[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1073823A1 - Method and device for linking surface to the seabed for a submarine pipeline installed at great depth - Google Patents

Method and device for linking surface to the seabed for a submarine pipeline installed at great depth

Info

Publication number
EP1073823A1
EP1073823A1 EP00906407A EP00906407A EP1073823A1 EP 1073823 A1 EP1073823 A1 EP 1073823A1 EP 00906407 A EP00906407 A EP 00906407A EP 00906407 A EP00906407 A EP 00906407A EP 1073823 A1 EP1073823 A1 EP 1073823A1
Authority
EP
European Patent Office
Prior art keywords
float
riser
vertical
tower
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00906407A
Other languages
German (de)
French (fr)
Other versions
EP1073823B1 (en
Inventor
Régis PIONETTI
Xavier Rocher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saipem SA
Original Assignee
Bouygues Offshore SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bouygues Offshore SA filed Critical Bouygues Offshore SA
Publication of EP1073823A1 publication Critical patent/EP1073823A1/en
Application granted granted Critical
Publication of EP1073823B1 publication Critical patent/EP1073823B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/015Non-vertical risers, e.g. articulated or catenary-type

Definitions

  • the present invention relates to a method and a device for bottom-surface connection by underwater pipe installed at great depth.
  • the technical sector of the invention is the field of manufacturing and installation of production risers for the underwater extraction of oil, gas or other soluble or fusible material or a suspension of mineral material to from submerged wellheads for the development of production fields installed in the open sea off the coast.
  • the main application of the invention being in the field of petroleum production.
  • the present invention relates to the known field of type connections comprising a vertical tower anchored on the bottom and composed of a float located at its top and connected by a pipe, taking by its own weight the shape of a chain, up to a floating support installed on the surface.
  • This floating support generally comprises anchoring means to remain in position despite the effects of currents, winds and swells. It also generally comprises means for storing and processing petroleum as well as means for unloading towards tanker-lifters, the latter being present at regular intervals to carry out the removal of production.
  • the name of these floating supports is the English term “Floating Production Storage Offloading” (meaning “floating means of storage, production and unloading”) whose abbreviated term “FPSO” will be used throughout the description next.
  • FPSOs are either anchored by a series of anchor lines starting from each of the angles of the floating support, in which case the FPSO keeps a substantially constant heading whatever the environmental conditions, or is connected to a reel secured to the structure of the FPSO, said reel being anchored by a series of anchor lines. In the latter case, the FPSO is free to turn around the reel, the latter keeping a constant heading; the FPSO then takes a course corresponding to the result of the forces due to wind, current and swell on the hull of the ship.
  • the bottom-surface links described arrive, in the case of an FPSO anchored therefore with a substantially constant heading, generally on the edge of the ship (example of FIG. 2) and in the case of an FPSO on a reel, on the reel itself (example in Figure 6).
  • the bottom-surface connection pipe can be produced by continuously raising the pipes laid at the bottom, directly towards the FPSO, giving a chain configuration of which the he angle with the vertical, at the level of the FPSO, is generally 3 to 15 degrees (catenary riser).
  • These connections are imperatively made by means of flexible pipes when the water depth is less than a few hundred meters, but as soon as the depth reaches and exceeds 800 to 1000 m, the flexible pipes can be replaced by resistant and rigid pipes. made of tubular elements welded or screwed together made of rigid material, such as composite material or very thick steel.
  • Step Catenary Riser meaning “steel riser in the form of chain” of which the abbreviated term “SCR” will be used in the present description whether it is made of steel or other material such as composite.
  • a flexible pipe and a rigid SCR type riser subjected only to gravitational forces, of the same height and having, at the point of attachment to the FPSO, the same angle relative to the vertical ', will have an identical curvature on their entire length in suspension. Mathematically, this curve is perfectly defined and is called chain. However, SCRs are much simpler than flexible pipes technically and much less expensive. Flexible pipes are indeed complex and costly structures made from multiple spiral metal sheaths and composite materials.
  • the water depth of some oil fields exceeds 1,500m and can reach 2,000 to 3,000m.
  • the tension induced at the level of the FPSO by each of the SCRs can reach 250 to 300 tonnes and the large number of risers made necessary for the development of certain fields, leads to considerably strengthening the structure of said FPSOs and creating imbalances if the loads on port and starboard are different.
  • the chain formed by the SCR changes and the point of contact at ground level moves from front to back and from left to right, at the same rate q. ue the FPSO, resting or lifting a portion of the pipe.
  • Hybrid Riser Tower because it involves two technologies, on the one hand a vertical part, the tower, in which the riser consists of vertical rigid pipes, on the other hand the upper part of the riser consisting of flexible chains in a chain connecting the top of the tower with the FPSO.
  • the FPSO is generally anchored by a multitude of lines connected to a system of anchors resting on the sea bottom.
  • This anchoring system creates restoring forces which keep the FPSO in a neutral position.
  • the bottom-surface connections create additional vertical and horizontal forces which have the effect of moving the axis of the FPSO relative to said neutral position.
  • the position of the FPSO corresponds to a position PO called the reference position.
  • the reference position Under the combined effect of the environmental conditions, on the one hand on the hull of the FPSO and on the other hand on the various constituent elements of the risers, the FPSO will move, relative to this reference position, in proportion to the value of the result of all the forces applied to the system.
  • the tower configuration associated with a chain has a great capacity to absorb the excursions of the FPSO, while minimizing the movements at the level of the tower and the deformations of the chains.
  • the internal structure of the hoses is very complex and their cost very high, which is why, in the previous embodiments of hybrid towers, it is sought to raise the tower as close as possible to the surface, while avoiding the zones of turbulence. at the surface, that is to say at depths generally less than 200 m, preferably of the order of 50 m.
  • This makes it possible to implement reduced lengths of flexible pipes and therefore less costly, but also and above all, this makes it possible to make the connections of the flexible pipes at the top of the tower more accessible to divers.
  • the problem is therefore to be able to make and install such bottom-surface connections for underwater pipes at great depths, such as beyond 1,000 meters for example, and of the type comprising a vertical tower anchored on the bottom of the sea and whose float located at its top is connected to a floating support installed on the surface, by a pipe in the form of a chain, limiting the forces on the floats and the pipes connecting it to the floating support, all of the device having to be able to withstand stresses and fatigue while accepting large displacements of the surface support and without requiring considerable and too expensive structures, and the installation of which must be able to be facilitated and be reversible to be easily maintained and replaced.
  • connection device for a submarine pipe installed at great depth, comprising on the one hand a vertical tower made up of at least one float associated with an anchoring system and carrying at least one riser. vertical connecting the float to the bottom of the sea and being able to connect to underwater pipes lying at the bottom of the sea and, on the other hand at least one connection pipe from said float to any surface support such as according to the present invention said connection pipe is a riser the wall of which is a rigid resistant tube, in particular made of steel or composite material.
  • the minimum tolerable radius of curvature is 10 to 100 times greater than that of a flexible pipe.
  • the radius of curvature of a rigid steel pipe must generally be greater than approximately 100 m.
  • the float is installed at the top of the tower, at a greater distance from the surface of the water, in particular at a depth below the last thermocline, the latter being defined below, preferably at least 100 m below the last thermocline.
  • the float is installed at the top of the tower at least 300 m from the surface of the water, preferably at least 500 m from the surface of the water, more preferably at a depth greater than half the depth. of water to which the tower is anchored.
  • the submerged structure represents a less considerable structure and therefore less costly, and the floats required for its tensioning are less important and therefore less costly - and this despite the increase in the apparent weight in the water of the pipe linked to the increase in its length - because of the fact that there is little or no rise in the chain towards the float, the weight of the rigid pipe in a chain is essentially supported directly by the FPSO.
  • maintaining a tower of a certain height, in particular at least 50m, preferably 100m is advantageous because the tower, due to its mobility, contributes to damping the system under the effect of the movements of the FPSO.
  • the anchoring system comprises at least one vertical tendon, a lower base to which the lower end of the tendon is fixed and at least one guide through which the lower end of said vertical riser passes.
  • the .guide can be on the base.
  • said tendon also includes guide means distributed over its entire length, through which at least said vertical riser passes.
  • Said base can be simply placed on the bottom of the sea and remaining in place by its own weight, or can be anchored by means of batteries or any other device capable of holding it in place; the float is connected to this base via a flexible link located at the bottom, and an axial link consisting either of a cable or of a metal bar or even of a pipe. This axial link is called “tendon" in the present description.
  • the upper end of said vertical riser is suspended through at least one guide secured to said float, disposed within or at its periphery, said upper end of the vertical riser is connected by the top of said float to the the bent end of said connecting pipe, and the lower end of the vertical riser is capable of being connected to the end of a sleeve, also bent, mobile, between a high position and a low position, with respect to said base, to which this cuff is suspended and associated with a return means bringing it back to the high position in the absence of the riser, said return means being able to be a counterweight.
  • This mobility of the bent cuff makes it possible to absorb variations in the length of the riser under the effects of temperature and pressure.
  • a stop device integral with it comes to rest on the support guide installed at the head of the float and thus maintains the entire riser: the latter then being suspended, its apparent weight in the water is supported by part of the buoyancy of the float.
  • said guide means distributed over the entire length of the tendon and through which said vertical riser passes comprise a cylindrical cavity preferably surmounted by a conical funnel, the inside diameter of said cylindrical cavity being greater than that of the vertical riser, and said guide means comprise a flexible membrane integral with the inner wall of said cylindrical cavity, thus creating a sealed pocket between said membrane and said internal wall, a pocket which can be filled with a fluid, preferably with very high viscosity, so as to bear against the riser.
  • friction pads are associated with said membrane and come to bear against the riser when said pocket is filled with fluid.
  • the pads thus allow the sliding of the vertical riser when its length varies under the effect of temperature and pressure.
  • the objectives of the present invention are also obtained by a linking process using, as indicated above, on the one hand, a vertical tower consisting of at least one float associated with an anchoring system and carrying at least one vertical riser capable of descend to the bottom of the sea and on the other hand at least one connecting pipe from said float to any surface support, such that, according to the present invention, said float is installed at an immersion depth situated below the last thermocline, the latter being defined and specified below, and said float is connected to the surface support by at least one rigid resistant riser constituting one of said connecting pipes.
  • a base is placed on the bottom of the sea which is secured to said bottom; it fixes the lower end of a tendon which is integral at its other upper end with said float, the assembly constituting said anchoring system of the vertical tower;
  • - Said vertical riser is gradually lowered, for example by descent from a floating support installed vertically on said float, and through one of the sets of guides thereof and until its upper end comes to bear on said float, its lower end then connecting to the upper end of a pre-installed cuff on said base.
  • the vertical riser During its descent, the vertical riser preferably passes successively in a series of guides integral with the axial link, called a tendon, and is thus maintained in a position substantially parallel to said tendon and to the other vertical risers, ie already installed in the adjacent guides, either to be installed later.
  • said float is installed at an immersion depth greater than the half-depth of water to which the tower according to the invention is anchored, which then makes it possible to assemble the entire riser beforehand. vertical and transport it vertically to the vertical of the corresponding float guide to be lowered.
  • thermocline of variable but small thickness (3 to 10m).
  • thermocline of variable but small thickness (3 to 10m).
  • This intermediate layer extends from approximately —55m to —150m and the currents are mainly thermal currents due to climatic phenomena,
  • thermocline 29 2 also of variable but small thickness ( ⁇ 10 m).
  • this transition zone the current decreases rapidly to reach the value of the lower layer, - a lower layer 183 in which the currents are weak and do not generally not more than 0.5 m / s. These currents are due to intercontinental water movements.
  • This layer begins at about —150 / —170 m and continues to the bottom 12 of the sea, that is to say to depths of up to 1,000 to 3,000 m depending on the location. In some seas, we can observe three thermoclines 29 on the upper part, but generally, the lower layer 183 starts around -170 / -200m.
  • the tower and its float according to the invention and as described below being located below this lower thermocline 29 2 are in the water section I 83 generating the stresses due to the weakest currents.
  • the float is sheltered from the effects of the swell, effects which decrease rapidly with the depth and which it is customary to neglect when one exceeds 120 to 150 m deep. The forces to which the tower is then subjected are thus considerably reduced and substantially uniform throughout its height under the effect of intercontinental background currents.
  • the device according to the invention made up of the tower-SCR assembly, will behave much better under the effect of environmental conditions not only usual, but also extreme such as the annual, decennial and centennial conditions.
  • the efforts and constraints will be reduced very significantly and the fatigue life of the various critical components will be considerably increased, which will provide better service throughout the life of the field.
  • the float being thus at a significant depth, can be connected to the FPSO by means of at least one SCR and not of a flexible connection such as it is customary to date: these SCR connections are simple and in addition, the internal structure of the SCRs, vertical risers and pipes resting on the bottom can then be identical, which simplifies the passage of cleaning scrapers.
  • the frequent passage of these cleaning scrapers is indeed essential in the case of solid deposits such as paraffin or hydrates and it must be possible to act very energetically and repeatedly without damaging the internal surface of the risers and of the pipes.
  • the float In general, the float is installed around the middle of the water, but it may be necessary to install it higher or lower to favor certain advantages that we will describe now. In all cases, the float will never be located near the last thermocline described above, but much lower, for example 100m lower, so as never to risk being subjected to the disturbances generated by the thermocline, nor to the currents existing in the upper section, in the event that disturbances of ocean currents on a planetary scale would significantly modify oceanological movements.
  • the SCR is connected to the vertical riser at the top of the float via a flexible joint which allows a significant variation in the angle between the axis of the tower and the axis of the chain at the level of said flexible joint. , without creating significant constraints in the SCR or in the top of the float.
  • This flexible joint could be either a spherical ball joint with seals, or a laminated ball joint made of a sandwich of elastomer sheets and adhered sheets, capable of absorbing significant angular movements by deformation of the elastomers, while retaining a seal perfect due to the absence of friction seals, i.e. a limited length of flexible pipe capable of providing the same service.
  • the device according to the invention will advantageously be equipped with an automatic connector located at the flexible joint, either between the tower and the flexible joint, or between the flexible joint and the FPSO.
  • an automatic connector located at the flexible joint, either between the tower and the flexible joint, or between the flexible joint and the FPSO.
  • a cable connected to the lower end of the future SCR is then handled by a RON which is the abbreviated name of the Anglo-Saxon term “Remotely Operated Vehicle” (meaning “automatic remote controlled submarine, from the surface, and of which we will use the abbreviated term RON in the present description), to be brought to the top of the tower and to be connected to traction means integral with the float and controlled for example by the RON which then supplies the necessary power while controlling the operations at the using video cameras whose signal is brought up to the surface by operators installed on the floating intervention support, the cable is then pulled and the end of the SCR equipped with the male end, for example, with an automatic connector is brought back to the female end of the same automatic connector.
  • the tower and the vertical risers are advantageously installed according to the following sequence: positioning of the base and attachment to the bottom, installation of the tendon equipped with its guides and the upper float, - transport, in vertical position , from the vertical riser assembled to the vertical of its guide located in the buoy, progressive descent of the vertical riser in its guides by controlling from the surface the descent operation, at the end of the descent, the riser's head rests on the top of the float and comprises an elbow then, for example, the flexible seal on which the female part of the automatic connector described above is fixed.
  • the lower end of the vertical riser is also advantageously equipped with an automatic connector, preferably the male part because of its smaller size, the assembly being able to be connected with the end of the underwater pipe connecting the foot of the turn to one of the well heads, said end being equipped with the female part of said automatic connector.
  • This method of installing vertical risers has the advantage of being completely reversible, since the automatic riser foot connector is also designed to be disconnected. It is thus possible, during operation, to intervene on a single riser to dismantle and replace it without disturbing the rest of the production and therefore without having to stop the production of neighboring risers and SCRs. Insofar as the float is installed at a depth greater than the half the water height, it will be possible to transport the riser completely finished vertically and to lower it through the float.
  • a pre-assembled length of the riser will be transported in a vertical position from an assembly location remote from the tower, said length being less than the height of water remaining between the surface and the top of the tower.
  • the floating intervention support will be positioned vertically above the float with an optimal length of riser already assembled, equipped at the bottom with the male portion of the automatic connector and ready to be lowered to and through the float and the various guides installed along the tendon. As you descend, the missing upper part of the riser is assembled as described above.
  • the operating method thus described makes it possible to minimize the presence of the floating intervention support in the tower area, which minimizes the risk of accident.
  • assembly methods allowing rapid and non-destructive disassembly, such as screwing, which will make it possible to extract the riser from its support, to disassemble the screws successive sections of the only upper part necessary to release the lower part of the riser from the top of the float, the floating intervention support then leaving the position with the rest of the riser in suspension, and moving towards a location remote from sensitive installations to complete maintenance operations.
  • the float In order to minimize the presence of the floating intervention support vertically above the tower, the float is advantageously installed at a level lower than the half height of water, it is thus possible for the floating intervention support to install or extract the entire riser without having to assemble or disassemble any of its components, which further reduces the risk of accident in the area of the tower and sensitive installations.
  • FIG. 1 is the representation of the entire slice of water in an oceanic configuration of Atlantic type, as described above, in which the indicative values of the currents in meters / second are indicated on the abscissa and the approximate depths of the different layers and of the corresponding thermoclines on the ordinate.
  • FIG. 2 is a perspective view of an oil field development by 1,500 m of water depth, representing the surface FPSO, a central tower for recovering petroleum effluents and two lateral water injection towers
  • Figure 3 is a sectional view of the float associated with a side view of the central tendon and two risers
  • - Figure 4 is a side view of the base of the tower comprising two risers, the central tendon and two cuffs of connection to the submarine conduits
  • FIG. 5 is a side view of the base of a mono-riser tower
  • FIG. 6 is the schematic representation, illustrating the result of a static calculation, of an FPSO anchored on reel by
  • FIG. 7 is a series of two curves representing the variations in the horizontal tension and the horizontal distance from the base for anchoring the float to the FPSO as a function of the depth of the float for a water height of 2000 m and a 8% excursion
  • Figure 8 is a series of two curves representing the variations in the excursion of the FPSO and the horizontal tension as a function of the depth of the float for a water height of 2000m and a distance between FPSO and 950m buoy
  • Figure 9 is a sectional side view of one of the riser guides relating to Figure 3
  • Figure 10 is a top view section along AA, relating to Figure 9.
  • identical or similar elements bear, unless otherwise indicated on the contrary, the same references from one figure to another.
  • FIG. 2 represents an FPSO 1 anchored on an oil field by 1500 m of water height 18, by an anchoring system not shown and comprising for example, on port side, at its plating a support system 2 for pipes SCRs of petroleum effluents 3 and of water injection pipes 4.
  • the SCRs of petroleum effluents are connected to a tower located for example - 800m from surface 19, at the upper level of float 5 having four locations passing through it , of which only two are occupied.
  • Said float is connected to the base 8 resting on the bottom of the sea, by means of a tendon 6 to which are fixed a multitude of guides 7 through which are installed risers 9 connected at the level of the base to cuffs connection 1 1 1 themselves connected to underwater pipes 10 at an intermediate connection block 13; other connection sleeves 1 1 2 are awaiting the installation of the corresponding vertical risers.
  • Two identical water injection towers consist of a float 14 installed at 1000 m from the surface and connected to the base 16 by means of a riser 15 also ensuring the function of tendon.
  • a connection sleeve 17 provides the connection between the riser base and the intermediate connection block 13.
  • the float of the tower for petroleum effluents being for example at -800m from the surface, is at a lateral distance of approximately 500m from the vertical of the plating of the FPSO for a SCR link in the form of a chain arriving at the float horizontally , which greatly facilitates installation and maintenance operations by an intervention vessel, which will not interfere with the current operations of the FPSO.
  • said intervention vessel will be able to position itself vertical to the tower and move without risking hooking the permanent anchor lines of said FPSO.
  • the float 14 of the tower for the injection of water being at -1000m from the surface, therefore lower than the previous tower will thus be 550m away from the shell of the FPSO.
  • Said float 5 consists for example of a box filled with syntactic foam and is connected to the central tendon 6 by a connecting device 20 having at its lower end a variable inertia piece 21 ensuring the transmission of stresses between tendon and float.
  • the float has hollow guides 22 vertical and aligned with the guide means 23 of the guides 7 installed at intervals, regular or not, over the height of the tendon 6 and secured to the latter by means of a hooking device 24.
  • the guides 22 can be either integrated into the within the float, either installed on its periphery or in its central part. These guides receive the vertical risers 9 shown on the left side completely installed and connected to the SCR 3 and on the right side during the start of insertion phase of the male end 25 of an automatic riser connector 9.
  • the end of said automatic connector 25 is connected to a cable 26 passing through each of the guides 22, 23, up to the base 8 of the tower at which a return pulley 27 is installed; base 8 and pulley
  • the cable 26 rises to the surface to the intervention vessel where it is kept in tension by a winch at constant tension.
  • the intervention vessel appears vertically from the tower with the riser 9 fully assembled, because the depth - 800 m of the float 5 in this embodiment is greater than the length - 700 m of the riser 9.
  • the operation of lowering the riser 9 ⁇ is carried out while maintaining the tension in the cable 26, which tension then requires the end of the automatic connector 25 to pass successively through each of the guides 23 ⁇ .
  • the tension required in the cable 26 for this operation will be all the greater the higher the angle of inclination of the tower. Indeed, during the installation of the first riser on the tower, the latter will be in a substantially vertical position. After connection of the corresponding SCR connected to the FPSO, said SCR will exert on the tower a horizontal force which will generate an angular movement of the tower relative to the vertical, oriented towards the FPSO. As the successive risers are installed, this angle will increase and the tension required in the cable 26 will increase proportionally.
  • FIG. 3 The left part of the same FIG. 3 represents the riser 9 2 installed in its guide 22: its end 30 rests on the upper part of the guide 22 and constitutes the female part of an automatic connector into which the male part 31 of said connector will be inserted, secured to an elbow 32 itself secured to a flexible joint 33 connected to the end of the SCR 3.
  • the length of the SCR is less than the height of the water and the latter is assembled outside the field by the intervention vessel, then transported pendant up to to the FPSO where it is transferred and connected at its upper end.
  • Its lower end equipped with the flexible joint 33, the elbow 32 and the male part 31 of the automatic connector is connected to a cable, the second end of which is transferred by the RON to drawing means, not shown, integral with the float and the power is, for example, supplied by or through the RON.
  • the pulling of the cable from the float puts the pipe in the form of a chain and when the male end piece 31 is near the corresponding female part 30, the two parts are assembled by means, not shown, known to the man of the art in the field of hydraulic and pneumatic connectors.
  • a stop 34 is installed on the float 5 which comes to bear on a flange secured to the elbow 32 so as to take up the horizontal forces generated by the SCR and to avoid rotations of the assembly and in particular of the elbow around the axis 36 of the risers 9.
  • FIG. 4 is a side view of the base 8 of a multi-riser tower consisting of a weighted base plate 40, resting on the ground 12 from the sea bottom and supporting a metal structure comprising guides 41, a central flexible joint 42 capable of receiving the lower end of the tendon 6.
  • Two risers 9 are shown, on the left the riser 9 ⁇ is connected at the male part 25 ⁇ of its automatic connector, to the female part 44 ⁇ of the same connector secured to the connection sleeve 1 11 to underwater pipes not shown.
  • the riser 9 can expand by sliding in the various guides 7 distributed along the tower. In the lower part, the movement of the lower end can reach several meters in extreme variations: also the 9 ⁇ riser. associated with its cuff 11 2 are free to move vertically in the guides 411 and 49 ⁇ secured to the structure of the base 8.
  • a counterweight system consisting of a mass 48 ⁇ of a cable 46 ⁇ turned around a pulley 45 ⁇ secured to the frame of the base 8 is connected to a reinforcement 50 ⁇ of the cuff 1 11 at the point of attachment 47 ⁇ .
  • This counterweight is dimensioned to maintain, in the absence of the riser 9 ⁇ , the cuff in the high position, the reinforcement 50 ⁇ then comes into abutment with the structure of the base 8 at the level of the guide 49 ⁇ .
  • This high position is detailed in the right part of the figure which shows a riser 9 2 during descent, after passage of the male part 25 2 of the automatic connector through the last guide 41 2 .
  • the cable 26 kept in tension from the surface and used to pull the end of the riser through the various guides was disconnected by the RON.
  • the riser 9 2 is then lowered until the male part 25 2 enters the female part 44 2 .
  • the sleeve 1 1 2 is always in the high position because the counterweight 48 2 is dimensioned to support at least the self-weight of said sleeve plus the vertical force necessary for the engagement phase.
  • the riser 9 can descend until its upper part rests on the float, the cuff 11 then being in the low position and the counterweight being lifted accordingly.
  • the ROV will operate the unlocking of the automatic connector 25 2 -44 and during the extraction of the riser, the cuff will return to the high position thanks to the action counterweight 48 2 .
  • the reinstallation of the riser 9 2 after repair will be carried out in the same way as the initial installation, since the device according to the invention is entirely reversible.
  • Figures 9 and 10 detail a guide means 7 of a riser 9, said guide means being secured, at a hooking piece 24, a tendon 6 not shown.
  • the guide means 7 consists of a cylindrical pocket 7a surmounted by a conical funnel 7b allowing the guide, during the positioning of the riser, of the male part of an automatic connector not shown. Said connector being of a diameter greater than that of the riser 9, the guide must be of a diameter significantly greater than that of the riser 9.
  • the guide means 7 is advantageously provided with 'A device adjustable in diameter for adjusting the inner diameter of the cylindrical pocket 7a. During the installation or removal of the riser, the device is fully retracted, so that the cylindrical pocket 7a has a maximum diameter and it is completely expanded when the riser is in operational configuration.
  • the adjustable device consists of a flexible membrane 60 integral with the cylindrical guide means 7a via high and low crimping rings 61, which creates a sealed pocket 62 capable of receiving a fluid through a orifice 63 provided with an isolation valve 64.
  • a multitude of pads 65a - 65b, for example 6 or 8 pads are integral with the membrane 60 and come to bear with the riser 9 when the pocket 62 is completely filled.
  • the membrane 60 associated with the shoe 65b is shown in the retracted position, while it is represented associated with the shoe 65a in the active position in the right part, say in contact with the riser.
  • the pocket 62 is in communication with an outer chamber limited by a membrane 66 which is itself kept sealed by two straps 67, an orifice 68 bringing the two chambers into communication.
  • a membrane 66 which is itself kept sealed by two straps 67, an orifice 68 bringing the two chambers into communication.
  • a fluid with very high viscosity such as a shooting grease, charged or not, allows the assembly to play the role of shock absorber by absorption of energy, which prevents the appearance of vibratory phenomena in the riser subject to the effects of current.
  • the inflation, deflation or pressure adjustment phases are carried out using the manipulator arms and pumps on board the intervention RONs.
  • the outer membrane 66 acts as a visual witness, which makes it possible, without additional measurement, to know the state of the damping guide, by simple inspection using the cameras available on the RONs.
  • Figure 5 is the side view of the lower part of a mono-riser tower consisting of a base 16 resting on the ground 12 and supporting the elbow connection cuff 17 at the end of which is installed a flexible joint 37 itself connected to the female part 38 of an automatic connector.
  • the riser 15 is equipped at its base with the male part 39 with the same automatic connector.
  • the riser 15 also plays the role of tendon and the automatic connector 38-39, as well as the flexible joint 37 are dimensioned to take up the tension generated by the pressurized fluid added. of the voltage created by the float 14 and the environmental conditions on the SCR 4 - tower assembly.
  • FIG. 6 schematically represents two positions of an FPSO, anchored on a reel, and obtained from the results of a calculation carried out in static, without taking into account the dynamic effects, for an oil field installed by 2,000 m of bottom and with the float 5 of the tower according to the invention positioned at a depth of 1000 m: the apparent linear weight in water of the SCR 3 and of the single vertical riser 9, acting as tendon, considered full of oil, was taken into account for a value of 97.96 kg / m, and the net buoyancy at the level of float 5 at a value of 180 tonnes (buoyancy of the float-apparent weight in water of float 5, tendon and riser (s) (s) vertical 9); the SCR 3 and the vertical riser 9 are made of the same material and a configuration of the same type, such as with a diameter of 10.25 inches and a thickness of 1 inch with a longitudinal rigidity considered infinite and a given insulation; seawater is considered with a density of 1033 kg / m 3 .
  • the minimum radius of curvature of the SCR3 is 506m with a head angle ⁇ l of 19 ° for a tension of 157 tonnes and an angle ⁇ l at the bottom of 15 ° for a horizontal tension of 51 tonnes;
  • the developed length of the riser 3 is 1,322 m for an immersion of the float 5 of 1,019 m;
  • the header angle ⁇ 1 of the stretched riser 9 is 15 ° and the horizontal distance from the FPSO 1 to the base 8 of the riser is 1027 m.
  • the minimum radius of curvature of the SCR3 is 300 m with a head angle ⁇ 2 of 13 ° for a tension of 133 tonnes and a base angle ⁇ 2 of - 10 ° and a horizontal tension of 30 tonnes;
  • the developed length of SCR 3 is of course the same as in the above position, namely 1,322 m and the immersion of float 5 is 1,000 m;
  • FIG. 7 represents on the basis of the hypotheses detailed in FIG. 6 the variations in horizontal tension and in the distance L from the base 8 to the FPSO 1 as a function of the depth of the float 5. It is thus observed that for an increase in the depth of float 5, the horizontal tension decreases and presents a minimum for - 1400 m. In addition, for a depth between - 1,000 and - 1,800 m, the tension is between 52 and 53 tonnes, therefore substantially constant. Likewise, the distance L to FPSO 1 represents a maximum value for - 1,400 m and remains substantially constant around - 950 / - 960 m for a depth between - 1,000 and - 1,800 M.
  • FIG. 8 represents on the basis of the detailed hypotheses of FIG. 6 the variations of the excursion of the FPSO and of the horizontal tension as a function of the depth of the float 5 and for a distance of the FPSO 1 and base 8 of 950 m (position PO). The calculation was made on the basis of an 8% excursion corresponding to a float depth of 1000 m.
  • the location of the float 5 at a depth greater than the half height of water has a great advantage for the stability of the system and therefore for its resistance to fatigue throughout the life of the field. It thus appears that for the development of fields requiring a multitude of turns, by locating the floats in the lower half slice of water, there will be a great latitude of choice as to the position of the floats, leading to small variations in the horizontal forces and of the tower-FPSO distance. By proceeding in this way, a multiplicity of tower-SCRs assemblies can be positioned in space, avoiding interference between the floats and the SCRs between them, which increases the safety and performance of the installations during the life of the field.
  • male parts and female parts of the automatic connectors have been described in a given position, but they can, without changing the character of the invention, be reversed. In the same way, the position of the automatic connector and of the adjacent flexible joint can be reversed without changing the character of the invention.
  • a tower increases the excursion capacity of the FPSO around its average position, while a large SCR improves the damping of the system.
  • the mathematical curve represented by the chain constituted by a line of linear mass and constant inertia presents, from the FPSO towards the float, a constant variation of its curvature, which has a minimum value (maximum radius of curvature) at the level of the FPSO, then increases towards a maximum value (minimum radius of curvature) at the level of the float.
  • the FPSO subject to environmental conditions, will transmit its movements to the assembly made up of the SCR (s) and the tower.
  • Excitation of the SCR will lead to overall movements of said SCR generating localized variations in radius of curvature which will generate transverse movements which will have the effect of absorbing part of the energy.
  • large amplitude SCRs will absorb maximum energy over their entire length and the transfer of excitation energy to the float will be minimized.
  • the SCR thus plays, vis-à-vis the tower, the filter role for the excitation movements generated by the FPSO.
  • the tower favorable for improving excursion capacity for low angular variations, is a poor shock absorber and moreover it is subject to vibrations generated by vortex phenomena (vortex), this is why the device according to the invention consists in installing the tower and its float at great depth, in an area where the currents are stable and the vortex effects are weak.
  • the SCR behaves with respect to the FPSO like a conventional SCR, without however presenting the drawbacks existing in the prior art and linked to the formation of a stain at the point of contact and the risks of damage to the SCR in this zoned.
  • the presence of articulated joints at the level of the FPSO and at the level of the tower float facilitates the excitations of the chain, which will lead to energy absorption, therefore to overall damping, while minimizing the transmission of forces at the level of the ends, both at the FPSO and at the tower float, by removing the embedding.
  • a tall tower will be preferred if you are looking for a high-performance insulation system such as a pipe-in-pipe.
  • the pipe-in-pipe concept consists of two concentric pipes between which an insulation system is installed.
  • This insulation system can be polyurethane foam, syntactic foam or even a gas at absolute pressure which can vary from the pressure prevailing at the bottom, for example, to absolute vacuum, the latter having the best level of performance in terms of insulation.
  • the syntactic foam consists of microspheres, generally glass coated in a matrix of crosslinkable materials of epoxy or polyurethane type.
  • Such a pipe-in-pipe system is expensive and has a certain complexity of implementation because it generally consists of elements 12 or 24 m in length assembled by welding or by screwing.
  • the fluid arriving at the bottom of the tower at a temperature for example 55 ° C.
  • it will lose during its journey in the tower a few degrees, for example 4-5 ° C., essentially due to the depressurization of the effluent on a path representing for example 45% of the water height and, on the course of the SCR representing the complement, i.e. 55% of the water height, it will still lose a few degrees, for example 7-9 ° C due in part to insulation less efficient and partly due to the depressurization of the effluent.
  • the fluid will thus have lost a total of 11 to 14 ° C using two insulation systems having very different performance levels, because the objective sought is an optimization of the overall insulation assembly based on lifetime and cost criteria.
  • a tall tower will also be preferred in the event that gas plugs tend to form in the riser. Indeed, such plugs are followed by a liquid front which can move at very high speeds and inherently causing internal phenomena of the type water hammer. These phenomena are reflected on the SCR and go back to the FPSO by creating internal pressure fronts within the fluid. Such water hammer within vertical risers can generate loads of several tonnes at the ends. These efforts will then occur at the level of the float, the overall mass of which can reach 100 to 200 tonnes, which makes the consequences of such phenomena on the riser system insignificant. We thus consider that the effects of such water hammer are second order when they occur on the vertical tower whereas they are first order when they occur within a SCR of the same height.
  • the central tendon will advantageously be replaced by a pipe through which the injection water will circulate.
  • water injection risers are generally very limited in number and are connected at sea level to multiple branches from which submarine pipes reach the water injection wells.
  • This tendon pipe will perform a double function, an option which although possible in the case of the production of petroleum effluents is not desirable since maintenance operations then require disassembly of the float-pipe-tendon assembly.
  • the device according to the invention advantageously makes it possible to install around the FPSO a multiplicity of turns independent of each other and located at different depths, which has the advantage of locating the foot of each of them at horizontal distances of the FPSO the larger the deeper the float.
  • This arrangement allows a large number of underwater pipes to converge towards each of the tower feet, without interfering with the neighboring tower feet or their associated underwater pipes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Underground Or Underwater Handling Of Building Materials (AREA)

Abstract

The present invention relates to a bottom-to-surface link system for an underwater pipe installed at great depth, the system comprising:firstly a vertical tower constituted by at least one float (5, 14) associated with an anchor system (6, 8, 16) and carrying at least one vertical riser (9, 15) suitable for going down to the sea bed (18); andsecondly at least one link pipe (4, 3) extending from said float (5, 14) to a surface support (1). According to the invention, said link pipe is a riser whose wall is constituted by a rigid steel tube, and said float (5, 14) is installed at a depth situated below the last thermocline (29).

Description

PROCEDE ET DISPOSITIF DE LIAISON FOND-SURFACE BASE-SURFACE LINKAGE METHOD AND DEVICE
PAR CONDUITE SOUS-MARINE INSTALLEEBY SUBMARINE DRIVING INSTALLED
A GRANDE PROFONDEURA LARGE DEPTH
La présente invention a pour objet un procédé et un dispositif de liaison fond-surface par conduite sous-marine installée à grande profondeur.The present invention relates to a method and a device for bottom-surface connection by underwater pipe installed at great depth.
Le secteur technique de l'invention est le domaine de la fabrication et de l'installation de colonnes montantes de production pour l'extraction sous- marine de pétrole, de gaz ou autre matériau soluble ou fusible ou d'une suspension de matière minérale à partir de tête de puits immergé pour le développement de champs de production installés en pleine mer au large des côtes. L'application principale de l'invention étant dans le domaine de la production pétrolière.The technical sector of the invention is the field of manufacturing and installation of production risers for the underwater extraction of oil, gas or other soluble or fusible material or a suspension of mineral material to from submerged wellheads for the development of production fields installed in the open sea off the coast. The main application of the invention being in the field of petroleum production.
La présente invention concerne le domaine connu des liaisons de type comportant une tour verticale ancrée sur le fond et composée d'un flotteur situé à son sommet et relié par une conduite, prenant par son propre poids la forme d'une chaînette, jusqu'à un support flottant installé en surface.The present invention relates to the known field of type connections comprising a vertical tower anchored on the bottom and composed of a float located at its top and connected by a pipe, taking by its own weight the shape of a chain, up to a floating support installed on the surface.
En effet, dès que la profondeur d'eau des champs de production considérés dans la présente description comme étant des champs pétroliers, devient importante, leur exploitation s'effectue en général à partir de supports flottants. Les têtes de puits sont souvent réparties sur la totalité du champ et les conduites de production, ainsi que les lignes d'injection d'eau et les câbles de contrôle commande, sont déposées sur le fond de la mer en direction d'un emplacement fixe, à la verticale duquel le support flottant est positionné en surface.In fact, as soon as the water depth of the production fields considered in this description as being oil fields becomes significant, their exploitation is generally carried out using floating supports. The well heads are often distributed over the entire field and the production pipes, as well as the water injection lines and the control cables, are laid on the sea floor in the direction of a fixed location , vertically from which the floating support is positioned on the surface.
Ce support flottant comporte en général des moyens d'ancrage pour rester en position malgré les effets des courant, des vents et de la houle. Il comporte aussi en général des moyens de stockage et de traitement du pétrole ainsi que des moyens de déchargement vers des pétroliers enleveurs, ces derniers se présentant à intervalle régulier pour effectuer l'enlèvement de la production. L'appellation de ces supports flottants est le terme anglo-saxon "Floating Production Storage Offloading" (signifiant "moyen flottant de stockage, de production et de déchargement") dont on utilisera le terme abrégé "FPSO " dans l'ensemble de la description suivante. Ces FPSO sont soit ancrés par une série de lignes d'ancres partant de chacun des angles du support flottant, auquel cas le FPSO garde un cap sensiblement constant quelles que soient les conditions d'environnement, soit reliés à un touret solidaire de la structure du FPSO, ledit touret étant ancré par une série de ligne d'ancres. Dans ce dernier cas, le FPSO est libre de tourner autour du touret, ce dernier gardant un cap constant ; le FPSO prend alors un cap correspondant à la résultante des efforts dus au vent, au courant et à la houle sur la coque du navire. Dans la description qui va suivre les liaisons fond-surface décrites arrivent, dans le cas d'un FPSO ancré donc à cap sensiblement constant, en général sur le bord du navire (exemple de la figure 2) et dans le cas d'un FPSO sur touret, sur le touret lui-même (exemple de la figure 6).This floating support generally comprises anchoring means to remain in position despite the effects of currents, winds and swells. It also generally comprises means for storing and processing petroleum as well as means for unloading towards tanker-lifters, the latter being present at regular intervals to carry out the removal of production. The name of these floating supports is the English term "Floating Production Storage Offloading" (meaning "floating means of storage, production and unloading") whose abbreviated term "FPSO" will be used throughout the description next. These FPSOs are either anchored by a series of anchor lines starting from each of the angles of the floating support, in which case the FPSO keeps a substantially constant heading whatever the environmental conditions, or is connected to a reel secured to the structure of the FPSO, said reel being anchored by a series of anchor lines. In the latter case, the FPSO is free to turn around the reel, the latter keeping a constant heading; the FPSO then takes a course corresponding to the result of the forces due to wind, current and swell on the hull of the ship. In the description which follows the bottom-surface links described arrive, in the case of an FPSO anchored therefore with a substantially constant heading, generally on the edge of the ship (example of FIG. 2) and in the case of an FPSO on a reel, on the reel itself (example in Figure 6).
La conduite de liaison fond-surface, appelée "riser", dont on utilisera également le terme dans la présente description, peut être réalisée en remontant de manière continue les conduites posées au fond, directement vers le FPSO en donnant une configuration de chaînette dont l'angle avec la verticale, au niveau du FPSO, est en général de 3 à 15 degrés (riser caténaire). Ces liaisons sont réalisées impérativement au moyens de conduites flexibles lorsque la profondeur d'eau est inférieure à quelques centaines de mètres, mais dès lors que la profondeur atteint et dépasse 800 à 1 000m, les conduites flexibles peuvent être remplacés par des conduites résistantes et rigides constituées d'éléments tubulaires soudés ou vissés entre eux réalisés en matériau rigide, tel qu'en matériau composite ou en acier de forte épaisseur. Ces risers rigides en matériau résistant de forte épaisseur, en configuration de chaînette sont communément appelés par le terme anglo-saxon "Steel Catenary Riser" (signifiant "riser en acier en forme de chaînette") dont on utilisera le terme abrégé "SCR" dans la présente description qu'il soit en acier ou autre matériau tel que composite.The bottom-surface connection pipe, called "riser", the term of which will also be used in the present description, can be produced by continuously raising the pipes laid at the bottom, directly towards the FPSO, giving a chain configuration of which the he angle with the vertical, at the level of the FPSO, is generally 3 to 15 degrees (catenary riser). These connections are imperatively made by means of flexible pipes when the water depth is less than a few hundred meters, but as soon as the depth reaches and exceeds 800 to 1000 m, the flexible pipes can be replaced by resistant and rigid pipes. made of tubular elements welded or screwed together made of rigid material, such as composite material or very thick steel. These rigid risers made of very thick resistant material, in chain configuration are commonly called by the Anglo-Saxon term "Steel Catenary Riser" (meaning "steel riser in the form of chain") of which the abbreviated term "SCR" will be used in the present description whether it is made of steel or other material such as composite.
Une conduite flexible et un riser rigide de type SCR, soumis aux seules forces de gravitation, de même hauteur et présentant, au niveau du point d'accrochage sur le FPSO, un même angle par rapport à la verticale', auront une courbure identique sur toute leur longueur en suspension. Mathématiquement, cette courbe est parfaitement définie et s'appelle chaînette. Cependant, les SCRs sont beaucoup plus simples que les conduites flexibles sur le plan technique et beaucoup moins onéreux. Les conduites flexibles sont en effet des structures complexes et coûteuses réalisées à partir de gaines métalliques spiralées multiples et de matériaux composites.A flexible pipe and a rigid SCR type riser, subjected only to gravitational forces, of the same height and having, at the point of attachment to the FPSO, the same angle relative to the vertical ', will have an identical curvature on their entire length in suspension. Mathematically, this curve is perfectly defined and is called chain. However, SCRs are much simpler than flexible pipes technically and much less expensive. Flexible pipes are indeed complex and costly structures made from multiple spiral metal sheaths and composite materials.
La profondeur d'eau de certains champs pétroliers dépasse 1 500m et peut atteindre 2 000 à 3 000m . La tension induite au niveau du FPSO par chacun des SCRs peut atteindre 250 à 300 tonnes et le grand nombre de risers rendus nécessaires pour le développement de certains champs, conduit à renforcer de manière considérable la structure desdits FPSO et à créer des déséquilibres si les charges sur bâbord et tribord sont différentes. De plus, lors des mouvements circulaires du FPSO autour de sa position moyenne, la chaînette formée par le SCR se modifie et le point de contact au niveau du sol se déplace d'avant en arrière et de gauche à droite, au même rythme q.ue le FPSO, reposant ou soulevant une portion de la conduite. Ces mouvements répétés sur de longues périodes créeront un sillon dans les sols peu consolidés que l'on rencontre couramment à grande profondeur, ce qui aura pour effet de modifier la courbure de la chaînette et conduire, si le phénomène s'amplifie, à des risques d'endommagement des conduites, soit au niveau des conduites sous- marines, soit au niveau des SCRs.The water depth of some oil fields exceeds 1,500m and can reach 2,000 to 3,000m. The tension induced at the level of the FPSO by each of the SCRs can reach 250 to 300 tonnes and the large number of risers made necessary for the development of certain fields, leads to considerably strengthening the structure of said FPSOs and creating imbalances if the loads on port and starboard are different. In addition, during the circular movements of the FPSO around its average position, the chain formed by the SCR changes and the point of contact at ground level moves from front to back and from left to right, at the same rate q. ue the FPSO, resting or lifting a portion of the pipe. These repeated movements over long periods will create a furrow in poorly consolidated soils that are commonly encountered at great depths, which will have the effect of modifying the curvature of the chain and lead, if the phenomenon increases, to risks. damage to the pipes, either at the level of the underwater pipes, or at the level of the SCRs.
En raison de la multiplicité des lignes existant sur ce type d'installation, on est amené à préférer une solution de type tour dans laquelle les conduites et câbles convergent au pied d'une tour et remontent le long de celle-ci, soit jusqu'à la surface, soit jusqu'à une profondeur proche de la surface, profondeur à partir de laquelle des conduites flexibles assurent la liaison entre le sommet de la tour et le FPSO. La tour est alors munie de moyens de flottabilité pour rester en position verticale et les risers sont reliés, en pied de tour, aux conduites sous-marines par des manchettes souples qui absorbent les mouvements angulaires de la tour. L'ensemble est communément appelé "Tour Riser Hybride", car il fait intervenir deux technologies, d'une part une partie verticale, la tour, dans laquelle le riser est constitué de conduites rigides verticales, d'autre part la partie haute du riser constituée des conduites flexibles en chaînette reliant le sommet de la tour avec le FPSO.Due to the multiplicity of lines existing on this type of installation, we are led to prefer a tower type solution in which the conduits and cables converge at the foot of a tower and go up along it, that is to say at the surface, that is to a depth close to the surface, depth from which flexible pipes ensure the connection between the top of the tower and the FPSO. The tower is then provided with buoyancy means to remain in the vertical position and the risers are connected, at the foot of the tower, to the underwater pipes by flexible cuffs which absorb the angular movements of the tower. The assembly is commonly called "Hybrid Riser Tower", because it involves two technologies, on the one hand a vertical part, the tower, in which the riser consists of vertical rigid pipes, on the other hand the upper part of the riser consisting of flexible chains in a chain connecting the top of the tower with the FPSO.
On connaît le brevet français FR 2 507 672 publié le 17 Décembre 1982 et intitulé "colonne montante pour les grandes profondeurs d'eau" qui décrit une telle tour hybride comprenant un flotteur en surface relié au FPSO par l'intermédiaire de conduites flexibles et portant des guides suspendus dans lesquels passent uniquement la portion supérieure des conduites verticales de transfert de fluide : ladite tour hybride est ancrée sur le fond de la mer par un câble tendu laissant une certaine souplesse de mouvement vertical à l'ensemble, la portion inférieure des conduites étant libre et formant un coude au niveau du fond sur lequel elle s'appuie. L'intérêt d'une telle tour hybride réside dans la possibilité pour le FPSO de pouvoir s'écarter de sa position normale en induisant un minimum de contraintes dans la tour ainsi que dans les portions de conduites en forme de chaînettes en suspension, tant au fond qu'en surface. En effet, le FPSO est en général ancré par une multitude de lignes reliées à un système d'ancres reposant sur le fond de la mer. Ce système d'ancrage crée des efforts de rappel qui maintiennent le FPSO dans une position neutre. Les liaisons fond-surface créent des efforts verticaux et horizontaux supplémentaires qui ont pour effet de déplacer l'axe du FPSO par rapport à ladite position neutre. En l'absence de courant, de vent, de houle et pour un niveau de marée moyen, la position du FPSO correspond à une position PO dite position de référence. Sous l'effet conjugué des conditions d'environnement, d'une part sur la coque du FPSO et d'autre part sur les divers éléments constitutifs des risers, le FPSO va se déplacer, par rapport à cette position de référence, en proportion de la valeur de la résultante de tous les efforts appliqués au système. Ainsi, pour des efforts sur la coque du FPSO tendant à l'éloigner de l'axe de la tour, on constate les effets suivants : - d'une part la chaînette se tend et son angle avec la verticale, au niveau du point d'attache avec le FPSO augmente, ce qui implique un augmentation de l'effort vertical et de l'effort horizontal sur le FPSO ; - d'autre part l'angle d'inclinaison de la tour dû au dit effort horizontal, augmente.We know the French patent FR 2 507 672 published on December 17, 1982 and entitled "riser for great water depths" which describes such a hybrid tower comprising a surface float connected to the FPSO via flexible pipes and carrying suspended guides through which pass only the upper portion of the vertical conduits of fluid transfer: said hybrid tower is anchored to the sea floor by a stretched cable leaving a certain flexibility of vertical movement to the assembly, the lower portion of the pipes being free and forming a bend at the bottom on which it s press. The advantage of such a hybrid tower lies in the possibility for the FPSO to be able to deviate from its normal position by inducing a minimum of stresses in the tower as well as in the portions of conduits in the form of suspended chains, both at bottom only on the surface. In fact, the FPSO is generally anchored by a multitude of lines connected to a system of anchors resting on the sea bottom. This anchoring system creates restoring forces which keep the FPSO in a neutral position. The bottom-surface connections create additional vertical and horizontal forces which have the effect of moving the axis of the FPSO relative to said neutral position. In the absence of current, wind, swell and for an average tide level, the position of the FPSO corresponds to a position PO called the reference position. Under the combined effect of the environmental conditions, on the one hand on the hull of the FPSO and on the other hand on the various constituent elements of the risers, the FPSO will move, relative to this reference position, in proportion to the value of the result of all the forces applied to the system. Thus, for efforts on the shell of the FPSO tending to move it away from the axis of the tower, the following effects are observed: - on the one hand the chain stretches and its angle with the vertical, at the point d 'attachment with the FPSO increases, which implies an increase in the vertical and horizontal effort on the FPSO; - on the other hand the angle of inclination of the tower due to said horizontal force, increases.
Pour minimiser les conséquences des excursions du FPSO, on recherche en général à augmenter la raideur du système d'ancrage et à donner de la souplesse au niveau des liaisons fond-surface. Pour cela, la configuration tour associée à une chaînette présente une grande capacité d'absorber les excursions du FPSO, tout en minimisant les mouvements au niveau de la tour et les déformations des chaînettes.In order to minimize the consequences of FPSO excursions, efforts are generally made to increase the stiffness of the anchoring system and to provide flexibility at the bottom-surface connections. For this, the tower configuration associated with a chain has a great capacity to absorb the excursions of the FPSO, while minimizing the movements at the level of the tower and the deformations of the chains.
Pour amortir les mouvements du FPSO, on cherche à augmenter la courbure de la conduite le reliant au sommet de la tour. Et, les conduites flexibles sont considérées comme mieux adaptées à la réalisation des liaisons entre le FPSO et le sommet de la tour. Dans les réalisations antérieures de "tours hybrides" décrites dans FR 2 507 672 ou dans d'autres types de structures telles que celles décrites dans US 4 391 332 et EP 802 302, on met en œuvre des conduites flexibles plongeantes, c'est-à-dire descendant largement en-dessous du flotteur pour y remonter ensuite. Ceci est possible car une conduite flexible est capable de résister à la fatigue même lorsque sa courbure présente un rayon de courbure de seulement quelques mètres.To dampen the movements of the FPSO, we seek to increase the curvature of the pipe connecting it to the top of the tower. And, flexible pipes are considered to be better suited for making connections between the FPSO and the top of the tower. In the previous achievements of "hybrid towers" described in FR 2 507 672 or in other types of structures such as those described in US 4 391 332 and EP 802 302, flexible plunging, that is to say widely descending, pipes are used below the float and then back up. This is possible because a flexible pipe is able to resist fatigue even when its curvature has a radius of curvature of only a few meters.
Mais, la structure interne des flexibles est très complexe et leur coût très élevé, c'est pourquoi, dans les réalisations antérieures de tours hybrides, on cherche à remonter la tour le plus près possible de la surface, tout en évitant les zones de turbulence en surface, c'est-à-dire à des profondeurs en général inférieures à 200m, de préférence de l'ordre de 50 m. Ceci, permet de mettre en œuvre des longueurs de conduites flexibles réduites et donc moins coûteuses mais aussi et surtout, ceci permet de rendre les connexions des conduites flexibles au sommet de la tour plus accessibles aux plongeurs. Tous les éléments de ces tours hybrides ou de ces risers caténaires doivent être dimensionnés pour supporter la houle, le courant et les mouvements du navire de surface dans les conditions extrêmes de mer, ce qui conduit à des structures immergées d'ampleur considérable devant supporter des contraintes importantes et résister à des phénomènes de fatigue tout au long de leur durée de vie qui atteint et dépasse couramment 20 ans.However, the internal structure of the hoses is very complex and their cost very high, which is why, in the previous embodiments of hybrid towers, it is sought to raise the tower as close as possible to the surface, while avoiding the zones of turbulence. at the surface, that is to say at depths generally less than 200 m, preferably of the order of 50 m. This makes it possible to implement reduced lengths of flexible pipes and therefore less costly, but also and above all, this makes it possible to make the connections of the flexible pipes at the top of the tower more accessible to divers. All the elements of these hybrid towers or of these catenary risers must be dimensioned to support the swell, the current and the movements of the surface vessel in extreme sea conditions, which leads to submerged structures of considerable scale having to support significant stresses and resist fatigue phenomena throughout their lifespan which commonly reaches and exceeds 20 years.
Le problème posé est donc de pouvoir réaliser et installer de telles liaisons fond-surface pour conduites sous-marines à grandes profondeurs, .telles qu'au delà de 1 000 mètres par exemple, et de type comportant une tour verticale ancrée sur le fond de la mer et dont le flotteur situé à son sommet est relié à un support flottant installé en surface, par une conduite en forme de chaînette, en limitant les efforts sur les flotteurs et les conduites reliant celui-ci au support flottant, l'ensemble du dispositif devant être capable de résister aux contraintes et à la fatigue tout en acceptant des déplacements importants du support de surface et sans nécessiter des structures considérables et trop coûteuses, et dont la mise en place doit pouvoir être facilitée et être réversible pour être facilement entretenu et remplacé.The problem is therefore to be able to make and install such bottom-surface connections for underwater pipes at great depths, such as beyond 1,000 meters for example, and of the type comprising a vertical tower anchored on the bottom of the sea and whose float located at its top is connected to a floating support installed on the surface, by a pipe in the form of a chain, limiting the forces on the floats and the pipes connecting it to the floating support, all of the device having to be able to withstand stresses and fatigue while accepting large displacements of the surface support and without requiring considerable and too expensive structures, and the installation of which must be able to be facilitated and be reversible to be easily maintained and replaced.
Une solution au problème posé est un dispositif de liaison fond-surface pour conduite sous-marine installée à grande profondeur comportant d'une part une tour verticale constituée d'au moins un flotteur associé à un système d'ancrage et portant au moins un riser vertical reliant le flotteur au fond de la mer et pouvant se connecter à des conduites sous-marines reposant au fond de la mer et, d'autre part au moins une conduite de liaison depuis ledit flotteur vers tout support de surface tel que suivant la présente invention ladite conduite de liaison est un riser dont la paroi est un tube résistant rigide, notamment en acier ou matériau composite.One solution to the problem posed is a bottom-surface connection device for a submarine pipe installed at great depth, comprising on the one hand a vertical tower made up of at least one float associated with an anchoring system and carrying at least one riser. vertical connecting the float to the bottom of the sea and being able to connect to underwater pipes lying at the bottom of the sea and, on the other hand at least one connection pipe from said float to any surface support such as according to the present invention said connection pipe is a riser the wall of which is a rigid resistant tube, in particular made of steel or composite material.
Pour une conduite rigide, le rayon minimal de courbure tolérable est de 10 à 100 fois supérieur à celui d'une conduite flexible. Pour limiter la fatigue, on considère en effet que le rayon de courbure d'une conduite rigide en acier doit être en général supérieur à environ 100 m. Pour apporter de la flexibilité et fournir une capacité identique à absorber les mouvements du support flottant et les mouvements de la tour, on compense le fait que la chaînette est moins courbée avec une conduite rigide, en augmentant la distance entre le support flottant et le flotteur au sommet de la tour, et donc en augmentant la longueur de la conduite rigide. Toutefois, le poids apparent dans l'eau d'une conduite plus rigide est plus important que celui d'une conduite flexible, la charge en tête au niveau du flotteur et les efforts sur le flotteur au sommet de la tour sont donc accrus. Ceci pourrait conduire à surdimensionner le flotteur, et induire des coûts importants. C'est pourquoi de préférence, selon la présente invention, on installe le flotteur au sommet de la tour, à une distance plus grande de la surface de l'eau, notamment à une profondeur au-dessous de la dernière thermocline, celle-ci étant définie ci-après, de préférence au moins 100 m au- dessous de la dernière thermocline. En particulier on installe le flotteur au sommet de la tour à au moins 300 m de la surface de l'eau, de préférence au moins 500 m de la surface de l'eau, de préférence encore à une profondeur supérieure à la demi-profondeur d'eau à laquelle est ancrée la tour.For a rigid pipe, the minimum tolerable radius of curvature is 10 to 100 times greater than that of a flexible pipe. To limit fatigue, it is in fact considered that the radius of curvature of a rigid steel pipe must generally be greater than approximately 100 m. To provide flexibility and provide an identical capacity to absorb the movements of the floating support and the movements of the tower, we compensate for the fact that the chain is less curved with a rigid pipe, by increasing the distance between the floating support and the float. at the top of the tower, and therefore increasing the length of the rigid pipe. However, the apparent weight in water of a more rigid pipe is greater than that of a flexible pipe, the head load at the level of the float and the forces on the float at the top of the tower are therefore increased. This could lead to oversize the float, and induce significant costs. This is why, preferably, according to the present invention, the float is installed at the top of the tower, at a greater distance from the surface of the water, in particular at a depth below the last thermocline, the latter being defined below, preferably at least 100 m below the last thermocline. In particular, the float is installed at the top of the tower at least 300 m from the surface of the water, preferably at least 500 m from the surface of the water, more preferably at a depth greater than half the depth. of water to which the tower is anchored.
En abaissant ainsi le flotteur au sommet de la tour, on cumule les avantages suivants :By lowering the float at the top of the tower, the following advantages are cumulated:
- on augmente la longueur de la conduite rigide de liaison entre le FPSO et le sommet de la tour, ce qui permet d'amortir davantage les mouvements de la tour et du FPSO,- the length of the rigid connecting pipe between the FPSO and the top of the tower is increased, which makes it possible to further dampen the movements of the tower and of the FPSO,
- tout en respectant les rayons de courbure minimum acceptables par la conduite rigide en chaînette, et ce quels que soient les mouvements d'ensemble,- while respecting the minimum radii of curvature acceptable by rigid chain driving, regardless of the overall movements,
- tout en minimisant les coûts car la tour étant moins haute, la structure immergée représente une structure moins considérable et donc moins coûteuse, et les flotteurs nécessaires pour sa mise en tension sont moins importants et donc moins coûteux - et ce en dépit de l'augmentation du poids apparent dans l'eau de la conduite liée à l'augmentation de sa longueur - car du fait qu'il n'y a pas ou peu de remontée de la chaînette vers le flotteur, le poids de la conduite rigide en chaînette est essentiellement supportée directement par le FPSO. Toutefois, le maintien d'une tour de certaine hauteur, notamment d'au moins 50m, de préférence 100m, est avantageux car la tour, de par sa mobilité, contribue à amortir le système sous l'effet des mouvements du FPSO.- while minimizing costs because the tower being lower, the submerged structure represents a less considerable structure and therefore less costly, and the floats required for its tensioning are less important and therefore less costly - and this despite the increase in the apparent weight in the water of the pipe linked to the increase in its length - because of the fact that there is little or no rise in the chain towards the float, the weight of the rigid pipe in a chain is essentially supported directly by the FPSO. However, maintaining a tower of a certain height, in particular at least 50m, preferably 100m, is advantageous because the tower, due to its mobility, contributes to damping the system under the effect of the movements of the FPSO.
Dans un mode de réalisation préféré, le système d'ancrage comporte au moins un tendon vertical, une embase inférieure à laquelle est fixée l'extrémité inférieure du tendon et au moins un guide au travers duquel passe l'extrémité inférieure dudit riser vertical. Plus particulièrement, le .guide peut être sur l'embase. Avantageusement, ledit tendon comporte également des moyens de guidage répartis sur toute sa longueur, à travers lesquels passe au moins ledit riser vertical. Ladite embase peut être simplement posée sur le fond de la mer et restant en place par son propre poids, ou peut être ancrée au moyen de piles ou tout autre dispositif propre à la maintenir en place ; le flotteur est relié à cette embase par l'intermédiaire d'une liaison souple située en pied, et d'un lien axial constitué soit d'un câble soit d'une barre métallique soit encore d'une conduite. Ce lien axial est appelé "tendon" dans la présente description.In a preferred embodiment, the anchoring system comprises at least one vertical tendon, a lower base to which the lower end of the tendon is fixed and at least one guide through which the lower end of said vertical riser passes. More particularly, the .guide can be on the base. Advantageously, said tendon also includes guide means distributed over its entire length, through which at least said vertical riser passes. Said base can be simply placed on the bottom of the sea and remaining in place by its own weight, or can be anchored by means of batteries or any other device capable of holding it in place; the float is connected to this base via a flexible link located at the bottom, and an axial link consisting either of a cable or of a metal bar or even of a pipe. This axial link is called "tendon" in the present description.
Dans un mode préférentiel de réalisation, l'extrémité supérieure dudit riser vertical est suspendue à travers au moins un guide solidaire dudit flotteur, disposé en son sein ou à sa périphérie, ladite extrémité supérieure du riser vertical est connectée par le dessus dudit flotteur à l'extrémité coudée de ladite conduite de liaison, et l'extrémité inférieure du riser vertical est apte à être connectée à l'extrémité d'une manchette également coudée, mobile, entre une position haute et une position basse, par rapport à ladite embase, à laquelle cette manchette est suspendue et associée à un moyen de rappel la ramenant en position haute en l'absence du riser, ledit moyen de rappel pouvant être un contrepoids. Cette mobilité de la manchette coudée permet d'absorber les variations de longueur du riser sous les effets de la température et de la pression.In a preferred embodiment, the upper end of said vertical riser is suspended through at least one guide secured to said float, disposed within or at its periphery, said upper end of the vertical riser is connected by the top of said float to the the bent end of said connecting pipe, and the lower end of the vertical riser is capable of being connected to the end of a sleeve, also bent, mobile, between a high position and a low position, with respect to said base, to which this cuff is suspended and associated with a return means bringing it back to the high position in the absence of the riser, said return means being able to be a counterweight. This mobility of the bent cuff makes it possible to absorb variations in the length of the riser under the effects of temperature and pressure.
En tête du riser vertical, un dispositif de butée solidaire de celui-ci vient s'appuyer sur le guide support installé en tête du flotteur et maintient ainsi la totalité du riser : celui-ci étant alors suspendu, son poids apparent dans l'eau est soutenu par une partie de la flottabilité du flotteur.At the head of the vertical riser, a stop device integral with it comes to rest on the support guide installed at the head of the float and thus maintains the entire riser: the latter then being suspended, its apparent weight in the water is supported by part of the buoyancy of the float.
Dans un mode de réalisation particulier, lesdits moyens de guidage répartis sur toute la longueur du tendon et à travers lesquels passe ledit riser vertical, comprennent une cavité cylindrique de préférence surmontée d'un entonnoir conique, le diamètre intérieur de ladite cavité cylindrique étant supérieur à celui du riser vertical, et lesdits moyens de guidage comprennent une membrane souple solidaire de la paroi intérieure de ladite cavité cylindrique, créant ainsi une poche étanche entre ladite membrane et ladite paroi interne, poche que l'on peut remplir d'un fluide, de préférence à très forte viscosité, de manière à venir en appui contre le riser.In a particular embodiment, said guide means distributed over the entire length of the tendon and through which said vertical riser passes, comprise a cylindrical cavity preferably surmounted by a conical funnel, the inside diameter of said cylindrical cavity being greater than that of the vertical riser, and said guide means comprise a flexible membrane integral with the inner wall of said cylindrical cavity, thus creating a sealed pocket between said membrane and said internal wall, a pocket which can be filled with a fluid, preferably with very high viscosity, so as to bear against the riser.
De préférence, des patins de frottement sont associés à ladite membrane et viennent en appui contre le riser lorsque ladite poche est remplie de fluide. Les patins permettent ainsi le coulissement du riser vertical quand sa longueur varie sous l'effet de la température et de la pression. Les objectifs de la présente invention sont également obtenus par un procédé de liaison utilisant comme indiqué ci-dessus d'une part une tour verticale constituée d'au moins un flotteur associé à un système d'ancrage et portant au moins un riser vertical apte à descendre jusqu'au fond de la mer et d'autre part au moins une conduite de liaison depuis ledit flotteur vers tout support de surface, tel que, suivant la présente invention, on installe ledit flotteur à une profondeur d'immersion située en dessous de la dernière thermocline, celle-ci étant définie et précisée ci-après, et on relie ledit flotteur au support de surface par au moins un riser résistant rigide constituant une desdites conduites de liaison. Suivant un mode préférentiel de mise en œuvre du procédé de liaison suivant l'invention :Preferably, friction pads are associated with said membrane and come to bear against the riser when said pocket is filled with fluid. The pads thus allow the sliding of the vertical riser when its length varies under the effect of temperature and pressure. The objectives of the present invention are also obtained by a linking process using, as indicated above, on the one hand, a vertical tower consisting of at least one float associated with an anchoring system and carrying at least one vertical riser capable of descend to the bottom of the sea and on the other hand at least one connecting pipe from said float to any surface support, such that, according to the present invention, said float is installed at an immersion depth situated below the last thermocline, the latter being defined and specified below, and said float is connected to the surface support by at least one rigid resistant riser constituting one of said connecting pipes. According to a preferential mode of implementation of the linking method according to the invention:
- on met en place sur le fond de la mer une embase que l'on solidarise audit fond ; on y fixe l'extrémité inférieure d'un tendon qui est solidaire, à son autre extrémité supérieure, dudit flotteur, l'ensemble constituant ledit système d'ancrage de la tour verticale ;- a base is placed on the bottom of the sea which is secured to said bottom; it fixes the lower end of a tendon which is integral at its other upper end with said float, the assembly constituting said anchoring system of the vertical tower;
- on descend progressivement ledit riser vertical, par exemple par descente à partir d'un support flottant installé à la verticale dudit flotteur, et à travers un des ensembles des guidages de celui-ci et jusqu'à ce que son extrémité supérieure vienne en appui sur ledit flotteur, son extrémité inférieure venant alors se connecter à l'extrémité supérieure d'une manchette pré-installée sur ladite embase.- Said vertical riser is gradually lowered, for example by descent from a floating support installed vertically on said float, and through one of the sets of guides thereof and until its upper end comes to bear on said float, its lower end then connecting to the upper end of a pre-installed cuff on said base.
Lors de sa descente, le riser vertical passe de préférence successivement dans une série de guides solidaires du lien axial, appelé tendon, et est ainsi maintenu dans une position sensiblement parallèle audit tendon et aux autres riser verticaux, soit déjà installés dans les guides adjacents, soit devant être installés ultérieurement.During its descent, the vertical riser preferably passes successively in a series of guides integral with the axial link, called a tendon, and is thus maintained in a position substantially parallel to said tendon and to the other vertical risers, ie already installed in the adjacent guides, either to be installed later.
Dans un mode particulier de réalisation, on installe ledit flotteur à une profondeur d'immersion supérieure à la demi-profondeur d'eau à laquelle est ancrée la tour suivant l'invention, ce qui permet alors d'assembler préalablement l'ensemble du riser vertical et de le transporter en position verticale jusqu'à la verticale du guide correspondant du flotteur pour y être descendu.In a particular embodiment, said float is installed at an immersion depth greater than the half-depth of water to which the tower according to the invention is anchored, which then makes it possible to assemble the entire riser beforehand. vertical and transport it vertically to the vertical of the corresponding float guide to be lowered.
Le résultat est un nouveau procédé de liaison fond-surface par conduite sous-marine, installée à grande profondeur et répondant au problème posé. En effet, l'étude des courants marins dans les diverses mers du monde a montré l'existence de plusieurs stratifications, depuis la surface et jusqu'au fond de la mer. Ainsi, pour des profondeurs d'eau supérieures à 500-1000m, dans une configuration océanique de type Atlantique, on observe comme représenté sur la figure 1 : - une couche de surface 18ι pouvant atteindre 50 m au-dessous le la surface 19, et dans laquelle les courants sont locaux et principalement dus aux vents et aux phénomènes de marée. Dans cette zone, les courants sont importants sensiblement uniformes sur la tranche d'eau. Ils peuvent atteindre des vitesses de l'ordre de 2,5 m/s dans le cas de l'Afrique de l'Ouest, - une zone de transition 29ι, appelée thermocline, d'épaisseur variable mais faible (3 à 10m) . Dans cette zone de transition 29ι le courant décroît rapidement pour atteindre la vitesse de la couche intermédiaire,The result is a new process of bottom-surface connection by underwater pipe, installed at great depth and responding to the problem posed. Indeed, the study of marine currents in the various seas of the world has shown the existence of several stratifications, from the surface to the bottom of the sea. Thus, for water depths greater than 500-1000m, in an Atlantic-type ocean configuration, we observe as shown in FIG. 1: - a surface layer 18ι which can reach 50 m below the surface 19, and in which the currents are local and mainly due to winds and phenomena tide. In this area, the currents are significant, substantially uniform over the slice of water. They can reach speeds of the order of 2.5 m / s in the case of West Africa, - a transition zone 29ι, called a thermocline, of variable but small thickness (3 to 10m). In this transition zone 29ι the current decreases rapidly to reach the speed of the intermediate layer,
- une couche intermédiaire 182 dans laquelle les courants varient de 0,5 m/s à l m/ s . Cette couche intermédiaire s'étend d'environ —55m à —150m et les courants sont principalement des courants thermiques dus aux phénomènes climatiques,- An intermediate layer 18 2 in which the currents vary from 0.5 m / s to lm / s. This intermediate layer extends from approximately —55m to —150m and the currents are mainly thermal currents due to climatic phenomena,
- une deuxième zone de transition 292 ou thermocline elle aussi d'épaisseur variable mais faible (± 10m) . Dans cette zone de transition le courant décroît rapidement pour atteindre la valeur de la couche inférieure, - une couche inférieure 183 dans laquelle les courants sont faibles et ne dépassent en général pas 0,5 m/s. Ces courants sont dus à des mouvements d'eau intercontinentaux. Cette couche commence à environ —150 / —170 m et se poursuit jusqu'au fond 12 de la mer, c'est à dire jusqu'à des profondeurs pouvant atteindre 1 000 à 3 000m selon les endroits. Dans certaines mers, on peut observer trois thermoclines 29 sur la partie supérieure, mais d'une manière générale, la couche inférieure 183 commence aux alentours de -170 / -200m.- a second transition zone 29 2 or thermocline also of variable but small thickness (± 10 m). In this transition zone the current decreases rapidly to reach the value of the lower layer, - a lower layer 183 in which the currents are weak and do not generally not more than 0.5 m / s. These currents are due to intercontinental water movements. This layer begins at about —150 / —170 m and continues to the bottom 12 of the sea, that is to say to depths of up to 1,000 to 3,000 m depending on the location. In some seas, we can observe three thermoclines 29 on the upper part, but generally, the lower layer 183 starts around -170 / -200m.
Ainsi, la tour et son flotteur suivant l'invention et tel que décrits ci-après étant localisés en dessous de cette thermocline inférieure 292 sont dans la tranche d'eau I 83 engendrant les sollicitations dues au courants les plus faibles. De plus, le flotteur se trouve à l'abri des effets de la houle, effets qui décroissent rapidement avec la profondeur et qu'il est d'usage de négliger dès lors que l'on dépasse 120 à 150 m de profondeur. Les efforts auxquels la tour se trouve alors soumise sont ainsi considérablement réduits et sensiblement uniforme dans toute sa hauteur sous l'effet des courants de fond intercontinentaux.Thus, the tower and its float according to the invention and as described below being located below this lower thermocline 29 2 are in the water section I 83 generating the stresses due to the weakest currents. In addition, the float is sheltered from the effects of the swell, effects which decrease rapidly with the depth and which it is customary to neglect when one exceeds 120 to 150 m deep. The forces to which the tower is then subjected are thus considerably reduced and substantially uniform throughout its height under the effect of intercontinental background currents.
Le dispositif selon l'invention, constitué de l'ensemble tour-SCR aura un comportement bien meilleur sous l'effet des conditions d'environnement non seulement habituelles, mais aussi extrêmes telles que les conditions annuelles, décennales et centennales. Les efforts et les contraintes seront réduites de manière très significatives et la tenue en fatigue des divers composants critiques sera considérablement augmentée, ce qui permettra de fournir un meilleur service pendant toute la durée de vie du champ.The device according to the invention, made up of the tower-SCR assembly, will behave much better under the effect of environmental conditions not only usual, but also extreme such as the annual, decennial and centennial conditions. The efforts and constraints will be reduced very significantly and the fatigue life of the various critical components will be considerably increased, which will provide better service throughout the life of the field.
Le flotteur se trouvant ainsi à une profondeur importante, peut être relié au FPSO par l'intermédiaire d'au moins un SCR et non pas d'une liaison flexible telle qu'il est d'usage à ce jour de procéder : ces liaisons SCR sont simples et de plus, la structure interne des SCRs, des risers verticaux et des conduites reposant sur le fond peuvent être alors identiques, ce qui simplifie le passage de racleurs de nettoyage. Le passage fréquent de ces racleurs de nettoyage est en effet indispensable dans le cas de dépôts solides tels la paraffine ou- les hydrates et on doit pouvoir agir de manière très énergique et répétée sans endommager la surface interne des risers et des conduites.The float being thus at a significant depth, can be connected to the FPSO by means of at least one SCR and not of a flexible connection such as it is customary to date: these SCR connections are simple and in addition, the internal structure of the SCRs, vertical risers and pipes resting on the bottom can then be identical, which simplifies the passage of cleaning scrapers. The frequent passage of these cleaning scrapers is indeed essential in the case of solid deposits such as paraffin or hydrates and it must be possible to act very energetically and repeatedly without damaging the internal surface of the risers and of the pipes.
D'une manière générale, le flotteur est installé aux environs de la mi- hauteur de la tranche d'eau, mais on pourra être amené à l'installer plus haut ou plus bas pour privilégier certains avantages que nous allons décrire maintenant. Dans tous les cas de figure, le flotteur ne sera jamais situé à proximité de la dernière thermocline décrite précédemment, mais largement plus bas, par exemple 100m plus bas, de manière à ne jamais risquer d'être soumis aux perturbations engendrées par la thermocline, ni aux courants existant dans la tranche supérieure, au cas où des perturbations des courants marins à l'échelle planétaire viendraient modifier de manière significative les mouvements océanologiques.In general, the float is installed around the middle of the water, but it may be necessary to install it higher or lower to favor certain advantages that we will describe now. In all cases, the float will never be located near the last thermocline described above, but much lower, for example 100m lower, so as never to risk being subjected to the disturbances generated by the thermocline, nor to the currents existing in the upper section, in the event that disturbances of ocean currents on a planetary scale would significantly modify oceanological movements.
Le SCR est relié au riser vertical au niveau du sommet du flotteur par l'intermédiaire d'un joint flexible qui autorise une variation importante de l'angle entre l'axe de la tour et l'axe de la chaînette au niveau dudit joint flexible, sans engendrer de contraintes significatives dans le SCR ni dans le sommet du flotteur. Ce joint flexible pourra être soit une rotule sphérique avec joints d'étanchéité, soit une rotule lamifiée constituée de sandwich de feuilles d'élastomères et de tôles adhérisées, capable d'absorber des mouvement angulaires importants par déformation des élastomères, tout en conservant une étanchéité parfaite en raison de l'absence de joints de frottement, soit encore une longueur limitée de conduite flexible capable de fournir le même service.The SCR is connected to the vertical riser at the top of the float via a flexible joint which allows a significant variation in the angle between the axis of the tower and the axis of the chain at the level of said flexible joint. , without creating significant constraints in the SCR or in the top of the float. This flexible joint could be either a spherical ball joint with seals, or a laminated ball joint made of a sandwich of elastomer sheets and adhered sheets, capable of absorbing significant angular movements by deformation of the elastomers, while retaining a seal perfect due to the absence of friction seals, i.e. a limited length of flexible pipe capable of providing the same service.
Le dispositif selon l'invention sera avantageusement équipé d'un connecteur automatique situé au niveau du joint flexible, soit entre la tour et le joint flexible, soit entre le joint flexible et le FPSO. Ainsi, l'installation d'un tel SCR peut se faire de manière entièrement automatique, sans avoir à faire appel à des plongeurs. La séquence d'installation consiste alors à installer la tour, puis à transporter en position verticale le futur SCR, à le fixer au bordé du FPSO en position définitive. Un câble connecté à l'extrémité inférieure du futur SCR est alors manipulé par un RON qui est le nom abrégé du terme anglo-saxon "Remotely Operated Véhicule" (signifiant "sous-marin automatique télécommandé, depuis la surface, et dont on utilisera le terme abrégé RON dans la présente description), pour être ramené vers le sommet de la tour et être connecté à des moyens de traction solidaires du flotteur et commandés par exemple par le RON qui fournit alors la puissance nécessaire tout en contrôlant les opérations à l'aide de caméras vidéo dont le signal est remonté en surface auprès des opérateurs installés sur le support flottant d'intervention. Le câble est alors tiré et l'extrémité du SCR équipé de l'extrémité mâle, par exemple, d'un connecteur automatique est ramenée vers l'extrémité femelle du même connecteur automatique. En fin de phase d'approche, l'ensemble est verrouillé et les moyens de tirage libérés pour pouvoir intervenir sur l'installation de la ligne suivante. Le principe des connecteurs automatiques étant connu de l'homme de l'art dans le domaine de l'hydraulique et de la pneumatique, ne sera pas décrit ici dans ses détails. Ce mode d'installation présente l'avantage d'être entièrement réversible, dans la mesure où le connecteur automatique est conçu pour pouvoir être déconnecté. Il est ainsi possible, en cours d'exploitation, d'intervenir sur un seul SCR pour le démonter et le remplacer sans perturber le reste de la production et donc sans avoir à arrêter la production des risers et SCRs voisins. De la même manière, la tour et les risers verticaux sont avantageusement installés selon la séquence suivante : mise en place de l'embase et solidarisation avec le fond, installation du tendon équipé de ses guides et du flotteur supérieur, - transport, en position verticale, du riser vertical assemblé jusqu'à la verticale de son guide situé dans la bouée, descente progressive du riser vertical dans ses guides en contrôlant depuis la surface l'opération de descente, en fin de descente, la tête du riser repose sur le sommet du flotteur et comporte un coude puis, par exemple, le joint flexible sur lequel est fixé la partie femelle du connecteur automatique décrit précédemment. l'extrémité basse du riser vertical est elle aussi avantageusement équipée d'un connecteur automatique, préférentiellement la partie mâle en raison de son moindre encombrement, l'ensemble pouvant être connecté avec l'extrémité de la conduite sous-marine reliant le pied de la tour à l'une des têtes de puits, ladite extrémité étant équipée de la partie femelle dudit connecteur automatique.The device according to the invention will advantageously be equipped with an automatic connector located at the flexible joint, either between the tower and the flexible joint, or between the flexible joint and the FPSO. Thus, the installation of such an SCR can be done entirely automatically, without having to call in divers. The installation sequence then consists of installing the tower, then transporting the future SCR in a vertical position, fixing it to the side of the FPSO in the final position. A cable connected to the lower end of the future SCR is then handled by a RON which is the abbreviated name of the Anglo-Saxon term "Remotely Operated Vehicle" (meaning "automatic remote controlled submarine, from the surface, and of which we will use the abbreviated term RON in the present description), to be brought to the top of the tower and to be connected to traction means integral with the float and controlled for example by the RON which then supplies the necessary power while controlling the operations at the using video cameras whose signal is brought up to the surface by operators installed on the floating intervention support, the cable is then pulled and the end of the SCR equipped with the male end, for example, with an automatic connector is brought back to the female end of the same automatic connector. At the end of the approach phase, the assembly is locked and the pulling means released to be able to intervene on the installation of the next line. The principle of automatic connectors being known to those skilled in the art in the field of hydraulics and pneumatics, will not be described here in detail. This installation mode has the advantage of being fully reversible, since the automatic connector is designed to be able to be disconnected. It is thus possible, during operation, to intervene on a single SCR to disassemble and replace it without disturbing the rest of the production and therefore without having to stop the production of neighboring risers and SCRs. In the same way, the tower and the vertical risers are advantageously installed according to the following sequence: positioning of the base and attachment to the bottom, installation of the tendon equipped with its guides and the upper float, - transport, in vertical position , from the vertical riser assembled to the vertical of its guide located in the buoy, progressive descent of the vertical riser in its guides by controlling from the surface the descent operation, at the end of the descent, the riser's head rests on the top of the float and comprises an elbow then, for example, the flexible seal on which the female part of the automatic connector described above is fixed. the lower end of the vertical riser is also advantageously equipped with an automatic connector, preferably the male part because of its smaller size, the assembly being able to be connected with the end of the underwater pipe connecting the foot of the turn to one of the well heads, said end being equipped with the female part of said automatic connector.
Ce mode d'installation des risers verticaux présente l'avantage d'être entièrement réversible, dans la mesure où le connecteur automatique de pied de riser est lui aussi conçu pour pouvoir être déconnecté. Il est ainsi possible, en cours d'exploitation, d'intervenir sur un seul riser pour le démonter et le remplacer sans perturber le reste de la production et donc sans avoir à arrêter la production des risers et SCRs voisins. Dans la mesure où le flotteur est installé à une profondeur supérieure à la moitié de la hauteur d'eau, il sera possible de transporter en vertical le riser entièrement terminé et de le descendre à travers le flotteur. Si le flotteur se trouve au dessus de la mi-hauteur d'eau, il conviendra de positionner le support flottant d'installation à la verticale dudit flotteur et d'assembler les éléments de riser au fur et à mesure de la descente de son extrémité inférieure vers et à travers le flotteur et les divers guides installés le long du tendon, ledit assemblage pouvant être réalisé soit par soudure, soit par collage, soit encore par assemblage mécanique tel que le vissage, le bridage ou le sertissage. Dans une version préférée du dispositif, on transportera en position verticale depuis un emplacement d'assemblage éloigné de la tour, une longueur préassemblée du riser, ladite longueur étant inférieure à la hauteur d'eau restant entre la surface et le sommet de la tour. Ainsi, le support flottant d'intervention viendra se positionner à la verticale du flotteur avec une longueur optimale de riser déjà assemblé, équipé en partie inférieure de la portion mâle du connecteur automatique et prêt à être descendu vers et à travers le flotteur et les divers guides installés le long du tendon. Au fur et à mesure de la descente, la partie supérieure manquante du riser est assemblée comme décrit précédemment.This method of installing vertical risers has the advantage of being completely reversible, since the automatic riser foot connector is also designed to be disconnected. It is thus possible, during operation, to intervene on a single riser to dismantle and replace it without disturbing the rest of the production and therefore without having to stop the production of neighboring risers and SCRs. Insofar as the float is installed at a depth greater than the half the water height, it will be possible to transport the riser completely finished vertically and to lower it through the float. If the float is above mid-water level, it will be necessary to position the floating installation support vertically above said float and to assemble the riser elements as and when it descends from its end lower towards and through the float and the various guides installed along the tendon, said assembly being able to be carried out either by welding, or by gluing, or even by mechanical assembly such as screwing, clamping or crimping. In a preferred version of the device, a pre-assembled length of the riser will be transported in a vertical position from an assembly location remote from the tower, said length being less than the height of water remaining between the surface and the top of the tower. Thus, the floating intervention support will be positioned vertically above the float with an optimal length of riser already assembled, equipped at the bottom with the male portion of the automatic connector and ready to be lowered to and through the float and the various guides installed along the tendon. As you descend, the missing upper part of the riser is assembled as described above.
Le mode opératoire ainsi décrit permet de limiter au minimum la présence du support flottant d'intervention dans la zone de la tour, ce qui minimise les risques d'accident. Ainsi, pour pouvoir intervenir ultérieurement et démonter de manière simple le riser, on privilégiera des modes d'assemblage permettant un démontage rapide et non destructif, tel le vissage, ce qui permettra d'extraire le riser de son supportage, de désassembler par dévissage les tronçons successifs de la seule partie supérieure nécessaire pour libérer la partie basse du riser du sommet du flotteur, le support flottant d'intervention quittant alors la position avec le reste du riser en suspension, et se dirigeant vers un emplacement éloigné des installations sensibles pour terminer les opérations de maintenance.The operating method thus described makes it possible to minimize the presence of the floating intervention support in the tower area, which minimizes the risk of accident. Thus, in order to be able to intervene later and dismantle the riser in a simple manner, preference will be given to assembly methods allowing rapid and non-destructive disassembly, such as screwing, which will make it possible to extract the riser from its support, to disassemble the screws successive sections of the only upper part necessary to release the lower part of the riser from the top of the float, the floating intervention support then leaving the position with the rest of the riser in suspension, and moving towards a location remote from sensitive installations to complete maintenance operations.
Dans le but de minimiser la présence du support flottant d'intervention à la verticale de la tour, on installe avantageusement le flotteur à un niveau inférieur à la demi hauteur d'eau, il est ainsi possible pour le support flottant d'intervention d'installer ou d'extraire l'intégralité du riser sans à avoir à assembler ou démonter aucun de ses composants, ce qui réduit encore les risques d'accident dans la zone de la tour et des installations sensibles. D'autres caractéristiques et avantages de la présente invention ressortiront mieux à la lecture de la description qui va suivre, faite de manière illustrative et non limitative, en référence aux dessins annexés sur lesquels : la figure 1 est la représentation de la totalité de la tranche d'eau dans une configuration océanique de type Atlantique, tel que décrit précédemment, dans laquelle sont indiqués en abscisse les valeurs indicatives des courants en mètre/seconde et en ordonnées les profondeurs approximatives des différentes couches et des thermoclines correspondantes. la figure 2 est une vue en perspective d'un développement de champ pétrolier par 1 500m de profondeur d'eau, représentant le FPSO en surface, une tour centrale de récupération des effluents pétroliers et de deux tours latérales d'injection d'eau, la figure 3 est une vue en coupe du flotteur associée à une vue de côté du tendon central et de deux risers, - la figure 4 est une vue de côté de l'embase de la tour comportant deux risers, le tendon central et deux manchettes de raccordement aux conduites sous-marines, la figure 5 est une vue de côté de l'embase d'une tour mono-riser, La figure 6 est la représentation schématique, illustrant le résultat d'un calcul en statique, d'un FPSO ancré sur touret parIn order to minimize the presence of the floating intervention support vertically above the tower, the float is advantageously installed at a level lower than the half height of water, it is thus possible for the floating intervention support to install or extract the entire riser without having to assemble or disassemble any of its components, which further reduces the risk of accident in the area of the tower and sensitive installations. Other characteristics and advantages of the present invention will emerge better on reading the description which will follow, given in an illustrative and nonlimiting manner, with reference to the appended drawings in which: FIG. 1 is the representation of the entire slice of water in an oceanic configuration of Atlantic type, as described above, in which the indicative values of the currents in meters / second are indicated on the abscissa and the approximate depths of the different layers and of the corresponding thermoclines on the ordinate. FIG. 2 is a perspective view of an oil field development by 1,500 m of water depth, representing the surface FPSO, a central tower for recovering petroleum effluents and two lateral water injection towers, Figure 3 is a sectional view of the float associated with a side view of the central tendon and two risers, - Figure 4 is a side view of the base of the tower comprising two risers, the central tendon and two cuffs of connection to the submarine conduits, FIG. 5 is a side view of the base of a mono-riser tower, FIG. 6 is the schematic representation, illustrating the result of a static calculation, of an FPSO anchored on reel by
2 000 m de profondeur d'eau et relié à une tour suivant l'invention située à 1 000 m de profondeur ; la figure 7 est une série de deux courbes représentant les variations de la tension horizontale et de la distance horizontale de l'embase d'ancrage du flotteur au FPSO en fonction de là profondeur du flotteur pour une hauteur d'eau de 2 000m et une excursion de 8%, la figure 8 est une série de deux courbes représentant les variations de l'excursion du FPSO et de la tension horizontale en fonction de la profondeur du flotteur pour une hauteur d'eau de 2 000m et une distance entre FPSO et bouée de 950m, la figure 9 est une coupe en vue de côté de l'un des guidages de riser relatif à la figure 3, la figure 10 est une section en vue de dessus selon AA, relative à la figure 9. Dans ces dessins, les éléments identiques ou similaires portent, sauf indication contraire, les mêmes références d'une figure à l'autre.2,000 m of water depth and connected to a tower according to the invention located 1,000 m deep; FIG. 7 is a series of two curves representing the variations in the horizontal tension and the horizontal distance from the base for anchoring the float to the FPSO as a function of the depth of the float for a water height of 2000 m and a 8% excursion, Figure 8 is a series of two curves representing the variations in the excursion of the FPSO and the horizontal tension as a function of the depth of the float for a water height of 2000m and a distance between FPSO and 950m buoy, Figure 9 is a sectional side view of one of the riser guides relating to Figure 3, Figure 10 is a top view section along AA, relating to Figure 9. In these drawings , identical or similar elements bear, unless otherwise indicated on the contrary, the same references from one figure to another.
La figure 2 représente un FPSO 1 ancré sur un champ pétrolier par 1 500m de hauteur d'eau 18, par un système d'ancrage non représenté et comportant par exemple, sur bâbord, au niveau de son bordé un système de supportage 2 de conduites SCR d'effluents pétroliers 3 et de conduites d'injection d'eau 4. Les SCRs d'effluents pétroliers sont connectés à une tour située par exemple à — 800m de la surface 19, au niveau supérieur du flotteur 5 comportant quatre emplacements le traversant, dont deux seulement sont occupés. Ledit flotteur est relié à l'embase 8 reposant sur le fond de la mer, au moyen d'un tendon 6 auquel sont fixés une multitude de guides 7 à travers lesquels sont installés des risers 9 connectés au niveau de l'embase à des manchettes de raccordement 1 1 1 elles-mêmes connectées à des conduites sous-marines 10 au niveau d'un bloc intermédiaire de connexion 13 ; d'autres manchettes de raccordement 1 12 sont en attente de l'installation des risers verticaux correspondants. Deux tours d'injection d'eau identiques sont constituées d'un flotteur 14 installé à —1 000m de la surface et relié à l'embase 16 au moyen d'un riser 15 assurant de plus la fonction de tendon. Une manchette de raccordement 17 assure la liaison entre le pied de riser et le bloc intermédiaire de connexion 13.FIG. 2 represents an FPSO 1 anchored on an oil field by 1500 m of water height 18, by an anchoring system not shown and comprising for example, on port side, at its plating a support system 2 for pipes SCRs of petroleum effluents 3 and of water injection pipes 4. The SCRs of petroleum effluents are connected to a tower located for example - 800m from surface 19, at the upper level of float 5 having four locations passing through it , of which only two are occupied. Said float is connected to the base 8 resting on the bottom of the sea, by means of a tendon 6 to which are fixed a multitude of guides 7 through which are installed risers 9 connected at the level of the base to cuffs connection 1 1 1 themselves connected to underwater pipes 10 at an intermediate connection block 13; other connection sleeves 1 1 2 are awaiting the installation of the corresponding vertical risers. Two identical water injection towers consist of a float 14 installed at 1000 m from the surface and connected to the base 16 by means of a riser 15 also ensuring the function of tendon. A connection sleeve 17 provides the connection between the riser base and the intermediate connection block 13.
Le flotteur de la tour pour effluents pétroliers étant par exemple à —800m de la surface, se trouve à une distance latérale d'environ 500m de la verticale du bordé du FPSO pour une liaison SCR en forme de chaînette arrivant au flotteur à l'horizontale, ce qui facilite grandement les opérations d'installation et de maintenance par un navire d'intervention, lequel n'interférera pas avec les opérations d'exploitation courante du FPSO. De plus, ledit navire d'intervention pourra se positionner à la verticale de la tour et évoluer sans risquer d'accrocher les lignes d'ancrage permanent dudit FPSO. Le flotteur 14 de la tour pour l'injection d'eau étant à —1 000m de la surface, donc plus bas que la tour précédente se trouvera ainsi éloigné de 550m du bordé du FPSO. La figure 3 représente la vue en coupe du flotteur 5 d'une tour multi- risers associée à la vue de côté des divers composants associés. Ledit flotteur 5 est constitué par exemple d'un caisson rempli de mousse syntactique et est relié au tendon central 6 par un dispositif de liaison 20 présentant à son extrémité inférieure une pièce d'inertie variable 21 assurant la transmission des contraintes entre tendon et flotteur. Le flotteur comporte des guides 22 creux verticaux et alignés avec les moyens de guidages 23 des guides 7 installés à intervalles, réguliers ou non, sur la hauteur du tendon 6 et solidarisés à ce dernier au moyen d'un dispositif d'accrochage 24. Les guides 22 peuvent être soit intégrés au sein du flotteur, soit installés à sa périphérie ou encore dans sa partie centrale. Ces guides reçoivent les risers verticaux 9 représentés sur la partie gauche complètement installés et raccordés au SCR 3 et sur la partie droite en phase de début d'insertion de l'extrémité mâle 25 d'un connecteur automatique de riser 9.The float of the tower for petroleum effluents being for example at -800m from the surface, is at a lateral distance of approximately 500m from the vertical of the plating of the FPSO for a SCR link in the form of a chain arriving at the float horizontally , which greatly facilitates installation and maintenance operations by an intervention vessel, which will not interfere with the current operations of the FPSO. In addition, said intervention vessel will be able to position itself vertical to the tower and move without risking hooking the permanent anchor lines of said FPSO. The float 14 of the tower for the injection of water being at -1000m from the surface, therefore lower than the previous tower will thus be 550m away from the shell of the FPSO. FIG. 3 represents the sectional view of the float 5 of a multi-riser tower associated with the side view of the various associated components. Said float 5 consists for example of a box filled with syntactic foam and is connected to the central tendon 6 by a connecting device 20 having at its lower end a variable inertia piece 21 ensuring the transmission of stresses between tendon and float. The float has hollow guides 22 vertical and aligned with the guide means 23 of the guides 7 installed at intervals, regular or not, over the height of the tendon 6 and secured to the latter by means of a hooking device 24. The guides 22 can be either integrated into the within the float, either installed on its periphery or in its central part. These guides receive the vertical risers 9 shown on the left side completely installed and connected to the SCR 3 and on the right side during the start of insertion phase of the male end 25 of an automatic riser connector 9.
L'extrémité dudit connecteur automatique 25 est raccordée à une câblette 26 passant à travers chacun des guides 22, 23, jusqu'à l'embase 8 de la tour au niveau de laquelle une poulie de renvoi 27 est installée ; l'embase 8 et la poulieThe end of said automatic connector 25 is connected to a cable 26 passing through each of the guides 22, 23, up to the base 8 of the tower at which a return pulley 27 is installed; base 8 and pulley
27 représentés sur la figure 4 sont schématisés sous la forme de retour de câble27 shown in Figure 4 are shown schematically in the form of cable return
28 sur la figure 3. Le câble 26 remonte en surface jusqu'au navire d'intervention où il est maintenu en tension par un treuil à tension constante. Ainsi, le navire d'intervention se présente à la verticale de la tour avec le riser 9 complètement assemblé, car la profondeur - 800 m du flotteur 5 dans cet exemple de réalisation est supérieure à la longueur - 700 m du riser 9. Un RON accroche à l'extrémité du connecteur automatique 25 la câblette 26, cette dernière ayant été préinstallée avant la mise en place de l'ensemble embase 8 - tendon 6 -flotteur 5 ; la seconde extrémité est remontée en surface pour être connectée à un treuil à tension constante non représenté. L'opération de descente du riser 9ι s'effectue en maintenant la tension dans le câble 26, laquelle tension impose alors à l'extrémité du connecteur automatique 25 de passer successivement à travers chacun des guides 23ι . La tension nécessaire dans le câble 26 pour cette opération sera d'autant plus importante que l'angle d'inclinaison de la tour sera élevé. En effet lors de l'installation du premier riser sur la tour, cette dernière sera en position sensiblement verticale. Après connexion du SCR correspondant relié au FPSO, ledit SCR exercera sur la tour une force horizontale qui engendrera un mouvement angulaire de la tour par rapport à la verticale, orienté vers le FPSO. Au fur et à mesure des installations des risers successifs, cet angle augmentera et la tension nécessaire dans le câble 26 augmentera proportionnellement.28 in Figure 3. The cable 26 rises to the surface to the intervention vessel where it is kept in tension by a winch at constant tension. Thus, the intervention vessel appears vertically from the tower with the riser 9 fully assembled, because the depth - 800 m of the float 5 in this embodiment is greater than the length - 700 m of the riser 9. A RON hooks on the end of the automatic connector 25 the cable 26, the latter having been preinstalled before the installation of the base assembly 8 - tendon 6 - float 5; the second end is raised to the surface to be connected to a winch with constant tension not shown. The operation of lowering the riser 9ι is carried out while maintaining the tension in the cable 26, which tension then requires the end of the automatic connector 25 to pass successively through each of the guides 23ι. The tension required in the cable 26 for this operation will be all the greater the higher the angle of inclination of the tower. Indeed, during the installation of the first riser on the tower, the latter will be in a substantially vertical position. After connection of the corresponding SCR connected to the FPSO, said SCR will exert on the tower a horizontal force which will generate an angular movement of the tower relative to the vertical, oriented towards the FPSO. As the successive risers are installed, this angle will increase and the tension required in the cable 26 will increase proportionally.
La partie gauche de la même figure 3 représente le riser 92 installé dans son guide 22 : son extrémité 30 repose sur la partie supérieure du guidage 22 et constitue la partie femelle d'un connecteur automatique dans laquelle sera insérée la partie mâle 31 dudit connecteur, solidaire d'un coude 32 lui-même solidaire d'un joint flexible 33 connecté à l'extrémité du SCR 3.The left part of the same FIG. 3 represents the riser 9 2 installed in its guide 22: its end 30 rests on the upper part of the guide 22 and constitutes the female part of an automatic connector into which the male part 31 of said connector will be inserted, secured to an elbow 32 itself secured to a flexible joint 33 connected to the end of the SCR 3.
En raison de la hauteur de la tour dans cet exemple de réalisation, la longueur du SCR est inférieure à la hauteur d'eau et ce dernier est assemblé à l'extérieur du champ par le navire d'intervention, puis transporté en pendant jusqu'au FPSO où il est transféré et raccordé à son extrémité supérieure. Son extrémité inférieure équipée du joint flexible 33, du coude 32 et de la partie mâle 31 du connecteur automatique est reliée à un câble dont la seconde extrémité est transférée par le RON vers des moyens de tirage, non représentés, solidaires du flotteur et dont la puissance est, par exemple, fournie par ou à travers le RON. Le tirage du câble depuis le flotteur met la conduite en forme de chaînette et lorsque l'embout mâle 31 se trouve à proximité de la partie femelle 30 correspondante, les deux parties sont assemblées par des moyens, non représentés, connus de l'homme de l'art dans le domaine des connecteurs hydrauliques et pneumatiques. Après mise en place du SCR3, une butée 34 est installée sur le flotteur 5 qui vient en appui sur une collerette solidaire 35 du coude 32 de manière à reprendre les efforts horizontaux engendrés par le SCR et à éviter les rotations de l'ensemble et en particulier du coude autour de l'axe 36 des risers 9.Due to the height of the tower in this embodiment, the length of the SCR is less than the height of the water and the latter is assembled outside the field by the intervention vessel, then transported pendant up to to the FPSO where it is transferred and connected at its upper end. Its lower end equipped with the flexible joint 33, the elbow 32 and the male part 31 of the automatic connector is connected to a cable, the second end of which is transferred by the RON to drawing means, not shown, integral with the float and the power is, for example, supplied by or through the RON. The pulling of the cable from the float puts the pipe in the form of a chain and when the male end piece 31 is near the corresponding female part 30, the two parts are assembled by means, not shown, known to the man of the art in the field of hydraulic and pneumatic connectors. After setting up the SCR3, a stop 34 is installed on the float 5 which comes to bear on a flange secured to the elbow 32 so as to take up the horizontal forces generated by the SCR and to avoid rotations of the assembly and in particular of the elbow around the axis 36 of the risers 9.
La figure 4 est une vue de côté de l'embase 8 d'une tour multi-risers constitué d'une plaque de base 40 lestée, reposant sur le sol 12 du fond de la mer et supportant une structure métallique comportant des guides 41 , un joint flexible central 42 apte à recevoir l'extrémité inférieure du tendon 6. Deux risers 9 sont représentés, sur la gauche le riser 9ι est connecté au niveau de la partie mâle 25ι de son connecteur automatique, à la partie femelle 44ι du même connecteur solidaire de la manchette de raccordement 1 11 à des conduites sous- marines non représentées. Soumis à des variations de température, le riser 9 peut se dilater en coulissant dans les divers guides 7 répartis le long de la tour. En partie basse, le mouvement de l'extrémité inférieure peut atteindre plusieurs mètres en variations extrêmes : aussi le riser 9ι. associé à sa manchette 112 sont libres de se déplacer verticalement dans les guides 411 et 49ι solidaires de la structure de l'embase 8.FIG. 4 is a side view of the base 8 of a multi-riser tower consisting of a weighted base plate 40, resting on the ground 12 from the sea bottom and supporting a metal structure comprising guides 41, a central flexible joint 42 capable of receiving the lower end of the tendon 6. Two risers 9 are shown, on the left the riser 9ι is connected at the male part 25ι of its automatic connector, to the female part 44ι of the same connector secured to the connection sleeve 1 11 to underwater pipes not shown. Subject to temperature variations, the riser 9 can expand by sliding in the various guides 7 distributed along the tower. In the lower part, the movement of the lower end can reach several meters in extreme variations: also the 9ι riser. associated with its cuff 11 2 are free to move vertically in the guides 411 and 49ι secured to the structure of the base 8.
Un système de contre poids constitué d'une masse 48ι d'un câble 46ι tourné autour d'une poulie 45ι solidaire du bâti de l'embase 8 est connecté à un renfort 50ι de la manchette 1 11 au niveau du point d'attache 47ι. Ce contrepoids est dimensionné pour maintenir, en l'absence du riser 9ι, la manchette en position haute, le renfort 50ι venant alors en butée avec la structure de l'embase 8 au niveau du guidage 49ι. Cette position haute est détaillée dans la partie droite de la figure qui montre un riser 92 en cours de descente, après passage de la partie mâle 252 du connecteur automatique à travers le dernier guide 412. Le câble 26 maintenu en tension depuis la surface et servant à tirer l'extrémité du riser à travers les différents guides a été déconnecté par le RON. La descente du riser 92 est ensuite effectuée jusqu'à ce que la partie mâle 252 rentre dans la partie femelle 442. Dans cette phase d'enclenchement, la manchette 1 12 est toujours en position haute car le contrepoids 482 est dimensionné pour supporter au moins le poids propre de ladite manchette additionné de l'effort vertical nécessaire à la phase d'enclenchement. Après le dit enclenchement, le riser 9 peut descendre jusqu'à ce que sa partie supérieure repose sur le flotteur, la manchette 11 se trouvant alors en position basse et le contrepoids se soulevant d'autant.A counterweight system consisting of a mass 48ι of a cable 46ι turned around a pulley 45ι secured to the frame of the base 8 is connected to a reinforcement 50ι of the cuff 1 11 at the point of attachment 47ι. This counterweight is dimensioned to maintain, in the absence of the riser 9ι, the cuff in the high position, the reinforcement 50ι then comes into abutment with the structure of the base 8 at the level of the guide 49ι. This high position is detailed in the right part of the figure which shows a riser 9 2 during descent, after passage of the male part 25 2 of the automatic connector through the last guide 41 2 . The cable 26 kept in tension from the surface and used to pull the end of the riser through the various guides was disconnected by the RON. The riser 9 2 is then lowered until the male part 25 2 enters the female part 44 2 . In this engagement phase, the sleeve 1 1 2 is always in the high position because the counterweight 48 2 is dimensioned to support at least the self-weight of said sleeve plus the vertical force necessary for the engagement phase. After said engagement, the riser 9 can descend until its upper part rests on the float, the cuff 11 then being in the low position and the counterweight being lifted accordingly.
Ainsi, en cas d'intervention future nécessitant l'enlèvement du riser 92, le ROV opérera le déverrouillage du connecteur automatique 252-44 et lors de l'extraction du riser, la manchette se remettra en position haute grâce à l'action du contrepoids 482. La réinstallation du riser 92 après réparation sera effectuée de la même manière que l'installation initiale, car le dispositif selon l'invention est entièrement réversible.Thus, in the event of future intervention requiring the removal of the riser 9 2 , the ROV will operate the unlocking of the automatic connector 25 2 -44 and during the extraction of the riser, the cuff will return to the high position thanks to the action counterweight 48 2 . The reinstallation of the riser 9 2 after repair will be carried out in the same way as the initial installation, since the device according to the invention is entirely reversible.
Les figures 9 et 10 détaillent un moyen de guidage 7 d'un riser 9, ledit moyen de guidage étant solidaire, au niveau d'une pièce d'accrochage 24, d'un tendon 6 non représenté. Le moyen de guidage 7 est constitué d'une poche cylindrique 7a surmontée d'un entonnoir conique 7b permettant le guidage, lors de la mise en place du riser, de la partie mâle d'un connecteur automatique non représenté. Ledit connecteur étant d'un diamètre supérieur à celui du riser 9 le guide doit être d'un diamètre nettement supérieur à celui du riser 9. Pour limiter et amortir les mouvements latéraux du riser en opération, le moyen de guidage 7 est avantageusement muni d'un dispositif ajustable en diamètre permettant d'ajuster le diamètre intérieur de la poche cylindrique 7a. Lors de l'opération d'installation ou de retrait du riser, le dispositif est complètement rétracté, de sorte que la poche cylindrique 7a présente un diamètre maximal et il est complètement expansé lorsque le riser est en configuration opérationnelle.Figures 9 and 10 detail a guide means 7 of a riser 9, said guide means being secured, at a hooking piece 24, a tendon 6 not shown. The guide means 7 consists of a cylindrical pocket 7a surmounted by a conical funnel 7b allowing the guide, during the positioning of the riser, of the male part of an automatic connector not shown. Said connector being of a diameter greater than that of the riser 9, the guide must be of a diameter significantly greater than that of the riser 9. To limit and dampen the lateral movements of the riser in operation, the guide means 7 is advantageously provided with 'A device adjustable in diameter for adjusting the inner diameter of the cylindrical pocket 7a. During the installation or removal of the riser, the device is fully retracted, so that the cylindrical pocket 7a has a maximum diameter and it is completely expanded when the riser is in operational configuration.
Le dispositif ajustable est constitué d'une membrane souple 60 solidaire du moyen de guidage cylindrique 7a par l'intermédiaire de bagues de sertissage hautes et basses 61 , ce qui crée une poche étanche 62 capable de recevoir un fluide par l'intermédiaire d'un orifice 63 muni d'une vanne d'isolation 64. Une multitude de patins 65a — 65b, par exemple 6 ou 8 patins sont solidaires de la membrane 60 et viennent en appui avec le riser 9 lorsque la poche 62 est complètement remplie. Dans les deux figures 9 & 10, dans la partie gauche du dessin, la membrane 60 associée au patin 65b est représentée en position rétractée, alors qu'elle est représentée associée au patin 65a en position active dans la partie droite, c'est à dire en contact avec le riser. La poche 62 est en communication avec une chambre extérieure limitée par une membrane 66 elle même maintenue étanche par deux cerclages 67, un orifice 68 mettant les deux chambres en communication. Ainsi, lorsque la poche 62 est vidée de son contenu par aspiration du fluide à travers la vanne 64, les membranes 60 et 66 se trouvent plaquées sur le guidage cylindrique 7a et la multitude de patins 65 sont complètement rétractés, laissant ainsi un passage maximal. Lorsque le riser est en place, le fluide de remplissage est pompé à travers la vanne 64, jusqu'à ce que la membrane extérieure se gonfle par la pression ; ladite vanne est alors fermée et l'effet centraliseur est obtenu et la force peut être ajustée simplement par injection d'un volume supplémentaire de fluide créant un gonflement de la membrane extérieure, laquelle joue le rôle de vessie pressurisée, donc de réserve sous pression. L'utilisation d'un fluide à très forte viscosité, tel une graisse filante, chargée ou non, permet à l'ensemble de jouer le rôle d'amortisseur par absorption d'énergie, ce qui empêche l'apparition de phénomènes vibratoires dans le riser soumis aux effets du courant. Les phases de gonflage, de dégonflage ou d'ajustement de la pression sont réalisées à l'aide des bras manipulateurs et de pompes embarquées à bord des RONs d'intervention. La membrane extérieure 66 joue le rôle de témoin visuel, ce qui permet, sans mesure complémentaire, de connaître l'état du guidage amortisseur, par simple inspection à l'aide des caméras disponibles sur les RONs.The adjustable device consists of a flexible membrane 60 integral with the cylindrical guide means 7a via high and low crimping rings 61, which creates a sealed pocket 62 capable of receiving a fluid through a orifice 63 provided with an isolation valve 64. A multitude of pads 65a - 65b, for example 6 or 8 pads are integral with the membrane 60 and come to bear with the riser 9 when the pocket 62 is completely filled. In the two figures 9 & 10, in the left part of the drawing, the membrane 60 associated with the shoe 65b is shown in the retracted position, while it is represented associated with the shoe 65a in the active position in the right part, say in contact with the riser. The pocket 62 is in communication with an outer chamber limited by a membrane 66 which is itself kept sealed by two straps 67, an orifice 68 bringing the two chambers into communication. Thus, when the pocket 62 is emptied of its content by suction of the fluid through the valve 64, the membranes 60 and 66 are pressed against the cylindrical guide 7a and the multitude of pads 65 are completely retracted, thus leaving maximum passage. When the riser is in place, the filling fluid is pumped through the valve 64, until the outer membrane swells by pressure; said valve is then closed and the centralizing effect is obtained and the force can be adjusted simply by injecting an additional volume of fluid creating swelling of the outer membrane, which plays the role of a pressurized bladder, therefore of reserve under pressure. The use of a fluid with very high viscosity, such as a shooting grease, charged or not, allows the assembly to play the role of shock absorber by absorption of energy, which prevents the appearance of vibratory phenomena in the riser subject to the effects of current. The inflation, deflation or pressure adjustment phases are carried out using the manipulator arms and pumps on board the intervention RONs. The outer membrane 66 acts as a visual witness, which makes it possible, without additional measurement, to know the state of the damping guide, by simple inspection using the cameras available on the RONs.
La figure 5 est la vue de côté de la partie inférieure d'une tour mono-riser constituée d'une embase 16 reposant sur le sol 12 et supportant la manchette coudée de raccordement 17 à l'extrémité de laquelle est installé un joint flexible 37 connecté lui même à la partie femelle 38 d'un connecteur automatique. Le riser 15 est équipé à sa base de la partie mâle 39 du même connecteur automatique. Dans ce mode de réalisation d'un dispositif selon l'invention, le riser 15 joue aussi le rôle de tendon et le connecteur automatique 38-39, ainsi que le joint flexible 37 sont dimensionnés pour reprendre la tension engendrée par le fluide sous pression additionné de la tension créée par le flotteur 14 et les conditions d'environnement sur l'ensemble SCR 4 - tour.Figure 5 is the side view of the lower part of a mono-riser tower consisting of a base 16 resting on the ground 12 and supporting the elbow connection cuff 17 at the end of which is installed a flexible joint 37 itself connected to the female part 38 of an automatic connector. The riser 15 is equipped at its base with the male part 39 with the same automatic connector. In this embodiment of a device according to the invention, the riser 15 also plays the role of tendon and the automatic connector 38-39, as well as the flexible joint 37 are dimensioned to take up the tension generated by the pressurized fluid added. of the voltage created by the float 14 and the environmental conditions on the SCR 4 - tower assembly.
La figure 6 représente schématiquement deux positions d'un FPSO, ancré sur touret, et obtenues à partir des résultats d'un calcul effectué en statique, sans tenir compte des effets dynamiques, pour un champ pétrolier installé par 2 000 m de fond et avec le flotteur 5 de la tour suivant l'invention positionnée à 1 000 m de profondeur : le poids linéaire apparent dans l'eau du SCR 3 et du riser vertical 9 unique, faisant office de tendon, considérés pleins d'huile, a été pris en compte pour une valeur de 97,96 kg/m , et la flottabilité nette au niveau du flotteur 5 à une valeur de 180 tonnes (flottabilité du flotteur-poids apparent dans l'eau du flotteur 5, du tendon et du ou des riser(s) verticaux 9) ; le SCR 3 et le riser vertical 9 sont réalisés dans le même matériau et une configuration de même type, tel que d'un diamètre de 10,25 pouces et une épaisseur de 1 pouce avec une rigidité longitudinale considérée infinie et une isolation donnée ; l'eau de mer est considérée avec un poids volumique de 1 033 kg/m3.FIG. 6 schematically represents two positions of an FPSO, anchored on a reel, and obtained from the results of a calculation carried out in static, without taking into account the dynamic effects, for an oil field installed by 2,000 m of bottom and with the float 5 of the tower according to the invention positioned at a depth of 1000 m: the apparent linear weight in water of the SCR 3 and of the single vertical riser 9, acting as tendon, considered full of oil, was taken into account for a value of 97.96 kg / m, and the net buoyancy at the level of float 5 at a value of 180 tonnes (buoyancy of the float-apparent weight in water of float 5, tendon and riser (s) (s) vertical 9); the SCR 3 and the vertical riser 9 are made of the same material and a configuration of the same type, such as with a diameter of 10.25 inches and a thickness of 1 inch with a longitudinal rigidity considered infinite and a given insulation; seawater is considered with a density of 1033 kg / m 3 .
La position moyenne du FPSO 1 étant PO, les résultats des calculs détaillent les caractéristiques d'une position éloignée Pi et d'une position rapprochée P2, correspondant à une excursion maximale de 8 % de la profondeur d'eau de 2 000 m, le flotteur 5 étant positionné à une profondeur d'eau égale à environ la moitié de la tranche d'eau considérée et reliée au fond 12 par un riser 9 de longueur 1 014 m :The mean position of the FPSO 1 being PO, the results of the calculations detail the characteristics of a distant position Pi and of a close position P 2 , corresponding to a maximum excursion of 8% of the water depth of 2000 m, the float 5 being positioned at a depth of water equal to approximately half of the section of water considered and connected to the bottom 12 by a riser 9 of length 1014 m:
- pour la positon Pi la plus éloignée : le rayon de courbure minimal du SCR3 est de 506m avec un angle en tête αl de 19° pour une tension de 157 tonnes et un angle β l en bas de 15° pour une tension horizontale de 51 tonnes ; la longueur développée du riser 3 est de 1 322 m pour une immersion du flotteur 5 de 1 019 m ; l'angle en-tête γ 1 du riser tendu 9 est de 15° et la distance horizontale du FPSO 1 à l'embase 8 du riser est de 1 027 m.- for the most distant position Pi: the minimum radius of curvature of the SCR3 is 506m with a head angle αl of 19 ° for a tension of 157 tonnes and an angle β l at the bottom of 15 ° for a horizontal tension of 51 tonnes; the developed length of the riser 3 is 1,322 m for an immersion of the float 5 of 1,019 m; the header angle γ 1 of the stretched riser 9 is 15 ° and the horizontal distance from the FPSO 1 to the base 8 of the riser is 1027 m.
- pour la position P2 la plus rapprochée : le rayon de courbure minimal du SCR3 est de 300 m avec un angle en tête α2 de 13 ° pour une tension de 133 tonnes et un angle en base β2 de - 10° et une tension horizontale de 30 tonnes; la longueur développée du SCR 3 est bien entendu la même que dans la position ci-dessus, à savoir 1 322 m et l'immersion du flotteur 5 est de 1000 m; l'angle en-tête γ2 du riser tendu 9 est de 9,6° et la distance horizontale du FPSO 1 à l'embase 8 est de 868 m, la distance à la position PO moyenne étant L = 947 m.- for the closest position P 2 : the minimum radius of curvature of the SCR3 is 300 m with a head angle α2 of 13 ° for a tension of 133 tonnes and a base angle β2 of - 10 ° and a horizontal tension of 30 tonnes; the developed length of SCR 3 is of course the same as in the above position, namely 1,322 m and the immersion of float 5 is 1,000 m; the header angle γ2 of the stretched riser 9 is 9.6 ° and the horizontal distance from the FPSO 1 to the base 8 is 868 m, the distance to the average position PO being L = 947 m.
La figure 7 représente sur la base des hypothèses détaillées dans la figure 6 les variations de tension horizontale et de la distance L de l'embase 8 au FPSO 1 en fonction de la profondeur du flotteur 5. On observe ainsi que pour une augmentation de la profondeur du flotteur 5, la tension horizontale décroît et présente un minimum pour - 1 400 m. De plus, pour une profondeur comprise entre - 1 000 et - 1 800 m, la tension est comprise entre 52 et 53 tonnes, donc sensiblement constante. De même, la distance L au FPSO 1 représente une valeur maximum pour - 1 400 m et reste sensiblement constante autour de - 950 / - 960 m pour une profondeur comprise entre - 1 000 et - 1 800 M. Ainsi, si on installe deux tours sensiblement à la même distance du FPSO avec des flotteurs situés à des profondeurs très différentes, leurs performances seront similaires, mais les SCR étant radicalement différents ne risqueront pas d'interférer entre eux. La figure 8 représente sur la base des hypothèses détaillées de la figure 6 les variations de l'excursion du FPSO et de la tension horizontale en fonction de la profondeur du flotteur 5 et pour une distance du FPSO 1 et embase 8 de 950 m (position PO) . Le calcul a été réalisé sur la base d'une excursion de 8 % correspondant à une profondeur du flotteur de 1 000 m. Dans les phases de conception de champs pétroliers, il est d'usage de considérer une excursion maximale correspondant justement à 8 % de la hauteur d'eau, ce qui correspond à 160 m pour une profondeur d'eau de 2 000 m. On observe ainsi que pour une réduction de la profondeur du flotteur 5, l'excursion maximale et la tension horizontale ont tendance à augmenter alors que pour une augmentation de cette profondeur, l'excursion reste stable autour de 8 % et la tension reste stable autour de 50 tonnes. Il apparaît ainsi que pour des profondeurs supérieures à 1 000 m, l'excursion maximale et la tension restent stables en statique. Cet ensemble constitue donc un invariant du système, lequel invariant aura un effet stabilisateur pour ce système soumis à des effets dynamiques. Ainsi, selon l'invention, la localisation du flotteur 5 à une profondeur supérieure à la demi hauteur d'eau présente un grand avantage pour la stabilité du système et donc pour sa tenue en fatigue pendant toute la durée de vie du champ. II apparaît ainsi que pour le développement de champs nécessitant une multitude de tours, en localisant les flotteurs dans la demi tranche d'eau inférieure, on disposera d'une grande latitude de choix quant à la position des flotteurs, conduisant à de faibles variations des efforts horizontaux et de la distance tour-FPSO. En procédant ainsi on peut positionner dans l'espace une multiplicité d'ensembles tour-SCRs en évitant les interférences des flotteurs entre eux et des SCRs entre eux, ce qui augmente la sécurité et la performance des installations durant la durée de vie du champ.FIG. 7 represents on the basis of the hypotheses detailed in FIG. 6 the variations in horizontal tension and in the distance L from the base 8 to the FPSO 1 as a function of the depth of the float 5. It is thus observed that for an increase in the depth of float 5, the horizontal tension decreases and presents a minimum for - 1400 m. In addition, for a depth between - 1,000 and - 1,800 m, the tension is between 52 and 53 tonnes, therefore substantially constant. Likewise, the distance L to FPSO 1 represents a maximum value for - 1,400 m and remains substantially constant around - 950 / - 960 m for a depth between - 1,000 and - 1,800 M. Thus, if we install two towers at substantially the same distance from the FPSO with floats located at very different depths, their performance will be similar, but the SCRs being radically different will not risk interfering with each other. FIG. 8 represents on the basis of the detailed hypotheses of FIG. 6 the variations of the excursion of the FPSO and of the horizontal tension as a function of the depth of the float 5 and for a distance of the FPSO 1 and base 8 of 950 m (position PO). The calculation was made on the basis of an 8% excursion corresponding to a float depth of 1000 m. In the design phases of oil fields, it is customary to consider a maximum excursion corresponding precisely to 8% of the water height, which corresponds to 160 m for a water depth of 2000 m. We thus observe that for a reduction in the depth of the float 5, the maximum excursion and the horizontal tension tend to increase whereas for an increase in this depth, the excursion remains stable around 8% and the tension remains stable around 50 tonnes. It thus appears that for depths greater than 1000 m, the maximum excursion and the tension remain stable in static. This set therefore constitutes an invariant of the system, which invariant will have a stabilizing effect for this system subjected to dynamic effects. Thus, according to the invention, the location of the float 5 at a depth greater than the half height of water has a great advantage for the stability of the system and therefore for its resistance to fatigue throughout the life of the field. It thus appears that for the development of fields requiring a multitude of turns, by locating the floats in the lower half slice of water, there will be a great latitude of choice as to the position of the floats, leading to small variations in the horizontal forces and of the tower-FPSO distance. By proceeding in this way, a multiplicity of tower-SCRs assemblies can be positioned in space, avoiding interference between the floats and the SCRs between them, which increases the safety and performance of the installations during the life of the field.
Dans toutes les descriptions des dispositifs selon l'invention, parties mâles et parties femelles des connecteurs automatiques ont été décrites dans une position donnée, mais elles peuvent, sans changer le caractère de l'invention, être interverties. De la même manière, la position du connecteur automatique et du joint flexible adjacent peuvent être inversées sans changer le caractère de l'invention.In all the descriptions of the devices according to the invention, male parts and female parts of the automatic connectors have been described in a given position, but they can, without changing the character of the invention, be reversed. In the same way, the position of the automatic connector and of the adjacent flexible joint can be reversed without changing the character of the invention.
D'une manière générale, une tour augmente la capacité d'excursion du FPSO autour de sa position moyenne, alors qu'un SCR de grandes dimensions améliore l'amortissement du système. En effet, la courbe mathématique que représente la chaînette constituée par une conduite de masse linéaire et d'inertie constante présente, en partant du FPSO vers le flotteur, une variation constante de sa courbure, laquelle a une valeur minimale (rayon de courbure maximal) au niveau du FPSO, puis croît vers une valeur maximale (rayon de courbure minimal) au niveau du flotteur. Le FPSO, soumis aux conditions d'environnement transmettra ses mouvements à l'ensemble constitué du ou des SCRs et de la tour. L'excitation du SCR conduira à des mouvement d'ensemble dudit SCR engendrant des variations localisées de rayon de courbure lesquelles engendreront des mouvements transversaux qui auront pour effet d'absorber une partie de l'énergie. Ainsi, des SCR de grande amplitude absorberont un maximum d'énergie sur toute leur longueur et le transfert d'énergie d'excitation au flotteur sera réduite au minimum. Le SCR joue ainsi, vis à vis de la tour, le rôle de filtre pour les mouvements d'excitation engendrés par le FPSO. La tour, favorable pour améliorer la capacité d'excursion pour de faibles variations angulaires, est un médiocre amortisseur et de plus elle est sujette à des vibrations engendrées par des phénomènes tourbillonnaires (vortex), c'est pourquoi le dispositif selon l'invention consiste à installer la tour et son flotteur à grande profondeur, dans une zone où les courants sont stables et les effets de vortex sont faibles.In general, a tower increases the excursion capacity of the FPSO around its average position, while a large SCR improves the damping of the system. Indeed, the mathematical curve represented by the chain constituted by a line of linear mass and constant inertia presents, from the FPSO towards the float, a constant variation of its curvature, which has a minimum value (maximum radius of curvature) at the level of the FPSO, then increases towards a maximum value (minimum radius of curvature) at the level of the float. The FPSO, subject to environmental conditions, will transmit its movements to the assembly made up of the SCR (s) and the tower. Excitation of the SCR will lead to overall movements of said SCR generating localized variations in radius of curvature which will generate transverse movements which will have the effect of absorbing part of the energy. Thus, large amplitude SCRs will absorb maximum energy over their entire length and the transfer of excitation energy to the float will be minimized. The SCR thus plays, vis-à-vis the tower, the filter role for the excitation movements generated by the FPSO. The tower, favorable for improving excursion capacity for low angular variations, is a poor shock absorber and moreover it is subject to vibrations generated by vortex phenomena (vortex), this is why the device according to the invention consists in installing the tower and its float at great depth, in an area where the currents are stable and the vortex effects are weak.
Ainsi, sur un champ pétrolier installé par exemple par 1 500m de hauteur d'eau, dans le cas d'une tour de faible hauteur, par exemple située à 100m au dessus du fond, le SCR, d'une hauteur d'environ 1 400m, se comporte vis à vis du FPSO comme un SCR conventionnel, sans toutefois présenter les inconvénients existant dans l'art antérieur et liés à la formation d'une souille au niveau du point de contact et des risques d'endommagement du SCR dans cette zone. La présence de joints articulés au niveau du FPSO et au niveau du flotteur de la tour facilite les excitations de la chaînette, lesquelles conduiront à des absorption d'énergie, donc à un amortissement global, tout en minimisant la transmission d'efforts au niveau des extrémités, tant au FPSO qu'au flotteur de la tour, par la suppression des encastrements.Thus, on an oil field installed for example by 1,500m of water height, in the case of a tower of low height, for example located 100m above the bottom, the SCR, with a height of about 1 400m, behaves with respect to the FPSO like a conventional SCR, without however presenting the drawbacks existing in the prior art and linked to the formation of a stain at the point of contact and the risks of damage to the SCR in this zoned. The presence of articulated joints at the level of the FPSO and at the level of the tower float facilitates the excitations of the chain, which will lead to energy absorption, therefore to overall damping, while minimizing the transmission of forces at the level of the ends, both at the FPSO and at the tower float, by removing the embedding.
Une tour de grande hauteur sera préférée dans le cas où l'on recherche un système d'isolation performant tel que le pipe-in-pipe. Le concept pipe-in-pipe est constitué de deux conduites concentriques entre lesquelles un système d'isolation est installé. Ce système d'isolation peut être de la mousse de polyuréthanne, de la mousse syntactique ou encore un gaz à une pression absolue pouvant varier de la pression régnant au fond, par exemple, jusqu'au vide absolu, ce dernier présentant le meilleur niveau de performances en termes d'isolation. Nous rappelons à ce sujet que la mousse syntactique est constituée de microsphères, en général de verre enrobé dans une matrice de matières réticulables de type époxy ou polyuréthanne. Un tel système pipe-in-pipe est coûteux et présente une certaine complexité de mise en œuvre car il est en général constitué d'éléments de 12 ou 24m de longueur assemblés par soudage ou par vissage. S'il est particulièrement bien adapté aux risers de la tour, son utilisation pour les SCR est plus délicate et l'on préfère mettre en œuvre des systèmes d'isolation plus résistants mais moins performants et moins coûteux, tels les coquilles de mousse syntactique pour moyennes profondeurs. Ainsi, avec une tour de grande hauteur on met en œuvre, au sein de la tour seulement, une technologie de pipe-in-pipe chère mais performante et présentant un maximum de garanties de durée de vie, car la tour se trouve dans la partie la plus calme de la tranche d'eau. On utilise dans la partie haute des SCR associés à des systèmes d'isolation moins performants sur le plan thermique, mais plus aptes à résister durant la durée de vie des installations aux conditions d'environnement, et ce à des coûts considérablement moindres. Ainsi le fluide arrivant en pied de tour à une température, par exemple 55°C, il perdra durant son trajet dans la tour quelques degrés, par exemple 4-5°C, essentiellement dus à la dépressurisation de l'effluent sur un trajet représentant par exemple 45% de la hauteur d'eau et, sur le parcours du SCR représentant le complément, soit 55% de la hauteur d'eau, il perdra encore quelques degrés, par exemple 7-9°C dus en partie à une isolation moins performante et en partie à la dépressurisation de l'effluent. Dans l'exemple cité, le fluide aura ainsi perdu au total de 11 à 14°C en utilisant deux systèmes d'isolation présentant des niveaux de performance très différents, car l'objectif recherché est une optimisation de l'ensemble isolation globale basée sur des critères de durée de vie et de coût. Une tour de grande hauteur sera aussi préférée dans le cas où des bouchons de gaz ont tendance à se former dans la colonne montante. En effet, de tels bouchons sont suivis d'un front liquide pouvant se déplacer à des vitesses très élevées et provoquant de manière hératique des phénomènes internes de type coups de bélier. Ces phénomènes se répercutent sur le SCR et remontent jusqu'au FPSO en créant des fronts de pression interne au sein du fluide. De tels coups de bélier au sein des risers verticaux peuvent engendrer des efforts de plusieurs tonnes au niveau des extrémités. Ces efforts se produiront alors au niveau du flotteur dont la masse globale peut atteindre 100 à 200 tonnes, ce qui rend insignifiantes les conséquences de tels phénomènes sur le système de risers. On considère ainsi que les effets de tels coups de bélier sont du deuxième ordre lorsqu'ils se produisent sur la tour verticale alors qu'ils sont du premier ordre lorsqu'ils se produisent au sein d'un SCR de même hauteur.A tall tower will be preferred if you are looking for a high-performance insulation system such as a pipe-in-pipe. The pipe-in-pipe concept consists of two concentric pipes between which an insulation system is installed. This insulation system can be polyurethane foam, syntactic foam or even a gas at absolute pressure which can vary from the pressure prevailing at the bottom, for example, to absolute vacuum, the latter having the best level of performance in terms of insulation. We recall in this regard that the syntactic foam consists of microspheres, generally glass coated in a matrix of crosslinkable materials of epoxy or polyurethane type. Such a pipe-in-pipe system is expensive and has a certain complexity of implementation because it generally consists of elements 12 or 24 m in length assembled by welding or by screwing. If it is particularly well suited to tower risers, its use for SCRs is more delicate and it is preferable to use more resistant but less efficient and less expensive insulation systems, such as syntactic foam shells for medium depths. Thus, with a tall tower we implement, within the tower only, an expensive but efficient pipe-in-pipe technology and with a maximum of lifetime guarantees, because the tower is in the part the calmer the slice of water. In the upper part, SCRs are used, associated with insulation systems that are less efficient thermally, but more able to withstand environmental conditions during the lifetime of the installations, at considerably lower costs. Thus, the fluid arriving at the bottom of the tower at a temperature, for example 55 ° C., it will lose during its journey in the tower a few degrees, for example 4-5 ° C., essentially due to the depressurization of the effluent on a path representing for example 45% of the water height and, on the course of the SCR representing the complement, i.e. 55% of the water height, it will still lose a few degrees, for example 7-9 ° C due in part to insulation less efficient and partly due to the depressurization of the effluent. In the example cited, the fluid will thus have lost a total of 11 to 14 ° C using two insulation systems having very different performance levels, because the objective sought is an optimization of the overall insulation assembly based on lifetime and cost criteria. A tall tower will also be preferred in the event that gas plugs tend to form in the riser. Indeed, such plugs are followed by a liquid front which can move at very high speeds and inherently causing internal phenomena of the type water hammer. These phenomena are reflected on the SCR and go back to the FPSO by creating internal pressure fronts within the fluid. Such water hammer within vertical risers can generate loads of several tonnes at the ends. These efforts will then occur at the level of the float, the overall mass of which can reach 100 to 200 tonnes, which makes the consequences of such phenomena on the riser system insignificant. We thus consider that the effects of such water hammer are second order when they occur on the vertical tower whereas they are first order when they occur within a SCR of the same height.
Ainsi, d'une manière générale, dans des configurations de production d'effluent et surtout celles nécessitant une isolation, on privilégiera des tours hautes.Thus, in general, in effluent production configurations and especially those requiring insulation, high towers will be preferred.
Dans le cas d'injection d'eau, laquelle s'effectue avec une grande stabilité de la veine fluide et par conséquent n'engendre pas de phénomènes de coups de bélier, on installera de préférence une tour basse pour se rapprocher de la configuration d'un simple SCR reposant sur le fond de la mer, sans toutefois rencontrer les inconvénients de l'art antérieur décrits précédemment.In the case of water injection, which is carried out with great stability of the fluid stream and therefore does not generate phenomena of water hammer, preferably install a low tower to approach the configuration of '' a simple SCR resting on the bottom of the sea, without however meet the drawbacks of the prior art described above.
Dans ce même cas, on remplacera avantageusement le tendon central par une conduite à travers laquelle circulera l'eau d'injection. En effet, les risers d'injection d'eau sont en général en nombre très limités et sont reliés au niveau du fond de la mer à des embranchements multiples à partir desquels des conduites sous-marines rejoignent les puits d'injection d'eau. Cette conduite- tendon assurera une double fonction, option qui bien que possible dans le cas de la production d'effluents pétroliers n'est pas souhaitable car les opérations de maintenance nécessitent alors un démontage de l'ensemble flotteur-conduite- tendon.In this same case, the central tendon will advantageously be replaced by a pipe through which the injection water will circulate. In fact, water injection risers are generally very limited in number and are connected at sea level to multiple branches from which submarine pipes reach the water injection wells. This tendon pipe will perform a double function, an option which although possible in the case of the production of petroleum effluents is not desirable since maintenance operations then require disassembly of the float-pipe-tendon assembly.
Les développements de champs pétroliers sont souvent réalisés en séquence sur plusieurs années, au fur et à mesure de la réalisation des puits et de l'installation des têtes de puits. Le dispositif selon l'invention permet avantageusement d'installer autour du FPSO une multiplicité de tours indépendantes les unes des autres et situées à des profondeurs différentes, ce qui présente l'avantage de localiser le pied de chacune d'entre elles à des distances horizontales du FPSO d'autant plus grandes que le flotteur est situé plus profond. Cette disposition permet de faire converger vers chacun des pieds de tour un grand nombre de conduites sous-marines, sans interférer avec les pieds de tour voisins ni leurs conduites sous-marines associées. Oil field developments are often carried out in sequence over several years, as wells are completed and wellheads are installed. The device according to the invention advantageously makes it possible to install around the FPSO a multiplicity of turns independent of each other and located at different depths, which has the advantage of locating the foot of each of them at horizontal distances of the FPSO the larger the deeper the float. This arrangement allows a large number of underwater pipes to converge towards each of the tower feet, without interfering with the neighboring tower feet or their associated underwater pipes.

Claims

REVENDICATIONS
1. Dispositif de liaison fond-surface pour conduite sous-marine installée à grande profondeur comportant d'une part une tour verticale constituée d'au moins un flotteur (5, 14) associé à un système d'ancrage (6, 8, 16) et portant au moins un riser vertical (9, 15) reliant ledit flotteur jusqu'au fond de la mer (18) et pouvant se connecter à une dite conduite sous-marine reposant sur le fond de la mer, et d'autre part au moins une conduite de liaison (4, 3) depuis ledit flotteur (5, 14) vers tout support de surface (1) caractérisé en ce que ladite conduite de liaison (4, 3) est un riser dont la paroi est un tube résistant rigide.1. Bottom-surface connection device for underwater pipe installed at great depth, comprising on the one hand a vertical tower made up of at least one float (5, 14) associated with an anchoring system (6, 8, 16 ) and carrying at least one vertical riser (9, 15) connecting said float to the bottom of the sea (18) and being able to connect to a said underwater pipe resting on the bottom of the sea, and on the other hand at least one connecting pipe (4, 3) from said float (5, 14) to any surface support (1) characterized in that said connecting pipe (4, 3) is a riser whose wall is a resistant tube rigid.
2. Conduite suivant la revendication 1 , caractérisée en ce que ledit flotteur (5, 14) est installé à une profondeur d'immersion située en dessous de la dernière thermocline, de préférence à une profondeur d'immersion supérieure à 300 m, de préférence encore supérieure à 500 m. 2. Pipe according to claim 1, characterized in that said float (5, 14) is installed at an immersion depth located below the last thermocline, preferably at an immersion depth greater than 300 m, preferably still more than 500 m.
3. Dispositif de liaison suivant la revendication 2, caractérisé en ce que ledit flotteur est installé à une profondeur supérieure à la demi profondeur d'eau à laquelle la tour est ancrée.3. Connecting device according to claim 2, characterized in that said float is installed at a depth greater than the half depth of water to which the tower is anchored.
4. Dispositif de liaison suivant l'une des revendications 1 à 3, caractérisé en ce que le système d'ancrage comporte au moins un tendon (6) vertical, une embase inférieure (8) auquel est fixé l'extrémité inférieure du tendon, et au moins un guide (41) à travers lequel passe l'extrémité inférieure (25) du riser (9) vertical.4. Connection device according to one of claims 1 to 3, characterized in that the anchoring system comprises at least one vertical tendon (6), a lower base (8) to which the lower end of the tendon is fixed, and at least one guide (41) through which the lower end (25) of the vertical riser (9) passes.
5. Dispositif de liaison suivant la revendication 4 caractérisé en ce que l'extrémité inférieure (25) du riser (9) vertical est apte à être connectée à l'extrémité (44) d'une manchette coudée mobile, entre une position haute et une position basse, par rapport à ladite embase (8), à laquelle cette manchette est suspendue et associée à un moyen de rappel la ramenant en position haute en l'absence de riser (9).5. Connection device according to claim 4 characterized in that the lower end (25) of the vertical riser (9) is capable of being connected to the end (44) of a movable bent cuff, between a high position and a low position, relative to said base (8), to which this cuff is suspended and associated with a return means bringing it back to the high position in the absence of riser (9).
6. Dispositif selon l'une quelconque des revendications 4 ou 5 caractérisée en ce que ledit tendon (6) comporte des moyens de guidage (7) répartis sur toute sa longueur et à travers lesquels passent au moins ledit riser (9) vertical.6. Device according to any one of claims 4 or 5 characterized in that said tendon (6) comprises guide means (7) distributed over its entire length and through which pass at least said riser (9) vertical.
7. Dispositif selon l'une quelconque des revendications 1 à 6 caractérisé en ce que l'extrémité supérieure (30) dudit riser vertical (9, 15) est suspendue à travers au moins un guide (22) solidaire dudit flotteur (5, 14) et connectée par le dessus de celui-ci à l'extrémité coudée (32) de ladite conduite de liaison (4, 3) .7. Device according to any one of claims 1 to 6 characterized in that the upper end (30) of said vertical riser (9, 15) is suspended through at least one guide (22) integral with said float (5, 14 ) and connected by the top thereof to the bent end (32) of said connecting pipe (4, 3).
8. Dispositif selon l'une des revendications 6 ou 7, caractérisé en ce que lesdits moyens de guidage (7) comprenant une cavité cylindrique (7a) de préférence surmontée d'un entonnoir conique (7b), le diamètre intérieur de ladite cavité cylindrique (7a) étant supérieur à celui du riser vertical (9), et lesdits moyens de guidage comprennent une membrane souple (60) solidaire de la paroi interne de ladite cavité cylindrique (7a), créant ainsi une poche étanche (62) entre ladite membrane (60) et ladite paroi interne, poche que l'on peut remplir d'un fluide, de préférence à très forte viscosité, de manière à venir en appui contre le riser.8. Device according to one of claims 6 or 7, characterized in that said guide means (7) comprising a cylindrical cavity (7a) preferably surmounted by a conical funnel (7b), the inside diameter of said cylindrical cavity (7a) being greater than that of the vertical riser (9), and said guide means comprise a flexible membrane (60) integral with the internal wall of said cylindrical cavity (7a), thus creating a sealed pocket (62) between said membrane (60) and said internal wall, pocket which can be filled with a fluid, preferably with very high viscosity, so as to bear against the riser.
9. Dispositif selon la revendication 8, caractérisé en ce que des patins de frottement (65) sont associés à ladite membrane (60) et viennent en appui contre le riser (9) lorsque ladite poche (62) est remplie de fluide. 9. Device according to claim 8, characterized in that friction pads (65) are associated with said membrane (60) and come to bear against the riser (9) when said pocket (62) is filled with fluid.
10. Procédé de liaison fond-surface par conduite sous-marine installée à grande profondeur utilisant d'une part une tour verticale constituée d'au moins un flotteur (5, 14) associé à un système d'ancrage (6, 8, 16) et portant au moins un riser vertical (9, 15) apte à descendre jusqu'au fond de la mer (18) et d'autre part au moins une conduite de liaison (4, 3) depuis ledit flotteur (5, 14) vers tout support de surface (1) caractérisé en ce que on installe ledit flotteur (5, 14) à une profondeur d'immersion située en dessous de la dernière thermocline (29).10. Method of bottom-surface connection by submarine pipe installed at great depth using on the one hand a vertical tower made up of at least one float (5, 14) associated with an anchoring system (6, 8, 16 ) and carrying at least one vertical riser (9, 15) able to descend to the bottom of the sea (18) and on the other hand at least one connecting pipe (4, 3) from said float (5, 14) to any surface support (1) characterized in that said float (5, 14) is installed at an immersion depth located below the last thermocline (29).
11. Procédé de liaison suivant la revendication 10 caractérisé en ce que l'on relie ledit flotteur (5, 14) au support de surface (1) par au moins un riser résistant rigide constituant ladite conduite de liaison (4, 3).11. A connection method according to claim 10 characterized in that said float (5, 14) is connected to the surface support (1) by at least one rigid resistant riser constituting said connection pipe (4, 3).
12. Procédé de liaison suivant l'une quelconque des revendications 10 ou 11 caractérisé en ce que :12. A linking method according to any one of claims 10 or 11 characterized in that:
- on met en place sur le fond de la mer (12) une embase (8) que l'on solidarise audit fond (12), et à laquelle on fixe l'extrémité inférieure d'un tendon (6) qui est solidaire, à son autre extrémité supérieure, dudit flotteur (5), l'ensemble constituant ledit système d'ancrage de la tour verticale ;- a base (8) is placed on the bottom of the sea (12) which is secured to said bottom (12), and to which the lower end of a tendon (6) which is secured is attached, at its other upper end, of said float (5), the assembly constituting said anchoring system of the vertical tower;
- on descend progressivement ledit riser vertical (9) depuis la surface (19) et à travers un ensemble de guidage (22) dudit flotteur (5) jusqu'à ce que son extrémité supérieure (30) vienne en appui sur ledit flotteur (5), son extrémité inférieure (25) venant se connecter à l'extrémité supérieure d'une manchette (1 1) pré-installée sur ladite embase (8) .- Said vertical riser (9) is gradually lowered from the surface (19) and through a guide assembly (22) of said float (5) until its upper end (30) comes to bear on said float (5 ), its lower end (25) coming to connect to the upper end of a cuff (1 1) pre-installed on said base (8).
13. Procédé de liaison selon l'une quelconque des revendications 10 à 12 caractérisé en ce qu'on installe ledit flotteur (5, 14) à une profondeur d'immersion supérieure à la demi-profondeur d'eau à laquelle est ancrée la tour.13. A connection method according to any one of claims 10 to 12 characterized in that said float (5, 14) is installed at an immersion depth greater than the half-depth of water to which the tower is anchored. .
14. Procédé de liaison suivant les revendications 12 et 13 caractérisé en ce qu'on assemble préalablement l'ensemble du riser (9) vertical et on le transporte en position verticale jusqu'à la verticale du guide (22) correspondant du flotteur (5). 14. A connection method according to claims 12 and 13 characterized in that the entire riser (9) is assembled together in a vertical position and transported in a vertical position to the vertical of the guide (22) corresponding to the float (5 ).
EP00906407A 1999-02-19 2000-02-17 Method and device for linking surface to the seabed for a submarine pipeline installed at great depth Expired - Lifetime EP1073823B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9902269A FR2790054B1 (en) 1999-02-19 1999-02-19 METHOD AND DEVICE FOR LOW-SURFACE LINKAGE BY SUBMARINE PIPELINE INSTALLED WITH LARGE DEPTH
FR9902269 1999-02-19
PCT/FR2000/000389 WO2000049267A1 (en) 1999-02-19 2000-02-17 Method and device for linking surface to the seabed for a submarine pipeline installed at great depth

Publications (2)

Publication Number Publication Date
EP1073823A1 true EP1073823A1 (en) 2001-02-07
EP1073823B1 EP1073823B1 (en) 2006-04-26

Family

ID=9542452

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00906407A Expired - Lifetime EP1073823B1 (en) 1999-02-19 2000-02-17 Method and device for linking surface to the seabed for a submarine pipeline installed at great depth

Country Status (11)

Country Link
US (1) US6461083B1 (en)
EP (1) EP1073823B1 (en)
CN (1) CN1294654A (en)
AT (1) ATE324512T1 (en)
AU (1) AU2809200A (en)
BR (1) BR0004931B1 (en)
DE (1) DE60027511D1 (en)
FR (1) FR2790054B1 (en)
ID (1) ID28051A (en)
OA (1) OA11541A (en)
WO (1) WO2000049267A1 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821143B1 (en) * 2001-02-19 2003-05-02 Bouygues Offshore LOW-SURFACE LINK INSTALLATION OF A LARGE-DEPTH, SUB-SUBMARINE PIPELINE OF THE TOUR-HYBRID TYPE
FR2826051B1 (en) * 2001-06-15 2003-09-19 Bouygues Offshore GROUND-SURFACE CONNECTION INSTALLATION OF A SUBSEA PIPE CONNECTED TO A RISER BY AT LEAST ONE FLEXIBLE PIPE ELEMENT HOLDED BY A BASE
FR2839109B3 (en) 2002-04-26 2004-02-20 Coflexip BUOY COLUMN CONFIGURATION AND ITS INSTALLATION METHOD
FR2839542B1 (en) 2002-05-07 2004-11-19 Bouygues Offshore BASE-SURFACE CONNECTION INSTALLATION OF A SUBSEA PIPE COMPRISING A BENDED PIPE ELEMENT HOLDED BY A BASE
US6769376B2 (en) * 2002-06-04 2004-08-03 Coflexip, S.A. Transfer conduit system, apparatus, and method
US7434624B2 (en) * 2002-10-03 2008-10-14 Exxonmobil Upstream Research Company Hybrid tension-leg riser
FR2852677B1 (en) * 2003-03-18 2006-01-06 Saipem Sa DEVICE FOR HEATING AND THERMALLY INSULATING AT LEAST ONE UNDERWATER DRIVING
FR2856160B1 (en) * 2003-06-11 2005-07-22 Inst Francais Du Petrole AUTOMATIC CONTROL METHOD FOR POSITIONING THE LOWER END OF A FILIFORM STRUCTURE, IN PARTICULAR A PETROLEUM CONDUIT, AT SEA
US7958938B2 (en) 2004-05-03 2011-06-14 Exxonmobil Upstream Research Company System and vessel for supporting offshore fields
US7191836B2 (en) * 2004-08-02 2007-03-20 Kellogg Brown & Root Llc Dry tree subsea well communications apparatus and method using variable tension large offset risers
FR2890098B1 (en) * 2005-08-26 2008-01-04 Saipem S A Sa INSTALLATION COMPRISING AT LEAST TWO FOUNDAL-SURFACE CONNECTIONS OF AT LEAST TWO SUB-MARINE DUCTS BASED ON THE BOTTOM OF THE SEA
US20070081862A1 (en) * 2005-10-07 2007-04-12 Heerema Marine Contractors Nederland B.V. Pipeline assembly comprising an anchoring device and method for installing a pipeline assembly comprising an anchoring device
US8123437B2 (en) * 2005-10-07 2012-02-28 Heerema Marine Contractors Nederland B.V. Pipeline assembly comprising an anchoring device
CA2867393C (en) * 2006-11-07 2015-06-02 Charles R. Orbell Method of drilling with a riser string by installing multiple annular seals
US9779556B1 (en) 2006-12-27 2017-10-03 Stamps.Com Inc. System and method for identifying and preventing on-line fraud
FR2911907B1 (en) 2007-01-26 2009-03-06 Technip France Sa FLEXIBLE UPLINK CONDUIT FOR TRANSPORTING HYDROCARBONS.
GB2453168A (en) * 2007-09-28 2009-04-01 2H Offshore Engineering Ltd Frame for connecting a jumper to a riser
NZ588076A (en) * 2008-04-09 2012-04-27 Amog Pty Ltd Riser end support with means for coupling and decoupling a riser termination for connection to a floating vessel
FR2933124B1 (en) * 2008-06-27 2010-08-13 Technip France METHOD FOR INSTALLING A HYBRID TOWER IN A WATER EXTEND, HYBRID TOWER AND ASSOCIATED FLUID OPERATING FACILITY
FR2934635B1 (en) 2008-07-29 2010-08-13 Technip France FLEXIBLE UPLINK CONDUIT FOR HYDROCARBON TRANSPORT FOR LARGE DEPTH
GB0818500D0 (en) * 2008-10-09 2008-11-19 Wellstream Int Ltd Flexible pipe
GB0900101D0 (en) * 2009-01-07 2009-02-11 Acergy Us Inc Methods and associated apparatus of constructing and installing rigid riser structures
FR2942497B1 (en) 2009-02-26 2013-04-26 Saipem Sa MULTI-RISER HYBRID TILT-TYPE FLAT-SURFACE LINK INSTALLATION COMPRISING SLIDING FLOATING MODULES
AU2009243413A1 (en) * 2009-03-27 2010-10-14 Berhad, Bumi Armada Riser Support System
US20110017309A1 (en) * 2009-07-27 2011-01-27 Flowserve Management Company Pump with integral caisson discharge
GB2473018A (en) * 2009-08-26 2011-03-02 2H Offshore Engineering Ltd Hydrocarbon production system
AU2010310741B2 (en) 2009-10-21 2014-09-18 Fluor Technologies Corporation Hybrid buoyed and stayed towers and risers for deepwater
FR2952671B1 (en) * 2009-11-17 2011-12-09 Saipem Sa INSTALLATION OF FUND-SURFACE CONNECTIONS DISPOSED IN EVENTAIL
FR2957649B1 (en) 2010-03-18 2012-05-11 Saipem Sa METHOD FOR REMOVING AN UNDERWATER LINE AT THE BOTTOM OF THE SEA
FR2960208B1 (en) 2010-05-20 2012-08-10 Saipem Sa SURFACE BONDING SYSTEM COMPRISING A FLEXIBLE DRIVING GUIDE STRUCTURE
US8960302B2 (en) * 2010-10-12 2015-02-24 Bp Corporation North America, Inc. Marine subsea free-standing riser systems and methods
MY176122A (en) 2010-11-09 2020-07-24 Baker Hughes Energy Technology UK Ltd Riser assembly and method
FR2967451B1 (en) * 2010-11-17 2012-12-28 Technip France FLUID OPERATING TOWER IN WATER EXTEND AND ASSOCIATED INSTALLATION METHOD
FR2971322B1 (en) 2011-02-03 2014-05-02 Saipem Sa FLEXIBLE SUBMARINE LINE BEND LIMITER AND BACKFILL BOND INSTALLATION COMPRISING THE SAME
EP2699754B1 (en) * 2011-04-18 2018-03-14 Magma Global Limited Subsea conduit system
FR2988424B1 (en) * 2012-03-21 2014-04-25 Saipem Sa INSTALLATION OF MULTI-RISERS HYBRID TILT TYPE FOUNDATION SURFACE CONNECTIONS COMPRISING POSITIVE FLOATABLE FLEXIBLE DUCTS
GB2501277B (en) 2012-04-18 2015-06-17 Acergy France SAS Jumper support arrangements for hybrid riser towers
MX2015015413A (en) * 2013-05-06 2016-03-15 Single Buoy Moorings Deepwater disconnectable turret system with lazy wave rigid riser configuration.
US9896896B2 (en) * 2013-12-18 2018-02-20 Aker Solutions As Hinged cable termination
FR3020396B1 (en) * 2014-04-25 2016-05-13 Saipem Sa METHOD FOR INSTALLING AND IMPLEMENTING A RIGID TUBE FROM A VESSEL OR FLOATING SUPPORT
WO2015168432A1 (en) * 2014-04-30 2015-11-05 Seahorse Equipment Corp Bundled, articulated riser system for fpso vessel
FR3020858B1 (en) 2014-05-07 2016-06-10 Technip France METHOD FOR CONNECTING A DOWNWARD DRIVE AND AN AMOUNT OF DRIVING
US10184589B2 (en) * 2015-03-04 2019-01-22 Ge Oil & Gas Uk Limited Riser assembly and method
FR3033358B1 (en) 2015-03-06 2017-03-31 Saipem Sa INSTALLATION COMPRISING AT LEAST TWO FOUNDAL SURFACE CONNECTIONS COMPRISING VERTICAL RISERS CONNECTED BY ARTICULATED BARS
CN106167229B (en) * 2016-06-21 2018-06-08 中交天航港湾建设工程有限公司 A kind of construction method of the underwater pipeline of dredging of marine lifting
WO2019007975A2 (en) * 2017-07-03 2019-01-10 Subsea 7 Norway As Offloading hydrocarbons from subsea fields
CN107217999B (en) * 2017-07-13 2024-05-14 安世亚太科技股份有限公司 Upper connecting device of marine drilling riser
BR102018014298B1 (en) * 2018-07-13 2021-12-14 Petróleo Brasileiro S.A. - Petrobras SYSTEM AND METHOD OF SUPPORTING THE OPERATION OF SUBSEA INSTALLATIONS FOR 3D RECONSTRUCTION OF FLEXIBLE LINES DURING A DIRECT VERTICAL CONNECTION OPERATION
CN111829695A (en) * 2020-08-05 2020-10-27 中国科学院海洋研究所 Deep sea heat flow measuring method and system based on real-time monitoring of operation state
CN112972731B (en) * 2021-03-03 2022-11-22 何希站 Intracardiac branch of academic or vocational study medical instrument disinfecting equipment
CN114198568B (en) * 2021-12-03 2023-09-29 中海油深圳海洋工程技术服务有限公司 Underwater positioning method for horizontal limiting clamp

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2417005A1 (en) * 1978-02-14 1979-09-07 Inst Francais Du Petrole NEW ANCHORING AND TRANSFER STATION FOR THE PRODUCTION OF OIL OFFSHORE OIL
ES8105437A1 (en) * 1980-05-20 1981-05-16 Fayren Jose Marco Offshore facility for recovery hydrocarbon deposits from deep sea beds
NL8100564A (en) * 1981-02-05 1982-09-01 Shell Int Research MOVABLE PIPING SYSTEM FOR A FLOATING BODY.
FR2507672A1 (en) * 1981-06-12 1982-12-17 Inst Francais Du Petrole UPLINK COLUMN FOR LARGE DEPTHS OF WATER
US4606673A (en) * 1984-12-11 1986-08-19 Fluor Corporation Spar buoy construction having production and oil storage facilities and method of operation
US4802431A (en) * 1985-11-27 1989-02-07 Amtel, Inc. Lightweight transfer referencing and mooring system
US5615977A (en) * 1993-09-07 1997-04-01 Continental Emsco Company Flexible/rigid riser system
US5657823A (en) * 1995-11-13 1997-08-19 Kogure; Eiji Near surface disconnect riser
US6161620A (en) * 1996-12-31 2000-12-19 Shell Oil Company Deepwater riser system
US5794700A (en) * 1997-01-27 1998-08-18 Imodco, Inc. CAM fluid transfer system
FR2768457B1 (en) * 1997-09-12 2000-05-05 Stolt Comex Seaway DEVICE FOR UNDERWATER TRANSPORT OF PETROLEUM PRODUCTS WITH A COLUMN

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0049267A1 *

Also Published As

Publication number Publication date
BR0004931A (en) 2000-12-26
OA11541A (en) 2004-05-24
AU2809200A (en) 2000-09-04
ID28051A (en) 2001-05-03
FR2790054B1 (en) 2001-05-25
DE60027511D1 (en) 2006-06-01
FR2790054A1 (en) 2000-08-25
EP1073823B1 (en) 2006-04-26
US6461083B1 (en) 2002-10-08
ATE324512T1 (en) 2006-05-15
CN1294654A (en) 2001-05-09
BR0004931B1 (en) 2009-05-05
WO2000049267A1 (en) 2000-08-24

Similar Documents

Publication Publication Date Title
EP1073823B1 (en) Method and device for linking surface to the seabed for a submarine pipeline installed at great depth
EP1899219B1 (en) Device for transfer of fluids between two floating supports
EP1917416B1 (en) Installation comprising at least two seafloor-surface connectors for at least two submarine pipelines resting on the seafloor
OA12814A (en) Système de colonne mo ntante flexible.
EP2844820A1 (en) Installation comprising seabed-to-surface connections of the multi-riser hybrid tower type, including positive-buoyancy flexible pipes
EP2401468B1 (en) Bottom-surface connecting installation of the multi-riser hybrid tower type, comprising sliding buoyancy modules
OA12820A (en) Système de colonne montante reliant deux installations sous-marines fixes à une unité de surface flottante.
EP2785952B1 (en) Flexible multiple seabed-to-surface connections facility on at least two levels
EP2148974B1 (en) Bottom-surface linking equipment including a flexible link between a floating support and the upper end of an under-surface rigid duct
EP2571753B1 (en) Seabed-to-surface linking equipment including a flexible pipe guiding structure
FR2809136A1 (en) Subsea installation has flexible or semi-rigid connector coupling float(s) to vertical riser(s) or tether extending from seabed and flexible conduit(s) extend from surface platform to riser(s)
FR2545439A1 (en) MOORING DEVICE
FR2951801A1 (en) SUBMARINE CONDUCT APPLIED TO THE EXPLOITATION OF THERMAL ENERGY OF THE SEAS
EP2640923B1 (en) Tower for exploiting fluid in an expanse of water and associated installation method
EP2689093B1 (en) Method for the assisted installation of an underwater riser
OA17101A (en) Installation de liaisons fond-surface de type tour hybride multi-risers comprenant des conduites flexibles à flottabilité positive.
OA16429A (en) Fluid operating tower in a body of water and associated installation method.
WO2011048578A1 (en) Underwater pipe applied to the exploitation of ocean thermal energy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001018

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAIPEM S.A.

17Q First examination report despatched

Effective date: 20050425

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060426

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60027511

Country of ref document: DE

Date of ref document: 20060601

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060726

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060926

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: SAIPEM S.A.

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070217

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190115

Year of fee payment: 20

Ref country code: GB

Payment date: 20190215

Year of fee payment: 20

Ref country code: IT

Payment date: 20190208

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190221

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200216

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200216