[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1096218B1 - Pointing drive - Google Patents

Pointing drive Download PDF

Info

Publication number
EP1096218B1
EP1096218B1 EP00122062A EP00122062A EP1096218B1 EP 1096218 B1 EP1096218 B1 EP 1096218B1 EP 00122062 A EP00122062 A EP 00122062A EP 00122062 A EP00122062 A EP 00122062A EP 1096218 B1 EP1096218 B1 EP 1096218B1
Authority
EP
European Patent Office
Prior art keywords
azimuth
elevation
substructure
launching
swivel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00122062A
Other languages
German (de)
French (fr)
Other versions
EP1096218A2 (en
EP1096218A3 (en
Inventor
Klaus Bär
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Defence GmbH and Co KG
Original Assignee
Diehl Munitionssysteme GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl Munitionssysteme GmbH and Co KG filed Critical Diehl Munitionssysteme GmbH and Co KG
Publication of EP1096218A2 publication Critical patent/EP1096218A2/en
Publication of EP1096218A3 publication Critical patent/EP1096218A3/en
Application granted granted Critical
Publication of EP1096218B1 publication Critical patent/EP1096218B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A27/00Gun mountings permitting traversing or elevating movement, e.g. gun carriages
    • F41A27/28Electrically-operated systems

Definitions

  • the invention relates to directional drives according to the preambles of the main claims.
  • Such directional drives are known from EP 0 149 639 B1 / WO 85/00217 for the weapon turret known light military vehicle.
  • the one that can be turned relative to the vehicle The tower is supported by a radial ball bearing on a plate, which in turn is used for Cushioning of the recoil of the barrel weapon by means of elastic supports from the vehicle chassis will be carried.
  • Tilting moments acting on the plate are from her about a hollow truncated cone-shaped cage against a central shaft in the azimuth axis of the tower rotation. For the azimuth aiming the Rotation of the tower around this shaft via a bearing mounted in the plate Pinion that is driven by a motor that is fixed to the vehicle via a belt drive becomes.
  • the central wave ends in front of the tower a linear rack, in which the pinion is mounted fixed to the vehicle Motor engages to move the shaft in the direction of the azimuth axis.
  • the rack opposite is a fork on this shaft via a ball joint connected.
  • Their free foreheads are quite far behind - approximated by the center of gravity of the gun - elevation axis to the gun articulated, whereby this is directed in height via the rack and pinion drive can be.
  • the servomotors rapid start-up with large torque and rapid braking with large Holding torque be designed, which is a large magnetically effective mass, so very heavy actuators. This is particularly critical with regard to the inevitable Gearless in the rotating torque transmissions from the Actuators on the one hand for turning the azimuth and on the other hand for pivoting the elevation of the launcher. The requirement of these very large masses Having to move, therefore, calls for a quick and unerring Alignment of the launcher contradicts.
  • the present invention is based on the object Straightening drives for azimuth and elevation as well as for a combined azimuth and elevation alignment of the weapon - in particular in the form of the mentioned Launcher - designed to meet such critical requirements are optimized, i.e. as fast as possible and as free of play as possible, exactly alignment of the launching container to be observed according to azimuth and / or Elevation for targeted firing, especially against a grenade enable an attacking missile.
  • the fork-shaped swivel bracket mounted on the rotatable support ring preferably has about the geometry of a rigid unequal leg right-angled triangle, which with its longer Kathethe fixed on motion resting and opposite the support ring, in the area of the transition from the shorter axles parallel to the hypotenuse, outside the course of the Azimuth axis with a swivel eye for tilting for elevation adjustment of the launching container suspended in the holder.
  • this swivel axis passes transversely to it with the azimuth axis of the support ring identical central axis of the substructure. It is preferably at medium elevation the launching container, its linkage to the support rod just on the azimuth axis.
  • the launcher is supported on the coupling rod along the azimuth axis a translational output of the concentric to the support ring and thus coaxial also fixed to the azimuth axis in the housing of the substructure Elevation servomotor. Its output is about a telescope or preferably a conversion from a motor rotary movement into an output linear movement via a spindle nut on a threaded rod.
  • the Elevation servomotor as a whole or in any case its output are relative to the Substructure can be rotated, if not the support rod in itself or over at least one Ball joint is rotatable relative to the substructure because the support ring for the azimuth aiming rotates around the azimuth axis and thereby the coupling of the fixed object Elevation motor takes to the rotatable launch container.
  • no rotatable coupling is installed here, i.e.
  • the directional drive sketched according to the invention for the sake of clarity 10 serves to protect a stationary or mobile object 11 against an approaching object fast steering projectile (not included in the drawing) due to counterfire at least one fragmentation grenade from one with several Grenades in interchangeable firing tubes with launching container 12.
  • the for this purpose is carried by the object 11 to be protected via the directional drive 10 after sensing the direction of the threat, the direction of launch of those to be fired Defense grenade as quickly as possible in azimuth and elevation on the attacking missile to be able to align - as in the already cited US 5,661,254 A. described in more detail with regard to the mechanism of action of the splinter defense grenade, which is expressly referred to here to avoid repetitions becomes.
  • the servomotors 13, 14 are not included the launcher 12 moves, but in the housing of a fixed substructure 15 of the directional drive 10 installed, as in the drawing by the in the object 11 recessed pot-shaped housing symbolically illustrates.
  • This Pot-shaped base 15 for the stationary reception of the servomotors 13, 14 and for rotatably receiving a swivel bracket 19 for the launching container 12 carries on or in a (at least partially recessed into the supporting object) Housing covering, with ibs.
  • At least one azimuthal servomotor 14 stationary in the substructure 15 and preferably arranged parallel to the azimuth axis 17.
  • These teeth 25 on the torque bearing of the support ring 18 represents the only functional interface to be adjusted between stationary base 15 and rotating swivel bracket 19.
  • the rotational engagement is radially opposite for its radial support, and preferably designed at the same time for its axial mounting, at least one Rolling bearings arranged in the base plate 16, which run as a ring as outlined, in principle, however, also from individual peripherally offset bearings can exist. It is preferred as rotating around within the support ring 18 Torque bearing 26 designed, the on its mutually perpendicular roller tracks can absorb both axial and radial forces.
  • At least two azimuthal servomotors 14 are e.g. equidistant distributed over the circumference of the support ring 18. For the azimuth straightening process if they are switched to synchronism, they drive the support ring 18 in the same direction of rotation on. When the azimuthal target position is reached, the azimuthal servomotors 14 turned off per se, but at least one pair of them will switched to the same drive torque with opposite drive direction, see above that at least two motors 14 block each other via the toothing 25 and thereby the achieved azimuthal alignment of the launch container 12 without play fix.
  • the elevation servomotor 13 also does not rotate in order to reduce rotating masses with the support ring 18. Rather, the elevation servomotor 13 is concentric with Azimuth axis 17 embedded under the support ring 18 in the base 15.
  • the elevation servomotor 13 can have a translational output 23 in Form of a telescope or to convert the rotary into a translatory Output movement of the motor 13 in the form of a sliding nut on a motor shaft with a threaded spindle, for example in the manner of a roller screw drive or Trapezoidal spindle can be designed.
  • This output 23 is also connected via a support rod 22 the launcher 12 connected to it relative to the base 15 already during the azimuth setting and / or in the currently reached azimuth position being able to raise or lower.
  • the support ring 18th opposite hypotenuse 28 of the approximately triangular swivel bracket 19 a large-area opening compared to the diameter of the support rod 22 28, into which the eye 21 located on the firing container 12 for the Coupling of the support rod 22 can dip completely into it.
  • the distance between the pivot axis 20 for the elevation of the launcher 12 and the eye 21 for supporting the elevation on the support rod 22 chosen as low as possible so that the deflection on both sides of a medium elevation the support rod 22 remains as small as possible out of the azimuth axis 17 and thus a practically bending moment-free, i.e. ideal kinetic Pressure can be transmitted from the linear output 23 of the servomotor 13.
  • the operative connection between the elevation servomotor 13 and the launching container 12 can be rotated here relative to the substructure 15 because the launching container 12 an azimuth setting relative in the interest of smaller masses to be rotated to the elevation servomotor 13 arranged in a stationary manner in the substructure 15.
  • This Rotatability which affects the elevation during due to the Prevents azimuthal alignment, the translational output 23 can be relative have its servomotor 13, as symbolically in the sketch by a rotary bearing 29 illustrated to the articulations of the support rod 22 on the one hand to the Firing container 12 and opposite to the elevation servomotor 13 as to be able to train one-dimensional swivel joints.
  • the rotatability can but also be ensured that at least one of these two coupling points 30 is designed as a ball joint, so that the rotation during the azimuth setting not on the output side directly on the elevation servomotor 13 takes place, but in at least one of these coupling points 30 so also function-critical linear plain bearings avoided.
  • a directional drive 10 which can be integrated into an object 11 to be protected, for fast Alignment of the fork-shaped swivel bracket 19 of a launch container 12 for frag grenades to ward off an attacking missile the interpretation according to the invention by the possibility of more precise simultaneous Azimuth and elevation settings with particularly high dynamics of this Straightening process despite the heavy weight of the chip grenades Launch container 12 from.
  • the servomotors 13, 14 are from the swivel bracket 19 continued and protected against splintering, for example parallel to Azimuth axis 17, relocated to a fixed substructure 15, where it with a Substructure 15, support ring 18 held rotatably by means of a torque bearing 26 are in rotary connection for the azimuth setting of the swivel bracket 19.
  • the coaxial to the azimuth axis 17 also integrated stationary in the substructure 15
  • Elevation servomotor 13 has a translatory output 23 equipped, which is essentially concentric to the azimuth axis 17 extending and rotatable about this support rod 22, the elevation of the launching container 12 determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Transmission Devices (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Automotive Seat Belt Assembly (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Eye Examination Apparatus (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)
  • Valve Device For Special Equipments (AREA)
  • Steroid Compounds (AREA)

Abstract

The laying mechanism (10) for a fragmentation round launch tube (12) has a rapid setting for azimuth in the foundation (15), with at least two azimuth setting motors (14) acting on the carrier ring (18), parallel to the azimuth axis. At least one setting motor can be reversed into a drive in the opposite direction, to block the movement from the other motor when the carrier ring (18) has reached the azimuth setting for the launch. The static setting motors are contained within the pot-shaped foundation, with one motor (13) for elevation and a motor (14) for azimuth.

Description

Die Erfindung betrifft Richtantriebe gemäß den Oberbegriffen der Hauptansprüche.The invention relates to directional drives according to the preambles of the main claims.

Derartige Richtantriebe sind aus der EP 0 149 639 B1/WO 85/00217, für den Waffenturm eines leichten Militärfahrzeugs bekannt. Der gegenüber dem Fahrzeug verdrehbare Turm wird von einem Radialkugellager auf einer Platte getragen, die ihrerseits zur Abfederung des Rückstoßes der Rohrwaffe mittels elastischer Stützen vom Fahrzeugchassis getragen wird. Auf die Platte einwirkende Kippmomente werden von ihr über einen hohlkegelstumpfförmigen Bügelkäfig gegen eine zentrale Welle in der Azimutachse der Turmdrehung abgestützt. Für das Azimutrichten erfolgt die Verdrehung des Turmes um diese Welle herum über ein in der Platte gelagertes Ritzel, das über einen Riementrieb von einem fahrzeugfesten Motor angetrieben wird. Für das Elevationsrichten endet die zentrale Welle dem Turm gegenüber in einer linearen Zahnstange, in die das Ritzel eines quer dazu fahrzeugfest montierten Motors eingreift, um die Welle in Richtung der Azimutachse zu verschieben. Der Zahnstange gegenüber ist an diese Welle über ein Kugelgelenk eine Gabel angeschlossen. Deren freie Stirnenden sind recht weit hinter der - durch angenähert den Schwerpunkt des Geschützes verlaufenden - Elevationsachse an das Geschütz angelenkt, wodurch dieses über den Zahnstangenantrieb in der Höhe gerichtet werden kann. Such directional drives are known from EP 0 149 639 B1 / WO 85/00217 for the weapon turret known light military vehicle. The one that can be turned relative to the vehicle The tower is supported by a radial ball bearing on a plate, which in turn is used for Cushioning of the recoil of the barrel weapon by means of elastic supports from the vehicle chassis will be carried. Tilting moments acting on the plate are from her about a hollow truncated cone-shaped cage against a central shaft in the azimuth axis of the tower rotation. For the azimuth aiming the Rotation of the tower around this shaft via a bearing mounted in the plate Pinion that is driven by a motor that is fixed to the vehicle via a belt drive becomes. For elevation straightening, the central wave ends in front of the tower a linear rack, in which the pinion is mounted fixed to the vehicle Motor engages to move the shaft in the direction of the azimuth axis. The rack opposite is a fork on this shaft via a ball joint connected. Their free foreheads are quite far behind - approximated by the center of gravity of the gun - elevation axis to the gun articulated, whereby this is directed in height via the rack and pinion drive can be.

Diese vorbekannten Antriebe zum Richten eines Geschützes nach Azimut oder/und Elevation weisen sowohl jeder für sich betrachtet wie auch in der Kombination eine Reihe erheblicher konstruktiver und funktionaler Nachteile auf, die vor allem dann zum Tragen kommen, wenn es darum geht, eine große Masse rasch zu richten und dann zuverlässig zu arretieren. So ist schon über den Riemenantrieb eine schnelle und sichere Azimutausrichtung nicht gewährleistet, da angesichts der erforderlichen Drehmomente für die hohe Trägheitsmasse des Turmes mit seinem Geschütz entweder nur ein schleichendes Einlaufen in die Soll-Ausrichtung oder aber ein azimutales Überpendeln zu erwarten ist - und dann angesichts des unvermeidlichen Spiels im Verzahnungseingriff des Antriebsritzels und über den Riementrieb zum Antriebsmotor eine wenig zuverlässige Arretierung der endlich erreichten Soll-Ausrichtung. Auch die Zuverlässigkeit der Waffenelevation läßt bei der vorbekannten Konstruktion sehr zu wünschen übrig, weil der Zahnstangenantrieb, wenn er nicht unter erheblichen Reibungsverlusten eine exakte konstruktive Linearführung erfährt, notwendigerweise stark spielbehaftet arbeitet. Hinzu kommen noch die konstruktiven Nachteile des herstellungstechnischen Aufwandes und des Spieles in einer zweidimensionalen Lagerung in Form des Kugelgelenkes zum Anschluß der Elevationsgabel an die als longitudinal verfahrbare Stützstange dienende Zentralwelle. Außerdem ist die Abstützung der Waffe in der Gabel weit außerhalb eines nahe der Azimutachse gelegenen Schwerpunktes in Hinblick auf die starken Schwenkbewegungen der Gabel um ihr Kugelgelenk sowohl kinetisch wie auch kinematisch extrem ungünstig. Schließlich sind insbesondere für eine Serienfertigung generell nachteilig : funktional das Spiel und die Reibungsverluste sowie fertigungstechnisch der große Teile- und Justagebedarf für die Lagerung der Zahnstange und für den Gabelanschluß über ein Kugellager zum Elevationsrichten, sowie für den Riemenantrieb zum Azimutrichten; nicht zuletzt aber auch der Einbauraumbedarf für die quer zu einander orientierten Richtmotore.These known drives for aiming a gun in azimuth or / and elevation both show individually and in combination a number of significant design and functional disadvantages that especially come into play when it comes to a large crowd to set up quickly and then lock it reliably. So is already about the belt drive a quick and safe azimuth alignment is not guaranteed because in view of the torques required for the high mass of inertia Turmes with his gun either just creeping into the Target alignment or an azimuthal over-swinging is to be expected - and then given the inevitable backlash of the pinion gear and via the belt drive to the drive motor an unreliable locking the finally achieved target orientation. Also the reliability of the weapon elevation leaves a lot to be desired in the known construction, because the rack and pinion drive if it does not cause considerable friction losses experienced exact constructive linear guidance, necessarily with a lot of play is working. Added to this are the constructional disadvantages of manufacturing technology Effort and play in a two-dimensional storage in the form of the ball joint for connecting the elevation fork to the longitudinally movable Central shaft serving as support rod. In addition, the support of the Gun in the fork far outside of a near the azimuth axis Focus on the strong swiveling movements of the fork around it Ball joint extremely unfavorable both kinetically and kinematically. Finally are generally disadvantageous, especially for series production: functional that Game and the friction losses as well as the large parts and manufacturing technology Adjustment requirement for the storage of the rack and for the fork connection via a ball bearing for elevation straightening and for the belt drive for azimuth straightening; Last but not least, the installation space required for the crosswise to each other oriented directional motors.

Aus der DE 33 41 320 A1 ist ein steuerbarer Drehantrieb für ein drehbares Oberteil beispielsweise einer Waffenanlage bekannt, der sich auf einem feststehenden Unterteil über ein Großwälzlager abstützt, das aus drei Ringen gebildet wird, von denen zwei mit dem Unterteil bzw. mit dem Oberteil drehstarr verbundene äußere Ringe jeweils mit einem Antriebsmotor ausgestattet sind, deren Ritzel mit einem Zahnkranz in Eingriff stehen, der buchsenförmig aus dieser Ringanordnung heraussteht und axial dagegen versetzt mit einem zwischen diesen beiden Ringen gelagerten Mittelring verbunden ist, um nach Art eines Differentialgetriebes die Drehmomentenübertragung zwischen Innenring und Außenring variieren zu können. Dieser Azimutantrieb läßt zwar eine hochdynamische Azimuteinstellung der beiden äußeren Ringe relativ zueinander realisieren, gewährleistet aber trotz hohen Fertigungsaufwandes und Raumbedarfes noch kein zuverlässiges Arretieren in der erreichten Sollstellung.DE 33 41 320 A1 describes a controllable rotary drive for a rotatable upper part For example, an weapon system known that is based on a fixed The lower part is supported by a large roller bearing, which is formed from three rings two of which are connected to the lower part or to the upper part in a torsionally rigid manner Rings are each equipped with a drive motor, the pinion with a The ring gear is in engagement, which protrudes from this ring arrangement in the form of a sleeve and axially offset with one between these two rings mounted center ring is connected to the in the manner of a differential gear Torque transmission between the inner ring and outer ring to be able to vary. This azimuth drive leaves a highly dynamic azimuth setting Realize the two outer rings relative to each other, but guaranteed despite high Manufacturing effort and space requirements still no reliable locking in the reached target position.

Die vorerwähnten Nachteile der eingangs behandelten Azimut- und Elevationsantriebe sind dann besonders schwerwiegend, wenn es um die Realisierung eines zweidimensionalen Richtantriebes geht, der wie in der US 5,661,254 A beschrieben zum raschen Ausrichten eines schweren Abschußbehälters nach Azimut und Elevation benötigt wird, um zum aktiven Schutz eines mobilen oder auch stationären Objektes aus dem auf diesem Objekt oder in dessen Nähe montierten Behälter einem angreifenden Flugkörper Splittergranaten entgegenfeuern zu können. Dafür ist es aus jener Vorveröffentlichung bekannt, daß ein lafettenähnlicher Unterbau eine azimutal einstellbare Schwenkhalterung für den darin kippbaren Abschußbehälter trägt, die für diese beiden Richtbewegungen gemäß der gattungsbildenden Vorveröffentlichung mit zwei quer zueinander orientierten Stellmotoren bestückt ist. Wegen der sehr schnell zu beschleunigenden und abzubremsenden großen Massen des - insbesondere zu Beginn eines Gefechts mit mehreren Splittergranaten bestückten, also schweren - Abschußbehälters müssen die Stellmotore auf raschen Hochlauf bei großem Drehmoment und rasches Abbremsen bei großem Haltemoment ausgelegt sein, was eine große magnetisch wirksame Masse, also sehr schwere Stellmotore bedingt. Das ist besonders kritisch in Hinblick auf unvermeidbare Getriebelose in den rotierenden Momentenübertragungen von den Stellmotoren einerseits zum Azimut-Verdrehen und andererseits zum Elevations-Verschwenken des Abschußbehälters. Das Erfordernis, diese sehr großen Massen bewegen zu müssen, läuft deshalb der Forderung nach einer raschen und zielsicheren Ausrichtung des Abschußbehälters zuwider.The aforementioned disadvantages of the azimuth and elevation drives discussed at the beginning are particularly serious when it comes to realizing a two-dimensional directional drive goes, as described in US 5,661,254 A. for the rapid alignment of a heavy launching container according to azimuth and Elevation is needed to actively protect a mobile or even stationary Object from the container mounted on this object or in its vicinity to be able to fire frag grenades at an attacking missile. Therefore it is known from that prior publication that a carriage-like substructure an azimuthally adjustable swivel mount for the launching container that can be tilted inside carries, for these two directional movements according to the generic Pre-publication equipped with two actuators oriented transversely to each other is. Because of the large ones that can be accelerated and braked very quickly Masses of the - especially at the beginning of a battle with multiple frag grenades equipped, so heavy - launch container, the servomotors rapid start-up with large torque and rapid braking with large Holding torque be designed, which is a large magnetically effective mass, so very heavy actuators. This is particularly critical with regard to the inevitable Gearless in the rotating torque transmissions from the Actuators on the one hand for turning the azimuth and on the other hand for pivoting the elevation of the launcher. The requirement of these very large masses Having to move, therefore, calls for a quick and unerring Alignment of the launcher contradicts.

In Erkenntnis dieser Gegebenheiten liegt vorliegender Erfindung die Aufgabe zugrunde, Richtantriebe für Azimut und Elevation sowie für eine kombinierte Azimut- und Elevationsausrichtung der Waffe - insbesondere in Form des erwähnten Abschußbehälters - derart auszulegen, daß sie auf solche kritischen Anforderungen optimiert sind, also eine möglichst schnelle und möglichst spielfreie, exakt einzuhaltende Ausrichtung des Abschußbehälters nach Azimut oder/und nach Elevation für ein zielsicheres Abfeuern insbesondere einer Abwehrgranate gegen einen angreifenden Flugkörper ermöglichen.In recognition of these circumstances, the present invention is based on the object Straightening drives for azimuth and elevation as well as for a combined azimuth and elevation alignment of the weapon - in particular in the form of the mentioned Launcher - designed to meet such critical requirements are optimized, i.e. as fast as possible and as free of play as possible, exactly alignment of the launching container to be observed according to azimuth and / or Elevation for targeted firing, especially against a grenade enable an attacking missile.

Gemäß den im Hauptanspruch für den Azimut-Richtvorgang angegebenen wesentlichen Merkmalen der erfindungsgemäßen Lösung, also für ein Verdrehen des Oberbaues koaxial zur Azimut-Achse, greifen in eine Innen- oder Außenverzahnung des Tragringes die Abtriebsritzel mehrerer stationär, nämlich objektfest, im Unterbau und dort zugleich gegen Splitterwirkungen geschützt angeordneter Azimut-Stellmotore ein, um bei deren Gleichlauf eine vorgegebene Azimutausrichtung rasch erreichen und diese Stellung dann durch Umschalten wenigstens eines der Azimut-Stellmotore auf Gegendrehmoment bezüglich wenigstens eines der anderen unmittelbar spielfrei arretieren zu können.According to the essentials specified in the main claim for the azimuth straightening process Features of the solution according to the invention, ie for twisting the Superstructure coaxial to the azimuth axis, engage in an internal or external toothing the support ring, the output pinion of several stationary, namely fixed, in Substructure and, at the same time, azimuth servomotors protected against splintering in order to have a predetermined azimuth orientation when they are synchronized quickly reach and then this position by switching at least one the azimuth actuators to counter torque with respect to at least one of the to be able to lock others immediately without play.

Die über den verdrehbaren Ring vom objektfesten Unterbau, welcher mit seinem Gehäuse in das zu schützende Objekt integriert sein kann, getragene gabelförmige Schwenkhalterung für den in der Höhe richtbar eingehängten Abschußbehälter ist an eine Stützstange angelenkt, die ihrerseits an einem im Unterbau konzentrisch zur Azimutachse angeordneten Elevations-Stellmotor angelenkt ist, der mit einem relativ zum Stellmotor um die Azimutachse koaxial verdrehbaren Antrieb für die Translation der Stützstange ausgestattet ist. Zweckmäßigerweise läßt sich hier ein in den Rotor eintauchender Rollengewindeantrieb in den Elevations-Motor integrieren, so daß keine gesonderte Lagerstelle für die Stützstange erforderlich wird. Das ergibt eine kleinbauende und deshalb trägheitsarme, wegen Rollreibung funktional sehr robuste Antriebseinheit ohne Erfordernis zusätzlicher Lagerkomponenten für die Elevation.The over the rotatable ring of the fixed substructure, which with his Housing can be integrated in the object to be protected, worn fork-shaped Swivel bracket for the launch container, which is mounted at a height hinged to a support rod, which in turn is concentric with one in the substructure is arranged articulated to the azimuth axis elevation servomotor, which with a relative to the actuator around the azimuth axis coaxially rotatable drive for the Translation of the support rod is equipped. Expediently you can enter here integrate roller thread drive immersed in the rotor in the elevation motor, so that no separate bearing point is required for the support rod. This results in a small size and therefore low inertia due to rolling friction Functionally very robust drive unit without the need for additional bearing components for the elevation.

Im Falle der Realisierung eines kombinierten Azimut- und Elevations-Richtantriebes sind dadurch alle Stellmotore achsparallel im Unterbau angeordnet, so daß sie fertigungsfreundlich als kompakt vormontierter und funktionsgeprüfter Antriebsblock mit Anflanschen unter die Plattform als multifunktionale Einheit (nämlich für Azimut und Elevation, dabei letztere mit dem Motorlager zugleich als Getriebelager dienend) in ein topfförmiges Gehäuse einsetzbar sind.In the case of a combined azimuth and elevation directional drive are thereby all servomotors arranged axially parallel in the base, so that they Production-friendly as a compact, pre-assembled and function-tested drive block with flanges under the platform as a multifunctional unit (namely for azimuth and elevation, the latter with the motor mount as a gearbox mount serving) can be inserted into a pot-shaped housing.

Der Tragring für die gabelförmige Schwenkhalterung wird auf der Plattform mittels eines umlaufenden Lagers geringer axialer Bauhöhe zur Aufnahme sowohl axialer wie auch radialer Lasten getragen, das vorzugsweise als ein als solches bekanntes Kreuzrollenlager ausgelegt ist. Dadurch erfährt der Tragring dem radialen Angriff der Azimut-Abtriebsritzel gegenüber ein radiale Gegenlagerung, während zugleich durch dieses Momentenlager auch die axiale Positionierung des Tragrings gegenüber dem Gehäuse des Unterbaues sichergestellt ist.The support ring for the fork-shaped swivel bracket is attached to the platform by means of a rotating bearing of low axial height to accommodate both axial as well as radial loads are carried, preferably as such as such known cross roller bearing is designed. As a result, the support ring experiences the radial one Attack of the azimuth output pinion against a radial counter bearing, while at the same time the axial positioning of the Support ring against the housing of the substructure is ensured.

Die auf den verdrehbaren Tragring montierte gabelförmige Schwenkhalterung weist vorzugsweise etwa die Geometrie eines biegesteifen ungleichschenkligen rechtwinkligen Dreiecks auf, das mit seiner längeren Kathethe bewegungsstarr auf dem Tragring ruht und gegenüberliegend, im Bereich des Übergangs von der achsparallelen kürzeren Kathethe zur Hypotenuse, außerhalb des Verlaufes der Azimutachse mit einem Schwenkauge für das Verkippen zum Elevationsrichten des in die Halterung eingehängten Abschußbehälters ausgestattet ist. Dicht neben dieser Schwenkachse passiert quer zu ihr die mit der Azimutachse des Tragrings identische Zentralachse des Unterbaus. Vorzugsweise liegt bei mittlerer Elevation des Abschußbehälters dessen Anlenkung an die Stützstange gerade auf der Azimutachse. Denn wegen des nur geringen gegenseitiges Versatzes zwischen den beiden Anlenkstellen des Abschußbehälters (Schwenkachse und Stützanlenkung) vollführt die Kopplung zum Elevationsmotor in Form der Stützstange beim Höhenrichten des Abschußbehälters dann nur sehr geringe Ausschläge aus der Azimutachse heraus, so daß diese Stange vom schweren Abschußbehälter auf ihrem kurzen Hebelweg praktisch nicht auf Biegung, sondern im wesentlichen nur auf Schub beansprucht wird.The fork-shaped swivel bracket mounted on the rotatable support ring preferably has about the geometry of a rigid unequal leg right-angled triangle, which with its longer Kathethe fixed on motion resting and opposite the support ring, in the area of the transition from the shorter axles parallel to the hypotenuse, outside the course of the Azimuth axis with a swivel eye for tilting for elevation adjustment of the launching container suspended in the holder. Right next to it this swivel axis passes transversely to it with the azimuth axis of the support ring identical central axis of the substructure. It is preferably at medium elevation the launching container, its linkage to the support rod just on the azimuth axis. Because because of the small mutual offset between the two articulation points of the launching container (swivel axis and support articulation) carries out the coupling to the elevation motor in the form of the support rod when leveling of the launch container then only very small deflections from the azimuth axis out, so that this rod from the heavy launch container on her Short lever travel practically not on bending, but essentially only on Thrust is claimed.

Der Abschußbehälter stützt sich über die Koppelstange längs der Azimutachse auf einen translatorischen Abtrieb des konzentrisch zum Tragring und somit koaxial zur Azimutachse ebenfalls objektfest im Gehäuse des Unterbaus angeordneten Elevations-Stellmotors. Bei dessen Abtrieb handelt es sich etwa um ein Teleskop oder bevorzugt um eine Wandlung von einer Motor-Drehbewegung in eine Abtriebs-Linearbewegung über eine Spindelmutter auf einer Gewindestange. Der Elevations-Stellmotor insgesamt oder jedenfalls sein Abtrieb sind relativ zum Unterbau verdrehbar, wenn nicht die Stützstange in sich oder über wenigstens ein Kugelkopfgelenk relativ zum Unterbau verdrehbar ist, weil sich der Tragring für das Azimutrichten um die Azimutachse dreht und dabei die Kopplung vom objektfesten Elevations-Motor zum dagegen verdrehbaren Abschußbehälter mitnimmt. Wenn hier jedoch keine verdrehbare Kopplung eingebaut ist, also ein gegenüber dem Unterbau feststehender Elevations-Stellmotor nicht mit wenigstens einem Kugelgelenk sondern nur mit Klappgelenken über die Stützstange an den Abschußbehälter gekoppelt ist, dann hat das eine geometrisch bedingte Elevationsänderung in Abhängigkeit von der Azimuteinstellung zur Folge, die sich allerdings gerade deshalb bei der Elevationssteuerung als azimutabhängig definierter Fehlereinfluß zuverlässig kompensieren läßt.The launcher is supported on the coupling rod along the azimuth axis a translational output of the concentric to the support ring and thus coaxial also fixed to the azimuth axis in the housing of the substructure Elevation servomotor. Its output is about a telescope or preferably a conversion from a motor rotary movement into an output linear movement via a spindle nut on a threaded rod. The Elevation servomotor as a whole or in any case its output are relative to the Substructure can be rotated, if not the support rod in itself or over at least one Ball joint is rotatable relative to the substructure because the support ring for the azimuth aiming rotates around the azimuth axis and thereby the coupling of the fixed object Elevation motor takes to the rotatable launch container. However, if no rotatable coupling is installed here, i.e. one opposite the substructure of the fixed elevation servomotor not at least a ball joint but only with folding joints over the support rod to the Launch container is coupled, then this has a geometrically induced change in elevation depending on the azimuth setting that is precisely why it is defined as dependent on azimuth in elevation control The influence of errors can be reliably compensated.

So ist ein zur Integration auf große Fahrzeuge besonders geeigneter Richtantrieb geschaffen, da die großen Massen der Stellmotore vom objektfesten, also bezüglich z.B. des zu schützenden Fahrzeugs stationären Unterbau getragen werden, und nicht mehr vom darauf azimutal einstellbaren Tragring. Der muß nur noch das Gewicht des Abschußbehälters einschließlich dessen Schwenkhalterung aufnehmen, die über eine Momentenlagerung auf den nun infolge Integration der Stellmotore besonders massereichen, also vorteilhafterweise bezüglich der Richtvorgänge reaktionsträgen Unterbau abgestützt ist.This is a directional drive that is particularly suitable for integration on large vehicles created because the large masses of the servomotors are fixed, that is, in terms of e.g. the stationary substructure of the vehicle to be protected is worn, and no longer from the support ring that can be adjusted azimuthally on it. He only has to do that Take the weight of the launching container including its swivel bracket, the moment storage on the now due to integration of the servomotors particularly massive, so advantageously with regard to the straightening processes inert substructure is supported.

Zusätzliche Alternativen und Weiterbildungen, sowie weitere Merkmale und Vorteile der Erfindung ergeben sich aus den weiteren Ansprüchen und aus nachstehender Beschreibung eines unter Beschränkung auf das Wesentliche angenähert maßstabsgerecht aber stark abstrahiert skizzierten bevorzugten Realisierungsbeispiels zur erfindungsgemäßen Lösung. Die einzige Figur der Zeichnung zeigt im Achsial-Längsschnitt den Aufbau eines Abschuß-Richtantriebs mit apparativ entlasteter rotatorischer Azimuteinstellung und schneller linearer Elevationseinstellung.Additional alternatives and further training, as well as further features and Advantages of the invention result from the further claims and from the following Description of an approximation to the essentials to scale but strongly abstracted preferred implementation example to the solution according to the invention. The only figure in the drawing shows in Axial longitudinal section the construction of a launching directional drive with apparatus relieved rotary azimuth adjustment and fast linear elevation adjustment.

Der anschaulichkeitshalber skizzierte, erfindungsgemäß ausgelegte Richtantrieb 10 dient dem Schutz eines stationären oder mobilen Objektes 11 gegen ein anfliegendes schnelles Lenkprojektil (in der Zeichnung nicht berücksichtigt) durch Entgegenfeuem wenigstens einer Splittergranate aus einem mit mehreren solchen Granaten in austauschbaren Feuerrohren bestückbaren Abschußbehälter 12. Der ist hierfür vom zu schützenden Objekt 11 über den Richtantrieb 10 getragen, um nach Sensieren der Bedrohungsrichtung die Abschußrichtung der abzufeuernden Abwehrgranate raschestens in Azimut und Elevation auf den angreifenden Flugkörper ausrichten zu können - wie in der schon zitierten US 5,661,254 A auch hinsichtlich des Wirkmechanismus der Splitter-Abwehrgranate näher beschrieben, worauf hier zur Vermeidung von Wiederholungen ausdrücklich Bezug genommen wird.The directional drive sketched according to the invention for the sake of clarity 10 serves to protect a stationary or mobile object 11 against an approaching object fast steering projectile (not included in the drawing) due to counterfire at least one fragmentation grenade from one with several Grenades in interchangeable firing tubes with launching container 12. The for this purpose is carried by the object 11 to be protected via the directional drive 10 after sensing the direction of the threat, the direction of launch of those to be fired Defense grenade as quickly as possible in azimuth and elevation on the attacking missile to be able to align - as in the already cited US 5,661,254 A. described in more detail with regard to the mechanism of action of the splinter defense grenade, which is expressly referred to here to avoid repetitions becomes.

Um die beim Ausrichten auf den abzuwehrenden Angreifer extrem rasch zu bewegenden Massen möglichst niedrig und demzufolge auch die kinetische Beanspruchung des zu schützenden Objektes 11 als Träger des Richtantriebes 10 beim Richtvorgang möglichst gering zu halten, werden die Stellmotore 13, 14 nicht mit dem Abschußbehälter 12 bewegt, sondern in das Gehäuse eines objektfesten Unterbaues 15 des Richtantriebes 10 eingebaut, wie in der Zeichnung durch das in das Objekt 11 eingesenkte topfförmige Gehäuse symbolisch veranschaulicht. Dieser topfförmige Unterbau 15 zur stationären Aufnahme der Stellmotore 13, 14 und zur verdrehbaren Aufnahme einer Schwenkhalterung 19 für den Abschußbehälter 12 trägt auf oder in einer das (wenigstens teilweise in das tragende Objekt eingesenkte) Gehäuse abdeckenden, mit ibs. seitlicher Armierung auch als Splitterschutz für die Azimuteinstellung ausgelegten Sockelplatte 16 einen um die Zentralachse des Systemes, nämlich die Azimutachse 17 des Richtantriebes 10 verdrehbaren Tragring 18 für die starr mit diesem verbundene, nach oben gabelförmig sich öffnende Schwenkhalterung 19, in die der Abschußbehälter 12 mit einer Schwenkachse 20 exzentrisch eingehängt ist. Dicht daneben ist der Abschußbehälter 12 mit einem Auge 21 an eine Stützstange 22 angelenkt, die sich im wesentlichen längs der Azimutachse 17 durch das Zentrum des Tragringes 18 achsial hindurch erstreckt, und hinab bis zu einer gegenüberliegenden Koppelstelle 30 zwecks dortiger Anlenkung an den zur Azimutachse 17 koachsialen translatorischen Abtrieb 23 des Elevations-Stellmotors 13.In order to be able to move the extremely quickly when aiming at the attacker to be blocked Masses as low as possible and consequently also the kinetic stress of the object to be protected 11 as a carrier of the directional drive 10 at To keep the straightening process as low as possible, the servomotors 13, 14 are not included the launcher 12 moves, but in the housing of a fixed substructure 15 of the directional drive 10 installed, as in the drawing by the in the object 11 recessed pot-shaped housing symbolically illustrates. This Pot-shaped base 15 for the stationary reception of the servomotors 13, 14 and for rotatably receiving a swivel bracket 19 for the launching container 12 carries on or in a (at least partially recessed into the supporting object) Housing covering, with ibs. side reinforcement also as splinter protection for the azimuth setting designed base plate 16 around the central axis of the system, namely the azimuth axis 17 of the directional drive 10 rotatable Support ring 18 for the rigidly connected thereto, fork-shaped upwards opening swivel bracket 19, in which the firing container 12 with a Swivel axis 20 is mounted eccentrically. The launching container is right next to it 12 articulated with an eye 21 to a support rod 22, which is essentially along the azimuth axis 17 through the center of the support ring 18 axially extends through and down to an opposite coupling point 30 for the purpose of articulation there on the translational coaxial to the azimuth axis 17 Output 23 of the elevation servomotor 13.

Für das azimutale Verdrehen des Tragrings 18 und damit der Schwenkhalterung 19 samt ihrem Abschußbehälter 12 ist wenigstens ein Azimutal-Stellmotor 14 stationär im Unterbau 15 und vorzugsweise parallel zur Azimutachse 17 angeordnet. Der steht im Bereich der Sockelplatte 16 in drehstarrer Verbindung zum Tragring 18, im dargestellten Beispiel mit einem Abtriebsritzel 24 zu einer Innenoder Außenverzahnung 25 am Tragring 18. Diese Verzahnung 25 am Momentenlager des Tragringes 18 stellt die einzige zu justierende Funktionsschnittstelle zwischen stationärem Unterbau 15 und rotierender Schwenkhalterung 19 dar. Dem Rotationseingriff radial gegenüber ist für dessen radiale Abstützung, und vorzugsweise zugleich ausgelegt für dessen achsiale Halterung, wenigstens ein Wälzlager in der Sockelplatte 16 angeordnet, das wie skizziert ringförmig umlaufen, grundsätzlich aber auch aus einzelnen peripher gegeneinander versetzten Lagern bestehen kann. Bevorzugt ist es als innerhalb des Tragringes 18 umlaufendes Momentenlager 26 ausgelegt, das über seine gegeneinander rechtwinkligen Wälzbahnen sowohl axiale wie auch radiale Kräfte aufnehmen kann.For the azimuthal rotation of the support ring 18 and thus the swivel bracket 19 together with its launching container 12 is at least one azimuthal servomotor 14 stationary in the substructure 15 and preferably arranged parallel to the azimuth axis 17. The stands in the area of the base plate 16 in a torsionally rigid connection Support ring 18, in the example shown with an output pinion 24 to an inner or External teeth 25 on the support ring 18. These teeth 25 on the torque bearing of the support ring 18 represents the only functional interface to be adjusted between stationary base 15 and rotating swivel bracket 19. The rotational engagement is radially opposite for its radial support, and preferably designed at the same time for its axial mounting, at least one Rolling bearings arranged in the base plate 16, which run as a ring as outlined, in principle, however, also from individual peripherally offset bearings can exist. It is preferred as rotating around within the support ring 18 Torque bearing 26 designed, the on its mutually perpendicular roller tracks can absorb both axial and radial forces.

Zweckmäßigerweise sind wenigstens zwei Azimutal-Stellmotore 14 z.B. äquidistant über den Umfang des Tragringes 18 verteilt. Für den Azimut-Richtvorgang sind sie auf Gleichlauf geschaltet, treiben den Tragring 18 also in gleicher Drehrichtung an. Bei Erreichen der azimutalen Sollposition werden die Azimutal-Stellmotore 14 zwar an sich abgeschaltet, aber wenigstens ein Paar von ihnen wird auf gleiches Triebmoment bei gegenläufiger Antriebsrichtung umgeschaltet, so daß sich wenigstens zwei Motore 14 über die Verzahnung 25 gegenseitig blockieren und dadurch die erreichte Azimutalausrichtung des Abschußbehälters 12 spielfrei fixieren.Appropriately, at least two azimuthal servomotors 14 are e.g. equidistant distributed over the circumference of the support ring 18. For the azimuth straightening process if they are switched to synchronism, they drive the support ring 18 in the same direction of rotation on. When the azimuthal target position is reached, the azimuthal servomotors 14 turned off per se, but at least one pair of them will switched to the same drive torque with opposite drive direction, see above that at least two motors 14 block each other via the toothing 25 and thereby the achieved azimuthal alignment of the launch container 12 without play fix.

Zum Reduzieren drehender Massen rotiert auch der Elevations-Stellmotor 13 nicht mit dem Tragring 18. Vielmehr ist der Elevations-Stellmotor 13 konzentrisch zur Azimutachse 17 unter dem Tragring 18 stationär in den Unterbau 15 eingebettet. Der Elevations-Stellmotor 13 kann etwa mit einem translatorischen Abtrieb 23 in Form eines Teleskops oder zum Umsetzen der rotatorischen in eine translatorische Abtriebsbewegung des Motors 13 in Form einer Schiebemutter auf einer Motorwelle mit Gewindespindel etwa nach Art eines Rollengewindetriebes oder einer Trapezspindel ausgelegt sein. Über eine Stützstange 22 ist dieser Abtrieb 23 mit dem Abschußbehälter 12 verbunden, um ihn relativ zum Unterbau 15 schon während der Azimuteinstellung und/oder in der momentan erreichten Azimutstellung aufrichten bzw. absenken zu können. Im Interesse eines kollisionsfreien großen Stellwinkels um die horizontale Elevationsachse 20 weist die dem Tragring 18 gegenüber gelegene Hypotenuse 28 der etwa dreiecksförmigen Schwenkhalterung 19 eine gegenüber dem Durchmesser der Stützstange 22 sehr großflächige Durchbrechung 28 auf, in welche das am Abschußbehälter 12 gelegene Auge 21 für die Ankoppelung der Stützstange 22 ganz hineintauchen kann.The elevation servomotor 13 also does not rotate in order to reduce rotating masses with the support ring 18. Rather, the elevation servomotor 13 is concentric with Azimuth axis 17 embedded under the support ring 18 in the base 15. The elevation servomotor 13 can have a translational output 23 in Form of a telescope or to convert the rotary into a translatory Output movement of the motor 13 in the form of a sliding nut on a motor shaft with a threaded spindle, for example in the manner of a roller screw drive or Trapezoidal spindle can be designed. This output 23 is also connected via a support rod 22 the launcher 12 connected to it relative to the base 15 already during the azimuth setting and / or in the currently reached azimuth position being able to raise or lower. In the interest of a collision-free large Setting angle about the horizontal axis of elevation 20 has the support ring 18th opposite hypotenuse 28 of the approximately triangular swivel bracket 19 a large-area opening compared to the diameter of the support rod 22 28, into which the eye 21 located on the firing container 12 for the Coupling of the support rod 22 can dip completely into it.

Der Abstand zwischen der Schwenkachse 20 für die Elevation des Abschußbehälters 12 und dem Auge 21 zur Elevationsabstützung auf die Stützstange 22 ist möglichst gering gewählt, damit beiderseits einer mittleren Elevation die Auslenkung der Stützstange 22 aus der Azimutachse 17 heraus möglichst gering bleibt und dadurch eine praktisch biegemomentenfreie, also kinetisch möglichst ideale Druckübertragung vom Linearabtrieb 23 des Stellmotors 13 her erfolgen kann.The distance between the pivot axis 20 for the elevation of the launcher 12 and the eye 21 for supporting the elevation on the support rod 22 chosen as low as possible so that the deflection on both sides of a medium elevation the support rod 22 remains as small as possible out of the azimuth axis 17 and thus a practically bending moment-free, i.e. ideal kinetic Pressure can be transmitted from the linear output 23 of the servomotor 13.

Die Wirkverbindung zwischen dem Elevations-Stellmotor 13 und dem Abschußbehälter 12 ist hier relativ zum Unterbau 15 verdrehbar, weil der Abschußbehälter 12 im Interesse geringer zu verdrehender Massen eine Azimuteinstellung relativ zum im Unterbau 15 stationär angeordneten Elevations-Stellmotor 13 erfährt. Diese Verdrehbarkeit, die eine Beeinflussung der Elevation während aufgrund des azimutalen Ausrichtens verhindert, kann der translatorische Abtrieb 23 relativ zu seinem Stellmotor 13 aufweisen, wie in der Skizze durch ein Drehlager 29 symbolisch veranschaulicht, um die Anlenkungen der Stützstange 22 einerseits an den Abschußbehälter 12 und gegenüberliegend an den Elevations-Stellmotor 13 als eindimensionale Schwenkgelenke ausbilden zu können. Die Verdrehbarkeit kann aber auch dadurch sichergestellt werden, daß wenigstens eine dieser beiden Koppelstellen 30 als Kugelgelenk ausgebildet ist, so daß dann die Verdrehung während der Azimuteinstellung nicht abtriebsseitig direkt am Elevations-Stellmotor 13 erfolgt, sondern in wenigstens einer dieser Koppelstellen 30. Insbesondere sind so auch funktionskritische lineare Gleitlager vermieden.The operative connection between the elevation servomotor 13 and the launching container 12 can be rotated here relative to the substructure 15 because the launching container 12 an azimuth setting relative in the interest of smaller masses to be rotated to the elevation servomotor 13 arranged in a stationary manner in the substructure 15. This Rotatability, which affects the elevation during due to the Prevents azimuthal alignment, the translational output 23 can be relative have its servomotor 13, as symbolically in the sketch by a rotary bearing 29 illustrated to the articulations of the support rod 22 on the one hand to the Firing container 12 and opposite to the elevation servomotor 13 as to be able to train one-dimensional swivel joints. The rotatability can but also be ensured that at least one of these two coupling points 30 is designed as a ball joint, so that the rotation during the azimuth setting not on the output side directly on the elevation servomotor 13 takes place, but in at least one of these coupling points 30 so also function-critical linear plain bearings avoided.

Ein, in ein zu schützendes Objekt 11 integrierbarer, Richtantrieb 10 zum schnellen Ausrichten der gabelförmigen Schwenkhalterung 19 eines Abschußbehälters 12 für Splittergranaten zur Abwehr eines angreifenden Flugkörpers zeichnet sich bei der erfindungsgemäßen Auslegung also durch die Möglichkeit präziser gleichzeitiger Azimut- und Elevationseinstellungen mit besonders hoher Dynamik dieses Richtvorganges trotz großen Gewichts des mit den Splittergranaten bestückten Abschußbehälters 12 aus. Dafür sind die Stellmotore 13, 14 von der Schwenkhalterung 19 fort und gegen Splittereinwirkung geschützt, beispielsweise parallel zur Azimutachse 17, in einen objektfesten Unterbau 15 verlegt, wo sie mit einem im Unterbau 15 mittels eines Momentenlagers 26 verdrehbar gehalterten Tragring 18 für die Azimuteinstellung der Schwenkhalterung 19 in Drehverbindung stehen. Der koaxial zur Azimutachse 17 ebenfalls stationär in das Unterbau 15 integrierte Elevations-Stellmotor 13 ist dabei mit einem translatorisch wirkenden Abtrieb 23 ausgestattet, der über eine im wesentlichen konzentrisch zur Azimutachse 17 sich erstreckende und um diese verdrehbare Stützstange 22 die Elevation des Abschußbehälters 12 bestimmt. So wird das erforderliche Drehmoment für die Ausrichtung des Abschußbehälters 12 wesentlich verringert, weil die schweren Stellmotore 13, 14 als unbewegliche Reaktionsmasse im Unterbau 15 angeordnet sind. Zwischen diesem und der Schwenkhalterung 19 gibt es nur die Azimut-Schnittstelle in Form dessen Tragringes 18, der über das Momentenlager 26 definiert - mangels Gleitlagerung spielfrei, also getriebetechnisch steif für hochdynamische Beherrschung großer Kräfte - dem objektfesten Unterbau 15 gegenüber verspannbar ist. Die translatorische, mit dem Abschußbehälter 12 relativ zum Unterbau 15 um die Azimutachse 17 verdrehbare Elevationseinstellung vermeidet zusätzliche Momentenbeanspruchungen des Systemes, das so insgesamt für den schnellen Richtvorgang mechanisch hoch beanspruchbar geworden ist.A directional drive 10, which can be integrated into an object 11 to be protected, for fast Alignment of the fork-shaped swivel bracket 19 of a launch container 12 for frag grenades to ward off an attacking missile the interpretation according to the invention by the possibility of more precise simultaneous Azimuth and elevation settings with particularly high dynamics of this Straightening process despite the heavy weight of the chip grenades Launch container 12 from. For this purpose, the servomotors 13, 14 are from the swivel bracket 19 continued and protected against splintering, for example parallel to Azimuth axis 17, relocated to a fixed substructure 15, where it with a Substructure 15, support ring 18 held rotatably by means of a torque bearing 26 are in rotary connection for the azimuth setting of the swivel bracket 19. The coaxial to the azimuth axis 17 also integrated stationary in the substructure 15 Elevation servomotor 13 has a translatory output 23 equipped, which is essentially concentric to the azimuth axis 17 extending and rotatable about this support rod 22, the elevation of the launching container 12 determined. So the required torque for the alignment of the firing container 12 significantly reduced because of the heavy actuators 13, 14 are arranged as immobile reaction mass in the substructure 15. There is only the azimuth interface between this and the swivel mount 19 in the form of its support ring 18, which defines the torque bearing 26 - free of play due to the lack of plain bearings, i.e. stiff transmission technology for highly dynamic Mastery of large forces - can be braced against the fixed substructure 15 is. The translational, with the launching container 12 relative to the substructure 15 Elevation adjustment rotatable about the azimuth axis 17 avoids additional Torque demands on the system, so that for the fast Straightening process has become mechanically highly stressable.

Claims (7)

  1. An aiming drive (10) for a launching device located on an object (11), which, for aligning a swivel holder (19) for the launching device, has, in a substructure (15) which is fixed to the object (11), an azimuth-setting motor (14) with a rotatory power take-off (pinion 24) for a supporting ring (18) for the swivel holder (19) characterized in that, particularly for defending an object (11) against an attacking missile by means of fragmentation shells fired from the launching device which takes the form of a launching container (12), for the quick azimuth adjustment of the launching container (12) at least two azimuth-setting motors (14) acting on the supporting ring (18) are disposed in the substructure (15) so as to extend parallel to the azimuth axis (17), in which case at least one of said azimuth-setting motors can be changed from driving in the same direction as the other for the assuming of an azimuth position, to driving in the opposite direction for locking of the reached azimuth position of the supporting ring (18).
  2. An aiming drive (10) for a launching device located on an object (11), which, for aligning a swivel holder (19) for the launching device, has, in a substructure (15) which is fixed to the object (11), an elevation-setting motor (13) with a support (supporting rod 22) for the elevation of the launching device, said support being rotatable relative to the substructure (15) and extending by way of an articulation through a supporting ring (18) for the swivel holder (19), characterized in that, particularly for defending the object (11) against an attacking missile by means of fragmentation shells fired from the launching device which takes the form of a launching container (12), for the quick elevation adjustment of the launching container (12) the elevation-setting motor (13) is disposed in its substructure (15) so as to be concentric with the azimuth axis (17), said elevation-setting motor (13) being fitted with a translatory power take-off (23), which is rotatable relative to the setting motor (13) about the azimuth axis (17) and on which a supporting rod (22) is articulated which provides support for the launching container (12).
  3. An aiming drive according to Claim 1 or 2, characterized in that the setting motor or motors (13, 14) is or are disposed so as to be stationary in a pot-shaped substructure (15).
  4. An aiming drive according to Claim 1 or 2, characterized in that the supporting ring (18), which is rotatable with the swivel holder (19), is radially and axially mounted on the substructure (15) by way of a moment bearing (26) having a low overall height in axial direction.
  5. An aiming drive according to one of the preceding claims, characterized in that the swivel holder (19) has the geometry of a non-isosceles right-angled triangle, which rests with its longer cathetus secured against movement on the supporting ring (18) and is provided on the opposite side with a swivel eyelet for the swivel pin (20) of the launching container (12).
  6. An aiming drive according to Claim 5, characterized in that, close to the swivel axis (20), the launching container (12) is articulated by means of an eyelet (21) onto the supporting rod (22), which at the opposite end is articulated to the translatory power take-off (23) of the elevation-setting motor (13) - said power take-off (23) being coaxial with the azimuth axis (17) - with one-dimensional swivel links at both ends.
  7. An aiming drive (10) for a launching device located on an object (11) which, for aligning a swivel holder (19) for the launching device, has setting motors (13, 14) disposed in a substructure (15) fixed to the object (11), characterized in that, particularly for defending the object (11) against an attacking missile by means of fragmentation shells fired from the launching device which takes the form of a launching container (12), azimuth-setting motors (14) according to Claim 1 and an elevation-setting motor (13) according to Claim 2 are disposed in a pot-shaped substructure (15).
EP00122062A 1999-10-28 2000-10-11 Pointing drive Expired - Lifetime EP1096218B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19951915A DE19951915A1 (en) 1999-10-28 1999-10-28 Directional drive
DE19951915 1999-10-28

Publications (3)

Publication Number Publication Date
EP1096218A2 EP1096218A2 (en) 2001-05-02
EP1096218A3 EP1096218A3 (en) 2002-04-10
EP1096218B1 true EP1096218B1 (en) 2004-09-29

Family

ID=7927155

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00122062A Expired - Lifetime EP1096218B1 (en) 1999-10-28 2000-10-11 Pointing drive

Country Status (6)

Country Link
US (2) US6571678B1 (en)
EP (1) EP1096218B1 (en)
AT (1) ATE278172T1 (en)
DE (2) DE19951915A1 (en)
ES (1) ES2233267T3 (en)
IL (1) IL138978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7798050B2 (en) 2006-10-26 2010-09-21 Moog Gmbh Quick-response drive mechanism for controlling the movement of an object relative to a support

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10024320C2 (en) * 2000-05-17 2002-09-05 Diehl Munitionssysteme Gmbh Radar device for object self-protection
FR2827950B1 (en) * 2001-07-20 2004-02-06 Giat Ind Sa TARGET DEFENSE SYSTEM INCLUDING A PROJECTILE LAUNCHER
DE10204052A1 (en) * 2002-02-01 2003-08-14 Krauss Maffei Wegmann Gmbh & C Straightening system for a rocket launcher
EP1535017B1 (en) * 2002-09-05 2010-04-14 NEXTER Systems Target defence system comprising a projectile launcher
US6907812B1 (en) * 2003-01-21 2005-06-21 United Defense Lp Pop-up weapon system
DE10329861B3 (en) * 2003-07-02 2005-01-13 Moog Gmbh Drive device and control method for aligning a weapon
US7673552B2 (en) * 2003-11-25 2010-03-09 Kilgore Flares Company, Llc Countermeasure system and method of using the same
US6820531B1 (en) * 2003-12-01 2004-11-23 Textron Systems Corporation Positioning system with continuous-range inclination and rotation angles
DE102004017375B4 (en) * 2004-04-08 2009-05-07 Diehl Bgt Defence Gmbh & Co. Kg System for protecting a target against attacking missiles
US7555970B2 (en) * 2004-09-22 2009-07-07 Precision Remotes, Inc. Rotating drive module with position locking mechanism
DE102005059225B4 (en) * 2005-12-12 2013-09-12 Moog Gmbh Weapon with a weapon barrel, which is rotatably mounted outside the center of gravity on a movable base
ITMI20060668A1 (en) * 2006-04-05 2007-10-06 Oto Melara Spa AUXILIARY STORAGE DEVICE
DE102006057564B3 (en) * 2006-12-07 2008-08-14 Diehl Bgt Defence Gmbh & Co. Kg Thrower for self-defense of a mobile or stationary object
US7966763B1 (en) 2008-05-22 2011-06-28 The United States Of America As Represented By The Secretary Of The Navy Targeting system for a projectile launcher
DE102008038603C5 (en) * 2008-08-21 2018-04-19 Krauss-Maffei Wegmann Gmbh & Co. Kg Gegenschuss conditioning
GB2475888A (en) * 2009-12-04 2011-06-08 Meritor Heavy Vehicle Sys Ltd Differential lock actuator
DE102011010902A1 (en) 2011-02-10 2012-08-16 Diehl Bgt Defence Gmbh & Co. Kg protection system
US8413569B1 (en) * 2011-09-28 2013-04-09 The United States Of America As Represented By The Secretary Of The Navy Parallel actuator gun mount
ITTR20120010A1 (en) * 2012-10-03 2014-04-04 Lucci Ettore MACHINE FOR HANDLING OF TEAM AND DEPARTMENT WEAPONS, TO BE INSTALLED ON MILITARY VEHICLES AND TERRITORY, ELECTRONIC AND / OR MANUAL POSITIONS
IL232301B (en) 2014-04-28 2018-11-29 Rafael Advanced Defense Systems Ltd System and method for neutralizing shaped-charge threats
ITUB20151137A1 (en) * 2015-05-28 2016-11-28 Oto Melara Spa FIREARM SUPPORT SYSTEM, PARTICULARLY INTENDED TO BE MOUNTED HANGING FROM A SUPERIOR SURFACE.
CN106500543B (en) * 2016-10-27 2018-05-04 福州大学 Saving casting device microscope carrier and its application method
CN112815792B (en) * 2021-01-18 2023-02-28 中国人民解放军空军工程大学 A Coordinate Transformation Model of Surface-to-Air Missile Weapon System
KR102697972B1 (en) * 2023-06-23 2024-08-22 이엠코리아 주식회사 operation apparatus of barrel

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2088600A (en) * 1934-11-09 1937-08-03 James C Karnes Position comparator
US2370585A (en) * 1941-05-08 1945-02-27 Rose Brothers Ltd Gun turret
US2405678A (en) * 1943-08-06 1946-08-13 Electrolux Corp Remote control system
US3310998A (en) * 1964-06-24 1967-03-28 Wayne A Harmening Scheme for preloading power gear trains
US3401599A (en) * 1966-05-25 1968-09-17 Licentia Gmbh Stabilizer
US3429222A (en) * 1968-04-08 1969-02-25 Vapor Corp Drive means for cupola of tank vehicle
FR2221981A5 (en) * 1973-03-14 1974-10-11 France Etat
SE408475B (en) * 1974-10-18 1979-06-11 Bofors Ab TANK EQUIPPED WITH ROUGH CALIBRIC FIREARMS
US4144797A (en) * 1975-09-12 1979-03-20 Ab Bofors Device for a turret applied to a tank
US4305325A (en) * 1979-10-31 1981-12-15 The United States Of America As Represented By The Secretary Of The Navy General purpose decoy launcher
US4302666A (en) * 1979-11-13 1981-11-24 The Boeing Company Position control system of the discontinuous feedback type
DE3108368C2 (en) * 1981-03-05 1983-01-05 Pietzsch, Ludwig, Dr.-Ing., 7500 Karlsruhe Stabilizing and straightening drive for a rotating tower of a vehicle
US4574685A (en) * 1983-06-22 1986-03-11 Am General Corporation Turret system for lightweight military vehicle
US4686888A (en) * 1983-06-22 1987-08-18 Am General Corporation Turret system for lightweight military vehicle
BR8406924A (en) * 1983-06-22 1985-06-04 Am General Corp MILITARY LIGHT VEHICLE WITH PERFECTED SHOT TOWER SYSTEM
DE3341320A1 (en) * 1983-11-15 1985-05-23 Hoesch Ag, 4600 Dortmund Controllable rotary drive
DE3436081A1 (en) * 1984-10-02 1986-04-10 Rheinmetall GmbH, 4000 Düsseldorf DEVICE FOR HORIZONTING A ROTATING WEAPON PLATFORM
DE3631206A1 (en) * 1986-04-10 1987-10-15 Salgad Int Ltd SWIVELING OF THE SADDLE WITH A GUN TUBE, MOSTLY A TUBE TUBE, RECEIVING CRADLE
DE4426014B4 (en) 1994-07-22 2004-09-30 Diehl Stiftung & Co.Kg System for protecting a target against missiles
DE19751305A1 (en) * 1997-12-02 1999-06-10 Krauss Maffei Ag Gun carriage with aiming device for mounting on vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7798050B2 (en) 2006-10-26 2010-09-21 Moog Gmbh Quick-response drive mechanism for controlling the movement of an object relative to a support

Also Published As

Publication number Publication date
IL138978A0 (en) 2001-11-25
EP1096218A2 (en) 2001-05-02
ATE278172T1 (en) 2004-10-15
DE19951915A1 (en) 2001-05-10
ES2233267T3 (en) 2005-06-16
US6715397B2 (en) 2004-04-06
US20030177897A1 (en) 2003-09-25
IL138978A (en) 2004-12-15
US6571678B1 (en) 2003-06-03
EP1096218A3 (en) 2002-04-10
DE50007974D1 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
EP1096218B1 (en) Pointing drive
DE102006050604B3 (en) Leveling drive for weapon, has differential gearbox with drive sections coupled with each other for combined leveling of weapon in elevation and side axes, where drive sections have output wheels
EP1128152B1 (en) Launcher system for smoke or explosive charges which is mounted on a fighting vehicle
DE102010016560B4 (en) Vehicle, in particular military combat vehicle
DE102008038603C5 (en) Gegenschuss conditioning
DE102004043711B4 (en) Freirichtlafette and weapons arrangement with a Freirichtlafette
DE112010001527B4 (en) APPARATUS AND METHOD FOR ANTENNA ALIGNMENT USING A DOUBLE-OPPOSING DRIVE LOOP
EP1930685B1 (en) Launcher for self-defence of a mobile or stationary object
DE3342958C2 (en)
DE102011106489B4 (en) Load carrier for an aircraft
DE2725414C2 (en) Centrifugal adjuster for changing the ignition or injection point in internal combustion engines
EP2623922A2 (en) Weapon-based protective device for vehicles
EP0387676B1 (en) Elevation bearing for a turret-mounted big-calibre gun
DE1800330A1 (en) Armored vehicle with anti-aircraft armament
EP0392086B1 (en) Fin stabilised projectile
EP4320400B1 (en) Weapon system
DE2446027A1 (en) SELF-PROPELLED FATS FOR ARTILLERY GUNS
AT396990B (en) Straightening device for a grenade launcher
EP1739381B1 (en) Cradle for an ordnance gun
EP0814315A1 (en) Rocket
EP4320400A1 (en) Weapon system
EP4227634A1 (en) Guiding of spinning projectiles by cyclical oscillation of steering surfaces
DE2356462A1 (en) MOBILE FLAK COMBAT DEVICE
DE10112849A1 (en) Reaction drive has several gyros mounted on rotating supports on a fixed platform to generate thrust through reactive forces
DE1942509B2 (en) DRIVE SYSTEM FOR A TOWER OF ARMORED VEHICLES, CONSISTING OF A BEAM AND A THREE-AXLE STABILIZED TOWER SHELL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 41A 27/12 A, 7F 41A 27/22 B, 7F 41A 27/24 B, 7F 41A 27/28 B

17P Request for examination filed

Effective date: 20020405

AKX Designation fees paid

Free format text: DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041011

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50007974

Country of ref document: DE

Date of ref document: 20041104

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050115

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

Ref country code: CH

Ref legal event code: PFA

Owner name: DIEHL BGT DEFENCE GMBH & CO. KG

Free format text: DIEHL MUNITIONSSYSTEME GMBH & CO. KG#FISCHBACHSTRASSE 16#90552 ROETHENBACH (DE) -TRANSFER TO- DIEHL BGT DEFENCE GMBH & CO. KG#FISCHBACHSTRASSE 16#90552 ROETHENBACH (DE)

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: DIEHL MUNITIONSSYSTEME G.M.B.H. & CO. KG

Effective date: 20041031

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2233267

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050630

BERE Be: lapsed

Owner name: *DIEHL MUNITIONSSYSTEME G.M.B.H. & CO. K.G.

Effective date: 20041031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: DIEHL BGT DEFENCE GMBH & CO. KG

Free format text: DIEHL BGT DEFENCE GMBH & CO. KG#FISCHBACHSTRASSE 16#90552 ROETHENBACH (DE) -TRANSFER TO- DIEHL BGT DEFENCE GMBH & CO. KG#FISCHBACHSTRASSE 16#90552 ROETHENBACH (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: HOLBEINSTRASSE 36-38, 4051 BASEL (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141021

Year of fee payment: 15

Ref country code: FR

Payment date: 20141022

Year of fee payment: 15

Ref country code: CH

Payment date: 20141021

Year of fee payment: 15

Ref country code: SE

Payment date: 20141021

Year of fee payment: 15

Ref country code: ES

Payment date: 20141028

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20141021

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141028

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141217

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50007974

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151011

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20151101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151011

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151011

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151012

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20161128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151012