EP0939173B1 - Verfahren zur Herstellung einer Dämmstoffplatte aus Mineralfasern und Dämmstoffplatte - Google Patents
Verfahren zur Herstellung einer Dämmstoffplatte aus Mineralfasern und Dämmstoffplatte Download PDFInfo
- Publication number
- EP0939173B1 EP0939173B1 EP99101170A EP99101170A EP0939173B1 EP 0939173 B1 EP0939173 B1 EP 0939173B1 EP 99101170 A EP99101170 A EP 99101170A EP 99101170 A EP99101170 A EP 99101170A EP 0939173 B1 EP0939173 B1 EP 0939173B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- insulation board
- insulation
- process according
- fibers
- web layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 139
- 238000000034 method Methods 0.000 title claims description 24
- 229910052500 inorganic mineral Inorganic materials 0.000 title 1
- 239000011707 mineral Substances 0.000 title 1
- 239000000835 fiber Substances 0.000 claims abstract description 46
- 239000002131 composite material Substances 0.000 claims description 23
- 238000000576 coating method Methods 0.000 claims description 20
- 239000000853 adhesive Substances 0.000 claims description 19
- 230000001070 adhesive effect Effects 0.000 claims description 19
- 239000011248 coating agent Substances 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 239000000945 filler Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 239000004033 plastic Substances 0.000 claims description 13
- 229920003023 plastic Polymers 0.000 claims description 13
- 239000004570 mortar (masonry) Substances 0.000 claims description 12
- 239000011230 binding agent Substances 0.000 claims description 9
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- 239000002557 mineral fiber Substances 0.000 claims description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 claims description 2
- 239000000084 colloidal system Substances 0.000 claims description 2
- 238000003980 solgel method Methods 0.000 claims description 2
- 239000004094 surface-active agent Substances 0.000 claims description 2
- 239000004816 latex Substances 0.000 claims 2
- 229920000126 latex Polymers 0.000 claims 2
- 235000019353 potassium silicate Nutrition 0.000 claims 2
- 238000010008 shearing Methods 0.000 claims 2
- 235000012239 silicon dioxide Nutrition 0.000 claims 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims 2
- 239000004150 EU approved colour Substances 0.000 claims 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims 1
- 229940001007 aluminium phosphate Drugs 0.000 claims 1
- 239000004202 carbamide Substances 0.000 claims 1
- 239000003086 colorant Substances 0.000 claims 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims 1
- 229940006093 opthalmologic coloring agent diagnostic Drugs 0.000 claims 1
- 239000011347 resin Substances 0.000 claims 1
- 229920005989 resin Polymers 0.000 claims 1
- 238000007669 thermal treatment Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 44
- 239000011505 plaster Substances 0.000 description 31
- 239000002585 base Substances 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000011490 mineral wool Substances 0.000 description 8
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 239000012774 insulation material Substances 0.000 description 6
- 241000446313 Lamella Species 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 241000936928 Verrucomicrobia subdivision 3 Species 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- LCDFWRDNEPDQBV-UHFFFAOYSA-N formaldehyde;phenol;urea Chemical compound O=C.NC(N)=O.OC1=CC=CC=C1 LCDFWRDNEPDQBV-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
- E04B1/80—Heat insulating elements slab-shaped
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/762—Exterior insulation of exterior walls
Definitions
- the invention relates to a method for producing an insulation board made of mineral fibers, in which the fibers are essentially rectangular Have a course to the large surfaces.
- the invention relates to an insulation board for thermal insulation composite systems with a substantially perpendicular to the large surfaces aligned fiber orientation.
- Thermal insulation composite systems basically consist of an insulation layer that is applied to the load-bearing walls of a building with the help of adhesives and / or insulation holders.
- the insulation layer consists of individual thermal insulation boards, which are covered with two layers of plaster, the first plaster layer being reinforced with a glass fabric or the like. A top coat is applied to this first layer of plaster.
- This finishing plaster can also be formed from small-sized plates made of plastic or heavy ceramic.
- Polystyrene hard foam insulation boards for example, have proven themselves as insulation boards, which have a compressive and transverse tensile strength of more than 100 kN / m 2 . These panels are partially or fully glued onto a suitable surface.
- the disadvantage of these polystyrene rigid foam insulation boards is that they behave like normally flammable building materials in thermal insulation composite systems, so that increasingly non-combustible plaster base insulation materials, for example aerated concrete, are used.
- Such plaster base insulation materials can have bulk densities between 100 and 250 kg / m 3 and are sufficiently stable with a thermal conductivity of 0.050 W / mK.
- these plaster base insulation materials have the disadvantage that they are more brittle and sensitive to breakage during transport and application.
- the high swelling and shrinking behavior of these materials after exposure to moisture is disadvantageous. This leads to cracks in the applied plaster.
- these materials In order to avoid these disadvantages and to ensure sufficient transverse tensile strength even when wet, these materials must be sufficiently hydrophobicized.
- the normal mineral wool insulation board which can be called a plaster base board
- the fibers in the vicinity of the large surface are arranged parallel to them.
- this orientation results in a significantly lower transverse tensile strength compared to the core area of the insulation board, in which the fibers are arranged more or less steeply to the large surfaces.
- the transverse tensile strength is further reduced by the fact that the insulation board also has a predominantly laminar structure of the horizontally mounted individual fibers, transverse to the production direction.
- the average bulk density of these plaster base boards is approximately 120 to 180 kg / m 3 , preferably around 150 kg / m 3 .
- Unfolding the individual fibers increases the compressive strength to the required minimum of 40 kN / m 2 or greater.
- the transverse tensile strength hardly exceeds about 17 to 27 kN / m 2 due to the structural nature just described.
- Such thermal insulation boards achieve thermal conductivity group 040 according to DIN 4108.
- these insulation boards Due to the smaller thickness of the outer zones, in which the fibers lie horizontally and the comparatively higher compression of the fibers, these insulation boards have a higher transverse tensile strength of 30 to 45 kN / m 2 .
- the transverse tensile strength is also a requirement for the transverse tensile strength of at least 15 kN / m 2 .
- the stability of the thermal insulation composite system remains in Connection with the mineral wool insulation boards except the gluing Consideration.
- the result is that the insulation boards are glued to the building viewed only as an assembly aid and not as a fastening.
- insulation holders are due to their unit prices and the associated Installation compared to only glued on plaster base plates disadvantageous.
- insulation holders form additional thermal bridges, which because of their large number, the thermal resistance of Reduce thermal insulation composite system. After all, they can Insulation holder with little plaster coverage or as a result of different Mark the moisture content in the finishing coat so that it is uniform Surface is not given.
- the above-described lamella boards are used. With these lamella plates, the individual fibers are predominantly arranged at right angles to the large surfaces, so that transverse tensile strengths of significantly more than 100 kN / m 2 are achieved with bulk densities of only 75 to 100 kg / m 3 . Even if the bulk density is reduced to approx. 65 to 86 kg / m 3 and the position of the individual fibers is slightly changed, the transverse tensile strengths of more than 80 kN / m 2 required for stability can still be achieved.
- the maximum width of the slat plates produced in this way is identical to the maximum thickness of the plaster base plate and is approximately 200 mm. Even provided that this thickness, i.e. the headroom of the hardening furnace could result in a adverse influence on the strength properties of the lamella plates result. It is known that there are larger thicknesses of mineral wool slabs to a different compression of the fiber masses the height comes, which then affects the uniformity of the transverse tensile strength in the area of the slat plate has a negative effect.
- Slat plates are in the usual dimensions of 1000 to 1250 mm Length and 200 mm width relatively small. Many joints result from this between the individual slat plates on the facade of a Building can be arranged side by side. Reduce these joints the thermal resistance of the insulation layer. Furthermore, it has proven to be disadvantageous that the dimensional accuracy of the delivered slat plates on the accuracy of being detached from the plaster base plate saw used is dependent. Thickness tolerances between the individual Slat plates of 1 to 2 mm are therefore not uncommon. The these slat plates manufacturing craftsmen must therefore make jumps at the Compensate for the laying of the slat plates, resulting in higher processing costs due to the working time taken.
- the invention is based on the task of specifying a method for producing an insulation board with which large-format insulation boards with a fiber course arranged at right angles to the large surfaces can be produced for thermal insulation composite systems in a simple and inexpensive manner, which avoid the disadvantages mentioned above ,
- a preferably horizontally oriented primary nonwoven layer with fibers aligned parallel to the large surfaces is arranged in a meandering manner such that the fibers are arranged in parallel nonwoven layer sections, the large surfaces of which are arranged adjacent to one another and connected to one another and that the areas of the fleece layer sections arranged next to one another with fibers that are not aligned essentially at right angles to the large surfaces are removed in at least one end area, in particular after passing through a hardening furnace, and the fiber fleece thus formed is cut open by vertical and / or horizontal cuts in insulating boards for composite thermal insulation systems ,
- individual fleece layer sections for example, by swinging up a horizontal axis can be established.
- the individual fleece layer sections are formed from a primary nonwoven layer. Under a primary fleece layer the impregnated with binders from the so-called Fiber chamber flow removed understood.
- the originally essentially parallel to the large surfaces of the primary fleece aligned fibers are made by leveling the nonwoven layer sections in a steep to right-angled bearing to the large surfaces brought.
- the primary fleece layer thus becomes meandering due to the floating aligned, with adjacent fleece layer sections over each other a bent portion are connected. This is Areas close to the surface in which the primary fleece layer is bent and the Individual fibers additionally or only by vertical compression are slightly inclined to the large surfaces.
- the primary nonwoven layer As an alternative to swinging the primary nonwoven layer around a substantially horizontal aligned axis, it is also possible to overlay the primary nonwoven layer Align roller sets and / or horizontal dynamic pressure in a meandering shape.
- the conveying speed of the primary nonwoven layer can be combined in one Section of a continuous conveyor can be reduced so that the one primary fleece layer running at a higher speed meandering in this Area of the lower conveying speed.
- the invention relates to the removal of the areas of the fleece layer sections arranged side by side, which is a fiber orientation which are not substantially perpendicular to the large ones Surfaces.
- both in the primary nonwoven layer and between the Nonwoven layer sections can be introduced, for example, are suitable Phenol-formaldehyde-urea mixtures. Surprised yourself under the building conditions but also so-called Ormocere as suitable binders shown.
- the binders are both among those in the Component prevailing hygrothermal conditions stable as well as resistant to alkali attacks from adhesive mortars, construction adhesives and plasters.
- the inorganic binders consist of organic silicic acid compounds, whose colloid diameter is only a few nanometers exhibit. The sol converted into a gel and ultimately into insoluble silica.
- the low transverse tensile strength of the insulation board in these areas to increase it is provided according to the invention that these near the surface Areas separated, for example by sawing and / or grinding become.
- the insulation boards produced by the method according to the invention have bulk densities between 60 and 180 kg / m 3 . In a bulk density range between 80 and 100 kg / m 3 , both transverse tensile strengths of more than 60 kN / m 2 and low thermal conductivities are achieved.
- the method according to the invention it is also possible in a simple manner to produce insulation boards of larger formats, which enable the insulation boards to be laid more quickly on building facades.
- the general arrangement of the individual fibers within the insulation board also has the consequence that the insulation board has a significantly lower bending strength and shear stiffness in the production direction than transverse to the production direction, so that the insulation board can also be applied to curved surfaces, the thickness of the insulation board and of course Radius of curvature are essential.
- insulation boards produced that have at least one surface that one Surface of a slat plate corresponds to that of the bent area the primary fleece layers are removed.
- This configuration has the advantage that the incorporation of the construction adhesive and plaster much deeper into the surfaces can be done.
- Low-viscosity adhesives and plasters have the disadvantage that cohesion of the adhesive subsides and the plate can fall off the surface.
- a thin base plaster runs off and could initially only be in the form of a Spray coating can be applied.
- the plaster-side coating of the insulation panels leads to a secure adhesive bond with increased processing performance.
- the adhesive and plaster affinity masses in the two large surfaces colored differently to process the To facilitate insulation boards in that the craftsmen correct orientation of the insulation boards is displayed.
- alternative to the above-mentioned coating can be provided that the Coating of colloidal silica introduced via a sol-gel process becomes.
- the longitudinal axis of the insulation board with the original production direction of the primary nonwoven layer coincides, so that the longitudinal direction of the individual nonwoven layer sections essentially is arranged perpendicular to the longitudinal direction of the insulation board.
- the dead load of the thermal insulation system by shear-resistant orientation of the individual fibers can be safely absorbed can.
- it can also be done by changing the axis direction of the insulation boards when laying the shear stiffness of the Insulation layer can also be increased in the horizontal direction.
- the insulation boards must be relocated in the association, it is recommended to such laying to fix the width of the plate to half the length or to use square plates. To this oriented laying on To be able to carry out the construction site, the insulation boards are inventively provided with suitable markings.
- the Insulation panels all around a groove for inserting metal profiles or plastics, which in turn on the load-bearing surface be attached.
- Rails are horizontal, while the vertical rails are only used for jumps to avoid between the insulation boards.
- the insulation boards are installed so that the axis of their larger Continuity runs across the load-bearing rails, so the largest Resistance to the occurring load cases (own load and wind suction) cause.
- the coating consists of a first aqueous mixture of 2 to 35% by mass of aluminum phosphate, 2 to 35 % By mass phosphoric acid, 10 to 80% by mass filler and maximum 0.1% by mass Surfactants, which are preferably non-ionic.
- fillers are, for example Oxides and hydroxides of magnesium, calcium, titanium, aluminum suitable. But it can also Ca feldspar, mica, chamotte or Brick flour and tress can be used.
- An alternative coating consists of colloidal silica.
- the coating can be made on the side facing the building wall a maximum 5 mm thick layer of mortar and on the surface on the plaster side from a thin, easily cut with a knife or saw Coating best.
- the mortar layer is preferably microfine ground Portland cement or alumina cement with the addition of up to 8% by mass, preferably 2.5 to 8% by mass, of plastic dispersions and for example styrene-butadiene copolymers, styrene-acrylic copolymers bound.
- This configuration has the advantage that after cutting the outside coating and the insulating material the mortar layer can be easily broken.
- the outside arrangement of the mortar layer has the advantage that the plaster layer is susceptible to cracks is reduced by the now shear-resistant surface.
- the insulation board according to the invention it is also provided that it has a compressive stress of more than 40 kN / m 2 .
- shear strengths are provided in the insulation board according to the invention, which are greater than or equal to 20 kN / m 2 in a first direction, preferably the longitudinal direction of the insulation board and in a second direction perpendicular to the first direction, preferably greater than or equal to 60 kN / m 2 in the direction of production be.
- Such an insulation board is particularly suitable for the described application examples in thermal insulation composite systems in order to absorb the loads that occur, namely wind suction and dead load.
- An insulation board 1 shown in Figure 1 for a composite thermal insulation system 8 consists of a section of a mineral fiber fleece 2.
- 1 shows a subdivision 3 of the insulation board 1, the is achieved by the production of the insulation board 1 in that a preferably horizontally oriented primary fleece layer with parallel to the large surface-oriented fibers around a substantially horizontal Axis in nonwoven layer sections arranged parallel to each other is suspended, the large surfaces of which are arranged side by side and be connected to each other and being connected to each other arranged nonwoven layer sections in at least one end region, especially after passing through a hardening furnace. Accordingly, the insulation board 1 in each mineral fiber non-woven section a fiber course perpendicular to the large surfaces 4, as shown in the left section of the insulation board 1.
- the insulation board 1 has a coating on its lower large surface 4 5, which are preferably made of water glass-plastic filler mixtures, Adhesive mortars, plastic dispersions, silica sol-filler mixtures or the like.
- a coating on the opposite surface 4 can also be arranged on the opposite surface 4 be, the two coatings 5 and 6 being different Have color, so that an oriented processing of this insulation board 1 is displayed.
- the insulation board 1 For the use of insulation board 1 in thermal insulation composite systems 8 with profiles 9 made of metal or plastic, which on the load-bearing surface are attached, the insulation board 1 has a circumferential groove 7 on.
- the arrangement of the insulation board 1 in such a thermal insulation composite system 8 is shown in FIG. 2.
- the profiles 9 can be seen between adjacent insulation boards 1.
- the profiles are 9 laid both vertically and horizontally, the horizontal profiles 9 are load-bearing, while the vertical profiles 9 only serve as jumps to avoid between the insulation boards 1.
- the insulation boards 1 are built in such a way that the axis of their greater continuity across the load-bearing profiles 9 runs, so the greatest resistance to the occurring To cause load cases. These load cases are wind suction and dead weight the plaster layers or cladding elements applied to the insulation boards 1.
- the length of a Insulation board 1 is twice as large as the width of the insulation board 1, the longitudinal axis of the insulation board 1 with the original production direction of the primary fleece matches. Since the insulation boards 1 lengthways on the load-bearing subsurface, namely an outer wall of the building the own load of the thermal insulation composite system 8 safely absorbed by the shear-resistant orientation of the individual fibers become. At the same time, it can also be done by changing the axis direction the insulation panels 1 when laying the shear stiffness Insulation layer can also be increased in the horizontal direction. Such The arrangement of the insulation panels 1 is shown in FIG. 3. Around the insulation boards 1 in the association, you can either use the previous one Dimensioning, i.e. with twice the width or width be designed as square plates.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Acoustics & Sound (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Building Environments (AREA)
- Laminated Bodies (AREA)
- Panels For Use In Building Construction (AREA)
- Nonwoven Fabrics (AREA)
Description
- Figur 1
- eine Dämmstoffplatte in perspektivischer Seitenansicht;
- Figur 2
- eine erste Ausführungsform der Anordnung der Dämmstoffplatte gemäß Figur 1 in einem Wärmedämmverbundsystem und
- Figur 3
- eine zweite Ausführungsform der Anordnung der Dämmstoffplatte gemäß Figur 1 in einem Wärmedämmverbundsystem.
Claims (23)
- Verfahren zur Herstellung einer Dämmstoffplatte (1) aus Mineralfasern, bei der die Fasern einen im wesentlichen rechtwinkligen Verlauf zu den großen Oberflächen (4) haben, wobei eine vorzugsweise horizontal ausgerichtete Primärvlieslage mit parallel zu den großen Oberflächen ausgerichteten Fasern mäanderförmig derart angeordnet wird, daß die Fasern in parallel zueinander angeordneten Vlieslagenabschnitten angeordnet sind, deren großen Oberflächen (4) aneinanderliegend angeordnet und miteinander verbunden werden und wobei die Bereiche der nebeneinander angeordneten Vlieslagenabschnitte mit nicht im wesentlichen rechtwinklig zu den großen Oberflächen ausgerichteten Fasern in zumindest einem Endbereich, insbesondere nach dem Durchlaufen eines Härteofens entfernt werden und das derart ausgebildete Faservlies durch vertikale und/oder horizontale Schnitte in Dämmstoffplatten (1) für Wärmedämmverbundsysteme (8) aufgeschnitten wird.
- Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß die Primärvlieslage um eine im wesentlichen horizontal ausgerichtete Achse aufgependelt wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß die Primärvlieslage über Rollensätze und/oder horizontalen Staudruck mäanderförmig ausgerichtet wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß die Primärvlieslage durch eine im wesentlichen vertikale Auf- und Abbewegung mäanderförmig ausgerichtet wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß der Endbereich oder die Endbereiche des Faservlieses abgeschliffen und/oder abgesägt wird bzw. werden. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß der Endbereich oder die Endbereiche des Faservlieses bis zu einer Tiefe von 20 mm entfernt wird bzw. werden. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß der Endbereich an der großen Oberfläche der Dämmstoffplatte (1) entfernt wird, die bei einem Wärmedämmverbundsystem (8) mit einem tragenden Untergrund eines Gebäudes verklebt wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß nach dem Entfernen des Endbereichs bzw. der Endbereiche des Faservlieses eine Markierung in diesem Bereich bzw. diesen Bereichen auf die große Oberfläche bzw. großen Oberflächen der Dämmstoffplatte (1) aufgebracht wird bzw. werden. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß in zumindest eine große Oberfläche (4) der Dämmstoffplatte (1) kleber- und putzaffine Massen, wie Wasserglas-Kunststoff-Füllstoff-Gemische, Klebemörtel, Kunststoff-Dispersionen, Kieselsol-Füllstoff-Gemische oder dergleichen als Beschichtung (5, 6) eingebracht werden. - Verfahren nach Anspruch 9,
dadurch gekennzeichnet, daß die kleber- und putzaffinen Massen in den beiden großen Oberflächen (4) unterschiedlich gefärbt werden. - Verfahren nach Anspruch 9,
dadurch gekennzeichnet, daß die Beschichtung (5, 6) aus kolloidaler Kieselsäure über einen Sol-Gel-Prozeß eingebracht werden. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß als Bindemittel Ormocere, insbesondere organische Kieselsäure-Verbindungen, beispielsweise Kieselsäure-Sol mit Kolloiden, deren Durchmesser im Nanometerbereich liegen, oder Phenol-Formaldehyd-Harnstoff-Harzgemische in die Primärvlieslage und/oder zwischen Vlieslagenabschnitte eingebracht werden. - Verfahren nach Anspruch 12,
dadurch gekennzeichnet, daß das Bindemittel während einer thermischen Behandlung von einem Sol in ein Gel und anschließend in unlösliche Kieselsäure umgewandelt wird. - Dämmstoffplatte für Wärmedämmverbundsysteme (8) mit einem im wesentlichen rechtwinklig zu den großen Oberflächen (4) ausgerichteten Faserverlauf, die nach einem Verfahren gemäß den Ansprüchen 1 bis 13 hergestellt ist,
dadurch gekennzeichnet, daß die Längsachse der Dämmstoffplatte (1) mit der ursprünglichen Produtkionsrichtung der Primärvlieslage übereinstimmt, so daß die Längsrichtung der einzelnen Vlieslagenabschnitte im wesentlichen rechtwinklig zur Längsrichtung der Dämmstoffplatte (1) angeordnet ist. - Dämmstoffplatte nach Anspruch 14,
dadurch gekennzeichnet, daß die Länge der Dämmstoffplatte (1) in Längsrichtung doppelt so groß wie die Breite der Dämmstoffplatte (1) ist. - Dämmstoffplatte nach Anspruch 14,
dadurch gekennzeichnet, daß die Dämmstoffplatte (1) quadratisch ausgebildet ist. - Dämmstoffplatte nach Anspruch 14,
dadurch gekennzeichnet, daß die Dämmstoffplatte (1) eine die Orientierung der Fasern anzeigende Markierung als Verlegehilfe aufweist. - Dämmstoffplatte nach Anspruch 14,
dadurch gekennzeichnet, daß eine umlaufende Nut (7) in den Schmalseiten angeordnet ist. - Dämmstoffplatte nach Anspruch 14,
dadurch gekennzeichnet, daß auf zumindest einer großen Oberfläche (4) eine Beschichtung (5, 6) aufgebraucht ist, die vorzugsweise aus Wasserglas-Kunststoff-Füllstoff-Gemischen, Klebemörteln, Kunststoff-Dispersionen, Kieselsol-Füllstoff-Mischungen oder dergleichen besteht. - Dämmstoffplatte nach Anspruch 19,
dadurch gekennzeichnet, daß die Beschichtung (5, 6) Einfärbemittel aufweist, wobei die Beschichtungen (5, 6) auf den beiden großen Oberflächen vorzugsweise unterschiedliche Färbungen aufweisen. - Dämmstoffplatte nach Anspruch 19,
dadurch gekennzeichnet, daß die Beschichtung (5, 6) wässrig ausgebildet ist und aus 2 bis 35 Masse-% Aluminiumphosphat, 2 bis 35 Masse-% Phosphorsäure, 10 bis 80 Masse-% Füllstoff und maximal 0,1 Masse-% Tenside besteht. - Dämmstoffplatte nach Anspruch 14,
gekennzeichnet durch
eine Druckspannung größer als 40 kN/m2. - Dämmstoffplatte nach Anspruch 14,
gekennzeichnet durch
eine Schubfestigkeit größer gleich 20 kN/m2 in einer ersten Richtung, vorzugsweise in der Längsrichtung, und eine Schubfestigkeit größer gleich 60 kN/m2 in einer zur ersten Richtung rechtwinklig verlaufenden zweiten Richtung, vorzugsweise quer zur Produktionsrichtung.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19808604 | 1998-02-28 | ||
DE19808604 | 1998-02-28 | ||
DE19811671 | 1998-03-18 | ||
DE19811671A DE19811671C1 (de) | 1998-02-28 | 1998-03-18 | Verfahren zur Herstellung einer Dämmstoffplatte aus Mineralfasern und Dämmstoffplatte |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0939173A1 EP0939173A1 (de) | 1999-09-01 |
EP0939173B1 true EP0939173B1 (de) | 2003-09-03 |
EP0939173B2 EP0939173B2 (de) | 2010-10-27 |
Family
ID=26044241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99101170A Expired - Lifetime EP0939173B2 (de) | 1998-02-28 | 1999-01-22 | Verfahren zur Herstellung einer Dämmstoffplatte aus Mineralfasern und Dämmstoffplatte |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0939173B2 (de) |
AT (1) | ATE248963T1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101634170B (zh) * | 2009-08-19 | 2011-03-30 | 中国海洋石油总公司 | 一种外墙外保温系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19951105C2 (de) * | 1999-10-23 | 2002-09-19 | Rockwool Mineralwolle | Wärme- und/oder Schalldämmelement |
DE102007008427B4 (de) * | 2007-02-17 | 2014-11-20 | Porextherm-Dämmstoffe Gmbh | Wärmedämmformkörper und Verfahren zur Herstellung eines Wärmedämmformkörpers |
CN111827499A (zh) * | 2019-11-18 | 2020-10-27 | 宁波华宝石节能科技股份有限公司 | 岩棉保温板及其制备方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2455691C2 (de) † | 1974-11-25 | 1976-12-16 | Gruenzweig Hartmann Glasfaser | Mineralfaserplatte |
US3970024A (en) * | 1975-09-04 | 1976-07-20 | Fisher John A | Modular floating load-supporting assemblage |
CA1085282A (en) † | 1977-04-12 | 1980-09-09 | Paul E. Metcalfe | Heat insulating material and method of and apparatus for the manufacture thereof |
CH620861A5 (en) † | 1977-06-08 | 1980-12-31 | Flumroc Ag | Process for producing mineral fibre slabs, device for carrying out the process, mineral fibre slab produced by the process and use thereof |
DE3248663C1 (de) * | 1982-12-30 | 1984-06-07 | Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen | Beschichtete Fassaden- oder Dachdaemmplatte aus Mineralfasern,sowie Verfahren zu ihrer Herstellung |
DE3701592A1 (de) † | 1987-01-21 | 1988-08-04 | Rockwool Mineralwolle | Verfahren zur kontinuierlichen herstellung einer faserdaemmstoffbahn und vorrichtung zur durchfuehrung des verfahrens |
DE3832773C2 (de) † | 1988-09-27 | 1996-08-22 | Heraklith Holding Ag | Verfahren und Vorrichtung zur Herstellung von Mineralfaserplatten |
FI920761A (fi) † | 1991-03-13 | 1992-09-14 | Rockwool Mineralwolle | Mineralylleprodukt |
DE4119353C1 (de) † | 1991-06-12 | 1992-12-17 | Deutsche Rockwool Mineralwoll Gmbh, 4390 Gladbeck, De | |
DE4143387C2 (de) † | 1991-10-09 | 1995-09-28 | Rockwool Mineralwolle | Verfahren zum Herstellen von Formkörpern, insbesondere von Dämmplatten |
DK3593D0 (da) † | 1993-01-14 | 1993-01-14 | Rockwool Int | A method for producing a mineral fiber-insulating web, a plant for producing a mineral fiber-insulating web, and a mineral fiber-insulated plate |
DK3693D0 (da) * | 1993-01-14 | 1993-01-14 | Rockwool Int | A method of producing a mineral fiber-insulating web, a plant for producing a mineral fiber web, and a mineral fiber-insulated plate |
EP0729374B1 (de) † | 1993-11-16 | 2002-07-24 | Voith Fabrics Heidenheim GmbH & Co.KG | Phasentrennvorrichtung |
DE69520784T2 (de) * | 1994-01-28 | 2001-08-09 | Rockwool International A/S, Hedehusene | Isoliermatte mit einer lage mineralfasern |
CZ293826B6 (cs) * | 1994-01-28 | 2004-08-18 | Rockwooláinternationaláa@S | Způsob výroby vytvrzeného netkaného rouna z minerálních vlákenŹ zařízení pro jeho výrobuŹ deska z minerálních vláken a trubkovitý izolační prvek |
DK84594A (da) † | 1994-07-14 | 1994-07-22 | Rockwool Int | Methods of producing a cured non-woven mineral fiber web, plants for producing a non-woven mineral fiber web, and mineral fiber plates |
GB2317403B (en) * | 1996-09-20 | 2001-01-24 | Rockwool Int | A process for the preparation of a layered insulating board,and a layered insulating board |
DE29616962U1 (de) † | 1996-09-28 | 1996-12-19 | Deutsche Rockwool Mineralwoll-Gmbh, 45966 Gladbeck | Dämmstoffelement |
DE29810075U1 (de) * | 1997-06-23 | 1998-10-29 | Correcta GmbH, 34537 Bad Wildungen | Mit Putzschicht versehene Dämmplatte |
CZ284484B6 (cs) † | 1997-06-26 | 1998-12-16 | I.N.T., Prof. Ing. Dr. Radko Krčma Drsc. | Způsob výroby objemné textilie s hladkým povrchem a zařízení k jeho provádění |
-
1999
- 1999-01-22 AT AT99101170T patent/ATE248963T1/de active
- 1999-01-22 EP EP99101170A patent/EP0939173B2/de not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101634170B (zh) * | 2009-08-19 | 2011-03-30 | 中国海洋石油总公司 | 一种外墙外保温系统 |
Also Published As
Publication number | Publication date |
---|---|
EP0939173A1 (de) | 1999-09-01 |
ATE248963T1 (de) | 2003-09-15 |
EP0939173B2 (de) | 2010-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1745901A2 (de) | Verfahren und Vorrichtung zur Herstellung eines Formsteins, Formstein und Bauwerk bestehend aus mindestens zwei Formsteinen | |
EP0947637B1 (de) | Dämmstoffelement zu Wärme- und/oder Schalldämmzwecken sowie Verfahren zur Behandlung, insbesondere Beschichtung von Dämmstoffen | |
DE4319340C1 (de) | Verfahren zur Herstellung von Mineralfaser-Dämmstoffplatten und Vorrichtung zur Durchführung des Verfahrens | |
EP1745902B1 (de) | Verfahren zur Herstellung eines Formsteins | |
EP0939173B1 (de) | Verfahren zur Herstellung einer Dämmstoffplatte aus Mineralfasern und Dämmstoffplatte | |
AT405204B (de) | Wandplatte sowie verfahren zur herstellung einer wandplatte | |
EP0939063B1 (de) | Verfahren und Vorrichtung zur Beschichtung und/oder Imprägnierung von Mineralwolleprodukten | |
DE19951105C2 (de) | Wärme- und/oder Schalldämmelement | |
WO2004009927A1 (de) | Dämmschicht aus mineralfasern und gebäudewand | |
DE3540455C2 (de) | Anorganische Mehrschicht-Leichtbauplatte | |
DE19811671C1 (de) | Verfahren zur Herstellung einer Dämmstoffplatte aus Mineralfasern und Dämmstoffplatte | |
DE102011110918A1 (de) | Wandaufbau für tragende Wände im mehrgeschossigen Gebaude | |
EP1072397B1 (de) | Aussenbauplatte bestehend aus einem Kern und wenigstens einer armierten Mörtelschicht | |
EP0648902A1 (de) | Bauelement und Verfahren zu dessen Herstellung | |
EP0625088B1 (de) | Verfahren zur herstellung von verbundplatten | |
WO2008128733A1 (de) | Fassadendämmplatte für die dämmung von aussenfassaden von gebäuden, wärmedämm-verbundsystem mit derartigen fassadendämmplatten sowie verfahren zur herstellung einer fassadendämmplatte | |
EP1203847A1 (de) | Dämmstoffelement | |
EP0936321B1 (de) | Dämmstoffelement | |
EP1559844B1 (de) | Dämmstoffelement und Wärmedämmverbundsystem | |
DE9313351U1 (de) | Plattenförmiges Bauteil | |
AT398795B (de) | Zwischenwandplattensystem | |
EP1295998B1 (de) | Wärme- oder Schalldämmung; Dämmstoffelement und Mineralfaserlamelle | |
DE19806454C2 (de) | Dämmstoffelement | |
DE2546361A1 (de) | Leichtbaustein mit hinterluefteter fassadenplatte aussen und strukturen auf der innenseite | |
DE10227736A1 (de) | Wärme- oder Schalldämmung, Dämmstoffelement und Mineralfaserlamelle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT DE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20000211 |
|
AKX | Designation fees paid |
Free format text: AT DE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DEUTSCHE ROCKWOOL MINERALWOLL GMBH & CO. OHG |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE |
|
REF | Corresponds to: |
Ref document number: 59906813 Country of ref document: DE Date of ref document: 20031009 Kind code of ref document: P |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: SAINT GOBAIN ISOVER G+H AG Effective date: 20040526 |
|
26 | Opposition filed |
Opponent name: PAROC GROUP OY AB Effective date: 20040602 Opponent name: SAINT GOBAIN ISOVER G+H AG Effective date: 20040526 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: PAROC OY AB Effective date: 20040602 Opponent name: SAINT GOBAIN ISOVER G+H AG Effective date: 20040526 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20101027 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59906813 Country of ref document: DE Representative=s name: STENGER WATZKE RING INTELLECTUAL PROPERTY, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59906813 Country of ref document: DE Representative=s name: STENGER WATZKE RING INTELLECTUAL PROPERTY, DE Effective date: 20140801 Ref country code: DE Ref legal event code: R081 Ref document number: 59906813 Country of ref document: DE Owner name: ROCKWOOL INTERNATIONAL A/S, DK Free format text: FORMER OWNER: DEUTSCHE ROCKWOOL MINERALWOLL GMBH + CO OHG, 45966 GLADBECK, DE Effective date: 20140801 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150113 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20141222 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59906813 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 248963 Country of ref document: AT Kind code of ref document: T Effective date: 20160122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160122 |