[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1046867A2 - Heat transfer on a fluid in a microstructure body - Google Patents

Heat transfer on a fluid in a microstructure body Download PDF

Info

Publication number
EP1046867A2
EP1046867A2 EP00107948A EP00107948A EP1046867A2 EP 1046867 A2 EP1046867 A2 EP 1046867A2 EP 00107948 A EP00107948 A EP 00107948A EP 00107948 A EP00107948 A EP 00107948A EP 1046867 A2 EP1046867 A2 EP 1046867A2
Authority
EP
European Patent Office
Prior art keywords
fluid
heated
microstructure body
heat
microstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00107948A
Other languages
German (de)
French (fr)
Other versions
EP1046867B1 (en
EP1046867A3 (en
Inventor
Klaus Dr. Schubert
Jürgen Brandner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP1046867A2 publication Critical patent/EP1046867A2/en
Publication of EP1046867A3 publication Critical patent/EP1046867A3/en
Application granted granted Critical
Publication of EP1046867B1 publication Critical patent/EP1046867B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Definitions

  • the present invention relates to a method for heat transfer with a fluid in a microstructure body a variety of microchannels for the removal and supply of the Fluids as well as one that transfers the thermal energy to the fluid Energy carrier and a microstructure body for exercise of the procedure.
  • the invention proposes the features before, cited in the characterizing part of claim 1 are. Further advantageous features for the solution are cited in the characterizing parts of the subclaims.
  • Microstructure bodies of the type mentioned are generally characterized in that either the characteristic hydraulic channel diameter d i or the channel dimensions a i , where a i is the largest dimension of a microchannel perpendicular to the fluid passage i, of all microchannels of at least one fluid passage i are less than 1000 ⁇ m.
  • the smallest wall thickness b i that is to say the smallest distance between individual fluid passages, should also be chosen to be less than 1000 ⁇ m, preferably less than 200 ⁇ m.
  • the specific heat transfer area can reach values greater than 100 cm 2 / cm 3 . This results in an overall increase in volume-specific heat transfer performance by at least a factor of 100 compared to conventional heat exchangers.
  • the experimental data obtained from microstructure bodies for heat transfer result in heating rates of up to 10000 K per second with dwell times down to a few milliseconds. Therefore, a liquid flow of 400 kg / h in a microstructure body of 1 cm 3 active volume at 6 bar inlet and 1 bar outlet pressure can be heated by 30 ° K in 3 milliseconds. Throughputs of approx. 4000 kg / h result for larger microstructure bodies with an active volume of 27 cm 3 .
  • the active volume of a microstructure body is to be understood as the volume in the interior in which the microchannels run, the volume of top and side plates and that of the connections not being included in the calculation.
  • the fluid to be heated is passed through at least one level or layer of a microstructure body with a large number of adjacent microchannels or micro breakthroughs, their transverse dimensions
  • smaller than 1000 ⁇ m are preferred smaller than 500 ⁇ m
  • immediately adjacent to it fluid-carrying level at least one layer with at least an electrically heated heating element is arranged, which electrically insulated from the material of the fluid level is.
  • many levels or Alternating layers with micro breakthroughs for the fluids with layers with electrically heated heating elements into one compact unit arranged as in those described later Figures 1 and 2 shown in principle.
  • the heating elements can be used depending on the application Current flow in series or in parallel or in a combination of which are switched.
  • Fluids can have several in the heating layers Heating elements, seen in the direction of flow, one behind the other be arranged, the different electrical Deliver services.
  • the fluid-carrying microstructures, - seen again in the direction of flow -, on different temperatures are heated. Thereby can be a temperature profile in the microstructure body Performing a process in the flowing fluid become. This can be important if e.g. B. in the microstructure body a chemical, endothermic process is performed at which the temperature in the direction of flow first kept constant and then increased in a targeted manner got to.
  • FIG. 1 Such a microstructure body 1 is now shown in FIG. 1 shown schematically, installed in the eleven double foil pieces are welded together and one above the other stacked eleven rows of microchannels 2 result.
  • Each the film double piece contains a multiplicity of microchannels with a width and height of 150 ⁇ m and a length of 22 mm. Their hydraulic diameter is 133 ⁇ m.
  • the eleven welded together Foil double pieces are each on their Edges on top of each other with ten spacers 3 to one Block welded so that 3 flat by the spacers Cavities 4 are formed between the film double pieces, in which plate-shaped, ceramic electrical heating elements 5 can be used.
  • microstructure body 1 On the face of the microstructure body 1 with the openings of the microchannels 2 are hollow adapter pieces 6 through which the to be heated Fluid 7 is passed into the microchannels 2.
  • the Microstructure body 1 is at the top and bottom with two end plates 7 completes that with the structures of the film double pieces and the spacers 3 to a closed Block are diffusion welded.
  • FIG. 2 Another embodiment of a microstructure body is shown in Figure 2. With this microstructure body 13 resistance heating cartridges 9 are used for heating. Between two steel plates 10 as a lid and bottom of the microstructure body are each several with microchannels 14 structured steel foils 11 and spacers 12 layered as heated layers in alternating order and diffusion welded together. In the microstructured foils 11 are each a large number of microchannels 14 for the fluid 7 with approximately those already introduced dimensions. The heating cartridges 9 are inserted into holes in the spacers 12. The Fluid connection to the microchannels 14 does not take place by means of Standard fittings shown as connecting pieces serve. Depending on the number and the output of the heating cartridges 9 can the total performance of such a microstructure body 13 in the range of a few 100W to several kW.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Micromachines (AREA)

Abstract

Heat transmission to a fluid in a microstructure body involves a primary energy carrier and a secondary fluid as medium for conducting away heat liberated in the micro-heat exchanger. The energy carrier is electrical current, which within the microstructure body (13) is converted directly into heat and then transmitted by heat conduction to the fluid (7) to be heated. The microstructure body is formed in layers and between at least one layer (11) with mciro-channels for the fluid an electrically directly or indirectly heated layer (12) is arranged. The heated layer or heating elements (9) is/are made of Fecralloy or anoth metal or a metal alloy with an oxide layer on the surface for insulation.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Wärmeübertragung auf ein Fluid in einem Mikrostrukturkörper mit einer Vielzahl von Mikrokanälen für die Ab- und Zufuhr des Fluids sowie einem, die Wärmeenergie auf das Fluid übertragenden Energieträger und einen Mikrostrukturkörper zur Ausübung des Verfahrens.The present invention relates to a method for heat transfer with a fluid in a microstructure body a variety of microchannels for the removal and supply of the Fluids as well as one that transfers the thermal energy to the fluid Energy carrier and a microstructure body for exercise of the procedure.

Es ist bekannt, Fluide durch elektrisch beheizte Elemente zu erhitzen, was den Vorteil hat, das sich die Temperaturregelung bei der Wärmeübertragung schnell und einfach mit Hilfe einer elektrischen Leistungsregelung realisieren lässt. In allen Fällen werden die Fluide durch den direkten Kontakt mit dem elektrisch auf hohe Temperatur gebrachten Heizelement aufgeheizt. Zur Übertragung größerer Leistungen muß jedoch wegen der kleineren Oberflächen der konventionellen Heizelemente die treibende Temperaturdifferenz groß sein, das heisst die Oberflächentemperaturen der Heizelemente müssen sehr hoch sein. Dies kann problematisch sein, wenn Fluide erhitzt werden sollen, die sensitiv gegen hohe Temperaturen und/oder lokale Überhitzungen sind, z. B. Milch. Auch haben konventionelle elektrische Heizapparate relativ niedrige Aufheizraten, das heisst die erreichte Temperaturdifferenz pro Zeiteinheit ist gering und die Verweilzeiten sind, bedingt durch große aktive Wärmeübertragungsvolumina, relativ lang.It is known to have fluids through electrically heated elements to heat, which has the advantage of being temperature control with heat transfer quickly and easily with Realize with the help of an electrical power control leaves. In all cases, the fluids are direct Contact with the electrically brought to high temperature Heating element heated. For the transfer of larger services however, because of the smaller surfaces of the conventional Heating elements the driving temperature difference large be, that is the surface temperatures of the heating elements have to be very high. This can be problematic if fluids are to be heated that are sensitive to high Temperatures and / or local overheating, e.g. B. Milk. Also have conventional electric heaters relatively low heating rates, that means the achieved Temperature difference per unit of time is small and the dwell times are, due to large active heat transfer volumes, relatively long.

Ausgehend davon ist es Aufgabe der vorliegenden Erfindung, ein Verfahren mit einem Mikrostrukturapparat zu schaffen, mittels welchem Fluide mit kleinen Aufheizraten, kurzen Verweilzeiten und exakter Temperatursteuerung bei gleichzeitig technisch relevanten Durchsätzen aufgeheizt werden können. Unter Fluiden sind dabei sowohl Gase als auch Flüssigkeiten zu verstehen. Die Temperaturdifferenz zwischen dem zu erhitzenden Medium und der Oberfläche, von der die Leistung auf das Fluid übertragen wird, soll für bestimmte Anwendungen klein gehalten werden können.Based on this, it is an object of the present invention to create a method with a microstructure apparatus, by means of which fluids with small heating rates, short ones Dwell times and exact temperature control at the same time technically relevant throughputs are heated can. Both gases and liquids are among fluids to understand. The temperature difference between the medium to be heated and the surface from which the Power transferred to the fluid is said to be for certain Applications can be kept small.

Zur Lösung der Aufgabe schlägt die Erfindung die Merkmale vor, die im kennzeichnenden Teil des Patentanspruches 1 angeführt sind. Weitere vorteilhafte Merkmale zur Lösung sind in den kennzeichnenden Teilen der Unteransprüche angeführt.To achieve the object, the invention proposes the features before, cited in the characterizing part of claim 1 are. Further advantageous features for the solution are cited in the characterizing parts of the subclaims.

Einzelheiten der vorliegenden Erfindung werden im folgenden und anhand der Figuren 1 und 2 näher erläutert. Es zeigen:

  • die Figur 1 die schematische Darstellung eines elektrisch beheizten Mikrostrukturkörpers und
  • die Figur 2 die weitere Ausführung eines solchen.
  • Details of the present invention are explained in more detail below and with reference to FIGS. 1 and 2. Show it:
  • 1 shows the schematic representation of an electrically heated microstructure body and
  • 2 shows the further execution of such.
  • Mikrostrukturkörper mit Mikrokanälen bestehen im allgemeinen aus einem Stapel diffusionsverschweißter Metallfolien mit Foliendicken von z. B. 100 µm. In diese Metallfolien werden mit Hilfe formgeschliffener Werkzeuge die parallel zueinander verlaufenden Mikrokanäle für Fluidpassagen gegebenenfalls für eine zu erhitzende Flüssigkeit eingebracht. Die minimal zu realisierenden Kanalabmessungen liegen im Bereich von 10 µm. Die geometrische Form der Mikrokanäle ist frei wählbar. So sind zum Beispiel Rechteck- sowie auch kreisförmige Querschnitte möglich. Die Mikrokanäle können dabei auch unterschiedliche Abmessungen aufweisen. Um gleiche Durchflußmengenströme in den einzelnen Mikrokanälen einer Fluidpassage zu gewährleisten, sind die Mikrokanaäle einer solchen Fluidpassage untereinander gleich. Der charakteristische hydraulische Kanaldurchmesser von Mikrokanälen einer Fluidpassage i ergibt sich zum Beispiel aus der Beziehung: di=4Ai/Ui , wobei

    di =
    hydraulischer Durchmesser der Kanäle der Fluidpassage i
    Ai =
    durchströmter Kanalquerschnitt der Fluidpassage i
    Ui =
    benetzter Kanalumfang der Fluidpassage i
    ist.Microstructure bodies with microchannels generally consist of a stack of diffusion-welded metal foils with foil thicknesses of e.g. B. 100 microns. The microchannels for fluid passages running parallel to one another and possibly for a liquid to be heated are introduced into these metal foils with the aid of form-ground tools. The minimum duct dimensions to be realized are in the range of 10 µm. The geometric shape of the microchannels can be freely selected. For example, rectangular and circular cross-sections are possible. The microchannels can also have different dimensions. In order to ensure the same flow rate flows in the individual microchannels of a fluid passage, the microchannels of such a fluid passage are identical to one another. The characteristic hydraulic channel diameter of microchannels of a fluid passage i results, for example, from the relationship: d i = 4A i / U i , in which
    d i =
    hydraulic diameter of the channels of the fluid passage i
    A i =
    Flow cross-section of the fluid passage i
    U i =
    wetted channel circumference of the fluid passage i
    is.

    Mikrostrukturkörper der genannten Art sind allgemein dadurch gekennzeichnet, daß entweder die charakteristischen hydraulischen Kanaldurchmesser di oder die Kanalabmessungen ai, wobei ai die größte Abmessung eines Mikrokanales senkrecht zur Fluidpassage i ist, aller Mikrokanäle zumindest einer Fluidpassage i kleiner 1000 µm sind. Die kleinste Wandstärke bi, das heisst der geringste Abstand zwischen einzelnen Fluidpassagen ist ebenfalls kleiner 1000 µm, vorzugsweise kleiner 200 µm zu wählen. Diese Aussagen gelten auch für den Fall, daß die Mikrokanäle einer Fluidpassage i untereinander unterschiedlich groß sind.Microstructure bodies of the type mentioned are generally characterized in that either the characteristic hydraulic channel diameter d i or the channel dimensions a i , where a i is the largest dimension of a microchannel perpendicular to the fluid passage i, of all microchannels of at least one fluid passage i are less than 1000 μm. The smallest wall thickness b i , that is to say the smallest distance between individual fluid passages, should also be chosen to be less than 1000 μm, preferably less than 200 μm. These statements also apply in the event that the microchannels of a fluid passage i differ from one another in size.

    Die deutliche Erhöhung der Wärmeübertragungsleistung in solchen Mikrostrukturkörpern beruht darauf, daß durch die kleinen hydraulischen Kanaldurchmesser di, vor allem aber durch die kleinen Kanalabmessungen ai, die Transportwege für zu übertragenden Wärmeströme sehr kurz sind. Gegenüber Wämedurchgangskoeffizienten von ca. 1000 W/K m in konventionellen Wärmeübertragern ergeben sich in Mikrostrukturkörpern zur Wärmeübertragung Werte in der Größenordnung 20000 W/K m, bei Fluidpassagen mit di = 80 µm, ai = 70µm. Die spezifische Wärmeübertragungsfläche kann dabei Werte größer 100 cm2/cm3 erreichen. Daraus resultiert insgesamt eine Steigerung der volumenspezifischen Wärmeübertragungsleistung um mindestens einen Faktor 100 gegenüber konventionellen Wärmeübertragern. The significant increase in the heat transfer capacity in such microstructure bodies is due to the fact that the transport routes for heat flows to be transmitted are very short due to the small hydraulic duct diameters d i , but above all due to the small duct dimensions a i . Compared to heat transfer coefficients of approx. 1000 W / K m in conventional heat exchangers, microstructure bodies for heat transfer result in values in the order of 20 000 W / K m, with fluid passages with d i = 80 µm, a i = 70 µm. The specific heat transfer area can reach values greater than 100 cm 2 / cm 3 . This results in an overall increase in volume-specific heat transfer performance by at least a factor of 100 compared to conventional heat exchangers.

    Aus gewonnenen experimentellen Daten von Mikrostrukturkörpern zur Wärmeübertragung ergeben sich bei Verweilzeiten herunter bis zu wenigen Millisekunden Aufheizraten von bis zu 10000 K pro Sekunde. Daher kann ein Flüssigkeitsstrom von 400 kg/h in einem Mikrostrukturkörper von 1 cm3 aktivem Volumen bei 6 bar Eintritts- und 1 bar Austrittsdruck in 3 Millisekunden um 30°K erhitzt werden. Für größere Mikrostrukturkörper mit 27 cm3 aktivem Volumen ergeben sich ein Durchsätze von ca. 4000 kg/h. Unter dem aktiven Volumen eines Mikrostrukturkörpers ist das Volumen im Inneren zu verstehen, in welchem die Mikrokanäle verlaufen, wobei das Volumen von Deck- und Seitenplatten sowie das der Anschlüsse nicht mitgerechnet ist.The experimental data obtained from microstructure bodies for heat transfer result in heating rates of up to 10000 K per second with dwell times down to a few milliseconds. Therefore, a liquid flow of 400 kg / h in a microstructure body of 1 cm 3 active volume at 6 bar inlet and 1 bar outlet pressure can be heated by 30 ° K in 3 milliseconds. Throughputs of approx. 4000 kg / h result for larger microstructure bodies with an active volume of 27 cm 3 . The active volume of a microstructure body is to be understood as the volume in the interior in which the microchannels run, the volume of top and side plates and that of the connections not being included in the calculation.

    Nach dem neuen Verfahren wird das zu erhitzende Fluid durch mindestens eine Ebene bzw. Schicht eines Mikrostrukturkörpers mit einer Vielzahl von nebeneinanderliegenden Mikrokanälen bzw. Mikrodurchbrüchen geleitet, deren Querabmessungen wie bereits erwähnt kleiner 1000 µm sind, bevorzugt kleiner 500 µm, wobei unmittelbar angrenzend an diese fluidführende Ebene mindestens eine Schicht mit mindestens einem elektrisch beheizten Heizelement angeordnet ist, welches gegenüber dem Material der Fluidebene elektrisch isoliert ist. Für größere Durchsätze sind viele Ebenen bzw. Schichten mit Mikrodurchbrüchen für die Fluide abwechselnd mit Schichten mit elektrisch beheizten Heizelementen zu einer kompakten Einheit angeordnet, wie in den später beschriebenen Figuren 1 und 2 prinzipiell gezeigt.According to the new process, the fluid to be heated is passed through at least one level or layer of a microstructure body with a large number of adjacent microchannels or micro breakthroughs, their transverse dimensions As already mentioned, smaller than 1000 μm are preferred smaller than 500 µm, immediately adjacent to it fluid-carrying level at least one layer with at least an electrically heated heating element is arranged, which electrically insulated from the material of the fluid level is. For higher throughputs, many levels or Alternating layers with micro breakthroughs for the fluids with layers with electrically heated heating elements into one compact unit arranged as in those described later Figures 1 and 2 shown in principle.

    Die Heizelemente können je nach Anwendung bezüglich des Stromflusses in Reihe oder parallel oder in einer Kombination davon geschaltet werden. Zur Erzeugung eines aufgeprägten Temperaturprofiles in Strömungsrichtung des zu erwärmenden Fluides können in den Heizschichten mehrere Heizelemente, -in Strömungsrichtung gesehen-, hintereinander angeordnet werden, die unterschiedliche elektrische Leistungen abgeben. Damit können die fluidführenden Mikrostrukturen, - wieder in Strömungsrichtung gesehen -, auf unterschiedliche Temperaturen aufgeheizt werden. Dadurch kann ein Temperaturprofil in dem Mikrostrukturkörper zur Ausübung eines Verfahrens in dem strömenden Fluid erzeugt werden. Dies kann dann von Bedeutung sein, wenn z. B. in dem Mikrostrukturkörper ein chemischer, endothermer Prozeß geführt wird, bei dem die Temperatur in Strömungsrichtung erst konstant gehalten und danach gezielt erhöht werden muß.The heating elements can be used depending on the application Current flow in series or in parallel or in a combination of which are switched. To create an embossed Temperature profile in the flow direction of the to be heated Fluids can have several in the heating layers Heating elements, seen in the direction of flow, one behind the other be arranged, the different electrical Deliver services. The fluid-carrying microstructures, - seen again in the direction of flow -, on different temperatures are heated. Thereby can be a temperature profile in the microstructure body Performing a process in the flowing fluid become. This can be important if e.g. B. in the microstructure body a chemical, endothermic process is performed at which the temperature in the direction of flow first kept constant and then increased in a targeted manner got to.

    In der Figur 1 ist nun ein solcher Mikrostrukturkörper 1 schematisch dargestellt, in den elf Foliendoppelstücke eingebaut sind, die jeweils zusammengeschweißt und übereinander gestapelt elf Reihen von Mikrokanälen 2 ergeben. Jedes der Foliendoppelstücke enthält eine Vielzahl von Mikrokanälen mit 150 µm Breite und Höhe sowie einer Länge von 22 mm. Ihr hydraulischer Durchmesser liegt bei 133 µm. Die elf zusammengeschweißten Foliendoppelstücke sind jeweils an ihren Rändern übereinander mit zehn Abstandsstücken 3 zu einem Block verschweißt, so daß durch die Abstandstücke 3 flache Hohlräume 4 zwischen den Foliendoppelstücken gebildet werden, in welche plattenförmige, keramische elektrische Heizelemente 5 eingesetzt werden. Auf die Stirnseiten des Mikrostrukturkörpers 1 mit den Öffnungen der Mikrokanäle 2 sind hohle Adapterstücke 6 gesetzt, durch welche das zu erwärmende Fluid 7 in die Mikrokanäle 2 geleitet wird. Der Mikrostrukturkörper 1 ist oben und unten mit zwei Endplatten 7 komplettiert, die mit den Strukturen der Foliendoppelstücke sowie der Abstandsstücke 3 zu einem geschlossenen Block diffusionsverschweißt sind.Such a microstructure body 1 is now shown in FIG. 1 shown schematically, installed in the eleven double foil pieces are welded together and one above the other stacked eleven rows of microchannels 2 result. Each the film double piece contains a multiplicity of microchannels with a width and height of 150 µm and a length of 22 mm. Their hydraulic diameter is 133 µm. The eleven welded together Foil double pieces are each on their Edges on top of each other with ten spacers 3 to one Block welded so that 3 flat by the spacers Cavities 4 are formed between the film double pieces, in which plate-shaped, ceramic electrical heating elements 5 can be used. On the face of the microstructure body 1 with the openings of the microchannels 2 are hollow adapter pieces 6 through which the to be heated Fluid 7 is passed into the microchannels 2. The Microstructure body 1 is at the top and bottom with two end plates 7 completes that with the structures of the film double pieces and the spacers 3 to a closed Block are diffusion welded.

    Als Material für direkt einsetzbare Heizelemente 5 werden neben der bereits erwähnten elektrisch leitfähigen Keramik Materialien mit einem relativ hohen spezifischen Widerstand verwendet. In Frage kommen neben anderem z. B. Tantal, Titan, Wolfram, Konstantan und Fecralloy, wobei letzteres auf seiner Oberfläche eine Chromoxyd-Aluminiumoxyd-Schutzschicht ausbildet, die eine natürliche Isolierung bildet. Letztlich können die beheizten Schichten oder Heizelemente aber auch aus einem anderen Metall bzw. einer Metalllegierung mit einer Oxydschicht auf der Oberfläche zur Isolierung bestehen.As a material for directly usable heating elements 5 in addition to the electrically conductive ceramic already mentioned Materials with a relatively high specific resistance used. Among other things, z. B. tantalum, titanium, Wolfram, Konstantan and Fecralloy, the latter on a chrome oxide-aluminum oxide protective layer on its surface trains, which forms a natural insulation. Ultimately, the heated layers or heating elements but also from another metal or a metal alloy with an oxide layer on the surface for insulation consist.

    Ein weiteres Ausführungsbeispiel eines Mikrostrukturkörpers ist in der Figur 2 dargestellt. Bei diesem Mikrostrukturkörper 13 werden Widerstandsheizpatronen 9 zum Heizen verwendet. Zwischen zwei Stahlplatten 10 als Deckel und Boden des Mikrostrukturkörpers sind jeweils mehrere mit Mikrokanälen 14 strukturierte Stahlfolien 11 und Abstandsstücke 12 als beheizte Schichten in alternierender Ordnung übereinandergeschichtet und miteinander diffusionsverschweißt. In die mikrostrukturierten Folien 11 sind jeweils eine Vielzahl von Mikrokanälen 14 für das Fluid 7 mit etwa den bereits angeführten Abmessungen eingebracht. Die Heizpatronen 9 sind in Bohrungen der Abstandsstücke 12 eingeschoben. Der Fluidanschluß an die Mikrokanäle 14 erfolgt mittels nicht dargestellter Standardfittings die als Verbindungsstücke dienen. Abhängig von der Zahl und der Leistung der Heizpatronen 9 kann die Gesamtleistung eines solchen Mikrostrukturkörpers 13 im Bereich von einigen 100W bis zu mehreren kW liegen. Another embodiment of a microstructure body is shown in Figure 2. With this microstructure body 13 resistance heating cartridges 9 are used for heating. Between two steel plates 10 as a lid and bottom of the microstructure body are each several with microchannels 14 structured steel foils 11 and spacers 12 layered as heated layers in alternating order and diffusion welded together. In the microstructured foils 11 are each a large number of microchannels 14 for the fluid 7 with approximately those already introduced dimensions. The heating cartridges 9 are inserted into holes in the spacers 12. The Fluid connection to the microchannels 14 does not take place by means of Standard fittings shown as connecting pieces serve. Depending on the number and the output of the heating cartridges 9 can the total performance of such a microstructure body 13 in the range of a few 100W to several kW.

    Bezugszeichenliste:Reference symbol list:

    11
    MikrostrukturkörperMicrostructure body
    22nd
    MikrokanäleMicrochannels
    33rd
    AbstandsstückeSpacers
    44th
    HohlräumeCavities
    55
    HeizelementeHeating elements
    66
    AdapterstückeAdapter pieces
    77
    FluidFluid
    88th
    EndplattenEnd plates
    99
    HeizpatronenCartridge heaters
    1010th
    StahlplattenSteel plates
    1111
    FolienFoils
    1212th
    Abstandsstücke als beheizte SchichtenSpacers as heated layers
    1313
    MikrostrukturkörperMicrostructure body
    1414
    MikrokanäleMicrochannels

    Claims (6)

    Verfahren zur Wärmeübertragung auf ein Fluid in einem Mikrostrukturkörper mit einer Vielzahl von Mikrokanälen für die Ab- und Zufuhr des Fluids, sowie einem die Wärmeenergie auf das Fluid übertragenden Energieträger, dadurch gekennzeichnet,
    daß ein Teil des Mikrostrukturkörpers durch direkte oder indirekte ohmsche elektrisch Erwärmung aufgeheizt und die entstandene Wärme durch Wärmeleitung innerhalb des Mikrostrukturkörpers auf das zu erwärmende Fluid übertragen wird.
    Method for transferring heat to a fluid in a microstructure body with a multiplicity of microchannels for the removal and supply of the fluid, and also an energy carrier which transfers the thermal energy to the fluid, characterized in that
    that part of the microstructure body is heated by direct or indirect ohmic electrical heating and the heat generated is transferred to the fluid to be heated by heat conduction within the microstructure body.
    Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Erzeugung eines aufgeprägten Temperaturprofiles in Strömungsrichtung des zu erwärmenden Fluides mit unterschiedlicher elektrischer Leistung geheizt wird und damit unterschiedliche Wärmemengen übertragen werden.A method according to claim 1, characterized in that to generate an impressed temperature profile in Flow direction of the fluid to be heated with different electrical power is heated and thus different amounts of heat are transmitted. Mikrostrukturkörper zur Ausübung eines Verfahrens nach Anspruch 1 mit einem primären Energieträger und einem sekundären Fluid als Medium zur Abfuhr der im Mikrowärmetauscher freigesetzten Wärme, dadurch gekennzeichnet, daß der Energieträger elektrischer Strom ist, der innerhalb des Mikrostrukturkörpers (1, 13) direkt in Wärme umgewandelt und dann durch Wärmeleitung auf das zu erwärmende Fluid (7) übertragen wird.Microstructure body according to a method Claim 1 with a primary energy source and secondary fluid as a medium for removing the in the micro heat exchanger released heat, characterized, that the energy source is electrical current that is within of the microstructure body (1, 13) directly in heat converted and then by heat conduction on the to be heated Fluid (7) is transmitted. Mikrostrukturkörper nach Anspruch 3, dadurch gekennzeichnet, daß er schichtweise aufgebaut ist und zwischen mindestens jeweils einer, Mikrokanäle für das Fluid aufweisenden Schicht (11) mindestens eine elektrisch direkt oder indirekt beheizte Schicht (12 und 4, 5) angeordnet ist. Microstructure body according to claim 3, characterized in that it is built up in layers and between at least one, each having microchannels for the fluid Layer (11) at least one electrically direct or indirectly heated layer (12 and 4, 5) arranged is. Mikrostrukturkörper nach Anspruch 4, dadurch gekennzeichnet, daß in Strömungsrichtung des zu erwärmenden Fluides gesehen, beheizte Schichten (12) oder Heizelemente (5, 9) mit unterschiedlichen elektrischen Leistungen angeordnet sind.Microstructure body according to claim 4, characterized in that in the direction of flow of the to be heated Seen fluids, heated layers (12) or heating elements (5, 9) with different electrical powers are arranged. Mikrostrukturkörper nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die beheizten Schichten (12) oder Heizelemente (5, 9)aus Fecralloy oder einem anderen Metall bzw. einer Metalllegierung mit einer Oxydschicht auf der Oberfläche zur Isolierung bestehen.Microstructure body according to claim 4 or 5, characterized in that that the heated layers (12) or Heating elements (5, 9) made of fecralloy or another metal or a metal alloy with an oxide layer insist on the surface for insulation.
    EP00107948A 1999-04-17 2000-04-14 Heat transfer on a fluid in a microstructure body Expired - Lifetime EP1046867B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19917521A DE19917521B4 (en) 1999-04-17 1999-04-17 Device for heating a fluid
    DE19917521 1999-04-17

    Publications (3)

    Publication Number Publication Date
    EP1046867A2 true EP1046867A2 (en) 2000-10-25
    EP1046867A3 EP1046867A3 (en) 2002-10-23
    EP1046867B1 EP1046867B1 (en) 2004-04-07

    Family

    ID=7905003

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00107948A Expired - Lifetime EP1046867B1 (en) 1999-04-17 2000-04-14 Heat transfer on a fluid in a microstructure body

    Country Status (3)

    Country Link
    EP (1) EP1046867B1 (en)
    AT (1) ATE263949T1 (en)
    DE (2) DE19917521B4 (en)

    Cited By (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2096399A1 (en) 2008-02-29 2009-09-02 XChange S.r.L. Heat exchanger with modular headers
    WO2011091962A1 (en) 2010-01-28 2011-08-04 Cargill, Incorporated Microprocessing for preparing a polycondensate
    EP2433970A1 (en) 2010-09-28 2012-03-28 Cargill, Incorporated Microprocessing for preparing a polycondensate
    WO2021195534A1 (en) 2020-03-26 2021-09-30 Cargill, Incorporated Microprocessing for preparing modified protein
    WO2023159173A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins
    WO2023159175A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins
    WO2023159171A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins
    WO2023159172A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins

    Families Citing this family (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10234043A1 (en) * 2002-07-26 2004-02-05 Forschungszentrum Karlsruhe Gmbh Microstructure apparatus for heating a fluid
    DE102005003964B4 (en) * 2005-01-27 2011-07-21 Ehrfeld Mikrotechnik BTS GmbH, 55234 Continuous flow through heat exchanger for fluid media
    DE102005008271A1 (en) 2005-02-22 2006-08-24 Behr Gmbh & Co. Kg Micro heat transfer device for cooling electronic components has channels open at top and bottom, and closed towards side surfaces
    DE102005025248B4 (en) * 2005-06-02 2009-07-30 Forschungszentrum Karlsruhe Gmbh Fluid management system
    WO2024036206A1 (en) 2022-08-12 2024-02-15 Cargill, Incorporated Polycondensation of sugars in the presence of water using a microreactor

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB2195249A (en) * 1986-09-25 1988-04-07 Wilson Richard Apparatus for the heating of fluids
    EP0454550A1 (en) * 1990-04-25 1991-10-30 Vulcanic Heat exchanger, in particular for corrosive fluids
    US5690763A (en) * 1993-03-19 1997-11-25 E. I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof

    Family Cites Families (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3406238A1 (en) * 1984-02-21 1985-08-22 Eltra GmbH & Co KG, Leicht & Trambauer, 6102 Pfungstadt Electrical heating cartridge
    DE19608824A1 (en) * 1996-03-07 1997-09-18 Inst Mikrotechnik Mainz Gmbh Process for the production of micro heat exchangers

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB2195249A (en) * 1986-09-25 1988-04-07 Wilson Richard Apparatus for the heating of fluids
    EP0454550A1 (en) * 1990-04-25 1991-10-30 Vulcanic Heat exchanger, in particular for corrosive fluids
    US5690763A (en) * 1993-03-19 1997-11-25 E. I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    DANNENBERG F: "Application of reaction kenetics to the denaturation of whey proteins in heated milk" MILCHWISSENSCHAFT, VV GMBH VOLKSWIRTSCHAFTLICHER VERLAG. MUNCHEN, DE, Bd. 43, Nr. 1, 1988, Seiten 3-7, XP002142511 ISSN: 0026-3788 *

    Cited By (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2096399A1 (en) 2008-02-29 2009-09-02 XChange S.r.L. Heat exchanger with modular headers
    WO2011091962A1 (en) 2010-01-28 2011-08-04 Cargill, Incorporated Microprocessing for preparing a polycondensate
    EP2433970A1 (en) 2010-09-28 2012-03-28 Cargill, Incorporated Microprocessing for preparing a polycondensate
    WO2021195534A1 (en) 2020-03-26 2021-09-30 Cargill, Incorporated Microprocessing for preparing modified protein
    WO2023159173A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins
    WO2023159175A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins
    WO2023159171A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins
    WO2023159172A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins

    Also Published As

    Publication number Publication date
    EP1046867B1 (en) 2004-04-07
    EP1046867A3 (en) 2002-10-23
    ATE263949T1 (en) 2004-04-15
    DE19917521A1 (en) 2000-11-16
    DE19917521B4 (en) 2004-10-21
    DE50005953D1 (en) 2004-05-13

    Similar Documents

    Publication Publication Date Title
    EP1046867B1 (en) Heat transfer on a fluid in a microstructure body
    DE19825102C2 (en) Process for the production of a compact catalytic reactor
    DE60315153T2 (en) FUEL CELL ASSEMBLY AND METHOD FOR BINDING A DISCONNECTOR AND AN ELECTROLYTIC COATING OF A FUEL CELL ASSEMBLY GROUP
    EP1506054B1 (en) Micro-reactor and micro-channel heat exchanger
    DE102005031102A1 (en) Control method for controlling temperature of heat source, e.g. microprocessor, involves channeling two temperature fluids to and from heat exchange surface, respectively, wherein fluid is channeled to minimize temperature differences along
    DE10393585T5 (en) Distributor for reducing the pressure drop in microchannel heat exchangers
    EP2220451B1 (en) Fluid distribution element for a fluid-conducting device, especially for multichannel-type fluid-conducting appliances nested in each other
    DE10132370B4 (en) Apparatus and method for vaporizing liquid media
    WO2004107486A1 (en) Fuel cell and heating device for a fuel cell
    WO2010057603A2 (en) Heat exchanger and method for production thereof
    DE102009042613A1 (en) Fluid distribution element for single-phase or multi-phase fluids, process for its preparation and its use
    WO2004091762A1 (en) Mixing device
    EP1724010A2 (en) Microstructure reactor and use of the same
    DE102007048206A1 (en) One-sided or two-sided structured metallic strap and/or layered plate producing method for producing block of layers of e.g. heat-exchanger in fuel cell drive, involves fixing metallic strips on metallic carrier strap in specific position
    DE102005031081A1 (en) Bipolar plate for electrochemical application, has passage opening guiding fuel and/or oxidizer and insertion unit arranged between top layers in area of opening, where point-forces are induced in two-dimensional manner by unit
    DE102011113045A1 (en) Cross flow heat exchanger i.e. cross flow-micro heat exchanger, for rapid temperature-control of fluid stream in channel groups, has heat transfer regions arranged at intersections of channels of channel group
    AT411397B (en) TURBULENCE GENERATOR FOR A HEAT EXCHANGER
    DE10003273B4 (en) Device for vaporizing and / or overheating a medium
    EP1224967A2 (en) Reactor
    EP2671040A1 (en) Cross-flow heat exchanger
    DE102004041309A1 (en) Manufacture of heat transmission block for a fuel cell with micro-structured panels soldered under pressure
    EP3405732A1 (en) New type of heat exchanger
    EP3507046B1 (en) Method of producing a plate heat transfer block with targeted application of the soldering material, in particular on fins and side bars
    DE102022122518A1 (en) Heat exchanger
    DE19924596C2 (en) Process for the production of a microstructure apparatus

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20030301

    17Q First examination report despatched

    Effective date: 20030506

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040407

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040407

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040407

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040414

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040430

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040430

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

    REF Corresponds to:

    Ref document number: 50005953

    Country of ref document: DE

    Date of ref document: 20040513

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040526

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040707

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040707

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040707

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040707

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040718

    BERE Be: lapsed

    Owner name: FORSCHUNGSZENTRUM KARLSRUHE G.M.B.H.

    Effective date: 20040430

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20040707

    26N No opposition filed

    Effective date: 20050110

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040907

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH

    Free format text: FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE) -TRANSFER TO- FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE)

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: NEW ADDRESS: GARTENSTRASSE 28 A, 5400 BADEN (CH)

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20190418

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20190418

    Year of fee payment: 20

    Ref country code: IT

    Payment date: 20190419

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20190423

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20190424

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20190416

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 50005953

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MK

    Effective date: 20200413

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK07

    Ref document number: 263949

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20200414