EP1041264A2 - Hybrid model for the modelling of a whole process in a vehicle - Google Patents
Hybrid model for the modelling of a whole process in a vehicle Download PDFInfo
- Publication number
- EP1041264A2 EP1041264A2 EP00106509A EP00106509A EP1041264A2 EP 1041264 A2 EP1041264 A2 EP 1041264A2 EP 00106509 A EP00106509 A EP 00106509A EP 00106509 A EP00106509 A EP 00106509A EP 1041264 A2 EP1041264 A2 EP 1041264A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- model
- physical
- hybrid
- neural
- simulated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L9/00—Valve-gear or valve arrangements actuated non-mechanically
- F01L9/20—Valve-gear or valve arrangements actuated non-mechanically by electric means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1405—Neural network control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2800/00—Methods of operation using a variable valve timing mechanism
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0203—Variable control of intake and exhaust valves
- F02D13/0215—Variable control of intake and exhaust valves changing the valve timing only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D2041/001—Controlling intake air for engines with variable valve actuation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1433—Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
- F02D2041/1436—Hybrid model
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0402—Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
Definitions
- the invention relates to a hybrid model for modeling an overall process in a vehicle consisting of at least one physical and one neural sub-model.
- the filling of cylinders in engines with variable valve train measured with a very delayed air mass sensor. It will therefore expediently from different input variables, which are directly at the inlet be measured and determined with the help of a model.
- the Filling of the individual cylinders influenced by several manipulated variables, some of them are interdependent or independent.
- Empirical methods such as Maps.
- empirical methods are usually imprecise and require a high level Coordination effort.
- Another possibility are physical functions, at which the process behavior from the consideration of the physical relationships is derived.
- physical functions are sometimes difficult to create.
- the overall system and the Dependencies to be known within the system.
- the effort for the creation of physical models with increasing model complexity disproportionately too.
- different concepts e.g. Direct injection, electronic valve train, variable valve train, etc.
- DE 197 06 750 A1 describes a method for controlling the mixture in a Internal combustion engine and a device for performing this method known.
- the Combustion chamber of the internal combustion engine air mass coming from a Input size determined.
- the amount of fuel to be supplied in Determined as a function of this input variable.
- the neural network is used to describe the Control variable for the fuel path depending on the engine operating state and the driver-influenced control variable for the air path.
- the control variable for the fuel path is exclusive in this embodiment set on the neural network.
- neural networks are outside the Work area in which the training data are determined, an implausible Can have extrapolation behavior and therefore in safety-critical Processes, e.g. in motor vehicles, are difficult to use.
- the object of the present invention is to develop a hybrid model for modeling a To specify the overall process in a vehicle, with which physical have difficult to describe processes modeled without the implausible Extrapolation behavior must be accepted.
- the overall process (for example the filling of the Cylinder) is divided into sub-processes, which are of different sub-models described and then combined into an overall model.
- the neural model takes over the description of a process part, which is physical is difficult to grasp.
- the modeling of the air mass filling can be used as a concrete application Specify internal combustion engines, for example with variable valve train. At this Application could determine the basic filling using a physical model become. However, the influence of camshaft spreading could neural network are described. Especially when describing the Influence of camshaft spreading is only possible with a high physical model Create effort.
- the modeling of the basic model with a physical process description has the advantage that the share of the neural sub-model in the overall model can be deliberately restricted. This ensures that Overall model shows no implausible extrapolation behavior.
- the merging of the different sub-models can be additive, for example and / or multiplicative.
- the use of others is also logical or arithmetic links when the Results of the sub-models possible.
- neural sub-model neural network
- Continuous adaptation of the network parameters is also optional possible during the operation of the vehicle. For example Series tolerances are recorded and included.
- hybrid models presented can also be used for other concepts can be reused by, for example, the input quantities of the neural Network can be relearned.
- both the tax times can be included an electronic valve train and the spread in a motor with variable Model the valve train with the hybrid model presented.
- Physical models sometimes use different maps or Characteristic curves that usually require a large amount of memory. In particular in the case of complicated processes, physical modeling is a big one Number of maps and characteristic curves required. In the present Overall, the use of a physical-neuronal hybrid model is less Storage space is required because the neural networks require elaborate maps and Characteristic curves can be avoided. Rather, the lesser need Network parameters in neural networks require less memory.
- the only drawing shows a simple schematic block diagram in which an overall model for modeling the air mass filling at one Internal combustion engine with variable valve timing with a physical model for basic filling and a neural network model for the influence of spreading is described.
- the basic filling is physical and depending on the speed N, the cylinder stroke (stroke) and the pressure difference D_P and the Suction temperature T_Ans described. These parameters are the physical model as input variables and determine accordingly a map stored in it and some thermodynamic Basic equations the initial quantity of the physical model.
- the influence of the camshaft spread is determined using the neural network model described, since it is difficult to create a physical model here.
- input variables for the neural network model serve (Stroke) the spreads of the intake and exhaust valves (E_Spr, A_Spr).
- E_Spr, A_Spr the spreads of the intake and exhaust valves
- Cylinder filling are determined and output.
- This influence becomes multiplicative coupled with the output from the physical model, which leads to the then total determined air mass ML_Mod leads.
- the proportion of the neuronal Partial model limited to the overall model. In the present case, the restriction is given in Dependence on the initial value of the physical sub-model.
- a hybrid model can also be used to describe other overall processes such as an electronic valve train, turbocharged engines, direct injection engines or a synchronization control can be used, whereby each Sub-processes describe their own mostly completed processes and at least one sub-process is represented with a neural network.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Feedback Control In General (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
Die Erfindung betrifft ein Hybridmodell zur Modellierung eines Gesamtprozesses in einem Fahrzeug bestehend aus je zumindest einem physikalischen und einem neuronalen Teilmodell.The invention relates to a hybrid model for modeling an overall process in a vehicle consisting of at least one physical and one neural sub-model.
Es ist bekannt, physikalische Zusammenhänge und Abläufe bei Prozessen modellhaft zu beschreiben. Mit den Modellen kann einerseits eine Diagnose vorhandener Sensoren durchgeführt werden. Andererseits können auch nicht meßbare Signale modellhaft erfaßt bzw. vorhandene Sensorik eingespart werden.It is known physical relationships and processes in processes to describe as a model. On the one hand, the models can be used for diagnosis existing sensors can be carried out. On the other hand, neither can Measurable signals are modeled or existing sensors are saved.
Beispielsweise kann die Füllung von Zylindern bei Motoren mit variablen Ventiltrieb über einen Luftmassensensor nur stark verzögert gemessen werden. Sie wird daher sinnvollerweise aus verschiedenen Eingangsgrößen, die direkt am Einlaß gemessen werden, und unter Zuhilfenahme eines Modells bestimmt. Dabei ist die Füllung der einzelnen Zylinder durch mehrere Stellgrößen beeinflußt, die teilweise voneinander abhängig oder auch unabhängig sind.For example, the filling of cylinders in engines with variable valve train measured with a very delayed air mass sensor. It will therefore expediently from different input variables, which are directly at the inlet be measured and determined with the help of a model. Here is the Filling of the individual cylinders influenced by several manipulated variables, some of them are interdependent or independent.
Eine Möglichkeit zur Modellierung sind empirische Verfahren, wie z.B. Kennfelder. Empirische Verfahren sind jedoch meist ungenau und erfordern einen hohen Abstimmungsaufwand. Eine weitere Möglichkeit sind physikalische Funktionen, bei denen das Prozeßverhalten aus der Betrachtung der physikalischen Zusammenhänge abgeleitet wird. Allerdings sind für mache Prozesse physikalische Funktionen manchmal schwierig zu erstellen. Insbesondere müssen das Gesamtsystem und die Abhängigkeiten innerhalb des Systems bekannt sein. Auch nimmt der Aufwand für die Erstellung physikalischer Modelle mit zunehmender Modellkomplexität überproportional zu. Darüber hinaus sind für verschiedene Konzepte (z.B. Direkteinspritzer, elektronischer Ventiltrieb, variabler Ventiltrieb, etc.) immer neue Modelle zu erstellen.Empirical methods, such as Maps. However, empirical methods are usually imprecise and require a high level Coordination effort. Another possibility are physical functions, at which the process behavior from the consideration of the physical relationships is derived. However, for some processes, physical functions are sometimes difficult to create. In particular, the overall system and the Dependencies to be known within the system. Also the effort for the creation of physical models with increasing model complexity disproportionately too. In addition, for different concepts (e.g. Direct injection, electronic valve train, variable valve train, etc.) always new To create models.
Aus der DE 197 06 750 A1 ist ein Verfahren zur Gemischsteuerung bei einem Verbrennungsmotor sowie eine Vorrichtung zur Durchführung dieses Verfahrens bekannt. Gemäß dem darin beschriebenen Ausführungsbeispiel wird die in einen Brennraum des Verbrennungsmotors gelangende Luftmasse aus einer Eingangsgröße bestimmt. Ferner wird die zuzuführende Kraftstoffmenge in Abhängigkeit von dieser Eingangsgröße ermittelt. Bei der Ermittlung der Kraftstoffmenge wird ein neuronales Netzwerk verwendet, welches lernfähig ist. Bei dem vorgestellten Verfahren dient das neuronale Netzwerk zur Beschreibung der Steuergröße für den Kraftstoffpfad in Abhängigkeit des Motorbetriebszustandes und der fahrerbeeinflußten Steuergröße für den Luftpfad. Bei der Bildung der Steuergröße für den Kraftstoffpfad wird bei dieser Ausführungsform ausschließlich auf das neuronale Netzwerk gesetzt.DE 197 06 750 A1 describes a method for controlling the mixture in a Internal combustion engine and a device for performing this method known. According to the exemplary embodiment described therein, the Combustion chamber of the internal combustion engine air mass coming from a Input size determined. Furthermore, the amount of fuel to be supplied in Determined as a function of this input variable. When determining the The amount of fuel used is a neural network that is capable of learning. At In the method presented, the neural network is used to describe the Control variable for the fuel path depending on the engine operating state and the driver-influenced control variable for the air path. In the formation of the The control variable for the fuel path is exclusive in this embodiment set on the neural network.
Ein wesentlicher Nachteil von neuronalen Netzen liegt darin, daß sie außerhalb des Arbeitsbereiches, in dem die Trainingsdaten ermittelt werden, ein unplausibles Extrapolationsverhalten aufweisen können und dafür in sicherheitskritischen Prozessen, z.B. bei Kraftfahrzeugen, nur schwer einsetzbar sind.A major disadvantage of neural networks is that they are outside the Work area in which the training data are determined, an implausible Can have extrapolation behavior and therefore in safety-critical Processes, e.g. in motor vehicles, are difficult to use.
Aufgabe der vorliegenden Erfindung ist es, ein Hybridmodell zur Modellierung eines Gesamtprozesses in einem Fahrzeug anzugeben, mit welchem sich physikalisch schwierig zu beschreibende Prozesse modellieren lassen, ohne das unplausible Extrapolationsverhalten in Kauf genommen werden müssen.The object of the present invention is to develop a hybrid model for modeling a To specify the overall process in a vehicle, with which physical have difficult to describe processes modeled without the implausible Extrapolation behavior must be accepted.
Diese Aufgabe wird durch die im Anspruch 1 genannten Merkmale gelöst.This object is achieved by the features mentioned in claim 1.
Erfindungswesentlich ist, daß der Gesamtprozeß (beispielsweise die Befüllung der Zylinder) in Teilprozesse aufgeteilt wird, welche von verschiedenen Teilmodellen beschrieben und dann zu einem Gesamtmodell zusammengeführt werden. Vorliegend wird zumindest ein Prozeßanteil mit einem physikalischen Modell und ein Prozeßanteil mit einem neuronalen Model beschrieben. Das neuronale Model übernimmt dabei die Beschreibung eines Prozeßanteils, welcher physikalisch schwierig zu fassen ist.It is essential to the invention that the overall process (for example the filling of the Cylinder) is divided into sub-processes, which are of different sub-models described and then combined into an overall model. At least one process component with a physical model and described a process part with a neural model. The neural model takes over the description of a process part, which is physical is difficult to grasp.
Als konkrete Anwendung läßt sich die Modellierung der Luftmassenfüllung bei Verbrennungsmotoren, beispielsweise mit variablem Ventiltrieb, angeben. Bei dieser Anwendung könnte die Basisfüllung über ein physikalisches Modell bestimmt werden. Der Einfluß der Nokkenwellenspreitzung hingegen könnte über das neuronale Netzwerk beschrieben werden. Gerade bei der Beschreibung des Einflusses der Nockenwellenspreitzung ist ein physikalisches Modell nur mit hohem Aufwand zu erstellen.The modeling of the air mass filling can be used as a concrete application Specify internal combustion engines, for example with variable valve train. At this Application could determine the basic filling using a physical model become. However, the influence of camshaft spreading could neural network are described. Especially when describing the Influence of camshaft spreading is only possible with a high physical model Create effort.
Die Modellierung des Basismodells mit einer physikalischen Prozeßbeschreibung hat den Vorteil, daß der Anteil des neuronalen Teilmodells am Gesamtmodell gezielt beschränkt werden kann. Auf diese Weise wird gewährleistet, daß das Gesamtmodell kein unplausibles Extrapolationsverhalten zeigt.The modeling of the basic model with a physical process description has the advantage that the share of the neural sub-model in the overall model can be deliberately restricted. This ensures that Overall model shows no implausible extrapolation behavior.
Bei einer Anwendung des Hybridmodells auf die Beschreibung der Befüllung von Zylindern bei einem Verbrennungsmotor kann die Basisfüllung mit dem physikalischen Modell in Abhängigkeit von Fahrbetriebsbedingungen, wie der Drehzahl, einem Zylinder-Hub und/oder der Druckdifferenz in einem Zylinder beschrieben werden.When applying the hybrid model to the description of the filling of Cylinders in an internal combustion engine can be filled with the basic filling physical model depending on driving operating conditions, such as the Speed, a cylinder stroke and / or the pressure difference in a cylinder to be discribed.
Die Zusammenführung der verschiedenen Teilmodelle kann beispielsweise additiv und/oder multiplikativ gewählt werden. Natürlich ist auch die Verwendung anderer logischer oder arithmetischer Verknüpfungen bei einer Zusammenführung der Ergebnisse der Teilmodelle möglich.The merging of the different sub-models can be additive, for example and / or multiplicative. Of course, the use of others is also logical or arithmetic links when the Results of the sub-models possible.
Natürlich kann die Belernung des neuronalen Teilmodelles (neuronales Netzwerk) gezielt durch Vorgabe von Lernwerten vor der konkreten Anwendung erstellt werden. Optional ist aber auch eine kontinuierliche Adaption der Netzparameter während des Betriebs des Fahrzeugs möglich. So können beispielsweise Serientoleranzen erfaßt und miteinbezogen werden. Of course, learning the neural sub-model (neural network) created specifically by specifying learning values before concrete application become. Continuous adaptation of the network parameters is also optional possible during the operation of the vehicle. For example Series tolerances are recorded and included.
Als Vorteile des Hybridmodelles gegenüber einem rein physikalischen Vollmodell ist eine deutliche Reduzierung des Modellierungsaufwandes anzugeben. Durch die Vermeidung eines neuronalen Vollmodells kann ein (unplausibels) Extrapolationsverhalten ausgeschlossen werden.The advantages of the hybrid model over a purely physical full model is specify a significant reduction in modeling effort. Through the Avoiding a full neural model can be an (implausible) Extrapolation behavior can be excluded.
Überdies können die aufgestellten Hybridmodelle auch bei anderen Konzepten wiederverwendet werden, indem zum Beispiel die Eingangsgrößen des neuronalen Netzwerkes neu belernt werden. Vorliegend lassen sich sowohl die Steuerzeiten bei einem elektronischen Ventiltrieb und die Spreizung bei einem Motor mit variablem Ventiltrieb mit dem vorgestellten Hybridmodell modellieren.In addition, the hybrid models presented can also be used for other concepts can be reused by, for example, the input quantities of the neural Network can be relearned. In the present case, both the tax times can be included an electronic valve train and the spread in a motor with variable Model the valve train with the hybrid model presented.
Physikalische Modelle bedienen sich teilweise verschiedener Kennfelder oder Kennlinien, die in der Regel einen großen Speicherbedarf erfordern. Insbesondere bei komplizierten Prozessen ist für die physikalische Modellierung eine große Anzahl von Kennfeldern und Kennlinien erforderlich. Bei der vorliegenden Verwendung eines physikalisch-neuronalen Hybridmodelles wird insgesamt weniger Speicherplatz benötigt, da mit den neuronalen Netzen aufwendige Kennfelder und Kennlinen vermieden werden können. Vielmehr benötigen die geringeren Netzparameter bei neuronalen Netzwerken einen geringeren Speicherbedarf.Physical models sometimes use different maps or Characteristic curves that usually require a large amount of memory. In particular in the case of complicated processes, physical modeling is a big one Number of maps and characteristic curves required. In the present Overall, the use of a physical-neuronal hybrid model is less Storage space is required because the neural networks require elaborate maps and Characteristic curves can be avoided. Rather, the lesser need Network parameters in neural networks require less memory.
Die vorliegende Erfindung wird anhand eines speziellen Ausführungsbeispiels und mit Bezug auf die einzige nachfolgende Zeichnung näher erläutert.The present invention is based on a specific embodiment and explained in more detail with reference to the only drawing below.
Die einzige Zeichnung zeigt ein einfaches schematisches Blockdiagramm, bei dem ein Gesamtmodell zur Modellierung der Luftmassenfüllung bei einem Verbrennungsmotor mit variabler Ventilsteuerung mit einem physikalischen Modell für die Basisbefüllung und einem neuronalen Netz-Modell für den Spreitzungseinfluß beschrieben ist. Die Basisfüllung wird physikalisch und in Abhängigkeit von der Drehzahl N, dem Zylinder-Hub (Hub) und der Druckdifferenz D_P sowie der Ansaugtemperatur T_Ans beschrieben. Diese Parameter werden dem physikalischen Modell als Eingangsgrößen zugeführt und bestimmen entsprechend einem darin abgelegten Kennfeld sowie einiger thermodynamischer Grundgleichungen die Ausgangsgröße des physikalischen Modells. The only drawing shows a simple schematic block diagram in which an overall model for modeling the air mass filling at one Internal combustion engine with variable valve timing with a physical model for basic filling and a neural network model for the influence of spreading is described. The basic filling is physical and depending on the speed N, the cylinder stroke (stroke) and the pressure difference D_P and the Suction temperature T_Ans described. These parameters are the physical model as input variables and determine accordingly a map stored in it and some thermodynamic Basic equations the initial quantity of the physical model.
Der Einfluß der Nockenwellenspreizung wird mittels des neuronalen Netzmodells beschrieben, da hier ein physikalisches Modell nur schwer zu erstellen ist. Als Eingangsgrößen für das neuronale Netzmodell dienen neben dem Zylinder-Hub (Hub) die Spreizungen der Einlaß- und der Auslaßventile (E_Spr, A_Spr). Durch das Belernen der Kopplungen des neuronalen Netzes kann am Ausgang des neuronalen Modells der Einfluß der Nockenwellenspreitzung auf die Zylinderbefüllung ermittelt und ausgegeben werden. Dieser Einfluß wird multiplikativ mit dem Ausgang aus dem physikalischen Modell gekoppelt, was zu der dann insgesamt ermittelten Luftmasse ML_Mod führt. Dabei ist der Anteil des neuronalen Teilmodells am Gesamtmodell beschränkt. Die Beschränkung erfolgt vorliegend in Abhängigkeit vom Ausgangswert des physikalischen Teilmodells.The influence of the camshaft spread is determined using the neural network model described, since it is difficult to create a physical model here. As In addition to the cylinder stroke, input variables for the neural network model serve (Stroke) the spreads of the intake and exhaust valves (E_Spr, A_Spr). By learning the couplings of the neural network can be at the exit of the the influence of camshaft spreading on the neuronal model Cylinder filling are determined and output. This influence becomes multiplicative coupled with the output from the physical model, which leads to the then total determined air mass ML_Mod leads. The proportion of the neuronal Partial model limited to the overall model. In the present case, the restriction is given in Dependence on the initial value of the physical sub-model.
Damit wird gewährleistet, daß das Gesamtmodell kein unplausibles Extrapolationsverhalten zeigt. Versuche haben ergeben, daß sich die mittleren Fehler bei einer Realisierung der Modellierung der Frischluft-Zylinderbefüllung bei Verbrennungsmotoren mit variablen Ventilsteuerungen mit dem physikalisch-neuronalen Hybridmodell deutlich reduzieren lassen.This ensures that the overall model is not implausible Shows extrapolation behavior. Experiments have shown that the middle Error when realizing the modeling of the fresh air cylinder filling Internal combustion engines with variable valve controls with the physical-neuronal Have the hybrid model significantly reduced.
Natürlich kann ein Hybridmodell auch zur Beschreibung anderer Gesamtprozesse wie eines elektronischen Ventiltriebes, turboaufgeladener Motoren, Direkteinspritzermotoren oder einer Gleichlaufregelung verwendet werden, wobei jeweils Teilprozesse eigene zumeist abgeschlossene Vorgänge beschreiben und zumindest ein Teilprozeß mit einem neuronalen Netzwerk dargestellt wird.Of course, a hybrid model can also be used to describe other overall processes such as an electronic valve train, turbocharged engines, direct injection engines or a synchronization control can be used, whereby each Sub-processes describe their own mostly completed processes and at least one sub-process is represented with a neural network.
Claims (9)
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19914910A DE19914910A1 (en) | 1999-04-01 | 1999-04-01 | Hybrid model for modeling an overall process in a vehicle |
DE19914910 | 1999-04-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1041264A2 true EP1041264A2 (en) | 2000-10-04 |
EP1041264A3 EP1041264A3 (en) | 2002-08-07 |
Family
ID=7903278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00106509A Ceased EP1041264A3 (en) | 1999-04-01 | 2000-03-25 | Hybrid model for the modelling of a whole process in a vehicle |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1041264A3 (en) |
DE (1) | DE19914910A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1253491A2 (en) * | 2001-04-24 | 2002-10-30 | Bayer Aktiengesellschaft | Hybrid model and method for determining the mechanical properties and processing properties of an injection moulded article |
EP1342899A1 (en) * | 2000-12-12 | 2003-09-10 | Toyota Jidosha Kabushiki Kaisha | Controller of internal combustion engine |
WO2006000474A1 (en) * | 2004-06-24 | 2006-01-05 | Siemens Aktiengesellschaft | Method for determining the air mass in a cylinder |
FR2876152A1 (en) * | 2004-10-06 | 2006-04-07 | Renault Sas | IMPROVED METHOD AND SYSTEM FOR ESTIMATING EXHAUST GAS TEMPERATURE AND INTERNAL COMBUSTION ENGINE EQUIPPED WITH SUCH A SYSTEM |
DE102004055313A1 (en) * | 2004-11-16 | 2006-05-18 | Volkswagen Ag | Cylinder pressure sensor diagnosis/reinforcement adaptation performing method for combustion engine, involves receiving sensors signals, and determining diagnosis value/adaptation parameter based on moment difference of model torques |
WO2006114550A1 (en) * | 2005-04-28 | 2006-11-02 | Renault S.A.S | Method for controlling a motor vehicle using a network of neurones |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10113538B4 (en) * | 2001-03-20 | 2012-03-01 | Bayerische Motoren Werke Aktiengesellschaft | Regulating device and control method |
DE10203919A1 (en) * | 2002-01-31 | 2003-08-21 | Bayerische Motoren Werke Ag | Reconstructing physical magnitudes for further processing in association with engine controller using neural network, produces models for individual system sections |
DE10237328B4 (en) * | 2002-08-14 | 2006-05-24 | Siemens Ag | Method for controlling the combustion process of an HCCI internal combustion engine |
AT6293U1 (en) * | 2002-12-05 | 2003-07-25 | Avl List Gmbh | METHOD FOR CONTROLLING OR CONTROL OF AN INTERNAL COMBUSTION ENGINE WORKING IN A CIRCUIT PROCESS |
DE10328015A1 (en) * | 2003-06-23 | 2005-01-13 | Volkswagen Ag | Virtual lambda sensor for road vehicle internal combustion engine has computer connected to engine control module for regulating air-fuel mixture |
DE102014000397A1 (en) | 2014-01-17 | 2015-07-23 | Fev Gmbh | Model-based cylinder fill detection for an internal combustion engine |
DE102021204544A1 (en) | 2021-05-05 | 2022-11-10 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method for operating a hydraulic cylinder of a working machine |
DE102022212907A1 (en) | 2022-11-30 | 2024-06-06 | Rheinisch-Westfälische Technische Hochschule Aachen, Körperschaft des öffentlichen Rechts | Computer-implemented method and device for predicting a state of a technical system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0445555A2 (en) * | 1990-03-06 | 1991-09-11 | Bayerische Motoren Werke Aktiengesellschaft | Method for the regulation of the camshaft phasing, continuously variable according to RPM |
DE19706756A1 (en) | 1997-02-20 | 1998-09-03 | Siemens Ag | Gradient amplifier for magnetic resonance tomography |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4338607B4 (en) * | 1993-11-11 | 2005-10-06 | Siemens Ag | Method and device for managing a process in a controlled system |
DE19547496C2 (en) * | 1995-12-19 | 2003-04-17 | Dierk Schroeder | Process for regulating internal combustion engines |
US5877954A (en) * | 1996-05-03 | 1999-03-02 | Aspen Technology, Inc. | Hybrid linear-neural network process control |
JPH10122017A (en) * | 1996-10-14 | 1998-05-12 | Yamaha Motor Co Ltd | Engine control system |
US5714683A (en) * | 1996-12-02 | 1998-02-03 | General Motors Corporation | Internal combustion engine intake port flow determination |
DE19706750A1 (en) * | 1997-02-20 | 1998-08-27 | Schroeder Dierk Prof Dr Ing Dr | Method for controlling the mixture in an internal combustion engine and device for carrying it out |
DE19709955C2 (en) * | 1997-03-11 | 2003-10-02 | Siemens Ag | Method and device for controlling an internal combustion engine |
-
1999
- 1999-04-01 DE DE19914910A patent/DE19914910A1/en not_active Ceased
-
2000
- 2000-03-25 EP EP00106509A patent/EP1041264A3/en not_active Ceased
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0445555A2 (en) * | 1990-03-06 | 1991-09-11 | Bayerische Motoren Werke Aktiengesellschaft | Method for the regulation of the camshaft phasing, continuously variable according to RPM |
DE19706756A1 (en) | 1997-02-20 | 1998-09-03 | Siemens Ag | Gradient amplifier for magnetic resonance tomography |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1342899A1 (en) * | 2000-12-12 | 2003-09-10 | Toyota Jidosha Kabushiki Kaisha | Controller of internal combustion engine |
EP1342899A4 (en) * | 2000-12-12 | 2012-04-25 | Toyota Motor Co Ltd | CONTROL OF INTERNAL COMBUSTION ENGINE |
EP2527630A3 (en) * | 2000-12-12 | 2014-07-23 | Toyota Jidosha Kabushiki Kaisha | Controller for an internal combustion engine with variable valve mechanism |
EP2527631A3 (en) * | 2000-12-12 | 2014-08-27 | Toyota Jidosha Kabushiki Kaisha | Controller for an internal combustion engine with variable valve mechanism |
EP2570637A3 (en) * | 2000-12-12 | 2014-07-23 | Toyota Jidosha Kabushiki Kaisha | Controller for an internal combustion engine with variable valve mechanism |
EP1253491A2 (en) * | 2001-04-24 | 2002-10-30 | Bayer Aktiengesellschaft | Hybrid model and method for determining the mechanical properties and processing properties of an injection moulded article |
EP1253491B1 (en) * | 2001-04-24 | 2006-08-02 | Bayer MaterialScience AG | Hybrid model and method for determining the mechanical properties and processing properties of an injection moulded article |
US7357127B2 (en) | 2004-06-24 | 2008-04-15 | Siemens Aktiengesellschaft | Method for determining the air mass in a cylinder |
WO2006000474A1 (en) * | 2004-06-24 | 2006-01-05 | Siemens Aktiengesellschaft | Method for determining the air mass in a cylinder |
US7664593B2 (en) | 2004-10-06 | 2010-02-16 | Renault S.A.S. | Method and system for estimating exhaust gas temperature and internal combustion engine equipped with such a system |
WO2006037926A1 (en) * | 2004-10-06 | 2006-04-13 | Renault S.A.S | Improved method and system for estimating exhaust gas temperature and internal combustion engine equipped with such a system |
FR2876152A1 (en) * | 2004-10-06 | 2006-04-07 | Renault Sas | IMPROVED METHOD AND SYSTEM FOR ESTIMATING EXHAUST GAS TEMPERATURE AND INTERNAL COMBUSTION ENGINE EQUIPPED WITH SUCH A SYSTEM |
DE102004055313B4 (en) * | 2004-11-16 | 2017-06-22 | Volkswagen Ag | Method and device for diagnosis or gain adaptation of cylinder pressure sensors |
DE102004055313A1 (en) * | 2004-11-16 | 2006-05-18 | Volkswagen Ag | Cylinder pressure sensor diagnosis/reinforcement adaptation performing method for combustion engine, involves receiving sensors signals, and determining diagnosis value/adaptation parameter based on moment difference of model torques |
FR2885175A1 (en) * | 2005-04-28 | 2006-11-03 | Renault Sas | METHOD FOR CONTROLLING A VEHICLE ENGINE USING A NEURON NETWORK |
CN101198783B (en) * | 2005-04-28 | 2010-10-13 | 雷诺股份公司 | Method for controlling a vehicle motor using a network of neurones |
US7774127B2 (en) | 2005-04-28 | 2010-08-10 | Renault S.A.S. | Method for controlling a motor vehicle using a network of neurones |
WO2006114550A1 (en) * | 2005-04-28 | 2006-11-02 | Renault S.A.S | Method for controlling a motor vehicle using a network of neurones |
Also Published As
Publication number | Publication date |
---|---|
DE19914910A1 (en) | 2000-10-26 |
EP1041264A3 (en) | 2002-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102007021592B4 (en) | METHOD FOR CREATING A MACHINE FIELD AND MODEL DURING A DEVELOPMENT PROCESS OF A COMBUSTION ENGINE | |
EP0170018B1 (en) | Process and apparatus for the self-testing of control levers | |
AT520179B1 (en) | Test bench and method for carrying out a test | |
EP1041264A2 (en) | Hybrid model for the modelling of a whole process in a vehicle | |
DE102019127482B4 (en) | Control device | |
DE102008001081A1 (en) | Method and engine control unit for controlling an internal combustion engine | |
WO2013131836A2 (en) | Method for optimizing the emissions of internal combustion engines | |
WO2019076685A1 (en) | Calculation of exhaust emissions from a motor vehicle | |
DE102017107271A1 (en) | Method for determining a driving cycle for driving tests for determining exhaust emissions from motor vehicles | |
AT520827B1 (en) | A method of determining a vehicle parameter of a vehicle record of a vehicle and using the vehicle parameter on a test bench | |
EP1623284B1 (en) | Method for optimizing vehicles and engines used for driving such vehicles | |
AT515154A2 (en) | Method of creating a model ensemble | |
DE102007020355B4 (en) | An engine control system and method for detecting a malfunction in a torque control path | |
EP3374618B1 (en) | System and method for calibrating a vehicle component | |
AT523093A1 (en) | Method and system for analyzing and / or optimizing a configuration of a vehicle type | |
DE102005019017A1 (en) | Method and device for fault diagnosis for internal combustion engines | |
WO2009095333A1 (en) | Method for controlling an internal combustion engine | |
EP1273782A2 (en) | Method for determining characteristic mapping data for controlling the characteristic map of an internal combustion engine, and a method for controlling an internal combustion engine | |
DE102008004218B4 (en) | Procedure for determining the dynamic soot emission | |
DE102017106943A1 (en) | Method and arrangement for simulating driving tests | |
DE102015207270A1 (en) | Method and apparatus for simulation coupling of an event-driven controller subsystem and a plant subsystem | |
DE10219797B4 (en) | Method for optimizing a model for controlling an internal combustion engine | |
DE102016103643B4 (en) | Method and device for checking a software of a control unit of a vehicle | |
WO2020118330A1 (en) | Method for calibrating a technical system | |
DE102023000357B3 (en) | Method for generating test data for a simulation of an assistance system of an at least partially assisted motor vehicle, computer program product, computer-readable storage medium and electronic computing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20020829 |
|
AKX | Designation fees paid |
Designated state(s): DE ES FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 20040712 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20060416 |