[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1082228B1 - Verfahren zum reinigen von druckmaschinen und druckformen - Google Patents

Verfahren zum reinigen von druckmaschinen und druckformen Download PDF

Info

Publication number
EP1082228B1
EP1082228B1 EP99925019A EP99925019A EP1082228B1 EP 1082228 B1 EP1082228 B1 EP 1082228B1 EP 99925019 A EP99925019 A EP 99925019A EP 99925019 A EP99925019 A EP 99925019A EP 1082228 B1 EP1082228 B1 EP 1082228B1
Authority
EP
European Patent Office
Prior art keywords
water
printing
microemulsion
oil
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99925019A
Other languages
English (en)
French (fr)
Other versions
EP1082228A1 (de
Inventor
Dieter Stöckigt
Günter OETTER
Erwin Wolff
Erich Frank
Petra Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flint Group Germany GmbH
Original Assignee
BASF Drucksysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Drucksysteme GmbH filed Critical BASF Drucksysteme GmbH
Publication of EP1082228A1 publication Critical patent/EP1082228A1/de
Application granted granted Critical
Publication of EP1082228B1 publication Critical patent/EP1082228B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/06Preparing for use and conserving printing surfaces by use of detergents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0017Multi-phase liquid compositions
    • C11D17/0021Aqueous microemulsions

Definitions

  • the invention relates to a method for cleaning printing machines and Printing forms, in particular for removing printing inks, for example from Oil-based inks or radiation-curable inks, of which Cylinders and rollers of printing machines, especially flat or offset printing machines, as well as printing forms, for example when the Printing.
  • cleaning agents are generally based organic solvents and / or aqueous solutions used.
  • organic solvents and / or aqueous solutions used.
  • VOC volatile organic compounds
  • Cleaners made exclusively or predominantly from non-polar Organic solvents exist also have the disadvantage that the parts to be cleaned, for example pressure rollers, adhering solvent residues do not wash off with water after cleaning. There is a clean platen roller however, a prerequisite for good wetting with the printing ink and good Ink transfer. With some printing forms, the color-guiding printing template can also be used detached from the cleaning agent and thereby damaged or even become unusable.
  • DE-B 27 24 557 describes a cleaning agent for lithographic printing plates described, which contains water and water-miscible organic solvents. Its cleaning effect against viscous inks is oil-based naturally limited.
  • GB-A 2 089 289 describes oil-in-water and water-in-oil emulsions as Cleaner described.
  • the disadvantage here is the relatively high interfacial tension between water and oil phase, so that for example lipophilic, highly hydrophobic offset inks because of their high interfacial energy compared to the water-continuous cleaning solution only slowly and only slightly Dimensions of this are included.
  • Emulsions of this type are otherwise only kinetic, but not thermodynamic stable, so that they can separate, especially in the case of temperature fluctuations [Creaming (sitting down), thickening, flocculation] tend and thereby in their Applicability will be affected.
  • the object of the invention was to provide a cleaning method and a liquid To provide cleaning agents that allow printing inks to be quick and effectively peel off without the environment becoming more volatile organic through vapors Components loaded or the printing template is attacked by printing forms.
  • EP-A-0527315 discloses a water-in-oil microemulsion as blanket detergent from ethoxylated partial glycerides of caprylic / capric acid, 1,2-bis (oxazolin-2) ethane and at least one saturated fatty acid methyl ester.
  • the invention is based on a method for cleaning printing machines or printing forms in which the contaminants are removed from the surface Wash away with a liquid.
  • the process according to the invention is characterized in that the liquid is a bicontinuous microemulsion, the water surfactant and as an oil phase an organic water-immiscible Contains solvents in the proportions as in claim 1 are defined.
  • a microemulsion is to be understood as a liquid, bicontinuous mixture of water and oil phase with an extremely low interfacial tension between the water and oil phase, i.e. an interfacial tension that is up to three orders of magnitude lower than that of a conventional water-in -Oil or oil-in-water emulsion.
  • this interfacial tension is in the range of 10 -4 to 10 -6 N / m, for emulsions it is usually in the range of 10 -3 to 10 -2 N / m.
  • a microemulsion in the sense of the present description is thermodynamically stable, visually transparent and preferably of low viscosity.
  • Conventional conventional emulsions can contain oil and water phases in very different proportions by volume. They have a continuous and a disperse phase, which is present in the continuous phase as very small spheres stabilized by coating with surfactants. Depending on the nature of the continuous phase, one speaks of oil-in-water or water-in-oil emulsions. In the ideal case, these emulsions are kinetically stable, ie they remain intact for a long time, but not indefinitely. In particular in the case of temperature fluctuations, they can tend to phase separation by sitting, creaming, thickening or flaking.
  • Bicontinuous microemulsions contain two phases, a water phase and an oil phase, in the form of extended domains lying next to one another and intertwined, at the interface of which stabilizing surfactant surfactants are enriched in a monomolecular layer.
  • Bicontinuous microemulsions form very easily, usually because of the very low interfacial tension, if the individual components, water, oil and a suitable surfactant system, are mixed. Since the domains have only very small dimensions in the order of nanometers in at least one dimension, the microemulsions appear visually transparent and, depending on the surface-active system used, are thermodynamically stable in a certain temperature range, ie for an unlimited period.
  • the microemulsions contain certain amphiphiles, i.e. surfactants, and electrolytes often dissolved in their aqueous phase and optionally other auxiliaries. Especially then electrolytes added if the amphiphiles partially or exclusively ionic surfactants are.
  • microemulsions for the extraction of organic pollutants contaminated soils is described in WO 94/04289. Also the Tertiary oil production is known as an area of application for microemulsions become.
  • microemulsions as Detergents, e.g. B. for painted or bare metal sheets, plastics and other surfaces, especially for pre-treatment for subsequent ones To use coatings.
  • the components of the microemulsion should be selected so that they mechanical properties of device parts or sealing materials Rubber or similar materials, such as elasticity, flexibility, Dimensional stability etc., by swelling or shrinking (swelling) Don ⁇ t change.
  • Organic solvents which are immiscible with water are advantageously those with a boiling range above 100, preferably above 150 ° C., in particular from 200 used up to 400 ° C. In general, organic solvents are used Flash points above 100 ° C used. Under “organic solvents” are among other fats and oils, e.g. Beet oil, fatty acid esters, ethers, ketones, aldehydes and understand hydrocarbons.
  • Alkyl esters of longer-chain fatty acids are for the process according to the invention suitable.
  • the alkyl group of the alcohol component has 1 to 20, preferably 1 to 16 carbon atoms.
  • the fatty acid component normally has 6 to 25, preferably 8 to 18 carbon atoms and can be linear or branched, be saturated or unsaturated and up to three double bonds in the molecule contain.
  • the esters generally have an iodine number ranging from 0 to about 150, preferably from 0 to 40. Compounds with a higher content Double bonds often show a tendency to resinify and thus to Separation of unwanted substances. Such connections are therefore if at all, added only in small proportions.
  • esters are methyl, ethyl, isopropyl, n-butyl, n-hexyl, 2-ethylhexyl esters and / or Isooctyl esters of fatty acids or fatty acid mixtures, for example octanoic acid, 2-ethylhexanoic acid, capric acid, lauric acid.
  • esters are, for example, 2-ethylhexyl coconut fatty acid, Tall oil fatty acid n-hexyl ester, rapeseed methyl ester, oleic acid methyl ester, stearic acid methyl ester, Isopropyl palmitate, ethyl laurate, 2-ethylhexanoic acid 2- ethylhexyl ester and octanoic acid n-octyl ester.
  • Esters are also high boiling range ethers, e.g. Dioctyl ether, as well Tricylycerides, such as rapeseed oil, coconut oil or soybean oil, are suitable.
  • the esters are characterized by a very low vapor pressure, so that at no pollution of the atmosphere occurs during their use.
  • the volume fractions are aqueous and organic Phase approximately in the same order of magnitude, i.e. the volume ratio of Water to organic phase 40:60 to 60:40.
  • surfactants hereinafter also referred to as surfactants basically such different amphiphilic characters are used, thus anionic, cationic, amphoteric and nonionic surfactants or their Mixtures.
  • Suitable anionic surfactants are C 10 to C 20 , preferably C 12 to C 16 alkyl sulfates, for example sodium dodecyl sulfate; C 10 to C 20 , preferably C 12 to C 16 alkyl polyether sulfates, for example sodium dodecyloxypolyethoxy sulfate; Alkali salts of diisooctylsulfosuccinic acid; Alkali salts of alkylbenzenesulfonic acids, for example sodium dodecylbenzenesulfonate, of dialkyl phosphates, and of carboxylates, for example of fatty alkyl ether carboxylates.
  • anionic surfactants for example sodium dodecyl sulfate
  • alkanols such as butanol, pentanol or hexanol
  • alkali or alkaline earth metal salts for example sodium chloride, sodium sulfate or calcium chloride, or with other electrolytes, for example NaOH, KOH , Phosphates or silicates used.
  • microemulsions used according to the invention can still Complexing agents such as ethylenediaminetetraacetic acid, nitrilotriacetic acid or Methylglycinediacetic acid, corrosion inhibitors and / or preservatives contain.
  • Complexing agents such as ethylenediaminetetraacetic acid, nitrilotriacetic acid or Methylglycinediacetic acid, corrosion inhibitors and / or preservatives contain.
  • the alkanols can be present in amounts of up to 20, preferably up to 10% by weight
  • Electrolytes can be added in amounts of up to 10, preferably up to 5% by weight.
  • Cationic surfactants can be used, for example, to produce microemulsions Alkyltrimethylammonium halides with alkyl chain lengths of about 8 up to 18 carbon atoms and / or quaternized imidazolinium or pyridinium salts be used.
  • Suitable nonionic or nonionic surfactants are polyglycol monoalkyl ethers with alkyl chain lengths of C 8 to C 18, preferably C 10 to C 16 , and 2 to 20, preferably 3 to 15 oxyalkylene, in particular ethylene, propylene and / or butylene units, or block copolymers from these units.
  • C 10 to C 15 alkyl ethers of polyglycols with 3 to 10 oxyalkylene units are frequently used. These are mostly technical products with a more or less broad molecular weight distribution.
  • Surfactants with a narrow molecular weight distribution produced using special casters can also be used.
  • Triglyceride alkoxylates for example reaction products of 1 mol of triglyceride with 1 to 50 mol of alkylene oxide, particularly 10 to 50 mol of ethylene oxide, are also suitable.
  • surfactants based on saccharides for example alkyl polyglucosides or glucosamides, can be used.
  • microemulsions used according to the invention preferably contain anionic ones Surfactants, usually in combination with one or more nonionic surfactants.
  • microemulsions can also be produced using nonionic surfactants alone become.
  • the proportion is Total surfactants in the microemulsion in the range of 7 to 25% by weight. If the surfactant content is too high, Cleaning problems arise, or the drying of the printing rollers can To cause difficulties.
  • anionic surfactant 1 to 20% by weight polyethylene glycol monoalkyl ether; 0.1 to 10, preferably 0.5 to 5 wt .-% reaction product of triglyceride with Ethylene oxide and 1 to 20 wt .-% polyalkylene glycol monoalkyl ether Oxyethylene and / or oxypropylene units used.
  • microemulsions used according to the invention contain 20 to 60 wt .-% water-immiscible organic Solvent and 30 to 60 wt .-% water. All information in % By weight is based on the total weight of the finished microemulsion based.
  • microemulsion is thermodynamic in a certain temperature range stable. Those microemulsions which are preferred at room temperature and among them are thermodynamically stable. In many cases, however, it can also Microemulsions are used with success, their stability range above Room temperature, for example between 50 and 60 ° C.
  • the Microemulsion applied to the parts of the press to be cleaned When carrying out the cleaning process according to the invention, the Microemulsion applied to the parts of the press to be cleaned.
  • the Surface of the printing ink is wetted quickly, evenly and completely, so that the printing ink is quickly absorbed and dissolved by the cleaning liquid or is emulsified. Leave the remaining remains of the microemulsion easily removed by washing with water.
  • the same goes for the after Interruption of pressure on one to be cleaned and preserved Printing form, in particular an ink or offset form remaining ink residue.
  • the most important thing here is the complete removal of paint residues from the Non-image or background areas of the printing form, on which, for example, the Flat or offset printing the required when resuming printing Hydrophilicity must be preserved.
  • a printable printing plate referred to, usually by Exposing and developing a photosensitive printing plate is obtained.
  • microemulsions used according to the invention are also suitable for Cleaning of other substances, e.g. B. of plastics, old paintwork, Primers and bare metal sheets. You can e.g. B. as a cleaning agent used in the field of car refinishing and as a brush cleaner become.
  • a microemulsion which is stable at room temperature was described as in Preparation Example 1, but from 8 g of dioctyl sulfosuccinate, 16 g of the same polyglycol monoalkyl ether mixture, 15 g of rapeseed oil fatty acid methyl ester, 15 g of coconut fatty acid 2-ethyl-hexyl ester, 46 g of water and 0.07 g calcium chloride prepared.
  • microemulsions of Preparation Examples 3 and 4 are outside of specified temperature ranges are not permanently stable and separate Standing for a long time at room temperature in an oil and a water phase.
  • the Microemulsions of Preparation Examples 1 and 2 allow one Use for an unlimited period at room temperature.
  • rollers of a rotary offset printing press were used in a comparative test after every 100,000 prints with commercially available offset printing ink Oil base with white spirit (mainly with aliphatic hydrocarbons a boiling range of 80 to 250 ° C) and once with the microemulsion of Preparation example 1 cleaned. In both cases the cleaning performance, i.e. the removal of the ink, essentially the same.
  • the rollers were cleaner and drier than in the microemulsion Use of white spirit. The remains of the microemulsion could easily and can be removed without residue by simply rinsing with water.
  • the offset printing form used in the printing process was included treated both cleaning liquids. In both cases, a clean, from Preserved printing stencil free of paint residues.
  • the one cleaned with the microemulsion Printing form was from the subsequently applied aqueous solution of rubber arabicum smoothly and completely wetted, while this solution also from the The non-image-bearing support surface of the white spirit cleaned Printing form difficult and accepted only after a long intensive treatment has been.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Coloring (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Reinigen von Druckmaschinen und Druckformen, insbesondere zum Entfemen von Druckfarben, zum Beispiel von Druckfarben auf Ölbasis oder durch Strahlung härtbaren Druckfarben, von den Zylindern und Walzen von Druckmaschinen, besonders Flach- oder Offsetdruckmaschinen, sowie von Druckformen, zum Beispiel bei Unterbrechung des Druckvorgangs.
Für die genannten Zwecke werden im allgemeinen Reinigungsmittel auf Basis organischer Lösemittel und/oder wäßriger Lösungen eingesetzt. Dabei werden in Druckereien bei längerem Maschinenstillstand oder bei einem Farbwechsel die mit der Druckfarbe kontaktierten Teile der Druckmaschine von Farbresten befreit. Ebenso müssen Druckformen, besonders Flachdruckformen, bei einer Unterbrechung des Druckprozesses sorgfältig von Farbresten gereinigt und zur Erhaltung der Hydrophilie der Nichtbildstellen mit Konservierungslösungen auf Basis hydrophiler Polymerer überzogen werden. Reiniger, die organische Lösemittel enthalten, haben zumeist flüchtige organische Anteile (VOC = volatile organic compounds), die die Atmosphäre belasten und arbeitsmedizinisch und ökologisch bedenklich sind. Reiniger, die ausschließlich oder überwiegend aus unpolaren organischen Lösemitteln bestehen, haben zudem den Nachteil, daß sich die an den zu reinigenden Teilen, zum Beispiel Druckwalzen, anhaftenden Lösemittelreste nach dem Reinigen nicht mit Wasser abwaschen lassen. Eine saubere Druckwalze ist jedoch Voraussetzung für eine gute Benetzung mit der Druckfarbe und gute Farbübertragung. Bei manchen Druckformen kann auch die farbführende Druckschablone vom Reinigungsmittel angelöst und dadurch beschädigt oder sogar unbrauchbar werden.
In der DE-B 27 24 557 wird ein Reinigungsmittel für lithographische Druckplatten beschrieben, das Wasser und mit Wasser mischbare organische Lösemittel enthält. Seine Reinigungswirkung gegenüber viskosen Druckfarben auf Ölbasis ist naturgemäß begrenzt.
In der GB-A 2 089 289 werden Öl-in-Wasser- und Wasser-in-Öl-Emulsionen als Reiniger beschrieben. Von Nachteil ist hierbei die relativ hohe Grenzflächenspannung zwischen Wasser- und Ölphase, so daß beispielsweise lipophile, stark hydrophobe Offsetdruckfarben wegen ihrer hohen Grenzflächenenergie gegenüber der wasserkontinuierlichen Reinigerlösung nur langsam und nur in geringem Maße von dieser aufgenommen werden.
Ähnliches gilt für Emulsionen, wie sie zum Beispiel auch in der WO-A 90/03419 oder der EP-A 0 498 545 beschrieben werden.
Emulsionen dieser Art sind im übrigen nur kinetisch, aber nicht thermodynamisch stabil, so daß sie insbesondere bei Temperaturschwankungen zur Entmischung [Aufrahmen (Absitzen), Verdicken, Ausflocken] neigen und dadurch in ihrer Anwendbarkeit beeinträchtigt werden.
Besonders schwierig ist das Entfernen von durch UV-Strahlung härtbaren Offset- oder Hochdruckfarben auf Basis von polymerisierbaren monomeren oder oligomeren Acrylaten. Zu ihrer Entfernung werden im allgemeinen Ester oder Gemische von Estern und Mineralöl eingesetzt.
Aufgabe der Erfindung war es, ein Reinigungsverfahren und ein flüssiges Reinigungsmittel zu Verfügung zu stellen, die es gestatten, Druckfarben schnell und effektiv abzulösen, ohne daß die Umgebung durch Dämpfe flüchtiger organischer Komponenten belastet oder die Druckschablone von Druckformen angegriffen wird.
EP-A-0527315 offenbart als Drucktuchwaschmittel eine Wasser-in-Öl-Mikroemulsion aus ethoxilierten Partialglyceriden der Capryl-/Caprinsäure, 1,2-Bis-(oxazolin-2-)ethan und wenigstens einem gesättigten Fettsäuremethylester.
Die Erfindung geht aus von einem Verfahren zum Reinigen von Druckmaschinen oder Druckformen, bei dem man die Verunreinigungen von der Oberfläche durch Waschen mit einer Flüssigkeit entfernt.
Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß die Flüssigkeit eine bikontinuierliche Mikroemulsion ist, die Wasser, ein grenzflächenaktives Mittel und als Ölphase ein mit Wasser nicht mischbares organisches Lösemittel in den Anteilen enthält, wie diese im Anspruch 1 definiert sind.
Unter einer Mikroemulsion soll im Rahmen der vorliegenden Beschreibung eine flüssige, bikontinuierliche Mischung aus Wasser- und Ölphase mit extrem niedriger Grenzflächenspannung zwischen Wasser- und Ölphase verstanden werden, das heißt einer Grenzflächenspannung, die bis zu drei Zehnerpotenzen kleiner ist als die einer üblichen Wasser-in-Öl- oder Öl-in-Wasser-Emulsion. Bei Mikroemulsionen liegt diese Grenzflächenspannung im Bereich von 10-4 bis 10-6 N/m, bei Emulsionen gewöhnlich im Bereich von 10-3 bis 10-2 N/m. Eine Mikroemulsion im Sinne der vorliegenden Beschreibung ist thermodynamisch stabil, visuell transparent und vorzugsweise niedrigviskos.
Übliche konventionelle Emulsionen können Öl- und Wasserphase in sehr unterschiedlichen Volumenanteilen enthalten. Sie haben eine kontinuierliche und eine disperse Phase, die als sehr kleine, durch Belegung mit Tensiden stabilisierte Kügelchen in der kontinuierlichen Phase vorliegt. Je nach der Natur der kontinuierliches Phase spricht man von Öl-in-Wasser- oder Wasser-in-Öl-Emulsionen. Diese Emulsionen sind im Idealfall kinetisch stabil, d.h. sie bleiben auch längere Zeit, aber nicht unbegrenzt, erhalten. Insbesondere bei Temperaturschwankungen können sie zur Phasentrennung durch Absitzen, Aufrahmen, Verdicken oder Flocken neigen.
Bikontinuierliche Mikroemulsionen enthalten zwei Phasen, eine Wasser- und eine Ölphase, in Form von ausgedehnten nebeneinanderliegenden und ineinander verschlungenen Domänen, an deren Grenzfläche stabilisierende grenzflächenaktive Tenside in einer monomolekularen Schicht angereichert sind. Bikontinuierliche Mikroemulsionen bilden sich sehr leicht, in der Regel wegen der sehr niedrigen Grenzflächenspannung spontan, wenn die Einzelkomponenten, Wasser, Öl und ein geeignetes grenzflächenaktives System, vermischt werden. Da die Domänen in mindestens einer Dimension nur sehr geringe Ausdehnungen in der Größenordnung von Nanometern haben, erscheinen die Mikroemulsionen visuell transparent und sind je nach dem eingesetzten grenzflächenaktiven System in einem bestimmten Temperaturbereich thermodynamisch, d.h. zeitlich unbegrenzt, stabil.
Bikontinuierliche Mikroemulsionen sind zum Beispiel in dem Artikel "Mikroemulsionen - eine wissenschaftliche und anwendungstechnische Fundgrube?" von H.-F. Eicke in SÖFW-Journal 118 (1992), Seiten 311 bis 314, beschrieben.
Zum Erreichen der erforderlichen niedrigen Grenzflächenspannung an den Phasengrenzen enthalten die Mikroemulsionen bestimmte Amphiphile, d.h. grenzflächenaktive Mittel, und in ihrer wäßrigen Phase häufig gelöste Elektrolyte und gegebenenfalls weitere Hilfsstoffe. Elektrolyte werden vor allem dann zugesetzt, wenn die Amphiphilen zum Teil oder ausschließlich ionische Tenside sind.
Der Einsatz von Mikroemulsionen zur Extraktion von organischen Schadstoffen aus kontaminierten Böden ist in der WO 94/04289 beschrieben. Auch die Tertiärförderung von Erdöl ist als Anwendungsgebiet für Mikroemulsionen bekannt geworden.
Es ist ferner aus der EP-A-0 498 545 bekannt, Mikroemulsionen als Reinigungsmittel, z. B. für lackierte oder blanke Metallbleche, Kunststoffe und andere Oberflächen, insbesondere zur Vorbehandlung für nachfolgende Beschichtungen einzusetzen.
Die Bestandteile der Mikroemulsion sollten so ausgewählt werden, daß sie die mechanischen Eigenschaften von Vorrichtungsteilen oder Dichtungsmaterialien aus Gummi oder ähnlichen Materialien, wie Elastizität, Flexibilität, Dimensionsbeständigkeit usw., durch Quellung oder Schrumpfung (Entquellung) nicht verändern.
Als mit Wasser nicht mischbare organische Lösemittel werden vorteilhaft solche mit einem Siedebereich oberhalb 100, bevorzugt oberhalb 150°C, insbesondere von 200 bis 400°C eingesetzt. Im allgemeinen werden organische Lösemittel mit Flammpunkten oberhalb 100°C eingesetzt. Unter "organischen Lösemitteln" sind unter anderen Fette und Öle, z.B. Rüböl, Fettsäureester, Ether, Ketone, Aldehyde und Kohlenwasserstoffe zu verstehen.
Für das erfindungsgemäße Verfahren sind Alkylester von längerkettigen Fettsäuren geeignet. Die Alkylgruppe der Alkoholkomponente hat 1 bis 20, bevorzugt 1 bis 16 Kohlenstoffatome. Die Fettsäurekomponente hat normalerweise 6 bis 25, bevorzugt 8 bis 18 Kohlenstoffatome und kann linear oder verzweigt, gesättigt oder ungesättigt sein und bis zu drei Doppelbindungen im Molekül enthalten. Die Ester haben im allgemeinen eine Jodzahl im Bereich von 0 bis etwa 150, bevorzugt von 0 bis 40. Verbindungen mit höherem Gehalt an Doppelbindungen zeigen häufig eine Neigung zum Verharzen und damit zur Abscheidung unerwünschter Substanzen. Solche Verbindungen werden deshalb, wenn überhaupt, nur in geringen Anteilen zugesetzt. Beispiele für geeignete Ester sind Methyl-, Ethyl-, Isopropyl-, n-Butyl-, n-Hexyl-, 2-Ethylhexylester und/oder Isooctylester von Fettsäuren oder Fettsäuregemischen, zum Beispiel von Octansäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure. Myristinsäure, Palmitinsäure, Ölsäure, Linolsäure, Behensäure oder Sojaöl-, Kokosöl-, Palmkernöl-, Palmöl-, Sonnenblumenöl-, Spermöl-, Tallöl-, Rapsöl-, Rizinusöl- oder Talgfettsäuren. Einzelne typische Ester sind beispielsweise Kokosfettsäure-2-ethylhexylester, Tallölfettsäure-n-hexylester, Rapsmethylester, Ölsäure-methylester, Stearinsäuremethylester, Palmitinsäure-isopropylester, Laurinsäure-ethylester, 2-Ethylhexansäure-2- ethylhexylester und Octansäure-n-octylester. Neben diesen Estern sind auch Ether mit hohem Siedebereich, z.B. Dioctylether, sowie Tricylyceride, wie Rapsöl, Kokosöl oder Sojaöl, geeignet.
Die Ester zeichnen sich durch einen sehr niedrigen Dampfdruck aus, so daß bei ihrem Einsatz keine Belastung der Atmosphäre eintritt. Wie es bei bikontinuierlichen Mikroemulsionen die Regel ist, liegen die Volumenanteile von wäßriger und organischer Phase etwa in der gleichen Größenordnung, d.h., das Volumenverhältnis von Wasser zu organischer Phase beträgt 40:60 bis 60:40.
Als grenzflächenaktive Mittel, im folgenden auch als Tenside bezeichnet, können grundsätzlich solche unterschiedlichen amphiphilen Charakters eingesetzt werden, also anionische, kationische, amphotere und nichtionische Tenside oder deren Gemische.
Geeignete anionische Tenside sind C10- bis C20-, bevorzugt C12- bis C16-Alkylsulfate, zum Beispiel Natriumdodecylsulfat; C10- bis C20-, bevorzugt C12- bis C16-Alkylpolyethersulfate, zum Beispiel Natriumdodecyloxypolyethoxysulfat; Alkalisalze von Diisooctylsulfobernsteinsäure; Alkalisalze von Alkylbenzolsulfonsäuren, zum Beispiel Natriumdodecylbenzolsulfonat, von Dialkylphosphaten, und von Carboxylaten, z.B. von Fettalkylethercarboxylaten. Einige anionische Tenside, zum Beispiel Natriumdodecylsulfat, werden oft zusammen mit Alkanolen wie Butanol, Pentanol oder Hexanol als Co-Tenside und/oder mit Alkali- oder Erdalkalisalzen, zum Beispiel Natriumchlorid, Natriumsulfat oder Calciumchlorid, oder mit anderen Elektrolyten, zum Beispiel NaOH, KOH. Phosphaten oder Silikaten eingesetzt.
Weiterhin können die erfindungsgemäß eingesetzten Mikroemulsionen noch Komplexbildner wie Ethylendiamintetraessigsäure, Nitrilotriessigsäure oder Methylglycindiessigsäure, Korrosionsinhibitoren und/oder Konservierungsmittel enthalten.
Die Alkanole können in Mengen bis zu 20, bevorzugt bis zu 10 Gew.-%, die Elektrolyte in Mengen bis zu 10, bevorzugt bis zu 5 Gew.-% zugesetzt werden.
Als kationische Tenside können zur Herstellung von Mikroemulsionen beispielsweise Alkyltrimethylammoniumhalogenide mit Alkylkettenlängen von etwa 8 bis 18 C-Atomen und/oder quaternierte Imidazolinium- oder Pyridiniumsalze eingesetzt werden.
Geeignete nichtionische beziehungsweise nichtionogene Tenside sind Polyglykolmonoalkylether mit Alkylkettenlängen von C8 bis C18 bevorzugt C10 bis C16, und 2 bis 20, bevorzugt 3 bis 15 Oxyalkylen-, insbesondere -ethylen-, -propylen- und/oder -butyleneinheiten, oder Blockcopolymere aus diesen Einheiten. Häufig werden C10- bis C15- Alkylether von Polyglykolen mit 3 bis 10 Oxyalkyleneinheiten verwendet. Hierbei handelt es sich zumeist um technische Produkte mit einer mehr oder weniger breiten Molgewichtsverteilung. Auch über spezielle Kastalysatoren hergestellte Tenside mit enger Molgewichtsverteilung können eingesetzt werden. Ferner sind Triglyceridalkoxylate, z.B. Umsetzungsprodukte von 1 mol Triglycerid mit 1 bis 50 mol Alkylenoxid, besonders 10 bis 50 mol Ethylenoxid, geeignet. Daneben sind Tenside auf Basis von Sacchariden, zum Beispiel Alkylpolyglukoside oder Glukosamide einsetzbar.
Die erfindungsgemäß eingesetzten Mikroemulsionen enthalten bevorzugt anionische Tenside, meist in Kombination mit einem oder mehreren nichtionischen Tensiden. Es können aber auch Mikroemulsionen allein mit nichtionischen Tensiden hergestellt werden.
Zur Erzielung einer optimalen Reinigungswirkung sind im Einzelfall für jede Kombination von organischem Lösemittel, Tensid beziehungsweise Tensiden und gegebenenfalls Elektrolyten und Komplexbildnern in wäßriger Lösung bestimmte relativ enge Mengenanteilbereiche der einzelnen Komponenten erforderlich, die sich durch einfache Routineversuche ermitteln lassen. Erfindungsgemäß liegt der Anteil an Tensiden in der Mikroemulsion insgesamt im Bereich von 7 bis 25 Gew.-%. Bei zu hohem Tensidanteil können Reinigungsprobleme entstehen, oder die Trocknung der Druckwalzen kann Schwierigkeiten bereiten.
Im allgemeinen werden 1 bis 20, bevorzugt 3 bis 15 und insbesondere 5 bis 10 Gew.-% anionisches Tensid; 1 bis 20 Gew.-% Polyethylenglykolmonoalkylether; 0,1 bis 10, bevorzugt 0,5 bis 5 Gew.-% Umsetzungsprodukt von Triglycerid mit Ethylenoxid und 1 bis 20 Gew.-% Polyalkylenglykolmonoalkylether mit Oxyethylen- und/oder Oxypropyleneinheiten eingesetzt.
Die erfindungsgemäß eingesetzten Mikroemulsionen enthalten 20 bis 60 Gew.-% mit Wasser nicht mischbares organisches Lösemittel und 30 bis 60 Gew.-% Wasser. Alle Angaben in Gew.-% sind hier auf das Gesamtgewicht der fertigen Mikroemulsion bezogen.
Jede Mikroemulsion ist in einem bestimmten Temperaturbereich thermodynamisch stabil. Bevorzugt werden solche Mikroemulsionen, die bei Raumtemperatur und darunter thermodynamisch stabil sind. Es können aber auch in vielen Fällen solche Mikroemulsionen mit Erfolg eingesetzt werden, deren Stabilitätsbereich oberhalb Raumtemperatur, zum Beispiel zwischen 50 und 60°C liegt.
Hohe Konzentrationen an Tensiden in bekannten Reinigerflüssigkeiten führen oft zu schlechter Druckfarbenablösung. verbunden mit Tensidablagerungen auf den Druckwalzen; diese Nachteile treten mit den erfindungsgemäß eingesetzten Mikroemulsionen nicht ein.
Bei der Durchführung des erfindungsgemäßen Reinigungsverfahrens wird die Mikroemulsion auf die zu reinigenden Teile der Druckmaschine aufgebracht. Die Oberfläche der Druckfarbe wird schnell, gleichmäßig und vollständig benetzt, so daß die Druckfarbe rasch von der Reinigungsflüssigkeit aufgenommen und gelöst beziehungsweise emulgiert wird. Die verbleibenden Reste der Mikroemulsion lassen sich leicht durch Waschen mit Wasser entfernen. Das gleiche gilt für die nach Unterbrechung des Drucks auf einer zu reinigenden und zu konservierenden Druckform, insbesondere einer Offset- oder Hochdruckform verbliebenen Farbreste. Wichtig ist hier vor allem die vollständige Entfernung von Farbresten von den Nichtbild- oder Hintergrundstellen der Druckform, auf denen zum Beispiel beim Flach- oder Offsetdruck bei Wiederaufnahme des Druckvorgangs die erforderliche Hydrophilie erhalten bleiben muß. Als Druckform wird im Rahmen dieser Beschreibung eine druckfertige Druckplatte bezeichnet, die in der Regel durch Belichten und Entwickeln einer lichtempfindlichen Druckplatte erhalten wird.
Die erfindungsgemäß eingesetzten Mikroemulsionen eigenen sich auch zur Reinigung von anderen Substanzen, z. B. von Kunststoffen, Altlackierungen, Grundierungen und blanken Metallblechen. Sie können z. B. als Reinigungsmittel im Bereich der Autotreparaturlackierungen sowie als Pinselreiniger eingesetzt werden.
Die folgenden Beispiele erläutern Ausführungsformen des erfindungsgemäßen Verfahrens und für dabei eingesetzte Mikroemulsionen sowie deren Herstellung.
Herstellungsbeispiel 1
Durch Vermischen von 10 g Dioctylsulfosuccinat (Natriumsalz), 7 g eines Polyglykolmonoalkylethergemischs mit ca. 5 Oxyethyleneinheiten und einer C10-C13-Alkylethergruppe. 46 g eines C8-C18-Fettsäuremethylestergemischs, 37 g Wasser und 0,07 g Calciumchlorid und kurzes Schütteln des Gemischs wurde eine bei Raumtemperatur thermodynamisch stabile und visuell transparente Mikroemulsion niedriger Viskosität erhalten.
Herstellungsbeispiel 2
Eine Mikroemulsion, die bei Raumtemperatur stabil ist, wurde wie im Herstellungsbeispiel 1 beschrieben, jedoch aus 8 g Dioctylsulfosuccinat,
16 g des gleichen Polyglykolmonoalkylethergemischs, 15 g Rapsölfettsäuremethylester, 15 g Kokosfettsäure-2-ethyl-hexylester, 46 g Wasser und
0,07 g Calciumchlorid hergestellt.
Herstellungsbeispiel 3
Aus 14 g Dioctylsulfosuccinat, 34,5 g Sojaöl und 51,5 g Wasser wurde durch Vermischen wie im Herstellungsbeispiel 1 eine Mikroemulsion erhalten. Sie war im Temperaturbereich von 55 bis 58°C thermodynamisch stabil und visuell transparent.
Herstellungsbeispiel 4
17,0 g Dioctylsulfosuccinat wurden in 41,5 g Wasser gelöst und die Lösung mit 415 g Decan vermischt. Die Mischung bildet im Temperaturbereich von 51 bis 56°C eine thermodynamisch stabile visuell transparente Mikroemulsion niedriger Viskosität.
Die Mikroemulsionen der Herstellungsbeispiele 3 und 4 sind außerhalb der angegebenen Temperaturbereiche nicht dauernd stabil und trennen sich nach längerem Stehen bei Raumtemperatur in eine Öl- und eine Wasserphase auf. Die Mikroemulsionen der Herstellungsbeispiele 1 und 2 gestatten dagegen einen Gebrauch von unbeschränkter Dauer bei Raumtemperatur.
Anwendungsbeispiel 5
In einem Vergleichsversuch wurden die Walzen einer Rotations-Offsetdruckmaschine nach jeweils 100.000 Drucken mit handelsüblicher Offsetdruckfarbe auf Ölbasis einmal mit Testbenzin (überwiegend aliphatische Kohlenwasserstoffe mit einem Siedebereich von 80 bis 250°C) und einmal mit der Mikroemulsion von Herstellungsbeispiel 1 gereinigt. In beiden Fällen war die Reinigungsleistung, d.h. die Entfernung der Druckfarbe, im wesentlichen gleich. Bei Verwendung der Mikroemulsion waren die Walzen nach der Reinigung sauberer und trockener als bei Verwendung von Testbenzin. Auch konnten die Reste der Mikroemulsion leicht und rückstandsfrei durch einfaches Abspülen mit Wasser entfernt werden.
In gleicher Weise wurde die beim Druckvorgang eingesetzte Offsetdruckform mit beiden Reinigerfiüssigkeiten behandelt. In beiden Fällen wurde eine saubere, von Farbresten befreite Druckschablone erhalten. Die mit der Mikroemulsion gereinigte Druckform wurde von der danach aufgebrachten wäßrigen Lösung von Gummi arabicum glatt und vollständig benetzt, während diese Lösung auch von der die Nichtbildstellen bildenden Trägeroberfläche der mit Testbenzin gereinigten Druckform nur schwer und erst nach längerer intensiver Behandlung angenommen wurde.

Claims (7)

  1. Verfahren zum Reinigen von Druckmaschinen oder Druckformen, bei dem man die Verunreinigungen von den zu reinigenden Oberflächen durch Waschen mit einer Flüssigkeit entfernt, dadurch gekennzeichnet, daß die Flüssigkeit eine bikontinuierliche Mikroemulsion ist, enthaltend
    a) 20 bis 60 Gew.-% eines C1-C20-Alkylesters einer gesättigten oder ungesättigten C6-C25-Fettsäure als mit Wasser nicht mischbares organisches Lösemittel,
    b) 30 bis 60 Gew.-% Wasser,
    c) 7 bis 25 Gew.-% Tensid,
    wobei das Volumenverhältnis von Wasser zu organischer Phase 40 : 60 bis 60 : 40 beträgt und die Grentflächenspannung zwischen Wasser und organischer Phase im Bereich von 10-4 bis 10-6 N/m liegt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man das Waschen in einem Temperaturbereich durchführt, in dem die Mikroemulsion thermodynamisch stabil ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als grenzflächenaktives Mittel ein anionisches Tensid eingesetzt wird.
  4. Verfahren nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß die Mikroemulsion zusätzlich ein nichtionisches grenzflächenaktives Mittel Mittel enthält.
  5. Verfahren nach einem der Ansprüche 1 - 4, dadurch gekenzeichnet, daß in dem Wasser ein Elektrolyt gelöst ist
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Elektrolyt ein wasserlösliches Alkali- oder Erdalkalisalz ist
  7. Verfahren nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, daß in dem Wasser ein Komplexbildner oder ein Korrosionsinhibitor gelöst ist.
EP99925019A 1998-05-29 1999-05-20 Verfahren zum reinigen von druckmaschinen und druckformen Expired - Lifetime EP1082228B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19824236A DE19824236A1 (de) 1998-05-29 1998-05-29 Verfahren zum Reinigen von Druckmaschinen und Druckformen
DE19824236 1998-05-29
PCT/EP1999/003479 WO1999062723A1 (de) 1998-05-29 1999-05-20 Verfahren zum reinigen von druckmaschinen und druckformen

Publications (2)

Publication Number Publication Date
EP1082228A1 EP1082228A1 (de) 2001-03-14
EP1082228B1 true EP1082228B1 (de) 2002-04-03

Family

ID=7869413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99925019A Expired - Lifetime EP1082228B1 (de) 1998-05-29 1999-05-20 Verfahren zum reinigen von druckmaschinen und druckformen

Country Status (9)

Country Link
US (1) US6544348B1 (de)
EP (1) EP1082228B1 (de)
JP (1) JP4343435B2 (de)
AT (1) ATE215453T1 (de)
AU (1) AU746240B2 (de)
CA (1) CA2332584C (de)
DE (2) DE19824236A1 (de)
DK (1) DK1082228T3 (de)
WO (1) WO1999062723A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10258668A1 (de) * 2002-12-13 2004-06-24 Basf Ag Verfahren zur Herstellung von Flexodruckformen mittels Lasergravur unter Verwendung von fotopolymeren Flexodruckelementen und fotopolymerisierbares Flexodruckelementen
US20060264350A1 (en) * 2004-05-05 2006-11-23 Bba Nonwovens Simpsonville Inc. Printing blanket cleaning material
US7037882B2 (en) * 2004-05-05 2006-05-02 Bba Nonwovens Simpsonville, Inc. Composition and material for cleaning printing machines
US20050256022A1 (en) * 2004-05-12 2005-11-17 May Choo Y High performance cleaning agent
DE102004025364A1 (de) 2004-05-19 2005-12-08 Basf Drucksysteme Gmbh Verfahren zur Herstellung von Flexodruckformen mittels Laser-Direktgravur
US20080287331A1 (en) * 2007-05-18 2008-11-20 Hai-Hui Lin Low voc cleaning composition for cleaning printing blankets and ink rollers
CN101434764B (zh) * 2007-11-15 2010-12-01 中国石油化工股份有限公司 一种油墨清洗剂
EP2065211B1 (de) * 2007-11-30 2010-05-26 Agfa Graphics N.V. Verfahren zur Behandlung einer Lithografiedruckplatte
ATE514561T1 (de) * 2008-03-31 2011-07-15 Agfa Graphics Nv Verfahren zur behandlung einer lithografischen druckplatte
KR20110008210A (ko) * 2008-05-09 2011-01-26 로디아 오퍼레이션스 그린 용매를 포함하는 세정 조성물 및 사용 방법
JP2010234554A (ja) * 2009-03-30 2010-10-21 Fujifilm Corp 印刷版の作製方法
RU2542993C2 (ru) * 2009-12-16 2015-02-27 Юнилевер Н.В. Бинепрерывная микроэмульсионная моющая композиция
EP2361963A1 (de) * 2010-02-01 2011-08-31 Unilever N.V. Bikontinuierliche Mikroemulsions-Waschmittelzusammensetzung
DE102015011694A1 (de) * 2015-09-14 2017-03-16 Forschungszentrum Jülich GmbH Reinigungsmittel auf Mikroemulsionsbasis

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100096A (en) 1976-06-04 1978-07-11 Addressograph Multigraph Corp. Cleaner for hydrophilic metal surfaces of lithographic duplicators
US4399243A (en) 1980-12-12 1983-08-16 Richardson Graphics Company Cleaner and scratch remover composition
US5380453A (en) * 1988-09-26 1995-01-10 Unichema Chemie B.V. Composition comprising alkyl esters of aliphatic (C8 -C22) monocarboxylic acids and oil in water emulsifier
DK533188D0 (da) 1988-09-26 1988-09-26 Aarhus Oliefabrik As Anvendelse af (c1-c5) alkylestere af alifatiske (c8-c22) monocarboxylsyrer til afrensning af fedt, maling, trykfarver o.l. og rensemiddel indeholdendesaadanne estere
GB9101850D0 (en) * 1991-01-29 1991-03-13 Du Pont Howson Ltd Improvements in or relating to printing
US5213624A (en) * 1991-07-19 1993-05-25 Ppg Industries, Inc. Terpene-base microemulsion cleaning composition
DE4126719A1 (de) 1991-08-13 1993-02-18 Baldwin Gegenheimer Gmbh Nichtionisches fluessiges drucktuchwaschmittel fuer die maschinelle gummituchreinigung in offsetdruckmaschinen
NZ264113A (en) 1993-08-04 1996-06-25 Colgate Palmolive Co Liquid crystal or microemulsion liquid cleaners containing esterified polyethoxyether nonionic surfactant, anionic surfactant, cosurfactant, optionally a fatty acid, and water-insoluble hydrocarbon or perfume

Also Published As

Publication number Publication date
DK1082228T3 (da) 2002-07-08
CA2332584C (en) 2007-11-20
ATE215453T1 (de) 2002-04-15
EP1082228A1 (de) 2001-03-14
WO1999062723A1 (de) 1999-12-09
DE59901125D1 (de) 2002-05-08
CA2332584A1 (en) 1999-12-09
JP2002516776A (ja) 2002-06-11
US6544348B1 (en) 2003-04-08
AU4145199A (en) 1999-12-20
JP4343435B2 (ja) 2009-10-14
DE19824236A1 (de) 1999-12-02
AU746240B2 (en) 2002-04-18

Similar Documents

Publication Publication Date Title
EP1082228B1 (de) Verfahren zum reinigen von druckmaschinen und druckformen
EP2828370B1 (de) Reinigungsmittel auf mikroemulsionsbasis
DE69205184T2 (de) Druckverfahren.
DE69126648T2 (de) Verfahren zum Reinigen
DE2323605B2 (de) Fleckenentfernungsmittel
DE69730340T2 (de) Lack- und flecken-entferner in einem schleifapplikator für harte oberfläche
US20140018277A1 (en) Mixture comprising an alkyl polyglucoside, a cosurfactant and a polymer additive
DE69217486T2 (de) Verfahren zur reinigung gestrichener harter oberflaechen mit reinigungsmitteln, die wenig fluechtige organische verbindungen enthalten
DE3149258A1 (de) Reinigungs- und kratzerbeseitigungs-zubereitung, verfahren zu ihrer herstellung und deren verwendung
EP1470208B1 (de) Alkylglykolalkoxylate oder -diglykolalkoxylate, ihre mischungen mit tensiden und ihre verwendung
EP3350307A1 (de) Reinigungsmittel auf mikroemulsionsbasis
DE69405574T2 (de) Reinigungsmittel
WO2000039270A1 (de) Wässriges mehrphasiges reinigungsmittel
EP1027221B1 (de) Verwendung von alkylpolyglycosiden in druckfarbenreinigern
DE4025039C2 (de)
DE4441144C2 (de) Reinigungsmittel für die Druckereitechnik
DE4228461C1 (de) Reinigungsmediumzusammensetzung
EP1280877B1 (de) Silikon-entferner
EP1657594B1 (de) Verfahren zur Hydrophilierung von Siebruckschablonenträgern sowie Verfahren zur Entfernung von Schablonenmaterial von einem Siebdruckschablonenträger und Entschichtungsflüssigkeit hierfür
WO1999011745A1 (de) Reinigungs- und wasserbehandlungsverfahren
DE102007020426A1 (de) Mischung, welche ein Alkylpolyglucosid, ein Cotensid und ein polymeres Additiv umfasst
DE29809172U1 (de) Reinigungs-, Polier- und Konservierungsmittel
DE69300217T2 (de) Verfahren zur Entfettung einer Vielzahl von Objekten.
DE10313461A1 (de) Reinigungslösung und Reinigungsverfahren für Lackleitungen und/oder Lackauftragsgeräte
DE19517815A1 (de) Flüssiges wasserhaltiges Mittel zur Reinigung von textilen Oberflächen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010608

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF DRUCKSYSTEME GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20020403

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020403

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020403

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020403

REF Corresponds to:

Ref document number: 215453

Country of ref document: AT

Date of ref document: 20020415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59901125

Country of ref document: DE

Date of ref document: 20020508

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020520

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020703

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020702

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021030

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1082228E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: XSYS PRINT SOLUTIONS DEUTSCHLAND GMBH

Free format text: BASF DRUCKSYSTEME GMBH#SIEGLESTRASSE 25#70469 STUTTGART (DE) -TRANSFER TO- XSYS PRINT SOLUTIONS DEUTSCHLAND GMBH#SIEGLESTRASSE 25#70469 STUTTGART (DE)

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: XSYS PRINT SOLUTIONS DEUTSCHLAND GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110525

Year of fee payment: 13

Ref country code: SE

Payment date: 20110527

Year of fee payment: 13

Ref country code: FR

Payment date: 20110607

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110531

Year of fee payment: 13

Ref country code: BE

Payment date: 20110530

Year of fee payment: 13

Ref country code: GB

Payment date: 20110525

Year of fee payment: 13

Ref country code: DK

Payment date: 20110525

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110527

Year of fee payment: 13

BERE Be: lapsed

Owner name: *XSYS PRINT SOLUTIONS DEUTSCHLAND G.M.B.H.

Effective date: 20120531

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120521

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59901125

Country of ref document: DE

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120520

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201