is Y174-N195, N307-D330, K360-Y391 and W397-F435 F435 (using Humicola in ⁇ olen ⁇ Cel6A numbering) when the X-ray structure method is used. Constructions of loop trimming:
  • cel6A-type cellulases from the species Fusarium oxysporum, Trichoderma ree ⁇ ei, Agaricu ⁇ bi ⁇ - pora, Acremonium cellulyticu ⁇ , Phanerochaete chry ⁇ o ⁇ porium, Penicillium purpurogenum which are aligned in fig. 1A/B can be altered to a Humicola endoglucanase type enzyme (Cel6B-type) .
  • Variants of the present invention may show improved performance with respect to an altered sensitivity towards anionic surfactants (tensides) .
  • Anionic tensides are products frequently incorporated into detergent compositions. Unfolding of cellulases tested so far, is accompanied by a decay in the intrinsic fluorescence of the proteins. The intrinsic fluorescence derives from Trp side chains (and to a smaller extent Tyr side chains) and is sensitive to the hydrophobicity of the side chain environment. Unfolding leads to a more hydrophilic environment as the side-chains become more exposed to solvent, and this quenches fluorescence.
  • Fluorescence is followed on a Perkin/ElmerTM LS50 luminescence spectrometer.
  • the greatest change in fluore- scence on unfolding is obtained by excitation at 280 nm and emission at 340 nm.
  • Slit widths (which regulate the magnitude of the signal) are usually 5 nm for both emission and excitation at a protein concentration of 5 ⁇ g/ml. Fluorescence is measured in 2-ml quartz cuvettes thermostatted with a circulating water bath and stirred with a small magnet. The magnet-stirrer is built into the spectrometer.
  • Positions already containing one of these residues are the primary target for mutagenesis
  • secondary targets are positions which has one of these residues on an equivalent position in another cellulase
  • third target are any surface exposed re- sidue.
  • wild type Humicola in ⁇ olen ⁇ Cel6B cellulase are being compared to Humicola in ⁇ olen ⁇ Cel6B cellulase variants belonging to all three of the above groups, comparing the stability towards LAS in detergent.
  • the reaction medium contained 5.0 g/1 of a commercial regular powder detergent from the detergent manufacturer NOPA Den- mark.
  • the detergent was formulated without surfactants for this experiment and pH adjusted to pH 7.0.
  • the reaction medium included 0.5 g/1 PASC and was with or without 1 g/1 LAS (linear alkylbenzenesulphonate) , which is an anionic surfactant, and the reaction proceeded at the temperature 30°C for 30 minu- tes.
  • Cellulase was dosed at 0.20 S-CEVU/1. After the 30 minutes of incubation the reaction was stopped with 2 N NaOH and the amount of reducing sugar ends determined through reduction of p- hydroxybenzoic acid hydrazide. The decrease in absorption of re- prised p-hydroxybenzoic acid hydrazide relates to the cellulase activity.
  • Neocallima ⁇ tix patriciarum Taking the Neocallimastix patriciarum SPTREMBL entry ql2646 as an example figure 8 shows the residues considered as being on the surface of the Neocallimastix patriciarum catalytic core domain.
  • Preferably potentially positively charged residues should be mutagenized to neutral or negatively charged residues.
  • Orpinomyce ⁇ ⁇ p. CelC this results to (using the numbering scheme of Humicola in ⁇ olen ⁇ Cel6B) : K16, R27, K42, K43, R64, K72, R91, R131, H156, H159, K160, K169, K173, R176, H183, R195, R205, K212, R214, H247, R252, R257, R260, K262, R272, K286, R293, K310, R320 or H332.
  • the pH activity profile of a cellulase is governed by the pH dependent behavior of specific titratable groups, typically the acidic residues in the active site.
  • the pH profile can be altered by changing the electrostatic environment of these residues, either by substitution of residues involving charged or potentially charged groups such as Arg (R) , Lys (K) , Tyr (Y) , His (H) , Glu (E) , Asp (D) or Cys (C) if not involved in a disulphide bridge or by changes in the surface accessibility of these specific titratable groups by mutation of these specific residues on the surface of the enzyme close to the proton donor as described above or by mutation of residues in the vicinity of the binding cleft as described herein, preferably by mutation (s) in the binding cleft within 5h, more preferably 2.5A, of the substrate, or preferably by mutations within l ⁇ A, more preferably ⁇ A, from the active site (D139) .
  • the relative alkaline activity can be increased by creating variants involving potentially charged residues which are mutated towards a more negatively charged residue and/or by altering residues not more than ⁇ A from the residues in the binding cleft.
  • Neocallimastix patriciarum cellulase cDNA (celA) homologous to 10 Trichoderma reesei cellobiohydrolase II. Appl. Environ. Micro- biol., 62 (6) :1889-1896.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Detergent Compositions (AREA)
EP98929249A 1997-07-04 1998-07-02 Varianten der 6 endo-1,4-beta-glukanase und diese enthaldende reinigungszusammensetzungen Withdrawn EP1002061A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DK81397 1997-07-04
DK81397 1997-07-04
PCT/DK1998/000299 WO1999001544A1 (en) 1997-07-04 1998-07-02 FAMILY 6 ENDO-1,4-β-GLUCANASE VARIANTS AND CLEANING COMPOSIT IONS CONTAINING THEM

Publications (1)

Publication Number Publication Date
EP1002061A1 true EP1002061A1 (de) 2000-05-24

Family

ID=8097865

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98929249A Withdrawn EP1002061A1 (de) 1997-07-04 1998-07-02 Varianten der 6 endo-1,4-beta-glukanase und diese enthaldende reinigungszusammensetzungen

Country Status (3)

Country Link
EP (1) EP1002061A1 (de)
AU (1) AU7908898A (de)
WO (1) WO1999001544A1 (de)

Families Citing this family (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2328429T3 (es) 1998-11-27 2009-11-12 Novozymes A/S Variantes de enzimas lipoliticas.
EP1169434B1 (de) 1999-03-31 2009-02-11 Novozymes A/S Polypeptide mit alkaliner alpha-amylase-aktivität und für diese kodierende nukleinsäuren
AU4393000A (en) 1999-05-20 2000-12-12 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additionalamino acid residue between positions 128 and 129
EP1183343B2 (de) 1999-05-20 2013-11-27 Novozymes A/S Subtilase-enzyme der i-s1 und i-s2 untergruppen mit wenigstens einem zusätzlichen aminosäurerest zwischen positionen 125 und 126
AU4392800A (en) 1999-05-20 2000-12-12 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additionalamino acid residue between positions 126 and 127
WO2000071685A1 (en) 1999-05-20 2000-11-30 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 132 and 133
WO2000071689A1 (en) 1999-05-20 2000-11-30 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 127 and 128
EP1183339B2 (de) 1999-05-20 2013-03-13 Novozymes A/S Subtilase enzyme der i-s1 und i-s2 untergruppen mit mindestens einer zusätzlichen aminosäure zwischen position 129 und 130
DE19946047A1 (de) * 1999-09-25 2001-03-29 Basf Ag Proteinproduktion mit Ashbya gossypii
US6350599B1 (en) 2000-01-12 2002-02-26 Novozymes A/S Pullulanase variants and methods for preparing such variants with predetermined properties
WO2001051620A2 (en) * 2000-01-12 2001-07-19 Novozymes A/S Pullulanase variants and methods for preparing such variants with predetermined properties
US20040091994A1 (en) 2000-10-13 2004-05-13 Carsten Andersen Alpha-amylase variant with altered properties
AU2002254876A1 (en) 2001-05-15 2002-11-25 Novozymes A/S Alpha-amylase variant with altered properties
DK200101090A (da) 2001-07-12 2001-08-16 Novozymes As Subtilase variants
WO2004003187A2 (en) 2002-07-01 2004-01-08 Novozymes A/S Mpg added to fermentation
ATE438711T1 (de) 2002-12-20 2009-08-15 Novozymes As Polypeptide mit cellobiohydrolase ii-aktivität und dafür kodierende polynucleotide
JP2006517989A (ja) 2003-02-18 2006-08-03 ノボザイムス アクティーゼルスカブ 洗剤組成物
DK1639106T3 (da) 2003-06-19 2010-09-27 Novozymes As Proteaser
AU2004252572B2 (en) 2003-06-25 2011-09-08 Novozymes A/S Polypeptides having alpha-amylase activity and polypeptides encoding same
US7892808B2 (en) 2003-10-10 2011-02-22 Norozymes A/S Protease variants
CA2591858C (en) 2004-06-21 2015-05-05 Novozymes A/S Proteases derived from norcardiopsis
WO2006039541A2 (en) 2004-09-30 2006-04-13 Novozymes, Inc. Polypeptides having lipase activity and polynucleotides encoding same
CA2592550C (en) * 2004-12-30 2015-05-19 Genencor International, Inc. Novel variant hypocrea jecorina cbh2 cellulases
DE602006019050D1 (de) * 2005-01-06 2011-02-03 Novozymes Inc Polypeptide mit cellobiohydrolaseaktivität und dafür kodierende polynukleotide
EP1967584B1 (de) 2005-08-16 2011-03-23 Novozymes A/S Polypeptide von Stammbakterien SP P203
US7883711B2 (en) 2006-03-22 2011-02-08 Novozymes A/S Use of polypeptides having antimicrobial activity
JP2010512787A (ja) 2006-12-21 2010-04-30 ダニスコ・ユーエス・インク、ジェネンコー・ディビジョン バシルス(Bacillus)種195のアルファ‐アミラーゼポリペプチドの組成物と使用。
DK2134657T3 (da) 2007-03-23 2014-01-20 Novozymes Biologicals Inc Forebyggelse og reducering af biofilmdannelse og planktonformering
DE102007016139A1 (de) 2007-03-30 2008-10-02 Jenabios Gmbh Verfahren zur regioselektiven Oxygenierung von N-Heterozyklen
DE102007047433A1 (de) 2007-10-04 2009-04-09 Lanxess Deutschland Gmbh Flüssigwasch- und Flüssigreinigungsmittel
BRPI0906959A2 (pt) 2008-01-18 2015-07-14 Iogen Energy Corp Variantes de celulase com inibição reduzida por glicose
CA2722889A1 (en) 2008-04-30 2009-11-05 Danisco Us Inc. New chimeric alpha-amylase variants
JP5599113B2 (ja) 2008-06-06 2014-10-01 ダニスコ・ユーエス・インク 糖化酵素組成物及びその糖化方法
CN102112605B (zh) 2008-06-06 2014-02-26 丹尼斯科美国公司 来自枯草芽孢杆菌的变体α-淀粉酶及其使用方法
WO2009149271A2 (en) 2008-06-06 2009-12-10 Danisco Us Inc. Production of glucose from starch using alpha-amylases from bacillus subtilis
EP2149786A1 (de) 2008-08-01 2010-02-03 Unilever PLC Verbesserungen bei der Analyse von Reinigungsmitteln
AU2009276270A1 (en) 2008-08-01 2010-02-04 Iogen Energy Corporation Family 6 cellulase with decreased inactivation by lignin
DE212009000119U1 (de) 2008-09-12 2011-12-30 Unilever N.V. Spender und Vorbehandlungsmittel für viskose Flüssigkeiten
ES2526867T3 (es) 2008-11-20 2015-01-16 Novozymes Inc. Polipéptido que tiene actividad potenciadora amilolítica y polinucleótidos que codifican el mismo
BRPI1013167A2 (pt) 2009-02-27 2015-10-06 Iogen Energy Corp enzimas celulases resistentes a lignina
BRPI1013886A2 (pt) 2009-03-17 2016-10-11 Codexis Inc variantes de endoglucanases, polinucleotídeos e usos a elas relacionados
EP2417254B1 (de) 2009-04-08 2014-05-21 Danisco US Inc. Alpha-amylasen in verbindung mit halomonas-stamm wdg195 sowie verfahren zur verwendung davon
BR112012000520A2 (pt) 2009-07-09 2016-02-16 Procter & Gamble composição catalítica detergente para lavagem de roupa que compreende teores relativamente baixos de eletrólito solúvel em água
CA2767170A1 (en) 2009-07-09 2011-01-13 The Procter & Gamble Company A catalytic laundry detergent composition comprising relatively low levels of water-soluble electrolyte
JP5597366B2 (ja) * 2009-07-22 2014-10-01 岩手県 新規セロビオヒドロラーゼ及びその製造方法
HUE029942T2 (en) 2009-08-13 2017-04-28 Procter & Gamble Method for washing low temperature fabrics
MX2012008389A (es) 2010-01-22 2012-08-15 Dupont Nutrition Biosci Aps Metodos para producir compuestos glicolipidos sustituidos con aminas.
BR112012020804A2 (pt) 2010-02-11 2015-09-15 Iogen Energy Corp módulos de ligação de carboidrato com ligação reduzida à lignina
EP2536832B1 (de) 2010-02-18 2015-02-25 Danisco US Inc. Amylase aus nesterenkonia und verfahren zu ihrer verwendung
CN107815817A (zh) 2011-02-15 2018-03-20 诺维信生物股份有限公司 清洁机器及清洁方法中的气味的减轻
EP2675884A1 (de) 2011-02-16 2013-12-25 Novozymes A/S Waschmittelzusammensetzungen mit metalloproteasen
JP2014508830A (ja) 2011-02-16 2014-04-10 ノボザイムス アクティーゼルスカブ 金属プロテアーゼを含む洗剤組成物
CN103476916A (zh) 2011-02-16 2013-12-25 诺维信公司 包含m7或m35金属蛋白酶的去污剂组合物
RU2013149861A (ru) 2011-04-08 2015-05-20 ДАНИСКО ЮЭс, ИНК. Композиции
EP2726592B1 (de) 2011-07-01 2015-04-01 Novozymes A/S Stabilisierte subtilisinzusammensetzung
CN103764822B (zh) 2011-08-19 2016-11-23 诺维信公司 具有蛋白酶活性的多肽
CN104024408B (zh) 2011-12-28 2019-04-19 诺维信公司 具有蛋白酶活性的多肽
US10087401B2 (en) 2012-03-16 2018-10-02 Monosol, Llc Water soluble compositions incorporating enzymes, and method of making same
US9394092B2 (en) 2012-04-16 2016-07-19 Monosol, Llc Powdered pouch and method of making same
JP2015518707A (ja) 2012-05-11 2015-07-06 ダニスコ・ユーエス・インク 糖化のための、aspergillusclavatus由来アルファアミラーゼの使用
CN104603266B (zh) 2012-08-22 2017-11-10 诺维信公司 来自脂环酸芽孢杆菌属的金属蛋白酶
BR112015003726A2 (pt) 2012-08-22 2019-09-24 Novozymes As composição detergente, uso de uma composição e de um polipeptídeo, e, método para remoção de uma nódoa de uma superfície.
MX2015002211A (es) 2012-08-22 2015-05-08 Novozymes As Metaloproteasa de exiguobacterium.
CN110628528B (zh) 2012-12-07 2021-09-14 诺维信公司 预防细菌的粘附
CN112458069A (zh) 2013-01-03 2021-03-09 诺维信公司 α-淀粉酶变体以及对其进行编码的多核苷酸
EP2997143A1 (de) 2013-05-17 2016-03-23 Novozymes A/S Polypeptide mit alpha-amylase-aktivität
CN114634921B (zh) 2013-06-06 2024-09-10 诺维信公司 α-淀粉酶变体以及对其进行编码的多核苷酸
AU2014280111B2 (en) 2013-06-12 2018-04-05 Earth Alive Clean Technologies Inc. Dust suppressant
WO2015014790A2 (en) 2013-07-29 2015-02-05 Novozymes A/S Protease variants and polynucleotides encoding same
EP3083954B1 (de) 2013-12-20 2018-09-26 Novozymes A/S Polypeptide mit proteaseaktivität und polynukleotide, die für diese kodieren
CN106103708A (zh) 2014-04-01 2016-11-09 诺维信公司 具有α淀粉酶活性的多肽
EP3129457B1 (de) 2014-04-11 2018-06-13 Novozymes A/S Reinigungsmittelzusammensetzung
CN106459939A (zh) 2014-05-27 2017-02-22 诺维信公司 脂肪酶变体以及编码它们的多核苷酸
US10683489B2 (en) 2014-05-27 2020-06-16 Novozymes A/S Methods for producing lipases
US20170121695A1 (en) 2014-06-12 2017-05-04 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2016079110A2 (en) 2014-11-19 2016-05-26 Novozymes A/S Use of enzyme for cleaning
PL3399031T3 (pl) 2014-12-15 2020-05-18 Henkel Ag & Co. Kgaa Kompozycja detergentowa zawierająca odmiany subtylazy
US20180000076A1 (en) 2014-12-16 2018-01-04 Novozymes A/S Polypeptides Having N-Acetyl Glucosamine Oxidase Activity
DK3234123T3 (da) 2014-12-19 2020-08-24 Novozymes As Proteasevarianter og polynukleotider, som koder for dem
DK3234093T3 (da) 2014-12-19 2020-08-17 Novozymes As Proteasevarianter og polynukleotider, som koder for dem
US20180112156A1 (en) 2015-04-10 2018-04-26 Novozymes A/S Laundry method, use of polypeptide and detergent composition
US20180105772A1 (en) 2015-04-10 2018-04-19 Novozymes A/S Detergent composition
CN107835853B (zh) 2015-05-19 2021-04-20 诺维信公司 气味减少
US10858637B2 (en) 2015-06-16 2020-12-08 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
CN107922095A (zh) 2015-06-17 2018-04-17 诺维信公司 容器
CN107922896A (zh) 2015-06-30 2018-04-17 诺维信公司 衣物洗涤剂组合物、用于洗涤的方法和组合物的用途
US10822598B2 (en) 2015-07-06 2020-11-03 Novozymes A/S Lipase variants and polynucleotides encoding same
WO2017046260A1 (en) 2015-09-17 2017-03-23 Novozymes A/S Polypeptides having xanthan degrading activity and polynucleotides encoding same
AU2016323412B2 (en) 2015-09-17 2021-04-01 Henkel Ag & Co. Kgaa Detergent compositions comprising polypeptides having xanthan degrading activity
EP3708660A3 (de) 2015-10-07 2020-12-30 Novozymes A/S Polypeptide
WO2017064253A1 (en) 2015-10-14 2017-04-20 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2017064269A1 (en) 2015-10-14 2017-04-20 Novozymes A/S Polypeptide variants
JP2018531783A (ja) 2015-10-14 2018-11-01 ノボザイムス アクティーゼルスカブ 水濾過膜の洗浄
WO2016203064A2 (en) 2015-10-28 2016-12-22 Novozymes A/S Detergent composition comprising protease and amylase variants
US10870838B2 (en) 2015-12-01 2020-12-22 Novozymes A/S Methods for producing lipases
US11441140B2 (en) 2015-12-07 2022-09-13 Henkel Ag & Co. Kgaa Dishwashing compositions comprising polypeptides having beta-glucanase activity and uses thereof
BR112018011755A2 (pt) 2015-12-09 2018-12-04 Danisco Us Inc variantes combinatórias de alfa-amilase
CA3007148A1 (en) 2016-01-29 2017-08-03 Novozymes A/S Beta-glucanase variants and polynucleotides encoding same
US20190048291A1 (en) 2016-03-23 2019-02-14 Novozymes A/S Use of Polypeptide Having DNase Activity for Treating Fabrics
WO2017174769A2 (en) 2016-04-08 2017-10-12 Novozymes A/S Detergent compositions and uses of the same
US11001787B2 (en) 2016-06-23 2021-05-11 Novozymes A/S Use of enzymes, composition and method for removing soil
WO2018001959A1 (en) 2016-06-30 2018-01-04 Novozymes A/S Lipase variants and compositions comprising surfactant and lipase variant
WO2018002261A1 (en) 2016-07-01 2018-01-04 Novozymes A/S Detergent compositions
WO2018007435A1 (en) 2016-07-05 2018-01-11 Novozymes A/S Pectate lyase variants and polynucleotides encoding same
WO2018007573A1 (en) 2016-07-08 2018-01-11 Novozymes A/S Detergent compositions with galactanase
JP6858850B2 (ja) 2016-07-13 2021-04-14 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company バチルス・シビ(BACILLUS CIBI)DNase変異体及びその使用
WO2018060216A1 (en) 2016-09-29 2018-04-05 Novozymes A/S Use of enzyme for washing, method for washing and warewashing composition
EP3532592A1 (de) 2016-10-25 2019-09-04 Novozymes A/S Waschmittelzusammensetzungen
EP3551740B1 (de) 2016-12-12 2021-08-11 Novozymes A/S Verwendung von polypeptiden
CN110651039A (zh) 2017-03-31 2020-01-03 诺维信公司 具有rna酶活性的多肽
WO2018177938A1 (en) 2017-03-31 2018-10-04 Novozymes A/S Polypeptides having dnase activity
EP3601549A1 (de) 2017-03-31 2020-02-05 Novozymes A/S Polypeptide mit dnase-aktivität
US11339355B2 (en) 2017-04-04 2022-05-24 Novozymes A/S Glycosyl hydrolases
WO2018185150A1 (en) 2017-04-04 2018-10-11 Novozymes A/S Polypeptides
EP3607037A1 (de) 2017-04-06 2020-02-12 Novozymes A/S Reinigungszusammensetzungen und verwendungen davon
CN110651030B (zh) 2017-04-06 2023-10-13 诺维信公司 清洁组合物及其用途
WO2018185285A1 (en) 2017-04-06 2018-10-11 Novozymes A/S Cleaning compositions and uses thereof
EP3607060B1 (de) 2017-04-06 2021-08-11 Novozymes A/S Reinigungsmittelzusammensetzungen und verwendungen davon
WO2018184818A1 (en) 2017-04-06 2018-10-11 Novozymes A/S Cleaning compositions and uses thereof
DK3478811T3 (da) 2017-04-06 2020-01-27 Novozymes As Rengøringssammensætninger og anvendelser deraf
WO2018185269A1 (en) 2017-04-06 2018-10-11 Novozymes A/S Cleaning compositions and uses thereof
EP3607043A1 (de) 2017-04-06 2020-02-12 Novozymes A/S Reinigungszusammensetzungen und verwendungen davon
BR112020005558A2 (pt) 2017-09-20 2020-10-27 Novozymes A/S uso de enzimas para melhorar a absorção de água e/ou o grau de brancura
US11414814B2 (en) 2017-09-22 2022-08-16 Novozymes A/S Polypeptides
US11746310B2 (en) 2017-10-02 2023-09-05 Novozymes A/S Polypeptides having mannanase activity and polynucleotides encoding same
MX2020003411A (es) 2017-10-02 2020-07-20 Novozymes As Polipeptidos que tienen actividad de mananasa y polinucleotidos que los codifican.
WO2019076800A1 (en) 2017-10-16 2019-04-25 Novozymes A/S CLEANING COMPOSITIONS AND USES THEREOF
WO2019081515A1 (en) 2017-10-24 2019-05-02 Novozymes A/S COMPOSITIONS COMPRISING POLYPEPTIDES HAVING MANNANASE ACTIVITY
DK3476936T3 (da) 2017-10-27 2022-03-14 Procter & Gamble Vaskemiddelsammensætninger, der omfatter polypeptidvarianter
BR112020008251A2 (pt) 2017-10-27 2020-11-17 Novozymes A/S variantes de dnase
WO2019086530A1 (en) 2017-11-01 2019-05-09 Novozymes A/S Polypeptides and compositions comprising such polypeptides
EP3704240A1 (de) 2017-11-01 2020-09-09 Novozymes A/S Polypeptide und zusammensetzungen mit solchen polypeptiden
EP3704220A1 (de) 2017-11-01 2020-09-09 Novozymes A/S Verfahren zur reinigung von medizinischen vorrichtungen
CN112262207B (zh) 2018-04-17 2024-01-23 诺维信公司 洗涤剂组合物中包含碳水化合物结合活性的多肽及其在减少纺织品或织物中的褶皱的用途
EP3781680A1 (de) 2018-04-19 2021-02-24 Novozymes A/S Stabilisierte cellulase-varianten
CN112272701B (zh) 2018-04-19 2024-05-14 诺维信公司 稳定化的纤维素酶变体
CN112368363A (zh) 2018-06-28 2021-02-12 诺维信公司 洗涤剂组合物及其用途
EP3814473A1 (de) 2018-06-29 2021-05-05 Novozymes A/S Reinigungsmittelzusammensetzungen und verwendungen davon
US12012573B2 (en) 2018-07-02 2024-06-18 Novozymes A/S Cleaning compositions and uses thereof
EP3818138A1 (de) 2018-07-03 2021-05-12 Novozymes A/S Reinigungszusammensetzungen und verwendungen davon
WO2020008024A1 (en) 2018-07-06 2020-01-09 Novozymes A/S Cleaning compositions and uses thereof
US20210253981A1 (en) 2018-07-06 2021-08-19 Novozymes A/S Cleaning compositions and uses thereof
US20210340466A1 (en) 2018-10-01 2021-11-04 Novozymes A/S Detergent compositions and uses thereof
US20230287306A1 (en) 2018-10-02 2023-09-14 Novozymes A/S Cleaning Composition
WO2020070014A1 (en) 2018-10-02 2020-04-09 Novozymes A/S Cleaning composition comprising anionic surfactant and a polypeptide having rnase activity
WO2020070209A1 (en) 2018-10-02 2020-04-09 Novozymes A/S Cleaning composition
WO2020070249A1 (en) 2018-10-03 2020-04-09 Novozymes A/S Cleaning compositions
WO2020070199A1 (en) 2018-10-03 2020-04-09 Novozymes A/S Polypeptides having alpha-mannan degrading activity and polynucleotides encoding same
CN112996894A (zh) 2018-10-11 2021-06-18 诺维信公司 清洁组合物及其用途
ES2981999T3 (es) 2018-10-31 2024-10-14 Henkel Ag & Co Kgaa Composiciones limpiadoras que contienen dispersinas V
EP3647397A1 (de) 2018-10-31 2020-05-06 Henkel AG & Co. KGaA Reinigungsmittel mit dispersins iv
EP3898919A1 (de) 2018-12-21 2021-10-27 Novozymes A/S Waschmittelbeutel mit metalloproteasen
EP3938484A1 (de) * 2019-03-14 2022-01-19 The Procter & Gamble Company Reinigungszusammensetzungen mit enzymen
BR112021018731A2 (pt) 2019-03-21 2021-12-21 Novozymes As Variantes de alfa-amilase e polinucleotídeos codificando as mesmas
EP3953462A1 (de) 2019-04-10 2022-02-16 Novozymes A/S Polypeptidvarianten
MX2021012289A (es) 2019-04-12 2021-11-12 Novozymes As Variantes de glucosido hidrolasa estabilizadas.
US20220267699A1 (en) 2019-07-01 2022-08-25 Basf Se Peptide acetals for stabilising enzymes
EP4038170A1 (de) 2019-10-03 2022-08-10 Novozymes A/S Polypeptide mit mindestens zwei kohlenhydratbindungsdomänen
EP4077620A1 (de) 2019-12-20 2022-10-26 Henkel AG & Co. KGaA Reinigungszusammensetzungen mit dispersinen vi
CN114846128A (zh) 2019-12-20 2022-08-02 汉高股份有限及两合公司 包含分散蛋白viii的清洁组合物
WO2021122117A1 (en) 2019-12-20 2021-06-24 Henkel Ag & Co. Kgaa Cleaning composition coprising a dispersin and a carbohydrase
US20250002888A1 (en) 2020-01-31 2025-01-02 Novozymes A/S Mannanase variants and polynucleotides encoding same
EP4097227A1 (de) 2020-01-31 2022-12-07 Novozymes A/S Mannanase-varianten und dafür codierende polynukleotide
EP3892708A1 (de) 2020-04-06 2021-10-13 Henkel AG & Co. KGaA Reinigungszusammensetzungen mit dispersinvarianten
JP2023520312A (ja) 2020-04-08 2023-05-17 ノボザイムス アクティーゼルスカブ 炭水化物結合モジュールバリアント
WO2021259099A1 (en) 2020-06-24 2021-12-30 Novozymes A/S Use of cellulases for removing dust mite from textile
EP3936593A1 (de) 2020-07-08 2022-01-12 Henkel AG & Co. KGaA Reinigungszusammensetzungen und verwendungen davon
BR112023003468A2 (pt) 2020-08-25 2023-04-11 Novozymes As Variantes de uma xiloglucanase da família 44
EP4225905A2 (de) 2020-10-07 2023-08-16 Novozymes A/S Alpha-amylase-varianten
EP4039806A1 (de) 2021-02-04 2022-08-10 Henkel AG & Co. KGaA Reinigungsmittelzusammensetzung mit xanthan-lyase- und endoglucanase-varianten mit verbesserter stabilität
CN116829709A (zh) 2021-02-12 2023-09-29 诺维信公司 α-淀粉酶变体
EP4053256A1 (de) 2021-03-01 2022-09-07 Novozymes A/S Verwendung von enzymen zur verbesserung der duftstoffablagerung
US20240060061A1 (en) 2021-03-15 2024-02-22 Novozymes A/S Dnase variants
EP4060036A1 (de) 2021-03-15 2022-09-21 Novozymes A/S Polypeptidvarianten
WO2022268885A1 (en) 2021-06-23 2022-12-29 Novozymes A/S Alpha-amylase polypeptides
EP4363543A1 (de) 2021-06-30 2024-05-08 Henkel AG & Co. KGaA Zusammensetzung mit verbesserter feuchtigkeitsmanagementleistung
CN117580939A (zh) 2021-06-30 2024-02-20 汉高股份有限及两合公司 具有改善的抗灰化性能和/或抗起球性能的清洁组合物
WO2023165507A1 (en) 2022-03-02 2023-09-07 Novozymes A/S Use of xyloglucanase for improvement of sustainability of detergents
CN118786210A (zh) 2022-03-04 2024-10-15 诺维信公司 Dna酶变体和组合物
KR20240170826A (ko) 2022-04-08 2024-12-04 노보자임스 에이/에스 헥소사미니다제 변이체 및 조성물
DE102022205593A1 (de) 2022-06-01 2023-12-07 Henkel Ag & Co. Kgaa Wasch- und reinigungsmittel mit verbesserter enzymstabilität
DE102022205591A1 (de) 2022-06-01 2023-12-07 Henkel Ag & Co. Kgaa Wasch- und reinigungsmittel mit verbesserter enzymstabilität
DE102022205588A1 (de) 2022-06-01 2023-12-07 Henkel Ag & Co. Kgaa Wasch- und reinigungsmittel mit verbesserter enzymstabilität
DE102022205594A1 (de) 2022-06-01 2023-12-07 Henkel Ag & Co. Kgaa Leistungsverbesserte und lagerstabile protease-varianten
WO2023247348A1 (en) 2022-06-21 2023-12-28 Novozymes A/S Mannanase variants and polynucleotides encoding same
EP4324900A1 (de) 2022-08-17 2024-02-21 Henkel AG & Co. KGaA Waschmittelzusammensetzung mit enzymen
WO2024046952A1 (en) 2022-08-30 2024-03-07 Novozymes A/S Improvements in or relating to organic compounds
DE102022211482A1 (de) 2022-10-28 2024-05-08 Henkel Ag & Co. Kgaa Naturfarbstoff-Färbung mit verbesserter Farbintensität
DE102022211856A1 (de) 2022-11-09 2024-05-16 Henkel Ag & Co. Kgaa Zweistufiges Färbeverfahren mit Naturfarbstoffen mit verbesserter Farbintensität
DE102022131732A1 (de) 2022-11-30 2024-06-06 Henkel Ag & Co. Kgaa Verbesserte Waschleistung durch den Einsatz einer Protease fusioniert mit speziellem Adhäsionsvermittlerpeptid
WO2024126483A1 (en) 2022-12-14 2024-06-20 Novozymes A/S Improved lipase (gcl1) variants
DE102023200106A1 (de) 2023-01-10 2024-07-11 Henkel Ag & Co. Kgaa Enzymhaltiges wasch- und reinigungsmittel
WO2024156628A1 (en) 2023-01-23 2024-08-02 Novozymes A/S Cleaning compositions and uses thereof
EP4414443A1 (de) 2023-02-09 2024-08-14 Henkel AG & Co. KGaA Reinigungszusammensetzung mit polyesterase
DE102023201692A1 (de) 2023-02-24 2024-08-29 Henkel Ag & Co. Kgaa Wasch- und reinigungsmittel mit dispersin und duftstoff
DE102023201696A1 (de) 2023-02-24 2024-08-29 Henkel Ag & Co. Kgaa Wasch- und reinigungsmittel mit dispersin
DE102023201695A1 (de) 2023-02-24 2024-08-29 Henkel Ag & Co. Kgaa Wasch- und reinigungsmittel mit dispersin
WO2024194245A1 (en) 2023-03-21 2024-09-26 Novozymes A/S Detergent compositions based on biosurfactants
WO2024213513A1 (en) 2023-04-12 2024-10-17 Novozymes A/S Compositions comprising polypeptides having alkaline phosphatase activity
WO2024250142A1 (en) 2023-06-05 2024-12-12 The Procter & Gamble Company Laundry detergent composition containing cellulase and graft copolymer
DE102023205632A1 (de) 2023-06-15 2024-12-19 Henkel Ag & Co. Kgaa Peptide mit schmutzablösender wirkung für wasch- und reinigungsmittel
WO2025011933A1 (en) 2023-07-07 2025-01-16 Novozymes A/S Washing method for removing proteinaceous stains

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0406314B1 (de) * 1988-03-24 1993-12-01 Novo Nordisk A/S Cellulosezubereitung
JP3681750B2 (ja) * 1992-10-06 2005-08-10 ノボザイムス アクティーゼルスカブ セルラーゼ変異体
CA2166777A1 (en) * 1993-07-07 1995-01-19 Joseph Noozhumurry Varghese (1-3,1-4)-.beta.-glucanase of enhanced stability
DK1632557T3 (da) * 1994-03-08 2011-05-16 Novozymes As Hidtil ukendte alkaliske cellulaser
KR20050046778A (ko) * 1995-02-03 2005-05-18 노보자임스 에이/에스 소정 특성을 가지는 알파-아밀라제 돌연변이체
TR199800934T2 (xx) * 1995-11-27 1999-02-22 Unilever N.V. Enzimatik deterjan bile�imleri.
CA2248814C (en) * 1995-11-27 2005-08-30 Unilever Plc An enzymatic detergent composition containing endoglucanase e5 from thermomonospora fusca
CA2265914C (en) * 1996-09-17 2011-05-03 Novo Nordisk A/S Cellulase variants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9901544A1 *

Also Published As

Publication number Publication date
WO1999001544A1 (en) 1999-01-14
AU7908898A (en) 1999-01-25

Similar Documents

Publication Publication Date Title
EP1002061A1 (de) Varianten der 6 endo-1,4-beta-glukanase und diese enthaldende reinigungszusammensetzungen
EP0937138B1 (de) Cellulasevarianten
Alvarez et al. Structure and function of a novel cellulase 5 from sugarcane soil metagenome
Shirai et al. Crystal structure of alkaline cellulase K: insight into the alkaline adaptation of an industrial enzyme
EP3121270B1 (de) Reinigungszusammensetzungen mit amylasevariantenreferenz zu einem sequenzprotokoll
JP4199422B2 (ja) ポリペプチド
DK2183363T3 (en) fungal xylanase
US20030054535A1 (en) Endoglucanase mutants and mutant hydrolytic depolymerizing enzymes and uses thereof
CA3051426C (en) Cleaning compositions comprising amylase variants
CN102369284B (zh) 具有纤维素酶活性的多肽
US20120122184A1 (en) Polypeptides of strain Bacillus sp. P203
CN103687947A (zh) 突变型β葡糖苷酶、生物质分解用酶组合物和糖液的制造方法
CN104017789B (zh) 家族44木葡聚糖酶变体
Tang et al. Overexpression of an endogenous raw starch digesting mesophilic α‐amylase gene in Bacillus amyloliquefaciens Z3 by in vitro methylation protocol
CA3141660A1 (en) Cleaning compositions comprising amylase variants
Steenbakkers et al. An intron-containing glycoside hydrolase family 9 cellulase gene encodes the dominant 90 kDa component of the cellulosome of the anaerobic fungus Piromyces sp. strain E2
Nakabayashi et al. Structural analysis of β-glucosidase mutants derived from a hyperthermophilic tetrameric structure
CN109486689B (zh) 一种增强l-天冬酰胺酶耐酸性的方法
Andrade et al. Enzymatic and biophysical characterization of a novel modular cellulosomal GH5 endoglucanase multifunctional from the anaerobic gut fungus Piromyces finnis
US20160251642A1 (en) Stable fungal cel6 enzyme variants
Matsuzaki et al. A thermostable and highly active fungal GH3 β-glucosidase generated by random and saturation mutagenesis
KR20140128875A (ko) 신규 재조합 셀룰레이즈 및 그의 용도

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

RTI1 Title (correction)

Free format text: FAMILY 6 ENDO-1,4-BETA-GLUCANASE VARIANTS AND CLEANING COMPOSIT IONS CONTAINING THEM

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOVOZYMES A/S

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20030926