EP1043753B1 - Metallic element and discharge lamp - Google Patents
Metallic element and discharge lamp Download PDFInfo
- Publication number
- EP1043753B1 EP1043753B1 EP00104951A EP00104951A EP1043753B1 EP 1043753 B1 EP1043753 B1 EP 1043753B1 EP 00104951 A EP00104951 A EP 00104951A EP 00104951 A EP00104951 A EP 00104951A EP 1043753 B1 EP1043753 B1 EP 1043753B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gold
- coating
- palladium
- discharge lamp
- niobium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/36—Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
Definitions
- the invention relates to a metallic component for discharge lamps, with a carrier made of niobium, Tantalum or niobium and / or tantalum based alloys and a discharge lamp.
- Such a component is known from the font G 86 28 310.3. It shows a way to use niobium as a current feedthrough for high pressure lamps. In this case, a gas-tight seal and a structurally very complex arrangement is used to protect the niobium from corrosion, here inter alia by aggressive metal halides.
- GB 2 178 230 A such components are used as current feedthroughs for a discharge lamp. The use of such a discharge lamp in a temperature range of 200-300 ° C or in a high-moisture atmosphere is recommended especially in connection with an outer capsule, which protects the current feedthroughs from oxidation and corrosion.
- An example shows the discharge lamp and the current feedthroughs inside a gas-tight glass capsule filled with inert gas.
- JP 60063871 discloses a metallic component for current feedthroughs in discharge lamps according to the preamble of claim 1 and a discharge lamp according to the preamble of claim 5.
- the present invention is based on the problem, the resistance of metallic components with a support of niobium, tantalum or on niobium and / or tantalum based alloys, which are arranged in or on discharge lamps, to increase oxidation and corrosion.
- the problem is solved by the features in the characterizing part of claim 1 and those in the characterizing part of claim 5.
- the coating mentioned there very well meets the requirements for an increase in the oxidation and corrosion resistance, sufficient ductility and thermal shock resistance.
- the precious metals gold and / or platinum and / or palladium and / or an alloy formed from at least two of these elements are ideally used. These precious metals used for the coating have a melting point above 1000 ° C.
- these coatings in a reducing or inert atmosphere allow the action of higher temperatures than the operating temperatures normally occurring in the discharge lamp, so that any necessary assembly operations such as soldering before use can be performed on it.
- current feedthroughs made of niobium alloys for discharge lamps can first be coated with the noble metal and then the coated current feedthroughs can be soldered into openings of the discharge vessel without losing the protective effect of the coating due to the high temperature load during the soldering process. It has proved to be particularly advantageous if a first single layer of gold and thereon a second single layer of platinum and / or palladium and / or an alloy is applied to the carrier, which is formed from at least two of the noble metals gold, platinum or palladium.
- a first individual layer preferably has a thickness of 0.1 ⁇ m to 5 ⁇ m, further individual layers applied thereon each have a thickness of 1 ⁇ m to 5 ⁇ m.
- a single layer is understood to be a layer of a noble metal or a noble metal alloy, which is produced in one or in successive production steps, also with the aid of different production methods.
- the coating material is to be selected with regard to the temperature range in use depending on its melting point of the said precious metals or precious metal alloys. If different noble metals are combined, diffusion compounds can form under the influence of elevated temperatures.
- the coating may have a diffusion-produced noble metal mixed crystal, which is present either only at the transition between two individual layers or occupies the entire volume of the coating.
- the first single layer when gold diffuses as the first single layer and palladium as the second single layer diffuses the palladium into the underlying gold layer, its melting point increases.
- This diffusion bonding can be produced by a temperature treatment, for example, directly after the production of the coated component, during a soldering process during the assembly of the component or else at the place of use and under operating conditions.
- the single layer may be applied physically and / or chemically to the niobium, tantalum or niobium and / or tantalum based alloy support.
- the application of a single layer by sputtering and / or electroplating, as here also a selective coating of surfaces on components with complex shapes is possible.
- the two methods are simple, uncomplicated and executable without the use of high temperatures.
- the first single layer is preferably produced by sputtering or by sputtering and a subsequent electroplating process, since the sputtered noble metal forms a well-adhering connection with the carrier and thus acts as a bonding agent.
- the surface quality of the substrate to be coated made of niobium, tantalum or niobium and / or tantalum-based alloys, is a decisive influencing factor for the duration of the protective action of the coating. If there are many defects, such as pores, scratches or machining marks on the surface of the support, the likelihood is increased that the coating can not be completely closed at these locations.
- the discharge lamp according to the invention includes a discharge vessel, through the wall of which metallic components are guided as current feedthroughs, such as, for example, high-pressure lamps.
- the current feedthroughs on a support of niobium, tantalum or on niobium and / or tantalum-based alloys which has a coating of one or more individual layers, which is formed from at least one noble metal and / or a noble metal alloy.
- a major advantage of the discharge lamps with such coated current feedthroughs is that they can be operated without an additional outer protective enclosure, for example made of glass.
- the noble metal preferably used for the coating of the current feedthroughs is gold and / or platinum and / or palladium and / or an alloy formed from at least two of these noble metals.
- first single layer of gold and then a second single layer of platinum and / or palladium and / or an alloy is applied to the carrier of the current feedthroughs and formed from at least two of the noble metals gold, platinum or palladium is.
- the first individual layer may have a thickness of 0.1 ⁇ m to 5 ⁇ m, further individual layers applied thereon each have a thickness of 1 ⁇ m to 5 ⁇ m.
- the coating can only partially cover the carrier of the current feedthroughs.
- the coating may have a noble metal mixed crystal produced by diffusion.
- Fig. 1 shows an example of one of the two terminal regions of a discharge lamp.
- the discharge lamp with a tubular discharge vessel 1 made of ceramic and a current feedthrough 2 made of niobium, the surface partially with the invention Coating 3 is covered in precious metal.
- the current feedthrough 2 is using a Glass solder 4 soldered gas-tight in the pipe opening of the discharge vessel 1 and protrudes the uncoated end in the discharge vessel 1 inside.
- the other end of the current feedthrough 2 with the coating 3 is located outside of the discharge vessel 1 at the ambient air.
- the glass solder 4 also covers the region of the current feedthrough 2, where the coating 3 ends, so that the current feedthrough 2 in the area outside of Discharge vessel 1 completely covered with the coating 3 and from oxidation by the Oxygen is protected from the ambient air.
- the uncoated end of the current feedthrough 2 here carries, for example, a tungsten electrode 5.
Landscapes
- Vessels And Coating Films For Discharge Lamps (AREA)
Description
Die Erfindung betrifft ein metallisches Bauteil für Entladungslampen, mit einem Träger aus Niob, Tantal oder aus auf Niob und/oder Tantal basierenden Legierungen sowie eine Entladungslampe.The invention relates to a metallic component for discharge lamps, with a carrier made of niobium, Tantalum or niobium and / or tantalum based alloys and a discharge lamp.
Ein derartiges Bauteil ist aus der Schrift G 86 28 310.3 bekannt. Sie zeigt eine Möglichkeit auf,
Niob als Stromdurchführung für Hochdrucklampen einzusetzen. Dabei wird eine gasdichte Einschmelzung
und eine konstruktiv sehr aufwendige Anordnung verwendet, um das Niob vor Korrosion,
hier unter anderem durch aggressive Metallhalogenide, zu schützen.
In GB 2 178 230 A werden derartige Bauteile als Stromdurchführungen für eine Entladungslampe
verwendet. Der Einsatz einer solchen Entladungslampe in einem Temperaturbereich von
200 - 300°C beziehungsweise in einer Atmosphäre mit hohem Feuchtigkeitsgehalt wird vor allem
im Zusammenhang mit einer äußeren Kapsel empfohlen, die die Stromdurchführungen vor
Oxidation und Korrosion schützt. So zeigt ein Beispiel die Entladungslampe und die Stromdurchführungen
innerhalb einer mit Edelgas gefüllten, gasdicht verschlossenen Schutzkapsel
aus Glas.
Aus der Veröffentlichung "Niobium in High Temperature Applications" des Autors H. Inouye, die
auf einer am 08.11.1981 in San Francisco abgehaltenen Tagung basiert (Proceedings of the International
Symposium), ist das Problem der extrem niedrigen Oxidationsbeständigkeit von Niob
und dessen Legierungen bereits bei niedrigen Temperaturen ab ca. 400°C bekannt. Das
dem Niob eng verwandte Metall Tantal verhält sich dazu ähnlich. Aufgrund dieser Eigenschaft
ist der Einsatzbereich dieser Metalle und ihrer Legierungen bei erhöhten Temperaturen stark
begrenzt. So sind bereits Beschichtungen bekannt, die die Oxidationsbeständigkeit erhöhen.
Dabei handelt es sich üblicherweise um Silizid- oder Aluminidbeschichtungen, die nur unter hohem
Aufwand aufgebracht werden können. Zudem resultiert die Sprödigkeit dieser Schichten in
einer Beeinträchtigung der Thermoschockbeständigkeit verbunden mit der Bildung von Rissen
oder Abplatzungen der Schicht. Die beabsichtigte Schutzfunktion der Beschichtung geht damit
verloren und die Oxidation des Metalls kann ausgehend von den Fehlstellen in der Schicht voranschreiten.Such a component is known from the font G 86 28 310.3. It shows a way to use niobium as a current feedthrough for high pressure lamps. In this case, a gas-tight seal and a structurally very complex arrangement is used to protect the niobium from corrosion, here inter alia by aggressive metal halides.
In
From the publication "Niobium in High Temperature Applications" by the author H. Inouye, which is based on a conference held in San Francisco on November 8, 1981 (Proceedings of the International Symposium), the problem of the extremely low oxidation resistance of niobium and its alloys already exists at low temperatures from about 400 ° C known. The metal tantalum, which is closely related to niobium, behaves similarly. Because of this property, the range of application of these metals and their alloys at elevated temperatures is severely limited. Thus, coatings are already known which increase the oxidation resistance. These are usually silicide or Aluminidbeschichtungen that can be applied only at great expense. In addition, the brittleness of these layers results in an impairment of the thermal shock resistance associated with the formation of cracks or spalling of the layer. The intended protective function of the coating is thus lost and the oxidation of the metal can proceed from the defects in the layer.
Das Dokument JP 60063871 offenbart ein metallisches Bauteil für Stromdurchführungen in Entladungslampen
gemäß dem Oberbegriff des Anspruchs 1 und eine Entladungslampe gemäß
dem Oberbegriff des Anspruchs 5.The document JP 60063871 discloses a metallic component for current feedthroughs in discharge lamps
according to the preamble of
Der vorliegenden Erfindung liegt nun das Problem zugrunde, die Beständigkeit metallischer
Bauteile mit einem Träger aus Niob, Tantal oder aus auf Niob und/oder Tantal basierenden Legierungen,
die in oder an Entladungslampen angeordnet sind, gegen Oxidation und Korrosion
zu erhöhen.
Das Problem wird durch die Merkmale im kennzeichnenden Teil des Anspruchs 1 und diejenigen
im kennzeichnenden Teil des Anspruchs 5 gelöst. Die dort erwähnte Beschichtung erfüllt
sehr gut die Anforderungen an eine Erhöhung der Oxidations- und Korrosionsbeständigkeit,
eine ausreichende Duktilität und die Thermoschockbeständigkeit.
Für die aus einer oder mehreren Einzelschichten aufgebaute Beschichtung werden idealerweise
die Edelmetalle Gold und/oder Platin und/oder Palladium und/oder eine aus mindestens zwei
dieser Elemente gebildete Legierung verwendet. Diese für die Beschichtung verwendeten Edelmetalle
besitzen einen Schmelzpunkt oberhalb 1000°C. Daher gestatten diese Beschichtungen
in reduzierender oder inerter Atmosphäre die Einwirkung höherer Temperaturen als die in
der Entladungslampe normalerweise auftretenden Einsatztemperaturen, so dass eventuell vor
dem Einsatz erforderliche Montagevorgänge wie z.B. Löten daran ausgeführt werden können.
So können beispielsweise Stromdurchführungen aus Nioblegierungen für Entladungslampen
zuerst mit dem Edelmetall beschichtet werden und anschließend die beschichteten Stromdurchführungen
in Öffnungen des Entladungsgefäßes eingelötet werden, ohne dass die schützende
Wirkung der Beschichtung durch die hohe Temperaturbelastung während des Lötvorganges
verloren geht.
Als besonders vorteilhaft hat sich erwiesen, wenn auf dem Träger eine erste Einzelschicht aus
Gold und darauf eine zweite Einzelschicht aus Platin und/oder Palladium und/oder einer Legierung
aufgebracht ist, die aus mindestens zwei der Edelmetalle Gold, Platin oder Palladium gebildet
ist.
Dabei weist eine erste Einzelschicht vorzugsweise eine Dicke von 0,1µm bis 5µm, weitere
darauf aufgebrachte Einzelschichten jeweils eine Dicke von 1µm bis 5µm auf. Unter einer Einzelschicht
wird dabei eine Schicht aus einem Edelmetall oder einer Edelmetall-Legierung
verstanden, die in einem oder in aufeinanderfolgenden Fertigungsschritten, auch mit Hilfe unterschiedlicher
Fertigungsverfahren, hergestellt ist.
Das Beschichtungsmaterial ist im Hinblick auf den im Einsatz vorliegenden Temperaturbereich
abhängig von seinem Schmelzpunkt aus den genannten Edelmetallen oder Edelmetall-Legierungen
auszuwählen. Werden unterschiedliche Edelmetalle kombiniert, können sich unter Einwirkung
von erhöhten Temperaturen Diffusionsverbindungen ausbilden. Somit kann die Beschichtung
einen durch Diffusion erzeugten Edelmetall-Mischkristall aufweisen, der entweder
nur am Übergang zwischen zwei Einzelschichten vorliegt oder aber das ganze Volumen der
Beschichtung einnimmt. Diffundiert beispielsweise bei Gold als erster Einzelschicht und Palladium
als zweiter Einzelschicht das Palladium in die darunter liegende Goldschicht ein, so erhöht
sich deren Schmelzpunkt. Diese Diffusionsverbindung kann durch eine Temperaturbehandlung
beispielsweise direkt nach der Herstellung des beschichteten Bauteils, während eines Lötvorganges
bei der Montage des Bauteils oder aber am Einsatzort und unter Einsatzbedingungen
hergestellt werden.
Die Einzelschicht kann physikalisch und/oder chemisch auf den Träger aus Niob, Tantal oder
aus auf Niob und/oder Tantal basierenden Legierungen aufgebracht werden. Idealerweise erfolgt
die Aufbringung einer Einzelschicht durch Sputtern und/ oder Galvanisieren, da hier auch
eine selektive Beschichtung von Flächen an Bauteilen mit komplexen Formen möglich ist. Zudem
sind die beiden Verfahren einfach, unkompliziert und ohne die Verwendung hoher Temperaturen
ausführbar. Vor allem die erste Einzelschicht wird vorzugsweise durch Sputtern oder
durch Sputtern und einen sich anschließenden Galvanisierungsprozess hergestellt, da das gesputterte
Edelmetall eine gut haftende Verbindung mit dem Träger eingeht und so als Haftvermittler
wirkt.
Die Oberflächengüte des zu beschichtenden Trägers aus Niob, Tantal oder aus Niob und/oder
Tantal basierenden Legierungen ist ein entscheidender Einflußfaktor für die Dauer der Schutzwirkung
der Beschichtung. Befinden sich viele Fehlstellen wie beispielsweise Poren, Kratzer
oder Bearbeitungsspuren auf der Oberfläche des Trägers, ist die Wahrscheinlichkeit erhöht,
daß die Beschichtung an diesen Stellen nicht vollstandig geschlossen werden kann. Ausgehend
von diesen Fehlstellen, die sich in der Beschichtung beispielsweise in Form von Löchern oder
dünnen Stellen fortsetzen können, wird der Träger durch Oxidation oder Korrosion angegriffen.
Für eine gute Schichthaftung hat es sich als vorteilhaft erwiesen, wenn der Träger aus Niob,
Tantal oder aus auf Niob und/oder Tantal basierenden Legierungen vor dem Aufbringen der
Beschichtung eine chemische Reinigung und Aktivierung der Oberfläche erfährt. Möglich ist
beispielsweise ein Beizen der Teile, wodurch vor allem anorganische Ablagerungen, zu denen
unter anderem auch Oxidschichten zu zählen sind, beseitigt werden.
Die erfindungsgemäße Entladungslampe beinhaltet ein Entladungsgefäß, durch dessen Wand
metallische Bauteile als Stromdurchführungen geführt sind, wie zum Beispiel bei Hochdrucklampen.
Dabei weisen die Stromdurchführungen einen Träger aus Niob, Tantal oder auf Niob
und / oder Tantal basierenden Legierungen auf, der eine Beschichtung aus einer oder mehreren
Einzelschichten aufweist, die aus mindestens einem Edelmetall und/oder aus einer Edelmetall-Legierung
gebildet ist. Ein großer Vorteil der Entladungslampen mit derart beschichteten
Stromdurchführungen ist, daß sie ohne eine zusätzliche äußere Schutzkapselung, beispielsweise
aus Glas, betrieben werden können. Das für die Beschichtung der Stromdurchführungen
vorzugsweise verwendete Edelmetall ist Gold und/oder Platin und/oder Palladium und/oder eine
aus mindestens zwei dieser Edelmetalle gebildete Legierung.
Als besonders vorteilhaft hat es sich erwiesen, wenn auf den Träger der Stromdurchführungen
eine erste Einzelschicht aus Gold und darauf eine zweite Einzelschicht aus Platin und/oder Palladium
und/oder einer Legierung aufgebracht ist, die aus mindestens zwei der Edelmetalle
Gold, Platin oder Palladium gebildet ist. Dabei kann die erste Einzelschicht eine Dicke von
0,1µm bis 5µm, weitere darauf aufgebrachte Einzelschichten jeweils eine Dicke von 1µm bis
5µm aufweisen. Die Beschichtung kann den Träger der Stromdurchführungen auch nur teilweise
bedecken. Zudem kann die Beschichtung einen durch Diffusion erzeugten Edelmetall-Mischkristall
aufweisen.The present invention is based on the problem, the resistance of metallic components with a support of niobium, tantalum or on niobium and / or tantalum based alloys, which are arranged in or on discharge lamps, to increase oxidation and corrosion.
The problem is solved by the features in the characterizing part of
For the coating composed of one or more individual layers, the precious metals gold and / or platinum and / or palladium and / or an alloy formed from at least two of these elements are ideally used. These precious metals used for the coating have a melting point above 1000 ° C. Therefore, these coatings in a reducing or inert atmosphere allow the action of higher temperatures than the operating temperatures normally occurring in the discharge lamp, so that any necessary assembly operations such as soldering before use can be performed on it. For example, current feedthroughs made of niobium alloys for discharge lamps can first be coated with the noble metal and then the coated current feedthroughs can be soldered into openings of the discharge vessel without losing the protective effect of the coating due to the high temperature load during the soldering process.
It has proved to be particularly advantageous if a first single layer of gold and thereon a second single layer of platinum and / or palladium and / or an alloy is applied to the carrier, which is formed from at least two of the noble metals gold, platinum or palladium.
In this case, a first individual layer preferably has a thickness of 0.1 μm to 5 μm, further individual layers applied thereon each have a thickness of 1 μm to 5 μm. A single layer is understood to be a layer of a noble metal or a noble metal alloy, which is produced in one or in successive production steps, also with the aid of different production methods.
The coating material is to be selected with regard to the temperature range in use depending on its melting point of the said precious metals or precious metal alloys. If different noble metals are combined, diffusion compounds can form under the influence of elevated temperatures. Thus, the coating may have a diffusion-produced noble metal mixed crystal, which is present either only at the transition between two individual layers or occupies the entire volume of the coating. For example, when gold diffuses as the first single layer and palladium as the second single layer diffuses the palladium into the underlying gold layer, its melting point increases. This diffusion bonding can be produced by a temperature treatment, for example, directly after the production of the coated component, during a soldering process during the assembly of the component or else at the place of use and under operating conditions.
The single layer may be applied physically and / or chemically to the niobium, tantalum or niobium and / or tantalum based alloy support. Ideally, the application of a single layer by sputtering and / or electroplating, as here also a selective coating of surfaces on components with complex shapes is possible. In addition, the two methods are simple, uncomplicated and executable without the use of high temperatures. Above all, the first single layer is preferably produced by sputtering or by sputtering and a subsequent electroplating process, since the sputtered noble metal forms a well-adhering connection with the carrier and thus acts as a bonding agent.
The surface quality of the substrate to be coated, made of niobium, tantalum or niobium and / or tantalum-based alloys, is a decisive influencing factor for the duration of the protective action of the coating. If there are many defects, such as pores, scratches or machining marks on the surface of the support, the likelihood is increased that the coating can not be completely closed at these locations. Based on these imperfections, which can continue in the coating, for example in the form of holes or thin spots, the carrier is attacked by oxidation or corrosion. For a good layer adhesion, it has proved to be advantageous if the support made of niobium, tantalum or based on niobium and / or tantalum-based alloys undergoes a chemical cleaning and activation of the surface before the application of the coating. It is possible, for example, a pickling of the parts, which are mainly inorganic deposits, which include, among other things, oxide layers are eliminated.
The discharge lamp according to the invention includes a discharge vessel, through the wall of which metallic components are guided as current feedthroughs, such as, for example, high-pressure lamps. In this case, the current feedthroughs on a support of niobium, tantalum or on niobium and / or tantalum-based alloys, which has a coating of one or more individual layers, which is formed from at least one noble metal and / or a noble metal alloy. A major advantage of the discharge lamps with such coated current feedthroughs is that they can be operated without an additional outer protective enclosure, for example made of glass. The noble metal preferably used for the coating of the current feedthroughs is gold and / or platinum and / or palladium and / or an alloy formed from at least two of these noble metals.
It has proven to be particularly advantageous if a first single layer of gold and then a second single layer of platinum and / or palladium and / or an alloy is applied to the carrier of the current feedthroughs and formed from at least two of the noble metals gold, platinum or palladium is. In this case, the first individual layer may have a thickness of 0.1 μm to 5 μm, further individual layers applied thereon each have a thickness of 1 μm to 5 μm. The coating can only partially cover the carrier of the current feedthroughs. In addition, the coating may have a noble metal mixed crystal produced by diffusion.
Die nachfolgenden Beispiele 1 bis 9 und die Figur 1 führen die Vorteile der Erfindung näher aus. Für alle Beispiele wurden Bauteile in Form von Drahtstiften aus der Legierung NbZr1 mit dem Durchmesser 1mm und der Länge 15mm verwendet.The following Examples 1 to 9 and Figure 1 detail the advantages of the invention out. For all examples were components in the form of wire pins made of alloy NbZr1 with diameter 1mm and length 15mm.
Fig. 1 zeigt beispielhaft einen der beiden Anschlußbereiche einer Entladungslampe. In diesem
Beispiel ist die Entladungslampe mit einem rohrförmigen Entladungsgefäß 1 aus Keramik und
einer Stromdurchführung 2 aus Niob hergestellt, deren Oberfläche teilweise mit der erfindungsgemäßen
Beschichtung 3 aus Edelmetall bedeckt ist. Die Stromdurchführung 2 ist mit Hilfe eines
Glaslotes 4 in die Rohröffnung des Entladungsgefäßes 1 gasdicht eingelötet und ragt mit
dem unbeschichteten Ende in das Entladungsgefäß 1 hinein. Das andere Ende der Stromdurchführung
2 mit der Beschichtung 3 befindet sich außerhalb des Entladungsgefäßes 1 an
der Umgebungsluft. Dabei bedeckt das Glaslot 4 auch den Bereich der Stromdurchführung 2,
an dem die Beschichtung 3 endet, so daß die Stromdurchführung 2 im Bereich außerhalb des
Entladungsgefäßes 1 vollständig mit der Beschichtung 3 bedeckt und vor Oxidation durch den
Sauerstoff aus der Umgebungsluft geschützt ist. Das unbeschichtete Ende der Stromdurchführung
2 trägt hier beispielsweise eine Wolfram-Elektrode 5.Fig. 1 shows an example of one of the two terminal regions of a discharge lamp. In this
Example is the discharge lamp with a
Claims (10)
- Metallic component for current feed-throughs (2) in discharge lamps, comprising a support consisting of niobium or tantalum or alloys based on niobium and/or tantalum, the support having a coating (3) of one or more individual layers which is formed from at least one noble metal and/or from a noble metal alloy, characterized in that a first individual layer of gold is applied to the support and a second individual layer of platinum and/or palladium and/or an alloy which is formed from at least two of the noble metals gold, platinum and palladium is applied to said layer of gold.
- Metallic component according to Claim 1, characterized in that the first individual layer has a thickness of 0.1 µm to 5 µm and further individual layers applied thereon each have a thickness of 1 µm to 5 µm.
- Metallic component according to Claim 1, characterized in that the coating only partly covers the support.
- Metallic component according to Claim 1, characterized in that the coating comprises a noble metal solid solution produced by diffusion.
- Discharge lamp comprising a ceramic discharge vessel (1), through the wall of which metallic components are passed as current feed-throughs (2), the current feed-throughs comprising a support consisting of niobium or tantalum or alloys based on niobium and/or tantalum, which has a coating (3) of one or more individual layers which is formed from at least one noble metal and/or from a noble metal alloy, the current feed-throughs being soldered gas-tight into the discharge vessel by means of a glass solder (4), characterized in that that end of the current feed-throughs which projects from the discharge vessel and the glass solder is completely covered by the coating.
- Discharge lamp according to Claim 5, characterized in that the noble metal is gold and/or platinum and/or palladium and/or an alloy formed from at least two of these noble metals.
- Discharge lamp according to either of Claims 5 and 6, characterized in that a first individual layer of gold is applied to the support and a second individual layer of platinum and/or palladium and/or an alloy which is formed from at least two of the noble metals gold, platinum and palladium is applied to said layer of gold.
- Discharge lamp according to any of Claims 5 to 7, characterized in that the first individual layer has a thickness of 0.1 µm to 5 µm and further individual layers applied thereon each have a thickness of 1 µm to 5 µm.
- Discharge lamp according to any of Claims 5 to 8, characterized in that the coating only partly covers the support.
- Discharge lamp according to Claim 5, characterized in that the coating comprises a noble metal solid solution produced by diffusion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19915920A DE19915920A1 (en) | 1999-04-09 | 1999-04-09 | Metallic component and discharge lamp |
DE19915920 | 1999-04-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1043753A1 EP1043753A1 (en) | 2000-10-11 |
EP1043753B1 true EP1043753B1 (en) | 2005-05-11 |
Family
ID=7903938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00104951A Expired - Lifetime EP1043753B1 (en) | 1999-04-09 | 2000-03-08 | Metallic element and discharge lamp |
Country Status (4)
Country | Link |
---|---|
US (1) | US6384533B1 (en) |
EP (1) | EP1043753B1 (en) |
JP (1) | JP3594871B2 (en) |
DE (2) | DE19915920A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006525637A (en) * | 2003-05-01 | 2006-11-09 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method of manufacturing a lamp with oxidation protected lead |
US7358674B2 (en) * | 2004-07-27 | 2008-04-15 | General Electric Company | Structure having electrodes with metal core and coating |
DE102005038551B3 (en) | 2005-08-12 | 2007-04-05 | W.C. Heraeus Gmbh | Wire and frame for single-ended lamps based on niobium or tantalum, as well as manufacturing process and use |
US7863818B2 (en) * | 2007-08-01 | 2011-01-04 | General Electric Company | Coil/foil-electrode assembly to sustain high operating temperature and reduce shaling |
JP5338557B2 (en) * | 2009-08-19 | 2013-11-13 | ウシオ電機株式会社 | Lamp with base |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE626363C (en) * | 1933-09-25 | 1936-02-25 | Patra Patent Treuhand | Current lead-in wire for vessels made of tempered glass, in particular for electric light tubes with metal vapor filling |
DE963173C (en) * | 1949-09-22 | 1957-05-02 | Egyesuelt Izzolampa | Process for the production of a seal for power supply lines consisting of silver-plated wire pins for electrical discharge tubes, in particular for radio tubes |
BE541097A (en) * | 1954-09-08 | |||
NL7501272A (en) * | 1975-02-04 | 1976-08-06 | Philips Nv | ELECTRIC LAMP. |
NL7511416A (en) * | 1975-09-29 | 1977-03-31 | Philips Nv | ELECTRIC DISCHARGE LAMP. |
JPS6063871A (en) * | 1983-09-19 | 1985-04-12 | Toshiba Corp | Metal halide lamp |
HU202013B (en) * | 1985-07-02 | 1991-01-28 | Tungsram Reszvenytarsasag | Impulsed inert gas discharge lamp |
DE8628310U1 (en) * | 1986-10-23 | 1989-06-22 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 81543 München | Sealing for a high pressure discharge lamp |
EP0341750A3 (en) | 1988-05-13 | 1991-04-17 | Gte Products Corporation | Arc tube and high pressure discharge lamp including same |
EP0410511A1 (en) | 1989-07-24 | 1991-01-30 | Koninklijke Philips Electronics N.V. | Electric lamp |
US5336968A (en) * | 1992-06-30 | 1994-08-09 | General Electric Company | DC operated sodium vapor lamp |
DE69329046T2 (en) * | 1992-09-08 | 2001-03-29 | Koninklijke Philips Electronics N.V., Eindhoven | High pressure discharge lamp |
DE69629336T2 (en) | 1995-01-13 | 2004-06-24 | Ngk Insulators, Ltd., Nagoya | HIGH PRESSURE DISCHARGE LAMP AND THEIR PRODUCTION PROCESS |
DE69817493T2 (en) | 1997-02-24 | 2004-06-17 | Koninklijke Philips Electronics N.V. | HIGH PRESSURE METAL HALOGEN LAMP |
US6271627B1 (en) * | 1997-04-11 | 2001-08-07 | Ushiodenki Kabushiki Kaisha | Sealing body having a shielding layer for hermetically sealing a tube lamp |
-
1999
- 1999-04-09 DE DE19915920A patent/DE19915920A1/en not_active Ceased
-
2000
- 2000-02-17 US US09/506,063 patent/US6384533B1/en not_active Expired - Fee Related
- 2000-03-08 EP EP00104951A patent/EP1043753B1/en not_active Expired - Lifetime
- 2000-03-08 DE DE50010258T patent/DE50010258D1/en not_active Expired - Lifetime
- 2000-04-05 JP JP2000103563A patent/JP3594871B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3594871B2 (en) | 2004-12-02 |
US6384533B1 (en) | 2002-05-07 |
DE19915920A1 (en) | 2000-10-19 |
DE50010258D1 (en) | 2005-06-16 |
EP1043753A1 (en) | 2000-10-11 |
JP2000311651A (en) | 2000-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3901365C2 (en) | ||
EP1280629B1 (en) | Nickel-diamond-coated saw wire with improved anchoring of the diamond particles | |
CH651070A5 (en) | ALLOY USED AS A COATING COATING OF NICKEL-BASED FABRICS. | |
EP2435603B1 (en) | Process of manufacturing a flat steel product and flat steel product | |
EP0919644B1 (en) | Process for obtaining a metallic composite band | |
DE3640433C2 (en) | ||
EP0798402B1 (en) | Layer for protection against oxydation | |
EP2035798B1 (en) | Method for producing a temperature measuring sensor | |
EP1043753B1 (en) | Metallic element and discharge lamp | |
EP1206958B1 (en) | Niobium alloy and hydrogen permeation membrane therefrom | |
DE69913998T2 (en) | Bodies connected by hot isostatic pressing and its manufacturing process | |
DE10200803A1 (en) | Production of a ceramic material for a thermal insulation layer and a thermal insulation layer containing the material | |
DE29810483U1 (en) | Surface implantation or surface coating for stents or other implants | |
DE3214989A1 (en) | ELECTRIC CONTACT PIECE COATED WITH PRECIOUS METAL OR A PRECIOUS METAL ALLOY | |
EP1835051B1 (en) | Self-cleaning surface | |
DE3932536C1 (en) | Wear resistant contact material - in which is applied to support comprising copper alloy and non-noble metal contg. silver, palladium or palladium-silver alloy | |
DE3039658C2 (en) | ||
WO2006007895A1 (en) | Rear surface mirror | |
DE4222210C1 (en) | Protective coating for titanium@ or titanium@ alloy jet engine component - comprises top layer of titanium@ intermetallic cpd. with vanadium@ chromium@, manganese@, niobium, molybdenum@, tantalum or tungsten@, and interlayer | |
DE3244416C2 (en) | ||
EP2581473A1 (en) | Method for protecting a workpiece made of an aluminium material from corrosion, in particular a workpiece made from an aluminium forgeable alloy | |
DE1564069C2 (en) | Composite material for electrical contacts | |
WO1990002218A1 (en) | Plasma method for coating an object with a hardmetal | |
DE883546C (en) | Surface protection of metals | |
EP0202623B1 (en) | Process for the metallization of a substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000321 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB IT NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
K1C3 | Correction of patent application (complete reprint) published |
Effective date: 20001011 |
|
AKX | Designation fees paid |
Free format text: BE DE FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 20031202 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: W.C. HERAEUS GMBH |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050511 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50010258 Country of ref document: DE Date of ref document: 20050616 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060308 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060214 |
|
EN | Fr: translation not filed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050511 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20100315 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110325 Year of fee payment: 12 Ref country code: BE Payment date: 20110311 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20111001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111001 |
|
BERE | Be: lapsed |
Owner name: W.C. *HERAEUS G.M.B.H. Effective date: 20120331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50010258 Country of ref document: DE Effective date: 20121002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121002 |