[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0927982B2 - Transducer power supply - Google Patents

Transducer power supply Download PDF

Info

Publication number
EP0927982B2
EP0927982B2 EP97122991A EP97122991A EP0927982B2 EP 0927982 B2 EP0927982 B2 EP 0927982B2 EP 97122991 A EP97122991 A EP 97122991A EP 97122991 A EP97122991 A EP 97122991A EP 0927982 B2 EP0927982 B2 EP 0927982B2
Authority
EP
European Patent Office
Prior art keywords
transmitter
power supply
direct current
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97122991A
Other languages
German (de)
French (fr)
Other versions
EP0927982B1 (en
EP0927982A1 (en
Inventor
Martin PFÄNDLER
Bernd Strütt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Endress and Hauser Group Services Deutschland AG and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Endress and Hauser Deutschland AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8227901&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0927982(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Endress and Hauser SE and Co KG, Endress and Hauser Deutschland AG and Co KG filed Critical Endress and Hauser SE and Co KG
Priority to DE59710058T priority Critical patent/DE59710058D1/en
Priority to EP97122991A priority patent/EP0927982B2/en
Priority to US09/217,241 priority patent/US6133822A/en
Priority to CA002257585A priority patent/CA2257585C/en
Priority to JP11000089A priority patent/JP2999469B2/en
Publication of EP0927982A1 publication Critical patent/EP0927982A1/en
Publication of EP0927982B1 publication Critical patent/EP0927982B1/en
Application granted granted Critical
Publication of EP0927982B2 publication Critical patent/EP0927982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/02Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage

Definitions

  • the invention relates to a transmitter power supply for supplying a transmitter with electrical energy from a DC voltage source via a two-wire connection, is transmitted in the opposite direction of the measured value detected by the transmitter by a variable between two limits direct current, wherein the galvanic isolation in the connection between the Transmitter and the DC voltage source, a transformer is inserted, the primary winding is connected via a chopper to the DC voltage source and to the secondary winding of a rectifier circuit is connected, which generated at its output terminals by rectification of the transferred via the transformer, chopped current generated direct current with the by the transmitter certain size supplies.
  • Such a transducer feeder is for example from the US-A-3,764,880 known.
  • a transmitter power supply of this type is intended to provide a arranged in a hazardous zone passive transducer via a two-wire connection with electrical energy and at the same time to allow the transmission of the measurement signal supplied by the passive transducer in the form of a variable between two limits current signal in the opposite direction.
  • the current signal varies between 4 mA and 20 mA.
  • a passive transmitter does not contain its own electrical power source, but draws the energy required for its operation via the two-wire connection from a remote DC voltage source, and forms the measurement signal by extracting from the DC voltage source, in addition to the supply current, a supplemental current so dimensioned in that the total current drawn from the DC voltage source corresponds to the current signal to be transmitted, which lies between the two limit values of, for example, 4 and 20 mA.
  • This current signal can also be superimposed on communication signals in the form of pulse-shaped changes, whereby digital data can be transmitted in both directions.
  • a galvanic isolation between the voltage source and the transmitter by a transformer is possible by the chopped from the DC voltage source removed total current on the principle of a DC-DC converter on the primary side of the transformer and rectified on the secondary side of the transformer.
  • Such galvanic isolation is a particularly advantageous protective measure for transducers which are arranged in potentially explosive atmospheres.
  • the galvanic isolation by means of the transformer of a DC-DC converter allows not only the transmission of the DC supply current and the measured value representing DC signal, but also the bidirectional transmission of communication signals in the form of the total current superimposed pulse-shaped changes, provided that the chopper frequency is much higher than the frequency the communication signals.
  • An active transmitter differs from a passive transmitter in that it is equipped with its own electrical power supply and generates the measurement signal in the form of varying between two limits DC signal from its own power supply and outputs at its outputs. It is not possible to transmit the DC signal supplied by the active transducer in the direction opposite to the transmission direction of the DC-DC converter.
  • the object of the invention is to provide a transmitter power supply of the type described, which can be operated while maintaining the galvanic separation caused by the protective measure either with a passive transmitter or with an active transmitter.
  • the matching circuit inserted between the active transmitter and the rectifier circuit causes the primary-side DC voltage source to be loaded via the rectifier circuit and the transformer in the same manner as by a passive transmitter with a DC current corresponding to the measurement signal to be transmitted. Therefore, it can not be seen from the primary side whether an active or a passive measuring transducer is connected on the secondary side.
  • the current drawn via the rectifier circuit and the transformer from the primary-side DC voltage source also contains the supply current required for the operation of the matching circuit.
  • the total current can be superimposed in the same way as when loaded by a passive transmitter communication signals in the form of pulse-shaped changes that are transmitted bidirectionally via the transformer.
  • the protective measure for potentially explosive areas caused by the galvanic isolation remains fully intact regardless of whether an active or a passive transmitter is connected.
  • Fig. 1 In the drawing, the circuit components shown on the right of the broken line AA form a prior art transducer feeder 10 for supplying a passive transducer 11 with electrical energy from a DC power source 12 via the two conductors 13, 14 of a two-wire connection across the opposite direction transmitted by the transducer 11 measured value signal is transmitted.
  • the two-wire connection 13, 14 is shown interrupted to indicate that it may be of any length. It connects the passive transducer 11 with two terminals 15, 16 of the transducer power supply 10th
  • the transmitter 11 includes a sensor for the physical quantity to be measured and an electronic circuit for converting the sensor signal into the measured value signal to be transmitted.
  • a passive transmitter does not contain its own power source, but it draws the energy required for the operation of the electronic circuit via the two-wire connection 13, 14 from the DC voltage source 12 in the remote located transducer supply unit 10.
  • the transmitter 11 forms the Measurement signal in that it adjusts the current drawn from the DC voltage source 12 so that the measured value is expressed by a lying between 4 mA and 20 mA direct current.
  • the DC current is measured by an evaluation circuit 18 arranged at the location of the DC voltage source 12 and evaluated to determine the measured value of the physical variable detected by the measuring transducer 11.
  • the transmitter 11 may be configured to superimpose digital communication signals in the form of pulsed changes on the current signal so that measurements and parameters may be digitally read and written. There is then the requirement to transmit such communication signals bidirectionally between the measuring transducer 11 and the evaluation circuit 18.
  • a particularly effective protective measure for hazardous areas is a galvanic isolation between the transmitter 11 on the one hand and the DC voltage source 12 and the evaluation circuit 18 on the other.
  • This in Fig. 1 shown transducer supply unit 10 is formed with such a galvanic isolation.
  • the galvanic isolation is carried out at the transmitter supply unit 10 of Fig. 1 by a transformer 20 having a primary winding 21 and a secondary winding 22.
  • the DC voltage source 12 is connected between a center tap 23 of the primary winding 21 and ground.
  • Each of the two outer terminals 24 and 25 of the primary winding 21 is connected via a switch 26 and 27 to one terminal 28 of a resistor 29 whose other terminal is grounded.
  • the two switches 26 and 27 are controlled by a clock 30 with a relatively high clock frequency of, for example, 200 kHz in push-pull, so that the switch 26 is opened when the switch 27 is closed, and vice versa.
  • the current supplied by the DC voltage source 12 alternately flows in opposite directions through the one or the other half of the primary winding 21, but always in the same direction through the resistor 29.
  • the DC voltage is chopped into a rectangular AC voltage, the is transferred to the secondary winding 22.
  • a full-wave rectifier circuit 31 with four diodes 32 and a filter capacitor 33 is connected, which generates by rectifying the rectangular AC voltage, the DC operating voltage for the passive transducer 11.
  • the rectifier circuit 31 includes a connected via a fuse 34 voltage limiter 35, which is shown as a Zener diode.
  • Protective resistors 38 and 39 are inserted between the output terminals 36, 37 of the rectifier circuit 31 and the terminals 15, 16 of the transmitter power supply unit intended for connection of the passive transmitter 11.
  • the protective resistors 38, 39 prevent the current in the hazardous area from rising above an allowable limit, and the voltage limiter 35, in conjunction with the fuse 34, limits the voltage in the circuit hazardous area to a permissible value.
  • the passive transmitter 11 extracts from the rectifier circuit 31 a DC current I MP whose value is set in the range of 4 to 20 mA so as to represent the measured value of the physical quantity detected by the sensor.
  • This direct current is supplied via the transformer 20 from the DC voltage source 12, so that at a transmission ratio of 1: 1 of the transformer 20, a DC current of the same magnitude flows through the resistor 29.
  • the drop across the resistor 29 DC voltage is thus proportional to the set by the passive transducer 11 measuring current I MP . It is fed to the evaluation circuit 18 connected to the connection 28.
  • the passive transducer If the measurement current I MP 11 communication signals are superimposed by the passive transducer in the form of pulse-shaped changes, these pulse-shaped changes are also transmitted via the transformer 20 so that they express themselves in pulse-shaped voltage changes in the voltage drop across the resistor 29. These voltage changes are also detected and evaluated by the evaluation circuit 18.
  • the repetition frequency of the pulse-shaped changes is substantially less than the clock frequency of the clock 30.
  • the evaluation circuit 18 preferably contains at the input a low-pass filter whose cut-off frequency is set so that the clock frequency of the clock 30 is suppressed, but the superimposed pulse-shaped communication signals are transmitted.
  • Fig. 2 shows the schematic diagram of a transmitter power supply unit 40, which makes it possible, instead of the passive transducer 11 optionally connect an active transmitter 41.
  • an active transmitter contains its own electrical power supply, and at the output it outputs a direct current supplied by this power supply whose size again corresponds in the range of 4 to 20 mA to the measured value of the physical quantity detected by the sensor. It is immediately apparent that it would not be possible to simply replace the active transducer 41 in place of the passive transducer 11 with the terminals 15, 16 of the circuitry of FIG Fig. 1 because the DC current supplied by the active transducer 41 could not be transmitted to the primary side of the transformer 20 via the rectifier circuit 31 and the transformer 20.
  • the transmitter supply unit 40 therefore has two further terminals 42 and 43, to which the active transmitter 41 is connected via the two conductors 44 and 45 of a two-wire connection.
  • the switch 50 in the in Fig. 2 shown position it connects the terminal 36 of the rectifier circuit 31 via a connecting conductor 51, a separating capacitor 52, a protective resistor 53 and a diode 54 to the terminal 42.
  • the terminal 37 of the rectifier circuit 31 is permanently connected via a connecting conductor 55 and a protective resistor 56 connected to terminal 43.
  • the active transducer 41 includes its own electrical power supply and outputs at the output a direct current I MA whose magnitude in the range of 4 to 20 mA corresponds to the measured value of the physical quantity sensed by the sensor.
  • the matching circuit 60 includes a resistor 61 connected to the terminals 42 and 43 through the diode 54, a control circuit 62 whose input terminals are connected to the terminals of the resistor 61, and a controllable current source 63 connected between the connecting conductors 51 and 55, the control input thereof the output of the control circuit 62 is connected.
  • the controllable current source 63 bridges the two output terminals 36 and 37 of the rectifier circuit 31, when the switch 50, the in Fig. 2 shown position corresponding to the connection of the active transmitter 41.
  • the control circuit 62 receives at the input a DC voltage which corresponds to the voltage drop across the resistor 61 caused by the current I MA , and it is designed so that its output signal, the controllable current source 63 so adjusted that taken from the rectifier circuit 31 current I MS of the active transducer I MA is proportional to a predetermined constant factor.
  • this factor has the value 1, so that the current I MS is equal to the current I MA .
  • the current I MS taken from the rectifier circuit 31 gives the same effect as the current determined in the other position of the changeover switch 50 by the passive transmitter 11 I MP : It is mirrored on the primary side of the transformer 20 and causes a proportional voltage drop across the resistor 29. This voltage drop is thus proportional to the measuring current I MA delivered by the active measuring transducer 41.
  • Fig. 3 shows the circuit diagram of an embodiment of the controllable matching circuit 60 of Fig. 2 ,
  • the circuit components corresponding to those of Fig. 2 are identical with the same reference numerals as in Fig. 2 designated.
  • the controllable current source 63 is formed by a field effect transistor 70 which is connected in series with a resistor 71 between the connecting conductors 51 and 55.
  • the control circuit 62 includes an operational amplifier 72 whose power supply terminals are connected to the connecting conductors 51 and 55, so that the operational amplifier 72 is powered by the rectifier circuit 31 when the switch 50 is in the position corresponding to the terminal of the active transmitter 41st equivalent.
  • the inverting input of the operational amplifier 72 is connected to the connection conductor 55 via a resistor 73.
  • a resistor 74 is inserted between the terminals of the controllable current source 63, the operational amplifier 72 and the resistor 73 on the one hand and the output terminal 37 of the rectifier circuit 31 on the other hand, via which thus both the current determined by the controllable current source 63 and the supply current of the operational amplifier 72 flows.
  • the non-inverting input of the operational amplifier 72 is connected to the tap of a voltage divider of two resistors 75 and 76 which are connected in series between the connected via the diode 54 to the terminal 42 of the terminal 61 and the terminal 37 of the rectifier circuit 31.
  • the output of the operational amplifier 72 is connected to the gate terminal of the field effect transistor 70.
  • the diode 54 is poled so that it flows in the forward direction through the resistor 61 supplied by the active transducer 41 current I MA , but prevents a flow of current from the transducer supply unit 40 to the active transmitter 41.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

Die Erfindung betrifft ein Meßumformer-Speisegerät zur Versorgung eines Meßumformers mit elektrischer Energie von einer Gleichspannungsquelle über eine Zweidrahtverbindung, über die in der Gegenrichtung der vom Meßumformer erfaßte Meßwert durch einen zwischen zwei Grenzwerten veränderlichen Gleichstrom übertragen wird, wobei zur galvanischen Trennung in die Verbindung zwischen dem Meßumformer und der Gleichspannungsquelle ein Übertrager eingefügt ist, dessen Primärwicklung über einen Zerhacker an die Gleichspannungsquelle angeschlossen ist und an dessen Sekundärwicklung eine Gleichrichterschaltung angeschlossen ist, die an ihren Ausgangsanschlüssen einen durch Gleichrichtung des über den Übertrager übertragenen, zerhackten Stroms erzeugten Gleichstrom mit der durch den Meßumformer bestimmten Größe liefert.The invention relates to a transmitter power supply for supplying a transmitter with electrical energy from a DC voltage source via a two-wire connection, is transmitted in the opposite direction of the measured value detected by the transmitter by a variable between two limits direct current, wherein the galvanic isolation in the connection between the Transmitter and the DC voltage source, a transformer is inserted, the primary winding is connected via a chopper to the DC voltage source and to the secondary winding of a rectifier circuit is connected, which generated at its output terminals by rectification of the transferred via the transformer, chopped current generated direct current with the by the transmitter certain size supplies.

Ein solches Meßumformer-Speisegerät ist beispielsweise aus der US-A-3 764 880 bekannt.Such a transducer feeder is for example from the US-A-3,764,880 known.

Aus der DE-PS-3207785 ist ein weiteres Messumformer-Speisegerät bekannt, das entweder mit einem passivem Messumformer oder über eine entsprechende Anpassungsschaltung mit einem aktiven Gleichstromgeber verbindbar ist.From the DE-PS-3207785 Another transmitter power supply is known, which is connectable either with a passive transmitter or via an appropriate matching circuit with an active DC generator.

Ein Meßumformer-Speisegerät dieser Art ist dazu bestimmt, einen in einer explosionsgefährdeten Zone angeordneten passiven Meßumformer über eine Zweidrahtverbindung mit elektrischer Energie zu versorgen und zugleich die Übertragung des vom passiven Meßumformer gelieferten Meßsignals in Form eines zwischen zwei Grenzwerten veränderlichen Stromsignals in der Gegenrichtung zu ermöglichen. Einer üblichen Norm entsprechend ist das Stromsignal zwischen 4 mA und 20 mA veränderlich. Ein passiver Meßumformer enthält keine eigene elektrische Spannungsquelle, sondern er bezieht die für seinen Betrieb erforderliche Energie über die Zweidrahtverbindung von einer entfernt angeordneten Gleichspannungsquelle, und er bildet das Meßsignal dadurch, daß er der Gleichspannungsquelle zusätzlich zu dem Versorgungsstrom einen Ergänzungsstrom entnimmt, der so bemessen ist, daß der der Gleichspannungsquelle entnommene Gesamtstrom dem zu übertragenden Stromsignal entspricht, das zwischen den beiden Grenzwerten von beispielsweise 4 und 20 mA liegt. Diesem Stromsignal können außerdem noch Kommunikationssignale in Form von impulsförmigen Änderungen überlagert werden, wodurch digitale Daten in beiden Richtungen übertragen werden können. Da der Gesamtstrom nur in einer Richtung, nämlich von der Spannungsquelle zum Meßumformer übertragen wird, ist eine galvanische Trennung zwischen der Spannungsquelle und dem Meßumformer durch einen Übertrager möglich, indem der aus der Gleichspannungsquelle entnommene Gesamtstrom nach dem Prinzip eines Gleichspannungswandlers auf der Primärseite des Übertragers zerhackt und auf der Sekundärseite des Übertragers gleichgerichtet wird. Eine solche galvanische Trennung ist eine besonders vorteilhafte Schutzmaßnahme für Meßumformer, die in explosionsgefährdeten Zonen angeordnet sind. Die galvanische Trennung mittels des Übertragers eines Gleichspannungswandlers ermöglicht nicht nur die Übertragung des Versorgungsgleichstroms und des den Meßwert darstellenden Gleichstromsignals, sondern auch die bidirektionale Übertragung von Kommunikationssignalen in Form von dem Gesamtstrom überlagerten impulsförmigen Änderungen unter der Voraussetzung, daß die Zerhackerfrequenz wesentlich höher ist als die Frequenz der Kommunikationssignale.A transmitter power supply of this type is intended to provide a arranged in a hazardous zone passive transducer via a two-wire connection with electrical energy and at the same time to allow the transmission of the measurement signal supplied by the passive transducer in the form of a variable between two limits current signal in the opposite direction. According to a standard, the current signal varies between 4 mA and 20 mA. A passive transmitter does not contain its own electrical power source, but draws the energy required for its operation via the two-wire connection from a remote DC voltage source, and forms the measurement signal by extracting from the DC voltage source, in addition to the supply current, a supplemental current so dimensioned in that the total current drawn from the DC voltage source corresponds to the current signal to be transmitted, which lies between the two limit values of, for example, 4 and 20 mA. This current signal can also be superimposed on communication signals in the form of pulse-shaped changes, whereby digital data can be transmitted in both directions. Since the total current is transmitted in one direction, namely from the voltage source to the transmitter, a galvanic isolation between the voltage source and the transmitter by a transformer is possible by the chopped from the DC voltage source removed total current on the principle of a DC-DC converter on the primary side of the transformer and rectified on the secondary side of the transformer. Such galvanic isolation is a particularly advantageous protective measure for transducers which are arranged in potentially explosive atmospheres. The galvanic isolation by means of the transformer of a DC-DC converter allows not only the transmission of the DC supply current and the measured value representing DC signal, but also the bidirectional transmission of communication signals in the form of the total current superimposed pulse-shaped changes, provided that the chopper frequency is much higher than the frequency the communication signals.

Bei einem Meßumformer-Speisegerät der vorstehend geschilderten Art besteht jedoch das Problem, daß es nicht möglich ist, anstelle des passiven Meßumformers einen aktiven Meßumformer anzuschließen. Ein aktiver Meßumformer unterscheidet sich von einem passiven Meßumformer dadurch, daß er mit einer eigenen elektrischen Energieversorgung ausgestattet ist und das Meßsignal in Form des zwischen zwei Grenzwerten veränderlichen Gleichstromsignals aus dieser eigenen Energieversorgung erzeugt und an seinen Ausgängen abgibt. Es ist nicht möglich, das vom aktiven Meßumformer gelieferte Gleichstromsignal in der der Übertragungsrichtung des Gleichspannungswandlers entgegengesetzten Richtung zu übertragen.However, in a transmitter power supply of the kind described above, there is the problem that it is not possible to connect an active transmitter instead of the passive transmitter. An active transmitter differs from a passive transmitter in that it is equipped with its own electrical power supply and generates the measurement signal in the form of varying between two limits DC signal from its own power supply and outputs at its outputs. It is not possible to transmit the DC signal supplied by the active transducer in the direction opposite to the transmission direction of the DC-DC converter.

Aufgabe der Erfindung ist die Schaffung eines Meßumformer-Speisegeräts der eingangs angegebenen Art, das unter Aufrechterhaltung der durch die galvanische Trennung bewirkten Schutzmaßnahme wahlweise mit einem passiven Meßumformer oder mit einem aktiven Meßumformer betrieben werden kann.The object of the invention is to provide a transmitter power supply of the type described, which can be operated while maintaining the galvanic separation caused by the protective measure either with a passive transmitter or with an active transmitter.

Nach der Erfindung wird diese Aufgabe durch die Merkmale des Ansprüchs 1 gelöst.According to the invention, this object is achieved by the features of Ansprüchs 1.

Bei dem erfindungsgemäßen Meßumformer-Speisegerät bewirkt die zwischen dem aktiven Meßumformer und der Gleichrichterschaltung eingefügte Anpassungsschaltung, daß die primärseitig angeordnete Gleichspannungsquelle über die Gleichrichterschaltung und den Übertrager in gleicher Weise wie durch einen passiven Meßumformer mit einem Gleichstrom belastet wird, der dem zu übertragenden Meßsignal entspricht. Von der Primärseite her gesehen ist daher nicht erkennbar, ob sekundärseitig ein aktiver oder ein passiver Meßumformer angeschlossen ist. Der über die Gleichrichterschaltung und den Übertrager aus der primärseitigen Gleichspannungsquelle entnommene Strom enthält auch den für den Betrieb der Anpassungsschaltung erforderlichen Versorgungsstrom. Dem Gesamtstrom können in gleicher Weise wie bei Belastung durch einen passiven Meßumformer Kommunikationssignale in Form von impulsförmigen Änderungen überlagert werden, die bidirektional über den Übertrager übertragen werden. Die durch die galvanische Trennung bewirkte Schutzmaßnahme für explosionsgefährdete Zonen bleibt unabhängig davon, ob ein aktiver oder ein passiver Meßumformer angeschlossen ist, voll erhalten.In the transmitter-feeder device according to the invention, the matching circuit inserted between the active transmitter and the rectifier circuit causes the primary-side DC voltage source to be loaded via the rectifier circuit and the transformer in the same manner as by a passive transmitter with a DC current corresponding to the measurement signal to be transmitted. Therefore, it can not be seen from the primary side whether an active or a passive measuring transducer is connected on the secondary side. The current drawn via the rectifier circuit and the transformer from the primary-side DC voltage source also contains the supply current required for the operation of the matching circuit. The total current can be superimposed in the same way as when loaded by a passive transmitter communication signals in the form of pulse-shaped changes that are transmitted bidirectionally via the transformer. The protective measure for potentially explosive areas caused by the galvanic isolation remains fully intact regardless of whether an active or a passive transmitter is connected.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung eines Ausführungsbeispiels anhand der Zeichnungen. In den Zeichnungen zeigen:

Fig. 1
das Schaltbild eines Meßumformer-Speisegeräts bekannter Art zur Versorgung eines passiven Meßumformers mit elektrischer Energie und zur Übertragung des Meßsignals über eine Zweidrahtverbindung,
Fig. 2
die Abänderung des Meßumformer-Speisegeräts von Fig. 1 zum wahlweisen Anschluß eines aktiven Meßumformers anstelle eines passiven Meßumformers und
Fig. 3
das Meßumformer-Speisegerät von Fig. 2 mit dem Schaltbild einer Ausführungsform der Anpassungsschaltung.
Further features and advantages of the invention will become apparent from the following description of a Embodiment with reference to the drawings. In the drawings show:
Fig. 1
the diagram of a transducer power supply of known type for supplying a passive transducer with electrical energy and for transmitting the measuring signal via a two-wire connection,
Fig. 2
the modification of the transmitter power supply of Fig. 1 for selectively connecting an active transmitter instead of a passive transmitter and
Fig. 3
the transmitter supply unit of Fig. 2 with the diagram of an embodiment of the matching circuit.

In Fig. 1 der Zeichnung bilden die rechts der unterbrochenen Linie A-A dargestellten Schaltungsbestandteile ein Meßumformer-Speisegerät 10 nach dem Stand der Technik zur Versorgung eines passiven Meßumformers 11 mit elektrischer Energie von einer Gleichspannungsquelle 12 über die beiden Leiter 13, 14 einer Zweidrahtverbindung, über die in der Gegenrichtung das vom Meßumformer 11 erzeugte Meßwertsignal übertragen wird. Die Zweidrahtverbindung 13, 14 ist unterbrochen dargestellt, um anzudeuten, daß sie von beliebiger Länge sein kann. Sie verbindet den passiven Meßumformer 11 mit zwei Klemmen 15, 16 des Meßumformer-Speisegeräts 10.In Fig. 1 In the drawing, the circuit components shown on the right of the broken line AA form a prior art transducer feeder 10 for supplying a passive transducer 11 with electrical energy from a DC power source 12 via the two conductors 13, 14 of a two-wire connection across the opposite direction transmitted by the transducer 11 measured value signal is transmitted. The two-wire connection 13, 14 is shown interrupted to indicate that it may be of any length. It connects the passive transducer 11 with two terminals 15, 16 of the transducer power supply 10th

Der Meßumformer 11 enthält einen Sensor für die zu messende physikalische Größe und eine elektronische Schaltung zur Umwandlung des Sensorsignals in das zu übertragende Meßwertsignal. Ein passiver Meßumformer enthält keine eigene Energiequelle, sondern er bezieht die für den Betrieb der elektronischen Schaltung erforderliche Energie über die Zweidrahtverbindung 13, 14 von der Gleichspannungsquelle 12 in dem an entfernter Stelle angeordneten Meßumformer-Speisegerät 10. Einem üblichen Standard entsprechend bildet der Meßumformer 11 das Meßwertsignal dadurch, daß er den aus der Gleichspannungsquelle 12 entnommenen Strom so einstellt, daß der Meßwert durch einen zwischen 4 mA und 20 mA liegenden Gleichstrom ausgedrückt ist. Der Gleichstrom wird durch eine am Ort der Gleichspannungsquelle 12 angeordnete Auswerteschaltung 18 gemessen und zur Ermittlung des Meßwertes der vom Meßumformer 11 erfaßten physikalischen Größe ausgewertet. Zusätzlich kann der Meßumformer 11 so ausgebildet sein, daß er dem Stromsignal digitale Kommunikationssignale in Form von impulsförmigen Veränderungen überlagert, so daß Meßwerte und Parameter digital gelesen und geschrieben werden können. Es besteht dann die Forderung, solche Kommunikationssignale bidirektional zwischen dem Meßumformer 11 und der Auswerteschaltung 18 zu übertragen.The transmitter 11 includes a sensor for the physical quantity to be measured and an electronic circuit for converting the sensor signal into the measured value signal to be transmitted. A passive transmitter does not contain its own power source, but it draws the energy required for the operation of the electronic circuit via the two-wire connection 13, 14 from the DC voltage source 12 in the remote located transducer supply unit 10. According to a conventional standard, the transmitter 11 forms the Measurement signal in that it adjusts the current drawn from the DC voltage source 12 so that the measured value is expressed by a lying between 4 mA and 20 mA direct current. The DC current is measured by an evaluation circuit 18 arranged at the location of the DC voltage source 12 and evaluated to determine the measured value of the physical variable detected by the measuring transducer 11. Additionally, the transmitter 11 may be configured to superimpose digital communication signals in the form of pulsed changes on the current signal so that measurements and parameters may be digitally read and written. There is then the requirement to transmit such communication signals bidirectionally between the measuring transducer 11 and the evaluation circuit 18.

Wenn der passive Meßumformer 11 in einer explosionsgefährdeten Zone angeordnet ist, müssen zusätzliche Sicherheitsvorkehrungen getroffen werden. Eine besonders wirksame Schutzmaßnahme für explosionsgefährdete Zonen ist eine galvanische Trennung zwischen dem Meßumformer 11 einerseits und der Gleichspannungsquelle 12 und der Auswerteschaltung 18 andererseits. Das in Fig. 1 dargestellte Meßumformer-Speisegerät 10 ist mit einer solchen galvanischen Trennung ausgebildet.If the passive transmitter 11 is located in a hazardous area, additional safety precautions must be taken. A particularly effective protective measure for hazardous areas is a galvanic isolation between the transmitter 11 on the one hand and the DC voltage source 12 and the evaluation circuit 18 on the other. This in Fig. 1 shown transducer supply unit 10 is formed with such a galvanic isolation.

Die galvanische Trennung erfolgt bei dem Meßumformer-Speisegerät 10 von Fig. 1 durch einen Übertrager 20 mit einer Primärwicklung 21 und einer Sekundärwicklung 22. Die Gleichspannungsquelle 12 ist zwischen einem Mittelabgriff 23 der Primärwicklung 21 und Masse angeschlossen. Jeder der beiden Außenanschlüsse 24 und 25 der Primärwicklung 21 ist über einen Schalter 26 bzw. 27 mit dem einen Anschluß 28 eines Widerstands 29 verbunden, dessen anderer Anschluß an Masse liegt. Die beiden Schalter 26 und 27 werden durch einen Taktgeber 30 mit einer verhältnismäßig hohen Taktfrequenz von beispielsweise 200 kHz im Gegentakt gesteuert, so daß der Schalter 26 geöffnet ist, wenn der Schalter 27 geschlossen ist, und umgekehrt. Somit fließt der von der Gleichspannungsquelle 12 gelieferte Strom im Takt der Schalterbetätigung abwechselnd gegensinnig durch die eine bzw. die andere Hälfte der Primärwicklung 21, jedoch stets gleichsinnig durch den Widerstand 29. In der Primärwicklung 21 ist die Gleichspannung zu einer Rechteck-Wechselspannung zerhackt, die in die Sekundärwicklung 22 übertragen wird. An die Sekundärwicklung 22 ist eine Vollweg-Gleichrichterschaltung 31 mit vier Dioden 32 und einem Siebkondensator 33 angeschlossen, die durch Gleichrichtung der Rechteck-Wechselspannung die Betriebsgleichspannung für den passiven Meßumformer 11 erzeugt. Es ist somit zu erkennen, daß der Übertrager 20 in Verbindung mit dem aus den Schaltern 26, 27 und dem Taktgeber 30 gebildeten Zerhacker und mit der Gleichrichterschaltung 31 einen Gleichspannungswandler bekannter Art bildet. Die Schalter 26, 27, die vereinfacht als mechanische Schaltkontakte dargestellt sind, sind in Wirklichkeit natürlich schnelle elektronische Schalter, beispielsweise Feldeffekttransistoren.The galvanic isolation is carried out at the transmitter supply unit 10 of Fig. 1 by a transformer 20 having a primary winding 21 and a secondary winding 22. The DC voltage source 12 is connected between a center tap 23 of the primary winding 21 and ground. Each of the two outer terminals 24 and 25 of the primary winding 21 is connected via a switch 26 and 27 to one terminal 28 of a resistor 29 whose other terminal is grounded. The two switches 26 and 27 are controlled by a clock 30 with a relatively high clock frequency of, for example, 200 kHz in push-pull, so that the switch 26 is opened when the switch 27 is closed, and vice versa. Thus, the current supplied by the DC voltage source 12 alternately flows in opposite directions through the one or the other half of the primary winding 21, but always in the same direction through the resistor 29. In the primary winding 21, the DC voltage is chopped into a rectangular AC voltage, the is transferred to the secondary winding 22. To the secondary winding 22, a full-wave rectifier circuit 31 with four diodes 32 and a filter capacitor 33 is connected, which generates by rectifying the rectangular AC voltage, the DC operating voltage for the passive transducer 11. It will thus be appreciated that the transmitter 20 in combination with the chopper formed by the switches 26, 27 and the clock 30 and with the rectifier circuit 31 forms a DC-DC converter of known type. The switches 26, 27, which are shown in simplified form as mechanical switching contacts, are in reality of course fast electronic switches, for example field effect transistors.

Als weitere Schutzmaßnahme für die Verwendung des passiven Meßumformers 11 in einer explosionsgefährdeten Zone enthält die Gleichrichterschaltung 31 einen über eine Sicherung 34 angeschlossenen Spannungsbegrenzer 35, der als Zenerdiode dargestellt ist. Zwischen die Ausgangsanschlüsse 36, 37 der Gleichrichterschaltung 31 und die für den Anschluß des passiven Meßumformers 11 bestimmten Klemmen 15, 16 des Meßumformer-Speisegeräts sind Schutzwiderstände 38 bzw. 39 eingefügt. Die Schutzwiderstände 38, 39 verhindern ein Ansteigen des Stroms in der explosionsgefährdeten Zone über einen zulässigen Grenzwert, und der Spannungsbegrenzer 35 begrenzt in Verbindung mit der Sicherung 34 die Spannung in der explosionsgefährdeten Zone auf einen zulässigen Wert.As a further protective measure for the use of the passive transmitter 11 in a hazardous area, the rectifier circuit 31 includes a connected via a fuse 34 voltage limiter 35, which is shown as a Zener diode. Protective resistors 38 and 39, respectively, are inserted between the output terminals 36, 37 of the rectifier circuit 31 and the terminals 15, 16 of the transmitter power supply unit intended for connection of the passive transmitter 11. The protective resistors 38, 39 prevent the current in the hazardous area from rising above an allowable limit, and the voltage limiter 35, in conjunction with the fuse 34, limits the voltage in the circuit hazardous area to a permissible value.

Der passive Meßumformer 11 entnimmt der Gleichrichterschaltung 31 einen Gleichstrom IMP, dessen Wert im Bereich von 4 bis 20 mA so eingestellt ist, daß er den Meßwert der vom Sensor erfaßten physikalischen Größe darstellt. Dieser Gleichstrom wird über den Übertrager 20 von der Gleichspannungsquelle 12 geliefert, so daß bei einem Übersetzungsverhältnis 1:1 des Übertragers 20 ein Gleichstrom gleicher Größe über den Widerstand 29 fließt. Die am Widerstand 29 abfallende Gleichspannung ist somit dem vom passiven Meßumformer 11 eingestellten Meßstrom IMP proportional. Sie wird der an den Anschluß 28 angeschlossenen Auswerteschaltung 18 zugeführt.The passive transmitter 11 extracts from the rectifier circuit 31 a DC current I MP whose value is set in the range of 4 to 20 mA so as to represent the measured value of the physical quantity detected by the sensor. This direct current is supplied via the transformer 20 from the DC voltage source 12, so that at a transmission ratio of 1: 1 of the transformer 20, a DC current of the same magnitude flows through the resistor 29. The drop across the resistor 29 DC voltage is thus proportional to the set by the passive transducer 11 measuring current I MP . It is fed to the evaluation circuit 18 connected to the connection 28.

Wenn dem Meßstrom IMP durch den passiven Meßumformer 11 Kommunikationssignale in Form von impulsförmigen Änderungen überlagert sind, werden diese impulsförmigen Änderungen ebenfalls über den Übertrager 20 übertragen, so daß sie sich in impulsförmigen Spannungsänderungen in der am Widerstand 29 abfallenden Spannung äußern. Diese Spannungsänderungen werden von der Auswerteschaltung 18 gleichfalls erfaßt und ausgewertet. Die Folgefrequenz der impulsförmigen Änderungen ist wesentlich geringer als die Taktfrequenz des Taktgebers 30. Die Auswerteschaltung 18 enthält vorzugsweise am Eingang ein Tiefpaßfilter, dessen Grenzfrequenz so eingestellt ist, daß die Taktfrequenz des Taktgebers 30 unterdrückt wird, jedoch die überlagerten impulsförmigen Kommunikationssignale übertragen werden.If the measurement current I MP 11 communication signals are superimposed by the passive transducer in the form of pulse-shaped changes, these pulse-shaped changes are also transmitted via the transformer 20 so that they express themselves in pulse-shaped voltage changes in the voltage drop across the resistor 29. These voltage changes are also detected and evaluated by the evaluation circuit 18. The repetition frequency of the pulse-shaped changes is substantially less than the clock frequency of the clock 30. The evaluation circuit 18 preferably contains at the input a low-pass filter whose cut-off frequency is set so that the clock frequency of the clock 30 is suppressed, but the superimposed pulse-shaped communication signals are transmitted.

Fig. 2 zeigt das Prinzipschema eines Meßumformer-Speisegeräts 40, das es ermöglicht, anstelle des passiven Meßumformers 11 wahlweise einen aktiven Meßumformer 41 anzuschließen. Im Gegensatz zu einem passiven Meßumformer enthält ein aktiver Meßumformer eine eigene elektrische Spannungsversorgung, und er gibt am Ausgang einen von dieser Spannungsversorgung gelieferten Gleichstrom ab, dessen Größe wieder im Bereich von 4 bis 20 mA dem Meßwert der vom Sensor erfaßten physikalischen Größe entspricht. Es ist unmittelbar zu erkennen, daß es nicht möglich wäre, den aktiven Meßumformer 41 einfach anstelle des passiven Meßumformers 11 an die Klemmen 15, 16 der Schaltungsanordnung von Fig. 1 anzuschließen, denn der vom aktiven Meßumformer 41 gelieferte Gleichstrom könnte nicht über die Gleichrichterschaltung 31 und den Übertrager 20 zur Primärseite des Übertragers 20 übertragen werden. Das Meßumformer-Speisegerät 40 hat daher zwei weitere Klemmen 42 und 43, an die der aktive Meßumformer 41 über die beiden Leiter 44 und 45 einer Zweidrahtverbindung angeschlossen ist. Fig. 2 shows the schematic diagram of a transmitter power supply unit 40, which makes it possible, instead of the passive transducer 11 optionally connect an active transmitter 41. In contrast to a passive transmitter, an active transmitter contains its own electrical power supply, and at the output it outputs a direct current supplied by this power supply whose size again corresponds in the range of 4 to 20 mA to the measured value of the physical quantity detected by the sensor. It is immediately apparent that it would not be possible to simply replace the active transducer 41 in place of the passive transducer 11 with the terminals 15, 16 of the circuitry of FIG Fig. 1 because the DC current supplied by the active transducer 41 could not be transmitted to the primary side of the transformer 20 via the rectifier circuit 31 and the transformer 20. The transmitter supply unit 40 therefore has two further terminals 42 and 43, to which the active transmitter 41 is connected via the two conductors 44 and 45 of a two-wire connection.

Zur Vereinfachung sind in Fig. 2 nur die auf der Sekundärseite des Übertragers 20 liegenden Schaltungsbestandteile des Meßumformer-Speisegeräts 40 dargestellt; die auf der Primärseite liegenden Schaltungsbestandteile sind mit denjenigen von Fig. 1 identisch. Soweit die Schaltungsbestandteile in Fig. 2 mit denjenigen von Fig. 1 übereinstimmen, sind sie mit den gleichen Bezugszeichen wie in Fig. 1 bezeichnet, und sie haben die gleiche Funktion, wie sie zuvor im Zusammenhang mit Fig. 1 beschrieben worden ist. Es ist unmittelbar zu erkennen, daß für den passiven Meßumformer 11 die gleiche Schaltungsanordnung wie in Fig. 1 vorhanden ist, mit dem einzigen Unterschied, daß zwischen den Anschluß 36 der Gleichrichterschaltung 31 und den Schutzwiderstand 38 ein Umschalter 50 eingefügt ist. Wenn der Umschalter 50 in die Stellung gebracht ist, in der er die Gleichrichterschaltung 31 über den Schutzwiderstand 38 mit der Klemme 15 verbindet, ist die Schaltungsanordnung mit derjenigen von Fig. 1 identisch.For simplicity, in Fig. 2 only the circuit components of the transmitter-power supply 40 located on the secondary side of the transformer 20 are shown; the circuit components lying on the primary side are identical to those of Fig. 1 identical. As far as the circuit components in Fig. 2 with those of Fig. 1 match, they are given the same reference numerals as in Fig. 1 and they have the same function as previously associated with Fig. 1 has been described. It can be seen immediately that for the passive transducer 11, the same circuitry as in Fig. 1 is present, with the only difference that between the terminal 36 of the rectifier circuit 31 and the protective resistor 38, a changeover switch 50 is inserted. When the change-over switch 50 is set in the position in which it connects the rectifier circuit 31 to the terminal 15 via the protective resistor 38, the circuit arrangement is identical to that of FIG Fig. 1 identical.

Wenn dagegen der Umschalter 50 in die in Fig. 2 dargestellte Stellung gebracht ist, verbindet er den Anschluß 36 der Gleichrichterschaltung 31 über einen Verbindungsleiter 51, einen Trennkondensator 52, einen Schutzwiderstand 53 und eine Diode 54 mit der Klemme 42. Der Anschluß 37 der Gleichrichterschaltung 31 ist über einen Verbindungsleiter 55 und einen Schutzwiderstand 56 dauernd mit der Klemme 43 verbunden. Wie zuvor erläutert, enthält der aktive Meßumformer 41 eine eigene elektrische Spannungsversorgung, und er gibt am Ausgang einen Gleichstrom IMA ab, dessen Größe im Bereich von 4 bis 20 mA dem Meßwert der vom Sensor erfaßten physikalischen Größe entspricht. Zwischen den aktiven Meßumformer 41 und die Gleichrichterschaltung 31 ist eine Anpassungsschaltung 60 eingefügt, die der Gleichrichterschaltung 31 einen Gleichstrom IMS entnimmt, der dem vom aktiven Meßumformer 41 gelieferten Gleichstrom IMA gleich oder proportional ist. Die Anpassungsschaltung 60 enthält einen über die Diode 54 an die Klemmen 42 und 43 angeschlossenen Widerstand 61, eine Steuerschaltung 62, deren Eingangsanschlüsse mit den Anschlüssen des Widerstands 61 verbunden sind, und eine zwischen den Verbindungsleitern 51 und 55 angeschlossene steuerbare Stromquelle 63, deren Steuereingang mit dem Ausgang der Steuerschaltung 62 verbunden ist. Somit überbrückt die steuerbare Stromquelle 63 die beiden Ausgangsanschlüsse 36 und 37 der Gleichrichterschaltung 31, wenn der Umschalter 50 die in Fig. 2 gezeigte Stellung einnimmt, die dem Anschluß des aktiven Meßumformers 41 entspricht. Die Steuerschaltung 62 empfängt am Eingang eine Gleichspannung, die dem vom Strom IMA verursachten Spannungsabfall am Widerstand 61 entspricht, und sie ist so ausgebildet, daß ihr Ausgangssignal die steuerbare Stromquelle 63 so einstellt, daß der aus der Gleichrichterschaltung 31 entnommene Strom IMS dem vom aktiven Meßumformer 41 gelieferten Strom IMA mit einem vorbestimmten konstanten Faktor proportional ist. Vorzugsweise hat dieser Faktor den Wert 1, so daß der Strom IMS gleich dem Strom IMA ist. Somit ergibt der aus der Gleichrichterschaltung 31 entnommene Strom IMS die gleiche Wirkung wie der in der anderen Stellung des Umschalters 50 vom passiven Meßumformer 11 bestimmte Strom IMP: Er wird auf die Primärseite des Übertragers 20 gespiegelt und ruft einen proportionalen Spannungsabfall am Widerstand 29 hervor. Dieser Spannungsabfall ist somit dem vom aktiven Meßumformer 41 gelieferten Meßstrom IMA proportional.In contrast, when the switch 50 in the in Fig. 2 shown position, it connects the terminal 36 of the rectifier circuit 31 via a connecting conductor 51, a separating capacitor 52, a protective resistor 53 and a diode 54 to the terminal 42. The terminal 37 of the rectifier circuit 31 is permanently connected via a connecting conductor 55 and a protective resistor 56 connected to terminal 43. As previously explained, the active transducer 41 includes its own electrical power supply and outputs at the output a direct current I MA whose magnitude in the range of 4 to 20 mA corresponds to the measured value of the physical quantity sensed by the sensor. Between the active transmitter 41 and the rectifier circuit 31, a matching circuit 60 is inserted, which takes the rectifier circuit 31, a DC I MS equal to or proportional to the supplied by the active transmitter 41 direct current I MA . The matching circuit 60 includes a resistor 61 connected to the terminals 42 and 43 through the diode 54, a control circuit 62 whose input terminals are connected to the terminals of the resistor 61, and a controllable current source 63 connected between the connecting conductors 51 and 55, the control input thereof the output of the control circuit 62 is connected. Thus, the controllable current source 63 bridges the two output terminals 36 and 37 of the rectifier circuit 31, when the switch 50, the in Fig. 2 shown position corresponding to the connection of the active transmitter 41. The control circuit 62 receives at the input a DC voltage which corresponds to the voltage drop across the resistor 61 caused by the current I MA , and it is designed so that its output signal, the controllable current source 63 so adjusted that taken from the rectifier circuit 31 current I MS of the active transducer I MA is proportional to a predetermined constant factor. Preferably, this factor has the value 1, so that the current I MS is equal to the current I MA . Thus, the current I MS taken from the rectifier circuit 31 gives the same effect as the current determined in the other position of the changeover switch 50 by the passive transmitter 11 I MP : It is mirrored on the primary side of the transformer 20 and causes a proportional voltage drop across the resistor 29. This voltage drop is thus proportional to the measuring current I MA delivered by the active measuring transducer 41.

Fig. 3 zeigt das Schaltbild einer Ausführungsform der steuerbaren Anpassungsschaltung 60 von Fig. 2. Die Schaltungsbestandteile, die denjenigen von Fig. 2 entsprechen, sind mit den gleichen Bezugszeichen wie in Fig. 2 bezeichnet. Die steuerbare Stromquelle 63 ist durch einen Feldeffekttransistor 70 gebildet, der in Reihe mit einem Widerstand 71 zwischen den Verbindungsleitern 51 und 55 angeschlossen ist. Die Steuerschaltung 62 enthält einen Operationsverstärker 72, dessen Stromversorgungsanschlüsse mit den Verbindungsleitern 51 und 55 verbunden sind, so daß der Operationsverstärker 72 von der Gleichrichterschaltung 31 mit Strom versorgt wird, wenn der Umschalter 50 in die Stellung gebracht ist, die dem Anschluß des aktiven Meßumformers 41 entspricht. Der invertierende Eingang des Operationsverstärkers 72 ist über einen Widerstand 73 mit dem Verbindungsleiter 55 verbunden. In den Verbindungsleiter 55 ist zwischen den Anschlußstellen der steuerbaren Stromquelle 63, des Operationsverstärkers 72 und des Widerstands 73 einerseits und dem Ausgangsanschluß 37 der Gleichrichterschaltung 31 andererseits ein Widerstand 74 eingefügt, über den somit sowohl der von der steuerbaren Stromquelle 63 bestimmte Strom als auch der Versorgungsstrom des Operationsverstärkers 72 fließt. Der nichtinvertierende Eingang des Operationsverstärkers 72 ist an den Abgriff eines Spannungsteilers aus zwei Widerständen 75 und 76 angeschlossen, die in Serie zwischen dem über die Diode 54 mit der Klemme 42 verbundenen Anschluß des Widerstands 61 und dem Anschluß 37 der Gleichrichterschaltung 31 angeschlossen sind. Der Ausgang des Operationsverstärkers 72 ist mit dem Gate-Anschluß des Feldeffekttransistors 70 verbunden. Fig. 3 shows the circuit diagram of an embodiment of the controllable matching circuit 60 of Fig. 2 , The circuit components corresponding to those of Fig. 2 are identical with the same reference numerals as in Fig. 2 designated. The controllable current source 63 is formed by a field effect transistor 70 which is connected in series with a resistor 71 between the connecting conductors 51 and 55. The control circuit 62 includes an operational amplifier 72 whose power supply terminals are connected to the connecting conductors 51 and 55, so that the operational amplifier 72 is powered by the rectifier circuit 31 when the switch 50 is in the position corresponding to the terminal of the active transmitter 41st equivalent. The inverting input of the operational amplifier 72 is connected to the connection conductor 55 via a resistor 73. In the connecting conductor 55, a resistor 74 is inserted between the terminals of the controllable current source 63, the operational amplifier 72 and the resistor 73 on the one hand and the output terminal 37 of the rectifier circuit 31 on the other hand, via which thus both the current determined by the controllable current source 63 and the supply current of the operational amplifier 72 flows. The non-inverting input of the operational amplifier 72 is connected to the tap of a voltage divider of two resistors 75 and 76 which are connected in series between the connected via the diode 54 to the terminal 42 of the terminal 61 and the terminal 37 of the rectifier circuit 31. The output of the operational amplifier 72 is connected to the gate terminal of the field effect transistor 70.

Bezeichnet man die Widerstandswerte der Widerstände 61, 74, 75 und 76 mit R61, R74, R75 bzw. R76, so besteht der folgende Zusammenhang zwischen dem über den Widerstand 61 fließenden Strom IMA und dem über den Widerstand 74 zum Eingangsanschluß 37 der Gleichrichterschaltung 31 fließenden Strom IMS: IMS = I MA R 61 R 76 R 74 R 75

Figure imgb0001
Designating the resistance values of the resistors 61, 74, 75 and 76 with R 61 , R 74 , R 75 and R 76 , respectively, the following relationship exists between the current I MA flowing through the resistor 61 and the resistor 74 to the input terminal 37 of the rectifier circuit 31 flowing current I MS : IMS = I MA R 61 R 76 R 74 R 75
Figure imgb0001

Somit ist der Strom IMS zu dem Strom IMA mit einem durch die Widerstände bestimmten konstanten Faktor proportional. Dieser konstante Faktor kann durch geeignete Bemessung der Widerstände gleich 1 gemacht werden, so daß dann der Strom IMS gleich dem Strom IMA ist. Dies gilt beispielsweise für die folgenden Widerstandswerte:

  • R61 = 250 Ω
  • R74 = 50 Ω
  • R75 = 100 kΩ
  • R76 = 20 kΩ
Thus, the current I MS is proportional to the current I MA with a constant factor determined by the resistors. This constant factor can be made equal to 1 by suitable dimensioning of the resistors, so that then the current I MS is equal to the current I MA . This applies, for example, to the following resistance values:
  • R 61 = 250 Ω
  • R 74 = 50 Ω
  • R 75 = 100 kΩ
  • R 76 = 20 kΩ

Aus den Figuren 2 und 3 ist ferner zu erkennen, daß bei jeder Stellung des Umschalters 50 die im Hinblick auf die explosionsgefährdete Zone getroffenen Schutzmaßnahmen, nämlich die galvanische Trennung durch den Übertrager 20, die Spannungsbegrenzung durch den Spannungsbegrenzer 35 und die Sicherung 34 und die Strombegrenzung durch die Schutzwiderstände 38, 39 bzw. durch die Schutzwiderstände 53, 56 in vollem Umfang wirksam bleiben. Der Trennkondensator 52 bewirkt eine gleichstrommäßige Trennung des aktiven Meßumformers 41 von der Gleichrichterschaltung 31, ermöglicht aber die Übertragung der überlagerten Kommunikationssignale.From the Figures 2 and 3 It can also be seen that at each position of the switch 50, the protective measures taken with regard to the hazardous area, namely the galvanic isolation by the transformer 20, the voltage limitation by the voltage limiter 35 and the fuse 34 and the current limiting by the protective resistors 38, 39 or by the protective resistors 53, 56 remain fully effective. The isolating capacitor 52 effects a DC isolation of the active transmitter 41 from the rectifier circuit 31, but allows the transmission of the superimposed communication signals.

Die Diode 54 ist so gepolt, daß sie den vom aktiven Meßumformer 41 gelieferten Strom IMA in der Durchlaßrichtung über den Widerstand 61 fließen läßt, aber einen Stromfluß vom Meßumformer-Speisegerät 40 zum aktiven Meßumformer 41 verhindert. Durch die bereits in der Schaltung von Fig. 1 enthaltene Strom- und Spannungsbegrenzung ist beim Anschluß eines passiven Meßumformers eine ausreichende Sicherheit für das Meßumformer-Speisegerät gegeben, weil die in einem Störfall maximal vorhandene Energie zu gering ist, um einen Funken zu zünden. Beim Anschluß eines aktiven Meßumformers könnte aber der Fall auftreten, daß ein aus dem Meßumformer-Speisegerät fließender Strom, der für sich genommen zur Zündung eines Funkens zu schwach wäre, sich außerhalb des Meßumformer-Speisegeräts einem vom aktivem Meßumformer stammenden Strom überlagert, so daß die Summe der beiden Ströme ausreichen könnte, einen Funken zu zünden. Diese Gefahr wird durch die Diode 54 ausgeschlossen, da sie verhindert, daß ein Strom vom Meßumformer-Speisegerät zum aktiven Meßumformer fließt.The diode 54 is poled so that it flows in the forward direction through the resistor 61 supplied by the active transducer 41 current I MA , but prevents a flow of current from the transducer supply unit 40 to the active transmitter 41. By the already in the circuit of Fig. 1 contained current and voltage limit is given when connecting a passive transducer sufficient security for the transmitter power supply, because the maximum energy available in a fault is too low to ignite a spark. When connecting an active transmitter but could occur the case that a current flowing from the transmitter power supply, which would be too weak for the ignition of a spark too weak, is superimposed outside of the transmitter power supply originating from the active transmitter current, so that the Sum of the two currents could be sufficient to ignite a spark. This hazard is precluded by the diode 54 because it prevents current from flowing from the transmitter supply to the active transmitter.

Claims (1)

  1. A unit for determining a measured value that represents a physical variable, said unit comprising a transmitter power supply unit (40), through which a direct current (IMS) flows, which is suitable for providing electrical energy to a transmitter - particularly one arranged in a hazardous zone - via a two-wire connection, and further comprising a transmitter (41) coupled to the transmitter power supply unit (40), whereby:
    - the transmitter (41) is an active transmitter which is equipped with its own power supply system and delivers an output direct current (IMA) that represents the measured value
    - an adaptive circuit (60) is provided to connect the active transmitter (41) to the transmitter power supply unit (40), said circuit being connected to the transmitter (41) and the transmitter power supply unit (40) in such a way that both the output direct current (IMA) and the direct current (IMS) flow through the circuit; and said circuit using the output current (IMA) to set the direct current (IMS) flowing through the transmitter power supply unit (40) such that this direct current (IMS) is proportional to the output direct current (IMA) of the active transmitter (41), characterized in that:
    - a DC voltage generating the direct current (IMS) is supplied by a DC voltage source (12), and a DC voltage converter (20, 26, 27, 30, 31) is integrated in the connection between the transmitter (41) and the DC voltage source (12) for the purpose of galvanic isolation. Said converter exhibits a transformer, a chopper, which is connected to a primary winding of the transformer and chops the DC voltage, and a rectifier circuit connected to a secondary winding of the transformer, characterized in that the adaptive circuit (60) is integrated between the active transmitter (41) and the rectifier circuit (31) and in that direct current (IMS) flows through the DC voltage converter at a secondary side. The adaptive circuit (60) is arranged in the transmitter power supply unit (40) and the transmitter power supply unit (40) comprises a changeover switch (50) which allows the direct current (IMS) to either flow through a two-wire connection connected to the transmitter power supply unit (40) or through the adaptive circuit (60).
    - a DC voltage, which drops over a resistor and is proportional to the direct current (IMS), is supplied to an evaluation circuit (18) to determine the measured value.
EP97122991A 1997-12-30 1997-12-30 Transducer power supply Expired - Lifetime EP0927982B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE59710058T DE59710058D1 (en) 1997-12-30 1997-12-30 Transmitter power supply
EP97122991A EP0927982B2 (en) 1997-12-30 1997-12-30 Transducer power supply
US09/217,241 US6133822A (en) 1997-12-30 1998-12-21 Transducer supply
CA002257585A CA2257585C (en) 1997-12-30 1998-12-29 Transducer supply
JP11000089A JP2999469B2 (en) 1997-12-30 1999-01-04 Measurement converter power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97122991A EP0927982B2 (en) 1997-12-30 1997-12-30 Transducer power supply

Publications (3)

Publication Number Publication Date
EP0927982A1 EP0927982A1 (en) 1999-07-07
EP0927982B1 EP0927982B1 (en) 2003-05-07
EP0927982B2 true EP0927982B2 (en) 2011-11-23

Family

ID=8227901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97122991A Expired - Lifetime EP0927982B2 (en) 1997-12-30 1997-12-30 Transducer power supply

Country Status (5)

Country Link
US (1) US6133822A (en)
EP (1) EP0927982B2 (en)
JP (1) JP2999469B2 (en)
CA (1) CA2257585C (en)
DE (1) DE59710058D1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10034684A1 (en) * 2000-07-17 2002-01-31 Endress Hauser Gmbh Co Measuring device for measuring a process variable
DE10048599C1 (en) 2000-09-30 2002-04-18 Bosch Gmbh Robert Device for the electrical power supply of detectors, control and signaling devices
DE10152653B4 (en) * 2001-10-16 2005-06-02 Pepperl + Fuchs Gmbh Device for intrinsically safe redundant power supply
FR2863124B1 (en) * 2003-11-27 2006-05-05 Giat Ind Sa LOGIC LINK FOR PROCESS UNITS
US7152781B2 (en) * 2003-12-01 2006-12-26 Advanced Technology Materials, Inc. Manufacturing system with intrinsically safe electric information storage
US7830155B2 (en) * 2005-10-05 2010-11-09 Chrysler Group Llc Two-wire active sensor interface circuit
DE102005055546A1 (en) * 2005-11-18 2007-05-24 Endress + Hauser Wetzer Gmbh + Co Kg Device for transmitting a current and / or a signal
DE102005062422A1 (en) * 2005-12-27 2007-07-05 Vega Grieshaber Kg Circuit arrangement for field device, has short-circuit current limiting unit that is arranged outside of useful signal path, where circuit arrangement is designed to transmit useful signal from input to output along useful signal path
DE102006051900A1 (en) 2006-10-31 2008-05-08 Endress + Hauser Gmbh + Co. Kg Device for determining and / or monitoring at least one process variable
DE102007060555A1 (en) 2007-12-13 2009-06-18 Endress + Hauser Wetzer Gmbh + Co Kg Device for transmitting electrical energy and information
DE102013103454A1 (en) 2013-04-08 2014-10-09 Endress + Hauser Gmbh + Co. Kg Transmitter supply unit, system for use in automation technology, and method for operating such a system
DE102018120878A1 (en) * 2018-08-27 2020-02-27 Endress+Hauser Conducta Gmbh+Co. Kg Sensor and sensor arrangement
DE102018126808A1 (en) * 2018-10-26 2020-04-30 Krohne Messtechnik Gmbh Field measuring device
DE102021127430A1 (en) 2021-10-21 2023-04-27 Endress+Hauser SE+Co. KG Intrinsically safe field device for automation technology

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2321900B2 (en) 1972-05-08 1977-02-17 Rosemount Inc., Eden Prairie, Minn. (V-StA.) TWO-WIRE MEASURING ARRANGEMENT
DE3207785C2 (en) 1982-03-04 1988-11-10 Hartmann & Braun Ag, 6000 Frankfurt, De

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3757195A (en) * 1972-08-11 1973-09-04 Honeywell Inc Isolated two wire signal transmitter
US4292633A (en) * 1978-11-24 1981-09-29 Robertshaw Controls Company Two-wire isolated signal transmitter
DE3139963A1 (en) * 1980-11-27 1982-06-24 Hartmann & Braun Ag, 6000 Frankfurt Circuit arrangement for electrically isolating analog direct-current signals
US5148144A (en) * 1991-03-28 1992-09-15 Echelon Systems Corporation Data communication network providing power and message information
US5539375A (en) * 1991-09-07 1996-07-23 Phoenix Petroleum Services Ltd. Apparatus for transmitting instrumentation signals over power conductors
EP0744724B1 (en) * 1995-05-24 2001-08-08 Endress + Hauser Gmbh + Co. Device for power supply by wire of a signal transmitter by the signal receiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2321900B2 (en) 1972-05-08 1977-02-17 Rosemount Inc., Eden Prairie, Minn. (V-StA.) TWO-WIRE MEASURING ARRANGEMENT
DE3207785C2 (en) 1982-03-04 1988-11-10 Hartmann & Braun Ag, 6000 Frankfurt, De

Also Published As

Publication number Publication date
DE59710058D1 (en) 2003-06-12
US6133822A (en) 2000-10-17
CA2257585C (en) 2001-09-25
EP0927982B1 (en) 2003-05-07
EP0927982A1 (en) 1999-07-07
JP2999469B2 (en) 2000-01-17
CA2257585A1 (en) 1999-06-30
JPH11288494A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
EP0927982B2 (en) Transducer power supply
DE2822484C3 (en) Equipment for electrical power measurement and monitoring
EP0744724B1 (en) Device for power supply by wire of a signal transmitter by the signal receiver
DE3828272A1 (en) ARRANGEMENT FOR TRANSMITTING DATA AND A SUPPLY VOLTAGE THROUGH A BUS LINE
DE3850239T2 (en) DEVICE FOR TRANSMITTING DIFFERENTIAL DIGITAL SIGNALS WITH INTRINSICALLY SAFE SEPARATION.
DE2701184A1 (en) CIRCUIT ARRANGEMENT FOR TRANSMISSION OF MEASURED VALUE SIGNALS
EP1664804B1 (en) Method and device for measuring voltage
DE69203446T2 (en) METHOD AND DEVICE FOR DETERMINATING GROUPS.
EP0771492B1 (en) Servo-amplifier for controlling a high-ohmic low-voltage source
EP0555526B1 (en) Assembly for floating potential capacitance measurement, in particular for capacitive filling level measurement
EP0725995B1 (en) Remote power supply unit
DE2940524C2 (en) Insulation resistance tester
EP0856160B1 (en) Arrangement for controlling a load connected to the secondary side of a transformer
DE2555221C2 (en) Procedure for the detection of residual currents of any kind
DE3207785C2 (en)
EP3544166A1 (en) Auxiliary supply for a power supply
DE3139963C2 (en)
EP3380852B1 (en) Inductive current transformer
EP1074079B1 (en) Power circuit-breaker
EP2665195B1 (en) Device for providing an intrinsically safe supply voltage and for transmitting communication signals
DE3619505A1 (en) SYNCHRO POWER AMPLIFIER AND CONTROL CIRCUIT FOR AUTOMATICALLY TUNING AN INDUCTIVE LOAD
EP0477660B1 (en) Circuit for receiving information carried by power lines
DE2631498C3 (en) Device for generating the ignition pulses for a converter
EP0258214A1 (en) Device to control electrical consumers in powered vehicles.
DE3633325C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991223

AKX Designation fees paid

Free format text: DE FR GB IT

17Q First examination report despatched

Effective date: 20010906

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ENDRESS + HAUSER GMBH + CO.KG.

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59710058

Country of ref document: DE

Date of ref document: 20030612

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: IFM ELECTRONIC GMBH

Effective date: 20040206

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: IFM ELECTRONIC GMBH

Effective date: 20040206

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ENDRESS + HAUSER (DEUTSCHLAND) HOLDING GMBH

Owner name: ENDRESS + HAUSER GMBH + CO. KG

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ENDRESS+HAUSER (DEUTSCHLAND) AG + CO. KG

Owner name: ENDRESS + HAUSER GMBH + CO. KG

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071218

Year of fee payment: 11

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: IFM ELECTRONIC GMBH

Effective date: 20040206

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110104

Year of fee payment: 14

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20111123

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 59710058

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 59710058

Country of ref document: DE

Effective date: 20111123

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121220

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081230

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59710058

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59710058

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701