EP1046867A2 - Heat transfer on a fluid in a microstructure body - Google Patents
Heat transfer on a fluid in a microstructure body Download PDFInfo
- Publication number
- EP1046867A2 EP1046867A2 EP00107948A EP00107948A EP1046867A2 EP 1046867 A2 EP1046867 A2 EP 1046867A2 EP 00107948 A EP00107948 A EP 00107948A EP 00107948 A EP00107948 A EP 00107948A EP 1046867 A2 EP1046867 A2 EP 1046867A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluid
- heated
- microstructure body
- heat
- microstructure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/10—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
- F24H1/101—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2260/00—Heat exchangers or heat exchange elements having special size, e.g. microstructures
- F28F2260/02—Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels
Definitions
- the present invention relates to a method for heat transfer with a fluid in a microstructure body a variety of microchannels for the removal and supply of the Fluids as well as one that transfers the thermal energy to the fluid Energy carrier and a microstructure body for exercise of the procedure.
- the invention proposes the features before, cited in the characterizing part of claim 1 are. Further advantageous features for the solution are cited in the characterizing parts of the subclaims.
- Microstructure bodies of the type mentioned are generally characterized in that either the characteristic hydraulic channel diameter d i or the channel dimensions a i , where a i is the largest dimension of a microchannel perpendicular to the fluid passage i, of all microchannels of at least one fluid passage i are less than 1000 ⁇ m.
- the smallest wall thickness b i that is to say the smallest distance between individual fluid passages, should also be chosen to be less than 1000 ⁇ m, preferably less than 200 ⁇ m.
- the specific heat transfer area can reach values greater than 100 cm 2 / cm 3 . This results in an overall increase in volume-specific heat transfer performance by at least a factor of 100 compared to conventional heat exchangers.
- the experimental data obtained from microstructure bodies for heat transfer result in heating rates of up to 10000 K per second with dwell times down to a few milliseconds. Therefore, a liquid flow of 400 kg / h in a microstructure body of 1 cm 3 active volume at 6 bar inlet and 1 bar outlet pressure can be heated by 30 ° K in 3 milliseconds. Throughputs of approx. 4000 kg / h result for larger microstructure bodies with an active volume of 27 cm 3 .
- the active volume of a microstructure body is to be understood as the volume in the interior in which the microchannels run, the volume of top and side plates and that of the connections not being included in the calculation.
- the fluid to be heated is passed through at least one level or layer of a microstructure body with a large number of adjacent microchannels or micro breakthroughs, their transverse dimensions
- smaller than 1000 ⁇ m are preferred smaller than 500 ⁇ m
- immediately adjacent to it fluid-carrying level at least one layer with at least an electrically heated heating element is arranged, which electrically insulated from the material of the fluid level is.
- many levels or Alternating layers with micro breakthroughs for the fluids with layers with electrically heated heating elements into one compact unit arranged as in those described later Figures 1 and 2 shown in principle.
- the heating elements can be used depending on the application Current flow in series or in parallel or in a combination of which are switched.
- Fluids can have several in the heating layers Heating elements, seen in the direction of flow, one behind the other be arranged, the different electrical Deliver services.
- the fluid-carrying microstructures, - seen again in the direction of flow -, on different temperatures are heated. Thereby can be a temperature profile in the microstructure body Performing a process in the flowing fluid become. This can be important if e.g. B. in the microstructure body a chemical, endothermic process is performed at which the temperature in the direction of flow first kept constant and then increased in a targeted manner got to.
- FIG. 1 Such a microstructure body 1 is now shown in FIG. 1 shown schematically, installed in the eleven double foil pieces are welded together and one above the other stacked eleven rows of microchannels 2 result.
- Each the film double piece contains a multiplicity of microchannels with a width and height of 150 ⁇ m and a length of 22 mm. Their hydraulic diameter is 133 ⁇ m.
- the eleven welded together Foil double pieces are each on their Edges on top of each other with ten spacers 3 to one Block welded so that 3 flat by the spacers Cavities 4 are formed between the film double pieces, in which plate-shaped, ceramic electrical heating elements 5 can be used.
- microstructure body 1 On the face of the microstructure body 1 with the openings of the microchannels 2 are hollow adapter pieces 6 through which the to be heated Fluid 7 is passed into the microchannels 2.
- the Microstructure body 1 is at the top and bottom with two end plates 7 completes that with the structures of the film double pieces and the spacers 3 to a closed Block are diffusion welded.
- FIG. 2 Another embodiment of a microstructure body is shown in Figure 2. With this microstructure body 13 resistance heating cartridges 9 are used for heating. Between two steel plates 10 as a lid and bottom of the microstructure body are each several with microchannels 14 structured steel foils 11 and spacers 12 layered as heated layers in alternating order and diffusion welded together. In the microstructured foils 11 are each a large number of microchannels 14 for the fluid 7 with approximately those already introduced dimensions. The heating cartridges 9 are inserted into holes in the spacers 12. The Fluid connection to the microchannels 14 does not take place by means of Standard fittings shown as connecting pieces serve. Depending on the number and the output of the heating cartridges 9 can the total performance of such a microstructure body 13 in the range of a few 100W to several kW.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Micromachines (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Wärmeübertragung auf ein Fluid in einem Mikrostrukturkörper mit einer Vielzahl von Mikrokanälen für die Ab- und Zufuhr des Fluids sowie einem, die Wärmeenergie auf das Fluid übertragenden Energieträger und einen Mikrostrukturkörper zur Ausübung des Verfahrens.The present invention relates to a method for heat transfer with a fluid in a microstructure body a variety of microchannels for the removal and supply of the Fluids as well as one that transfers the thermal energy to the fluid Energy carrier and a microstructure body for exercise of the procedure.
Es ist bekannt, Fluide durch elektrisch beheizte Elemente zu erhitzen, was den Vorteil hat, das sich die Temperaturregelung bei der Wärmeübertragung schnell und einfach mit Hilfe einer elektrischen Leistungsregelung realisieren lässt. In allen Fällen werden die Fluide durch den direkten Kontakt mit dem elektrisch auf hohe Temperatur gebrachten Heizelement aufgeheizt. Zur Übertragung größerer Leistungen muß jedoch wegen der kleineren Oberflächen der konventionellen Heizelemente die treibende Temperaturdifferenz groß sein, das heisst die Oberflächentemperaturen der Heizelemente müssen sehr hoch sein. Dies kann problematisch sein, wenn Fluide erhitzt werden sollen, die sensitiv gegen hohe Temperaturen und/oder lokale Überhitzungen sind, z. B. Milch. Auch haben konventionelle elektrische Heizapparate relativ niedrige Aufheizraten, das heisst die erreichte Temperaturdifferenz pro Zeiteinheit ist gering und die Verweilzeiten sind, bedingt durch große aktive Wärmeübertragungsvolumina, relativ lang.It is known to have fluids through electrically heated elements to heat, which has the advantage of being temperature control with heat transfer quickly and easily with Realize with the help of an electrical power control leaves. In all cases, the fluids are direct Contact with the electrically brought to high temperature Heating element heated. For the transfer of larger services however, because of the smaller surfaces of the conventional Heating elements the driving temperature difference large be, that is the surface temperatures of the heating elements have to be very high. This can be problematic if fluids are to be heated that are sensitive to high Temperatures and / or local overheating, e.g. B. Milk. Also have conventional electric heaters relatively low heating rates, that means the achieved Temperature difference per unit of time is small and the dwell times are, due to large active heat transfer volumes, relatively long.
Ausgehend davon ist es Aufgabe der vorliegenden Erfindung, ein Verfahren mit einem Mikrostrukturapparat zu schaffen, mittels welchem Fluide mit kleinen Aufheizraten, kurzen Verweilzeiten und exakter Temperatursteuerung bei gleichzeitig technisch relevanten Durchsätzen aufgeheizt werden können. Unter Fluiden sind dabei sowohl Gase als auch Flüssigkeiten zu verstehen. Die Temperaturdifferenz zwischen dem zu erhitzenden Medium und der Oberfläche, von der die Leistung auf das Fluid übertragen wird, soll für bestimmte Anwendungen klein gehalten werden können.Based on this, it is an object of the present invention to create a method with a microstructure apparatus, by means of which fluids with small heating rates, short ones Dwell times and exact temperature control at the same time technically relevant throughputs are heated can. Both gases and liquids are among fluids to understand. The temperature difference between the medium to be heated and the surface from which the Power transferred to the fluid is said to be for certain Applications can be kept small.
Zur Lösung der Aufgabe schlägt die Erfindung die Merkmale vor, die im kennzeichnenden Teil des Patentanspruches 1 angeführt sind. Weitere vorteilhafte Merkmale zur Lösung sind in den kennzeichnenden Teilen der Unteransprüche angeführt.To achieve the object, the invention proposes the features before, cited in the characterizing part of claim 1 are. Further advantageous features for the solution are cited in the characterizing parts of the subclaims.
Einzelheiten der vorliegenden Erfindung werden im folgenden
und anhand der Figuren 1 und 2 näher erläutert. Es zeigen:
Mikrostrukturkörper mit Mikrokanälen bestehen im allgemeinen
aus einem Stapel diffusionsverschweißter Metallfolien
mit Foliendicken von z. B. 100 µm. In diese Metallfolien
werden mit Hilfe formgeschliffener Werkzeuge die parallel
zueinander verlaufenden Mikrokanäle für Fluidpassagen gegebenenfalls
für eine zu erhitzende Flüssigkeit eingebracht.
Die minimal zu realisierenden Kanalabmessungen liegen im
Bereich von 10 µm. Die geometrische Form der Mikrokanäle
ist frei wählbar. So sind zum Beispiel Rechteck- sowie auch
kreisförmige Querschnitte möglich. Die Mikrokanäle können
dabei auch unterschiedliche Abmessungen aufweisen. Um gleiche
Durchflußmengenströme in den einzelnen Mikrokanälen einer
Fluidpassage zu gewährleisten, sind die Mikrokanaäle
einer solchen Fluidpassage untereinander gleich. Der charakteristische
hydraulische Kanaldurchmesser von Mikrokanälen
einer Fluidpassage i ergibt sich zum Beispiel aus der
Beziehung:
- di =
- hydraulischer Durchmesser der Kanäle der Fluidpassage i
- Ai =
- durchströmter Kanalquerschnitt der Fluidpassage i
- Ui =
- benetzter Kanalumfang der Fluidpassage i
- d i =
- hydraulic diameter of the channels of the fluid passage i
- A i =
- Flow cross-section of the fluid passage i
- U i =
- wetted channel circumference of the fluid passage i
Mikrostrukturkörper der genannten Art sind allgemein dadurch gekennzeichnet, daß entweder die charakteristischen hydraulischen Kanaldurchmesser di oder die Kanalabmessungen ai, wobei ai die größte Abmessung eines Mikrokanales senkrecht zur Fluidpassage i ist, aller Mikrokanäle zumindest einer Fluidpassage i kleiner 1000 µm sind. Die kleinste Wandstärke bi, das heisst der geringste Abstand zwischen einzelnen Fluidpassagen ist ebenfalls kleiner 1000 µm, vorzugsweise kleiner 200 µm zu wählen. Diese Aussagen gelten auch für den Fall, daß die Mikrokanäle einer Fluidpassage i untereinander unterschiedlich groß sind.Microstructure bodies of the type mentioned are generally characterized in that either the characteristic hydraulic channel diameter d i or the channel dimensions a i , where a i is the largest dimension of a microchannel perpendicular to the fluid passage i, of all microchannels of at least one fluid passage i are less than 1000 μm. The smallest wall thickness b i , that is to say the smallest distance between individual fluid passages, should also be chosen to be less than 1000 μm, preferably less than 200 μm. These statements also apply in the event that the microchannels of a fluid passage i differ from one another in size.
Die deutliche Erhöhung der Wärmeübertragungsleistung in solchen Mikrostrukturkörpern beruht darauf, daß durch die kleinen hydraulischen Kanaldurchmesser di, vor allem aber durch die kleinen Kanalabmessungen ai, die Transportwege für zu übertragenden Wärmeströme sehr kurz sind. Gegenüber Wämedurchgangskoeffizienten von ca. 1000 W/K m in konventionellen Wärmeübertragern ergeben sich in Mikrostrukturkörpern zur Wärmeübertragung Werte in der Größenordnung 20000 W/K m, bei Fluidpassagen mit di = 80 µm, ai = 70µm. Die spezifische Wärmeübertragungsfläche kann dabei Werte größer 100 cm2/cm3 erreichen. Daraus resultiert insgesamt eine Steigerung der volumenspezifischen Wärmeübertragungsleistung um mindestens einen Faktor 100 gegenüber konventionellen Wärmeübertragern. The significant increase in the heat transfer capacity in such microstructure bodies is due to the fact that the transport routes for heat flows to be transmitted are very short due to the small hydraulic duct diameters d i , but above all due to the small duct dimensions a i . Compared to heat transfer coefficients of approx. 1000 W / K m in conventional heat exchangers, microstructure bodies for heat transfer result in values in the order of 20 000 W / K m, with fluid passages with d i = 80 µm, a i = 70 µm. The specific heat transfer area can reach values greater than 100 cm 2 / cm 3 . This results in an overall increase in volume-specific heat transfer performance by at least a factor of 100 compared to conventional heat exchangers.
Aus gewonnenen experimentellen Daten von Mikrostrukturkörpern zur Wärmeübertragung ergeben sich bei Verweilzeiten herunter bis zu wenigen Millisekunden Aufheizraten von bis zu 10000 K pro Sekunde. Daher kann ein Flüssigkeitsstrom von 400 kg/h in einem Mikrostrukturkörper von 1 cm3 aktivem Volumen bei 6 bar Eintritts- und 1 bar Austrittsdruck in 3 Millisekunden um 30°K erhitzt werden. Für größere Mikrostrukturkörper mit 27 cm3 aktivem Volumen ergeben sich ein Durchsätze von ca. 4000 kg/h. Unter dem aktiven Volumen eines Mikrostrukturkörpers ist das Volumen im Inneren zu verstehen, in welchem die Mikrokanäle verlaufen, wobei das Volumen von Deck- und Seitenplatten sowie das der Anschlüsse nicht mitgerechnet ist.The experimental data obtained from microstructure bodies for heat transfer result in heating rates of up to 10000 K per second with dwell times down to a few milliseconds. Therefore, a liquid flow of 400 kg / h in a microstructure body of 1 cm 3 active volume at 6 bar inlet and 1 bar outlet pressure can be heated by 30 ° K in 3 milliseconds. Throughputs of approx. 4000 kg / h result for larger microstructure bodies with an active volume of 27 cm 3 . The active volume of a microstructure body is to be understood as the volume in the interior in which the microchannels run, the volume of top and side plates and that of the connections not being included in the calculation.
Nach dem neuen Verfahren wird das zu erhitzende Fluid durch mindestens eine Ebene bzw. Schicht eines Mikrostrukturkörpers mit einer Vielzahl von nebeneinanderliegenden Mikrokanälen bzw. Mikrodurchbrüchen geleitet, deren Querabmessungen wie bereits erwähnt kleiner 1000 µm sind, bevorzugt kleiner 500 µm, wobei unmittelbar angrenzend an diese fluidführende Ebene mindestens eine Schicht mit mindestens einem elektrisch beheizten Heizelement angeordnet ist, welches gegenüber dem Material der Fluidebene elektrisch isoliert ist. Für größere Durchsätze sind viele Ebenen bzw. Schichten mit Mikrodurchbrüchen für die Fluide abwechselnd mit Schichten mit elektrisch beheizten Heizelementen zu einer kompakten Einheit angeordnet, wie in den später beschriebenen Figuren 1 und 2 prinzipiell gezeigt.According to the new process, the fluid to be heated is passed through at least one level or layer of a microstructure body with a large number of adjacent microchannels or micro breakthroughs, their transverse dimensions As already mentioned, smaller than 1000 μm are preferred smaller than 500 µm, immediately adjacent to it fluid-carrying level at least one layer with at least an electrically heated heating element is arranged, which electrically insulated from the material of the fluid level is. For higher throughputs, many levels or Alternating layers with micro breakthroughs for the fluids with layers with electrically heated heating elements into one compact unit arranged as in those described later Figures 1 and 2 shown in principle.
Die Heizelemente können je nach Anwendung bezüglich des Stromflusses in Reihe oder parallel oder in einer Kombination davon geschaltet werden. Zur Erzeugung eines aufgeprägten Temperaturprofiles in Strömungsrichtung des zu erwärmenden Fluides können in den Heizschichten mehrere Heizelemente, -in Strömungsrichtung gesehen-, hintereinander angeordnet werden, die unterschiedliche elektrische Leistungen abgeben. Damit können die fluidführenden Mikrostrukturen, - wieder in Strömungsrichtung gesehen -, auf unterschiedliche Temperaturen aufgeheizt werden. Dadurch kann ein Temperaturprofil in dem Mikrostrukturkörper zur Ausübung eines Verfahrens in dem strömenden Fluid erzeugt werden. Dies kann dann von Bedeutung sein, wenn z. B. in dem Mikrostrukturkörper ein chemischer, endothermer Prozeß geführt wird, bei dem die Temperatur in Strömungsrichtung erst konstant gehalten und danach gezielt erhöht werden muß.The heating elements can be used depending on the application Current flow in series or in parallel or in a combination of which are switched. To create an embossed Temperature profile in the flow direction of the to be heated Fluids can have several in the heating layers Heating elements, seen in the direction of flow, one behind the other be arranged, the different electrical Deliver services. The fluid-carrying microstructures, - seen again in the direction of flow -, on different temperatures are heated. Thereby can be a temperature profile in the microstructure body Performing a process in the flowing fluid become. This can be important if e.g. B. in the microstructure body a chemical, endothermic process is performed at which the temperature in the direction of flow first kept constant and then increased in a targeted manner got to.
In der Figur 1 ist nun ein solcher Mikrostrukturkörper 1
schematisch dargestellt, in den elf Foliendoppelstücke eingebaut
sind, die jeweils zusammengeschweißt und übereinander
gestapelt elf Reihen von Mikrokanälen 2 ergeben. Jedes
der Foliendoppelstücke enthält eine Vielzahl von Mikrokanälen
mit 150 µm Breite und Höhe sowie einer Länge von 22 mm.
Ihr hydraulischer Durchmesser liegt bei 133 µm. Die elf zusammengeschweißten
Foliendoppelstücke sind jeweils an ihren
Rändern übereinander mit zehn Abstandsstücken 3 zu einem
Block verschweißt, so daß durch die Abstandstücke 3 flache
Hohlräume 4 zwischen den Foliendoppelstücken gebildet werden,
in welche plattenförmige, keramische elektrische Heizelemente
5 eingesetzt werden. Auf die Stirnseiten des Mikrostrukturkörpers
1 mit den Öffnungen der Mikrokanäle 2
sind hohle Adapterstücke 6 gesetzt, durch welche das zu erwärmende
Fluid 7 in die Mikrokanäle 2 geleitet wird. Der
Mikrostrukturkörper 1 ist oben und unten mit zwei Endplatten
7 komplettiert, die mit den Strukturen der Foliendoppelstücke
sowie der Abstandsstücke 3 zu einem geschlossenen
Block diffusionsverschweißt sind.Such a microstructure body 1 is now shown in FIG. 1
shown schematically, installed in the eleven double foil pieces
are welded together and one above the other
stacked eleven rows of
Als Material für direkt einsetzbare Heizelemente 5 werden
neben der bereits erwähnten elektrisch leitfähigen Keramik
Materialien mit einem relativ hohen spezifischen Widerstand
verwendet. In Frage kommen neben anderem z. B. Tantal, Titan,
Wolfram, Konstantan und Fecralloy, wobei letzteres auf
seiner Oberfläche eine Chromoxyd-Aluminiumoxyd-Schutzschicht
ausbildet, die eine natürliche Isolierung bildet.
Letztlich können die beheizten Schichten oder Heizelemente
aber auch aus einem anderen Metall bzw. einer Metalllegierung
mit einer Oxydschicht auf der Oberfläche zur Isolierung
bestehen.As a material for directly
Ein weiteres Ausführungsbeispiel eines Mikrostrukturkörpers
ist in der Figur 2 dargestellt. Bei diesem Mikrostrukturkörper
13 werden Widerstandsheizpatronen 9 zum Heizen verwendet.
Zwischen zwei Stahlplatten 10 als Deckel und Boden
des Mikrostrukturkörpers sind jeweils mehrere mit Mikrokanälen
14 strukturierte Stahlfolien 11 und Abstandsstücke 12
als beheizte Schichten in alternierender Ordnung übereinandergeschichtet
und miteinander diffusionsverschweißt. In
die mikrostrukturierten Folien 11 sind jeweils eine Vielzahl
von Mikrokanälen 14 für das Fluid 7 mit etwa den bereits
angeführten Abmessungen eingebracht. Die Heizpatronen
9 sind in Bohrungen der Abstandsstücke 12 eingeschoben. Der
Fluidanschluß an die Mikrokanäle 14 erfolgt mittels nicht
dargestellter Standardfittings die als Verbindungsstücke
dienen. Abhängig von der Zahl und der Leistung der Heizpatronen
9 kann die Gesamtleistung eines solchen Mikrostrukturkörpers
13 im Bereich von einigen 100W bis zu mehreren
kW liegen. Another embodiment of a microstructure body
is shown in Figure 2. With this
- 11
- MikrostrukturkörperMicrostructure body
- 22nd
- MikrokanäleMicrochannels
- 33rd
- AbstandsstückeSpacers
- 44th
- HohlräumeCavities
- 55
- HeizelementeHeating elements
- 66
- AdapterstückeAdapter pieces
- 77
- FluidFluid
- 88th
- EndplattenEnd plates
- 99
- HeizpatronenCartridge heaters
- 1010th
- StahlplattenSteel plates
- 1111
- FolienFoils
- 1212th
- Abstandsstücke als beheizte SchichtenSpacers as heated layers
- 1313
- MikrostrukturkörperMicrostructure body
- 1414
- MikrokanäleMicrochannels
Claims (6)
daß ein Teil des Mikrostrukturkörpers durch direkte oder indirekte ohmsche elektrisch Erwärmung aufgeheizt und die entstandene Wärme durch Wärmeleitung innerhalb des Mikrostrukturkörpers auf das zu erwärmende Fluid übertragen wird.Method for transferring heat to a fluid in a microstructure body with a multiplicity of microchannels for the removal and supply of the fluid, and also an energy carrier which transfers the thermal energy to the fluid, characterized in that
that part of the microstructure body is heated by direct or indirect ohmic electrical heating and the heat generated is transferred to the fluid to be heated by heat conduction within the microstructure body.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19917521A DE19917521B4 (en) | 1999-04-17 | 1999-04-17 | Device for heating a fluid |
DE19917521 | 1999-04-17 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1046867A2 true EP1046867A2 (en) | 2000-10-25 |
EP1046867A3 EP1046867A3 (en) | 2002-10-23 |
EP1046867B1 EP1046867B1 (en) | 2004-04-07 |
Family
ID=7905003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00107948A Expired - Lifetime EP1046867B1 (en) | 1999-04-17 | 2000-04-14 | Heat transfer on a fluid in a microstructure body |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1046867B1 (en) |
AT (1) | ATE263949T1 (en) |
DE (2) | DE19917521B4 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2096399A1 (en) | 2008-02-29 | 2009-09-02 | XChange S.r.L. | Heat exchanger with modular headers |
WO2011091962A1 (en) | 2010-01-28 | 2011-08-04 | Cargill, Incorporated | Microprocessing for preparing a polycondensate |
EP2433970A1 (en) | 2010-09-28 | 2012-03-28 | Cargill, Incorporated | Microprocessing for preparing a polycondensate |
WO2021195534A1 (en) | 2020-03-26 | 2021-09-30 | Cargill, Incorporated | Microprocessing for preparing modified protein |
WO2023159173A1 (en) | 2022-02-17 | 2023-08-24 | Cargill, Incorporated | Resistant dextrins and methods of making resistant dextrins |
WO2023159175A1 (en) | 2022-02-17 | 2023-08-24 | Cargill, Incorporated | Resistant dextrins and methods of making resistant dextrins |
WO2023159171A1 (en) | 2022-02-17 | 2023-08-24 | Cargill, Incorporated | Resistant dextrins and methods of making resistant dextrins |
WO2023159172A1 (en) | 2022-02-17 | 2023-08-24 | Cargill, Incorporated | Resistant dextrins and methods of making resistant dextrins |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10234043A1 (en) * | 2002-07-26 | 2004-02-05 | Forschungszentrum Karlsruhe Gmbh | Microstructure apparatus for heating a fluid |
DE102005003964B4 (en) * | 2005-01-27 | 2011-07-21 | Ehrfeld Mikrotechnik BTS GmbH, 55234 | Continuous flow through heat exchanger for fluid media |
DE102005008271A1 (en) | 2005-02-22 | 2006-08-24 | Behr Gmbh & Co. Kg | Micro heat transfer device for cooling electronic components has channels open at top and bottom, and closed towards side surfaces |
DE102005025248B4 (en) * | 2005-06-02 | 2009-07-30 | Forschungszentrum Karlsruhe Gmbh | Fluid management system |
WO2024036206A1 (en) | 2022-08-12 | 2024-02-15 | Cargill, Incorporated | Polycondensation of sugars in the presence of water using a microreactor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2195249A (en) * | 1986-09-25 | 1988-04-07 | Wilson Richard | Apparatus for the heating of fluids |
EP0454550A1 (en) * | 1990-04-25 | 1991-10-30 | Vulcanic | Heat exchanger, in particular for corrosive fluids |
US5690763A (en) * | 1993-03-19 | 1997-11-25 | E. I. Du Pont De Nemours And Company | Integrated chemical processing apparatus and processes for the preparation thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3406238A1 (en) * | 1984-02-21 | 1985-08-22 | Eltra GmbH & Co KG, Leicht & Trambauer, 6102 Pfungstadt | Electrical heating cartridge |
DE19608824A1 (en) * | 1996-03-07 | 1997-09-18 | Inst Mikrotechnik Mainz Gmbh | Process for the production of micro heat exchangers |
-
1999
- 1999-04-17 DE DE19917521A patent/DE19917521B4/en not_active Expired - Lifetime
-
2000
- 2000-04-14 EP EP00107948A patent/EP1046867B1/en not_active Expired - Lifetime
- 2000-04-14 DE DE50005953T patent/DE50005953D1/en not_active Expired - Lifetime
- 2000-04-14 AT AT00107948T patent/ATE263949T1/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2195249A (en) * | 1986-09-25 | 1988-04-07 | Wilson Richard | Apparatus for the heating of fluids |
EP0454550A1 (en) * | 1990-04-25 | 1991-10-30 | Vulcanic | Heat exchanger, in particular for corrosive fluids |
US5690763A (en) * | 1993-03-19 | 1997-11-25 | E. I. Du Pont De Nemours And Company | Integrated chemical processing apparatus and processes for the preparation thereof |
Non-Patent Citations (1)
Title |
---|
DANNENBERG F: "Application of reaction kenetics to the denaturation of whey proteins in heated milk" MILCHWISSENSCHAFT, VV GMBH VOLKSWIRTSCHAFTLICHER VERLAG. MUNCHEN, DE, Bd. 43, Nr. 1, 1988, Seiten 3-7, XP002142511 ISSN: 0026-3788 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2096399A1 (en) | 2008-02-29 | 2009-09-02 | XChange S.r.L. | Heat exchanger with modular headers |
WO2011091962A1 (en) | 2010-01-28 | 2011-08-04 | Cargill, Incorporated | Microprocessing for preparing a polycondensate |
EP2433970A1 (en) | 2010-09-28 | 2012-03-28 | Cargill, Incorporated | Microprocessing for preparing a polycondensate |
WO2021195534A1 (en) | 2020-03-26 | 2021-09-30 | Cargill, Incorporated | Microprocessing for preparing modified protein |
WO2023159173A1 (en) | 2022-02-17 | 2023-08-24 | Cargill, Incorporated | Resistant dextrins and methods of making resistant dextrins |
WO2023159175A1 (en) | 2022-02-17 | 2023-08-24 | Cargill, Incorporated | Resistant dextrins and methods of making resistant dextrins |
WO2023159171A1 (en) | 2022-02-17 | 2023-08-24 | Cargill, Incorporated | Resistant dextrins and methods of making resistant dextrins |
WO2023159172A1 (en) | 2022-02-17 | 2023-08-24 | Cargill, Incorporated | Resistant dextrins and methods of making resistant dextrins |
Also Published As
Publication number | Publication date |
---|---|
EP1046867B1 (en) | 2004-04-07 |
EP1046867A3 (en) | 2002-10-23 |
ATE263949T1 (en) | 2004-04-15 |
DE19917521A1 (en) | 2000-11-16 |
DE19917521B4 (en) | 2004-10-21 |
DE50005953D1 (en) | 2004-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1046867B1 (en) | Heat transfer on a fluid in a microstructure body | |
DE19825102C2 (en) | Process for the production of a compact catalytic reactor | |
DE60315153T2 (en) | FUEL CELL ASSEMBLY AND METHOD FOR BINDING A DISCONNECTOR AND AN ELECTROLYTIC COATING OF A FUEL CELL ASSEMBLY GROUP | |
EP1506054B1 (en) | Micro-reactor and micro-channel heat exchanger | |
DE102005031102A1 (en) | Control method for controlling temperature of heat source, e.g. microprocessor, involves channeling two temperature fluids to and from heat exchange surface, respectively, wherein fluid is channeled to minimize temperature differences along | |
DE10393585T5 (en) | Distributor for reducing the pressure drop in microchannel heat exchangers | |
EP2220451B1 (en) | Fluid distribution element for a fluid-conducting device, especially for multichannel-type fluid-conducting appliances nested in each other | |
DE10132370B4 (en) | Apparatus and method for vaporizing liquid media | |
WO2004107486A1 (en) | Fuel cell and heating device for a fuel cell | |
WO2010057603A2 (en) | Heat exchanger and method for production thereof | |
DE102009042613A1 (en) | Fluid distribution element for single-phase or multi-phase fluids, process for its preparation and its use | |
WO2004091762A1 (en) | Mixing device | |
EP1724010A2 (en) | Microstructure reactor and use of the same | |
DE102007048206A1 (en) | One-sided or two-sided structured metallic strap and/or layered plate producing method for producing block of layers of e.g. heat-exchanger in fuel cell drive, involves fixing metallic strips on metallic carrier strap in specific position | |
DE102005031081A1 (en) | Bipolar plate for electrochemical application, has passage opening guiding fuel and/or oxidizer and insertion unit arranged between top layers in area of opening, where point-forces are induced in two-dimensional manner by unit | |
DE102011113045A1 (en) | Cross flow heat exchanger i.e. cross flow-micro heat exchanger, for rapid temperature-control of fluid stream in channel groups, has heat transfer regions arranged at intersections of channels of channel group | |
AT411397B (en) | TURBULENCE GENERATOR FOR A HEAT EXCHANGER | |
DE10003273B4 (en) | Device for vaporizing and / or overheating a medium | |
EP1224967A2 (en) | Reactor | |
EP2671040A1 (en) | Cross-flow heat exchanger | |
DE102004041309A1 (en) | Manufacture of heat transmission block for a fuel cell with micro-structured panels soldered under pressure | |
EP3405732A1 (en) | New type of heat exchanger | |
EP3507046B1 (en) | Method of producing a plate heat transfer block with targeted application of the soldering material, in particular on fins and side bars | |
DE102022122518A1 (en) | Heat exchanger | |
DE19924596C2 (en) | Process for the production of a microstructure apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20030301 |
|
17Q | First examination report despatched |
Effective date: 20030506 |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040407 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040407 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040407 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040414 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040430 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040430 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG |
|
REF | Corresponds to: |
Ref document number: 50005953 Country of ref document: DE Date of ref document: 20040513 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040707 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040707 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040707 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040718 |
|
BERE | Be: lapsed |
Owner name: FORSCHUNGSZENTRUM KARLSRUHE G.M.B.H. Effective date: 20040430 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040707 |
|
26N | No opposition filed |
Effective date: 20050110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040907 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH Free format text: FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE) -TRANSFER TO- FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: NEW ADDRESS: GARTENSTRASSE 28 A, 5400 BADEN (CH) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20190418 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190418 Year of fee payment: 20 Ref country code: IT Payment date: 20190419 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190423 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20190424 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20190416 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50005953 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20200413 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 263949 Country of ref document: AT Kind code of ref document: T Effective date: 20200414 |