[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1090155A1 - Spark plug electrode alloy - Google Patents

Spark plug electrode alloy

Info

Publication number
EP1090155A1
EP1090155A1 EP99930453A EP99930453A EP1090155A1 EP 1090155 A1 EP1090155 A1 EP 1090155A1 EP 99930453 A EP99930453 A EP 99930453A EP 99930453 A EP99930453 A EP 99930453A EP 1090155 A1 EP1090155 A1 EP 1090155A1
Authority
EP
European Patent Office
Prior art keywords
less
aluminum
nickel
alloy
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99930453A
Other languages
German (de)
French (fr)
Inventor
Robert S. Ingham
Read Bryant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Federal Mogul LLC
Original Assignee
Federal Mogul LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal Mogul LLC filed Critical Federal Mogul LLC
Publication of EP1090155A1 publication Critical patent/EP1090155A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W

Definitions

  • a spark plug In general, a spark plug generates a spark in a gap between a ground electrode and a firing electrode of the spark plug.
  • the quality of the spark depends on the material composition of the electrodes and other factors. Because of the extreme conditions in the atmosphere of a cylinder of an operating internal combustion engine, the material must have high strength at elevated temperatures, high melting loss resistance, corrosion resistance, and spark erosion resistance, and also must maintain thermal and electrical conductivity at high temperatures. For instance, if the electrode material has poor corrosion resistance, the electrode will corrode in the cylinder until there is little material left and the spark plug ceases to function.
  • Conventional spark plug electrodes may include a nickel-based alloy in which elements are selectively included to improve properties of the electrode.
  • a known nickel-based alloy identified as Champion Alloy 522, includes nickel (Ni), titanium (Ti), silicon (Si), manganese (Mn), chromium (Cr), iron (Fe), zirconium (Zr), carbon (C), and a small quantity of unavoidable impurities. The proportion of each element contributes to the properties of the alloy.
  • the known alloy includes 94.5-95.5% Ni, 0.20-0.30% Ti, 0.35-0.55% Si, 1.80- 2.10% Mn, 1.65-1.90% Cr, 0.10-0.20% Zr, and a maximum of 0.50% Fe, 0.05% C and 0.25% other impurities.
  • a nickel, aluminum-based electrode alloy includes aluminum, silicon, chromium, manganese, iron, carbon, titanium, zirconium, and impurities, and the remainder nickel.
  • Aluminum is present in the NiAl alloy in a preferred range of 0.75 to 2.2 weight percent. A more preferred range is 1.5 to 2.1 weight percent. An even more preferred amount of aluminum in the alloy is about 1.8 weight percent. Silicon is present in the alloy in a preferred range of 1.1 to 1.75 weight percent. A more preferred amount of silicon in the alloy is in the range of 1.1 to 1.3 weight percent. An even more preferred amount of silicon in the alloy is about 1.2 weight percent. Chromium is present in the alloy in a preferred range of 1.45 to 1.9 weight percent. A more preferred range is 1.45 to 1.8 weight percent. An even more preferred amount of chromium in the alloy is about 1.6 weight percent. Manganese is present in the alloy in a preferred range of 0.3 to 0.6 weight percent. A more preferred range is 0.3 to 0.5 weight percent. An even more preferred amount of manganese in the alloy is about 0.4 weight percent.
  • Iron occurs naturally in nickel and is present in a preferred amount less than 0.5 weight percent. A more preferred amount is less than 0.2 weight percent. An even more preferred amount of iron in the alloy is less than 0.1 weight percent. Titanium, zirconium and impurities, such as carbon, are present in the NiAl alloy in an amount preferably less than 0.2 weight percent. A more preferred amount is less than 0.1 weight percent zirconium and less than 0.02 weight percent titanium. An even more preferred amount is less than 0.05 weight percent zirconium and less than 0.01 weight percent titanium. An even more preferred amount is less than 0.005 weight percent titanium. Referring specifically to carbon as an impurity, it should be present at 0.05 weight percent or less. Nickel comprises the remainder of the composition of the alloy.
  • the NiAl alloy When used as the electrode material in a spark plug, the NiAl alloy has the considerable advantage of forming a durable oxide film or scale on the electrode that restricts harmful oxidation and sulfidation to reduce corrosion of the electrode. The alloy also improves the performance of the electrode by reducing gap growth.
  • Fig. 1 is a front view of a spark plug.
  • a spark plug 100 includes an insulator 105, an outer shell 110, a ground electrode 115 attached to outer shell 110, and a firing electrode 120 adjacent to ground electrode 115.
  • a spark gap 125 is defined between ground electrode 115 and firing electrode 120.
  • Ground electrode 115 and firing electrode 120 are made of a nickel, aluminum alloy (NiAl alloy) that includes nickel (Ni), aluminum (Al), titanium (Ti), silicon (Si), manganese (Mn), chromium (Cr), iron (Fe), and zirconium (Zr). Each element contributes to the properties of the NiAl alloy.
  • Aluminum is present in the NiAl alloy in a preferred range of 0.75 to 2.2 weight percent. A more preferred range is 1.5 to 2.1 weight percent. An even more preferred amount of aluminum in the alloy is about 1.8 weight percent.
  • Aluminum is added to the NiAl alloy primarily because it forms a durable and stable oxide film in the form of aluminum oxide (Al 2 O 3 ). On an atomic scale, the alloy is made of grains ordered in a grain arrangement. The oxide film is formed in the grain boundaries, where the alloy is likely to be attacked in the processes of oxidation and sulfidation during combustion. These processes corrode the electrodes by causing grains to drop out of the grain boundary. The formation of a durable aluminum oxide film restricts harmful oxidation and sulfidation and, thus, reduces corrosion.
  • Aluminum also contributes to faster work hardening than would occur during the normal plastic deformation associated with cold working of the alloy. During cold working, larger grains are broken into smaller grains. Because of energy level differences, the aluminum atoms migrate to the grain boundaries. The aluminum atoms are smaller than the nickel atoms they replace, which makes the material harder to work further and thereby improves work hardening. After cold working, an alloy of nickel and aluminum generally is harder than the alloy without aluminum.
  • Silicon is present in the alloy in a preferred range of 1.1 to 1.75 weight percent. A more preferred amount of silicon in the alloy is in the range of 1.1 to 1.3 weight percent. An even more preferred amount of silicon in the alloy is about 1.2 weight percent. Silicon forms a durable oxide film similar to the film formed by aluminum. In particular, the silicon undergoes a reaction with oxygen attacking the alloy in the grain boundaries. The reaction produces the oxide, silicon oxide (SiO 2 ), which, in turn, creates a compressive force on the surface to form a protective oxide scale.
  • Chromium is present in the alloy in a preferred range of 1.45 to 1.9 weight percent. A more preferred range is 1.45 to 1.8 weight percent. An even more preferred amount of chromium in the alloy is about 1.6 weight percent. Chromium is added because it reacts with oxygen to form a durable chromium oxide (Cr 2 O 3 ) scale with properties similar to the aluminum and silicon oxides. However, the weight percentage of chromium is restricted because its presence reduces thermal and electrical conductivity, both of which must be maintained to ensure performance of the spark plug.
  • Manganese is present in the alloy in a preferred range of 0.3 to 0.6 weight percent. A more preferred range is 0.3 to 0.5 weight percent. An even more preferred amount of manganese in the alloy is about 0.4 weight percent.
  • Manganese reacts with sulfur present in combustion gases in the combustion chamber more than it reacts with oxygen due to sulfur' s higher level of energy. The reaction produces manganese sulfide (MnS) as a film on the surface of the electrode. This film generates a compressive force on the surface similar to the compressive force produced by silicon oxide. The film and compressive force block additional sulfur and oxygen from passing through to the alloy below.
  • MnS manganese sulfide
  • Iron occurs naturally in nickel and is present in a preferred amount less than 0.5 weight percent. A more preferred amount is less than 0.2 weight percent. An even more preferred amount of iron in the alloy is less than 0.1 weight percent. Like chromium, the weight percentage of iron is limited because it affects thermal and electrical conductivity.
  • Titanium and zirconium are present in the alloy because they occur naturally in nickel as trace elements. Together with impurities, such as carbon, they are present in the NiAl alloy in an amount preferably less than 0.2 weight percent. A more preferred amount is less than 0.1 weight percent zirconium and less than 0.02 weight percent titanium. An even more preferred amount is less than 0.05 weight percent zirconium and less than 0.01 weight percent titanium. An even more preferred amount is less than 0.005 weight percent titanium. Referring specifically to carbon as an impurity, it should be present at a maximum of 0.05 weight percent. Titanium forms a durable oxide film that reduces corrosion. However, titanium is more expensive and more difficult to process than aluminum. Zirconium also forms a durable oxide film that reduces corrosion.
  • Nickel comprises the remainder of the composition of the alloy. Nickel has the beneficial property of high temperature integrity.
  • the percentages of the elements in the alloy are based on atomic percentages.
  • Table 1 illustrates the weight percentages and atomic percentage of one composition of the alloy.
  • the composition was developed based on the atomic percentages of aluminum, silicon, and chromium necessary to form a durable oxide scale with similar proportions of each oxide. For instance, to have similar proportions of silicon oxide, aluminum oxide, and chromium oxide, the atomic percentages of the elements are one silicon atom for every two aluminum atoms and chromium atoms. From this ratio, the atomic percentages and weight percentages can be calculated. Constraints on the compositions generated by this method are the availability of alloys designed according to this method and manufacturability of the alloy into electrodes.
  • ground and firing electrodes were fabricated from the alloy using a composition specified to be within the weight percentage ranges described above. Spark plugs then were fabricated using the electrodes and the spark plugs mounted in combustion engines. Ground and firing electrodes also were made using Champion Alloy 522, and finished spark plugs were installed in internal combustion engines. The engines were operated using leaded fuel . Periodically, the spark gaps were examined for spark gap growth (i.e., the increase in gap distance between the ground and firing electrodes caused by erosion of the electrodes) . After 180 hours of operation, the ground electrode fabricated from Champion Alloy 522 had eroded almost completely. After 200 hours of operation, the ground electrode fabricated from the NiAl alloy showed little erosion of either the ground or firing electrode. An analysis of the results showed a 30-40% increase in performance of the electrode material as measured by reduced gap growth. Results also indicate that the NiAl alloy electrodes provide increased performance when used to combust unleaded fuel .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Spark Plugs (AREA)

Abstract

A nickel, aluminum-based electrode alloy comprising, by weight: (i) between 0.75 and 2.2 % aluminum; (ii) between 1.1 and 1.75 % silicon; (iii) between 1.45 and 1.9 % chromium; (iv) between 0.6 % manganese; (v) between 0.5 % iron; (vi) between 0.05 % carbon; (vii) between 0.2 % of the combination of titanium, zirconium, and impurities; and (viii) the remainder nickel. The alloy is used for electrodes in spark plugs.

Description

SPARK PLUG ELECTRODE ALLOY
BACKGROUND
In general, a spark plug generates a spark in a gap between a ground electrode and a firing electrode of the spark plug. The quality of the spark depends on the material composition of the electrodes and other factors. Because of the extreme conditions in the atmosphere of a cylinder of an operating internal combustion engine, the material must have high strength at elevated temperatures, high melting loss resistance, corrosion resistance, and spark erosion resistance, and also must maintain thermal and electrical conductivity at high temperatures. For instance, if the electrode material has poor corrosion resistance, the electrode will corrode in the cylinder until there is little material left and the spark plug ceases to function.
Conventional spark plug electrodes may include a nickel-based alloy in which elements are selectively included to improve properties of the electrode. For example, a known nickel-based alloy, identified as Champion Alloy 522, includes nickel (Ni), titanium (Ti), silicon (Si), manganese (Mn), chromium (Cr), iron (Fe), zirconium (Zr), carbon (C), and a small quantity of unavoidable impurities. The proportion of each element contributes to the properties of the alloy. Specifically, the known alloy includes 94.5-95.5% Ni, 0.20-0.30% Ti, 0.35-0.55% Si, 1.80- 2.10% Mn, 1.65-1.90% Cr, 0.10-0.20% Zr, and a maximum of 0.50% Fe, 0.05% C and 0.25% other impurities.
SUMMARY
In one general aspect, a nickel, aluminum-based electrode alloy includes aluminum, silicon, chromium, manganese, iron, carbon, titanium, zirconium, and impurities, and the remainder nickel.
Aluminum is present in the NiAl alloy in a preferred range of 0.75 to 2.2 weight percent. A more preferred range is 1.5 to 2.1 weight percent. An even more preferred amount of aluminum in the alloy is about 1.8 weight percent. Silicon is present in the alloy in a preferred range of 1.1 to 1.75 weight percent. A more preferred amount of silicon in the alloy is in the range of 1.1 to 1.3 weight percent. An even more preferred amount of silicon in the alloy is about 1.2 weight percent. Chromium is present in the alloy in a preferred range of 1.45 to 1.9 weight percent. A more preferred range is 1.45 to 1.8 weight percent. An even more preferred amount of chromium in the alloy is about 1.6 weight percent. Manganese is present in the alloy in a preferred range of 0.3 to 0.6 weight percent. A more preferred range is 0.3 to 0.5 weight percent. An even more preferred amount of manganese in the alloy is about 0.4 weight percent.
Iron occurs naturally in nickel and is present in a preferred amount less than 0.5 weight percent. A more preferred amount is less than 0.2 weight percent. An even more preferred amount of iron in the alloy is less than 0.1 weight percent. Titanium, zirconium and impurities, such as carbon, are present in the NiAl alloy in an amount preferably less than 0.2 weight percent. A more preferred amount is less than 0.1 weight percent zirconium and less than 0.02 weight percent titanium. An even more preferred amount is less than 0.05 weight percent zirconium and less than 0.01 weight percent titanium. An even more preferred amount is less than 0.005 weight percent titanium. Referring specifically to carbon as an impurity, it should be present at 0.05 weight percent or less. Nickel comprises the remainder of the composition of the alloy.
When used as the electrode material in a spark plug, the NiAl alloy has the considerable advantage of forming a durable oxide film or scale on the electrode that restricts harmful oxidation and sulfidation to reduce corrosion of the electrode. The alloy also improves the performance of the electrode by reducing gap growth.
Other features and advantages will be apparent from the following description, including the drawings, and from the claims. DESCRIPTION OF THE DRAWING
Fig. 1 is a front view of a spark plug.
DESCRIPTION
Referring to Fig. 1, a spark plug 100 includes an insulator 105, an outer shell 110, a ground electrode 115 attached to outer shell 110, and a firing electrode 120 adjacent to ground electrode 115. A spark gap 125 is defined between ground electrode 115 and firing electrode 120. Ground electrode 115 and firing electrode 120 are made of a nickel, aluminum alloy (NiAl alloy) that includes nickel (Ni), aluminum (Al), titanium (Ti), silicon (Si), manganese (Mn), chromium (Cr), iron (Fe), and zirconium (Zr). Each element contributes to the properties of the NiAl alloy.
Aluminum is present in the NiAl alloy in a preferred range of 0.75 to 2.2 weight percent. A more preferred range is 1.5 to 2.1 weight percent. An even more preferred amount of aluminum in the alloy is about 1.8 weight percent. Aluminum is added to the NiAl alloy primarily because it forms a durable and stable oxide film in the form of aluminum oxide (Al2O3). On an atomic scale, the alloy is made of grains ordered in a grain arrangement. The oxide film is formed in the grain boundaries, where the alloy is likely to be attacked in the processes of oxidation and sulfidation during combustion. These processes corrode the electrodes by causing grains to drop out of the grain boundary. The formation of a durable aluminum oxide film restricts harmful oxidation and sulfidation and, thus, reduces corrosion.
Aluminum also contributes to faster work hardening than would occur during the normal plastic deformation associated with cold working of the alloy. During cold working, larger grains are broken into smaller grains. Because of energy level differences, the aluminum atoms migrate to the grain boundaries. The aluminum atoms are smaller than the nickel atoms they replace, which makes the material harder to work further and thereby improves work hardening. After cold working, an alloy of nickel and aluminum generally is harder than the alloy without aluminum.
Silicon is present in the alloy in a preferred range of 1.1 to 1.75 weight percent. A more preferred amount of silicon in the alloy is in the range of 1.1 to 1.3 weight percent. An even more preferred amount of silicon in the alloy is about 1.2 weight percent. Silicon forms a durable oxide film similar to the film formed by aluminum. In particular, the silicon undergoes a reaction with oxygen attacking the alloy in the grain boundaries. The reaction produces the oxide, silicon oxide (SiO2), which, in turn, creates a compressive force on the surface to form a protective oxide scale.
Chromium is present in the alloy in a preferred range of 1.45 to 1.9 weight percent. A more preferred range is 1.45 to 1.8 weight percent. An even more preferred amount of chromium in the alloy is about 1.6 weight percent. Chromium is added because it reacts with oxygen to form a durable chromium oxide (Cr2O3) scale with properties similar to the aluminum and silicon oxides. However, the weight percentage of chromium is restricted because its presence reduces thermal and electrical conductivity, both of which must be maintained to ensure performance of the spark plug.
Manganese is present in the alloy in a preferred range of 0.3 to 0.6 weight percent. A more preferred range is 0.3 to 0.5 weight percent. An even more preferred amount of manganese in the alloy is about 0.4 weight percent. Manganese reacts with sulfur present in combustion gases in the combustion chamber more than it reacts with oxygen due to sulfur' s higher level of energy. The reaction produces manganese sulfide (MnS) as a film on the surface of the electrode. This film generates a compressive force on the surface similar to the compressive force produced by silicon oxide. The film and compressive force block additional sulfur and oxygen from passing through to the alloy below.
Iron occurs naturally in nickel and is present in a preferred amount less than 0.5 weight percent. A more preferred amount is less than 0.2 weight percent. An even more preferred amount of iron in the alloy is less than 0.1 weight percent. Like chromium, the weight percentage of iron is limited because it affects thermal and electrical conductivity.
Titanium and zirconium are present in the alloy because they occur naturally in nickel as trace elements. Together with impurities, such as carbon, they are present in the NiAl alloy in an amount preferably less than 0.2 weight percent. A more preferred amount is less than 0.1 weight percent zirconium and less than 0.02 weight percent titanium. An even more preferred amount is less than 0.05 weight percent zirconium and less than 0.01 weight percent titanium. An even more preferred amount is less than 0.005 weight percent titanium. Referring specifically to carbon as an impurity, it should be present at a maximum of 0.05 weight percent. Titanium forms a durable oxide film that reduces corrosion. However, titanium is more expensive and more difficult to process than aluminum. Zirconium also forms a durable oxide film that reduces corrosion.
Nickel comprises the remainder of the composition of the alloy. Nickel has the beneficial property of high temperature integrity.
The percentages of the elements in the alloy, although reported here as weight percentages, are based on atomic percentages. Table 1 illustrates the weight percentages and atomic percentage of one composition of the alloy. The composition was developed based on the atomic percentages of aluminum, silicon, and chromium necessary to form a durable oxide scale with similar proportions of each oxide. For instance, to have similar proportions of silicon oxide, aluminum oxide, and chromium oxide, the atomic percentages of the elements are one silicon atom for every two aluminum atoms and chromium atoms. From this ratio, the atomic percentages and weight percentages can be calculated. Constraints on the compositions generated by this method are the availability of alloys designed according to this method and manufacturability of the alloy into electrodes.
Table 1
To test the NiAl alloy, ground and firing electrodes were fabricated from the alloy using a composition specified to be within the weight percentage ranges described above. Spark plugs then were fabricated using the electrodes and the spark plugs mounted in combustion engines. Ground and firing electrodes also were made using Champion Alloy 522, and finished spark plugs were installed in internal combustion engines. The engines were operated using leaded fuel . Periodically, the spark gaps were examined for spark gap growth (i.e., the increase in gap distance between the ground and firing electrodes caused by erosion of the electrodes) . After 180 hours of operation, the ground electrode fabricated from Champion Alloy 522 had eroded almost completely. After 200 hours of operation, the ground electrode fabricated from the NiAl alloy showed little erosion of either the ground or firing electrode. An analysis of the results showed a 30-40% increase in performance of the electrode material as measured by reduced gap growth. Results also indicate that the NiAl alloy electrodes provide increased performance when used to combust unleaded fuel .
Other embodiments are within the scope of the following claims.

Claims

hat is claimed is:
1. A nickel, aluminum-based electrode alloy comprising, by weight:
(i) between 0.75 and 2.2 % aluminum; (ii) between 1.1 and 1.75 % silicon;
(iii) between 1.45 and 1.9 % chromium; (iv) less than 0.6 % manganese; (v) less than 0.5 % iron; (vi) less than 0.05 % carbon; (vii) less than 0.2 % of the combination of titanium, zirconium, and impurities; and (viii) the remainder nickel.
2. The nickel, aluminum-based electrode alloy of claim 1, comprising, by weight: (i) between 0.75 and 2.2 % aluminum;
(ii) between 1.1 and 1.75 % silicon;
(iii) between 1.45 and 1.8 % chromium;
(iv) less than 0.6 % manganese;
(v) less than 0.1 % iron; (vi) less than 0.01 % titanium;
(vii) less than 0.02 % zirconium; and
(viii) the remainder nickel and impurities.
3. The nickel, aluminum-based electrode alloy of claim 2, comprising, by weight: (i) between 0.75 and 2.2 % aluminum;
(ii) between 1.1 and 1.75 % silicon;
(iii) approximately 1.6 % chromium;
(iv) less than 0.6 % manganese;
(v) less than 0.1 % iron; (vi) less than 0.01 % titanium;
(vii) less than 0.02 % zirconium; and
(viii) the remainder nickel and impurities.
4. The nickel, aluminum-based elecfrode alloy of claim 3, comprising, by weight:
(i) between 0.75 and 2.2 % aluminum;
(ii) between 1.1 and 1.3 % silicon; (iii) approximately 1.6 % chromium;
(iv) less than 0.6 % manganese;
(v) less than 0.1 % iron;
(vi) less than 0.01 % titanium;
(vii) less than 0.02 % zirconium; and (viii) the remainder nickel and impurities.
5. The nickel, aluminum-based elecfrode alloy of claim 4, comprising, by weight:
(i) between 1.5 and 2.1 % aluminum;
(ii) approximately 1.2 % silicon; (iii) approximately 1.6 % chromium;
(iv) less than 0.6 % manganese;
(v) less than 0.1 % iron;
(vi) less than 0.01 % titanium;
(vii) less than 0.02 % zirconium; and (viii) the remainder nickel and impurities.
6. The nickel, aluminum-based elecfrode alloy of claim 5, comprising, by weight:
(i) approximately 1.8 % aluminum;
(ii) approximately 1.2 % silicon; (iii) approximately 1.6 % chromium;
(iv) less than 0.6 % manganese;
(v) less than 0.1 % iron;
(vi) less than 0.01 % titanium;
(vii) less than 0.02 % zirconium; and (viii) the remainder nickel and impurities.
7. A nickel, aluminum-based elecfrode alloy comprising, by weight: (i) between 1.5 and 2.1 % aluminum; (ii) between 1.1 and 1.3 % silicon; (iii) between 1.45 and 1.9 % chromium; (iv) less than 0.6 % manganese;
(v) less than 0.1 % iron; (vi) less than 0.01 % titanium; (vii) less than 0.02 % zirconium; and (viii) the remainder nickel and impurities.
8. The nickel, aluminum-based electrode alloy of claim 7, comprising, by weight:
(i) between 1.5 and 2.1 % aluminum;
(ii) between 1.1 and 1.3 % silicon;
(iii) approximately 1.6 % chromium; (iv) less than 0.6 % manganese;
(v) less than 0.1 % iron;
(vi) less than 0.01 % titanium;
(vii) less than 0.02 % zirconium; and
(viii) the remainder nickel and impurities.
9. The nickel, aluminum-based electrode alloy of claim 7, comprising, by weight:
(i) between 1.5 and 2.1 % aluminum;
(ii) approximately 1.2 % silicon;
(iii) approximately 1.6 % chromium; (iv) less than 0.6 % manganese;
(v) less than 0.1 % iron;
(vi) less than 0.01 % titanium;
(vii) less than 0.02 % zirconium; and
(viii) the remainder nickel and impurities.
10. The nickel, aluminum-based electrode alloy of claim 7, comprising, by weight:
(i) approximately 1.8 % aluminum;
(ii) approximately 1.2 % silicon; (iii) approximately 1.6 % chromium;
(iv) less than 0.6 % manganese;
(v) less than 0.1 % iron;
(vi) less than 0.01 % titanium;
(vii) less than 0.02 % zirconium; and (viii) the remainder nickel and impurities.
11. A spark plug including a firing electrode and a ground electrode, wherein at least one electrode is comprised of a nickel, aluminum-based alloy comprising, by weight:
(i) between 0.75 and 2.2 % aluminum; (ii) between 1.1 and 1.75 % silicon;
(iii) between 1.45 and 1.9 % chromium;
(iv) less than 0.6 % manganese;
(v) less than 0.5 % iron;
(vi) less than 0.05 % carbon; (vii) less than 0.2 % of the combination of titanium, zirconium, and impurities; and
(viii) the remainder nickel.
12. The spark plug of claim 11, wherein the ground electrode is comprised of the nickel, aluminum-based alloy.
13. The spark plug of claim 11, wherein the firing elecfrode is comprised of the nickel, aluminum-based alloy.
14. The spark plug of claim 11, wherein the ground elecfrode and the firing elecfrode are comprised of the nickel, aluminum-based alloy.
15. The spark plug of claim 11, wherein the nickel, aluminum-based alloy comprises, by weight:
(i) between 0.75 and 2.2 % aluminum;
(ii) between 1.1 and 1.75 % silicon; (iii) between 1.45 and 1.8 % chromium;
(iv) less than 0.6 % manganese;
(v) less than 0.1 % iron;
(vi) less than 0.01 % titanium;
(vii) less than 0.02 % zirconium; and (viii) the remainder nickel and impurities.
16. The spark plug of claim 15 wherein the nickel, aluminum-based alloy comprises, by weight:
(i) between 0.75 and 2.2 % aluminum;
(ii) between 1.1 and 1.75 % silicon; (iii) approximately 1.6 % chromium;
(iv) less than 0.6 % manganese;
(v) less than 0.1 % iron;
(vi) less than 0.01 % titanium;
(vii) less than 0.02 % zirconium; and (viii) the remainder nickel and impurities.
17. The spark plug of claim 16 wherein the nickel, aluminum-based alloy comprises, by weight:
(i) between 0.75 and 2.2 % aluminum;
(ii) between 1.1 and 1.3 % silicon; (iii) approximately 1.6 % chromium;
(iv) less than 0.6 % manganese;
(v) less than 0.1 % iron;
(vi) less than 0.01 % titanium;
(vii) less than 0.02 % zirconium; and (viii) the remainder nickel and impurities.
18. The spark plug of claim 17, wherein the nickel, aluminum-based alloy comprises, by weight:
(i) between 0.75 and 2.2 % aluminum;
(ii) between 1.1 and 1.3 % silicon; (iii) approximately 1.6 % chromium;
(iv) less than 0.6 % manganese;
(v) less than 0.1 % iron;
(vi) less than 0.01 % titanium;
(vii) less than 0.02 % zirconium; and (viii) the remainder nickel and impurities.
19. The spark plug of claim 18, wherein the nickel, aluminum-based alloy comprises, by weight:
(i) between 1.5 and 2.1 % aluminum;
(ii) approximately 1.2 % silicon; (iii) approximately 1.6 % chromium;
(iv) less than 0.6 % manganese;
(v) less than 0.1 % iron;
(vi) less than 0.01 % titanium;
(vii) less than 0.02 % zirconium; and (viii) the remainder nickel and impurities.
20. The spark plug of claim 19, wherein the nickel, aluminum-based alloy comprises, by weight:
(i) approximately 1.8 % aluminum;
(ii) approximately 1.2 % silicon; (iii) approximately 1.6 % chromium;
(iv) less than 0.6 % manganese;
(v) less than 0.1 % iron;
(vi) less than 0.01 % titanium;
(vii) less than 0.02 % zirconium; and (viii) the remainder nickel and impurities.
EP99930453A 1998-06-30 1999-06-22 Spark plug electrode alloy Withdrawn EP1090155A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US107122 1979-12-26
US10712298A 1998-06-30 1998-06-30
PCT/US1999/013891 WO2000000652A1 (en) 1998-06-30 1999-06-22 Spark plug electrode alloy

Publications (1)

Publication Number Publication Date
EP1090155A1 true EP1090155A1 (en) 2001-04-11

Family

ID=22314971

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99930453A Withdrawn EP1090155A1 (en) 1998-06-30 1999-06-22 Spark plug electrode alloy

Country Status (2)

Country Link
EP (1) EP1090155A1 (en)
WO (1) WO2000000652A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ297483B6 (en) * 2001-11-29 2006-12-13 BRISK Tábor a. s. Spark plug
JP4769070B2 (en) * 2005-01-31 2011-09-07 日本特殊陶業株式会社 Spark plug for internal combustion engine
DE102006023374A1 (en) * 2006-05-16 2007-11-22 Beru Ag Nickel-based alloy containing Si Al Si, Mn, and Ti and Zr where the Zr can be replaced completely or partially by Hf useful for production of sparking plug electrodes has decreased burning off liability
DE102006035111B4 (en) * 2006-07-29 2010-01-14 Thyssenkrupp Vdm Gmbh Nickel-based alloy
DE102013004365B4 (en) * 2013-03-14 2015-09-24 VDM Metals GmbH Nickel-based alloy with silicon, aluminum and chrome
JP6164736B2 (en) * 2013-08-27 2017-07-19 日立金属Mmcスーパーアロイ株式会社 Ni-base alloy excellent in hot forgeability, high-temperature oxidation resistance and high-temperature halogen gas corrosion resistance, and member using this Ni-base alloy
JP7429725B2 (en) 2022-02-18 2024-02-08 日本特殊陶業株式会社 Spark plug main metal fittings and spark plugs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043897B2 (en) * 1978-09-07 1985-10-01 日本特殊陶業株式会社 Nickel alloy for spark plug electrodes
JPH02163335A (en) * 1988-12-15 1990-06-22 Toshiba Corp Electrode for spark plug
JPH08232030A (en) * 1995-02-23 1996-09-10 Sumitomo Electric Ind Ltd Electrode material for spark plug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0000652A1 *

Also Published As

Publication number Publication date
WO2000000652A1 (en) 2000-01-06

Similar Documents

Publication Publication Date Title
US6794803B2 (en) Spark plug for an internal combustion engine
RU2518814C1 (en) Nickel-based alloy
KR20150114543A (en) Nickel-based alloy with silicon, aluminum and chromium
GB2031950A (en) Nickel alloy for use in spark plug electrodes
US4569824A (en) Corrosion resistant nickel base superalloys containing manganese
JP4769070B2 (en) Spark plug for internal combustion engine
RU2399690C1 (en) Nickel alloy of main composition
EP1090155A1 (en) Spark plug electrode alloy
JP4699867B2 (en) Spark plug electrode material
JP2963842B2 (en) Alloy for exhaust valve
JP3206119B2 (en) Ni-based alloy spark plug electrode material for internal combustion engines
JP6155575B2 (en) Electrode material, spark plug electrode, and spark plug
JPH06264169A (en) High-temperature resisting and corrosion resisting ni-cr alloy
JPH07216482A (en) Alloy for exhaust valve
JP2000336446A (en) Electrode material for ignition plug excellent in high temperature oxidation resistance and hot workability
GB2075548A (en) Corrosion Resistant Nickel Base Superalloys Containing Manganese
JPH0445239A (en) Alloy for spark plug
JPH0717979B2 (en) Ni-based alloy spark plug electrode
JPH07268522A (en) Electrode material for spark plug excellent in high temperature strength
JPS63118040A (en) Electrode material for spark plug
JPS63118039A (en) Electrode material for spark plug
JPH02163335A (en) Electrode for spark plug
JPH10251787A (en) Electrode material for spark plug, excellent in thermal conductivity
KR930003640B1 (en) Nickel alloy for electrode of ignition plug
JPH0514781B2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IE IT SE

17Q First examination report despatched

Effective date: 20011011

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020423