EP0927982B2 - Transducer power supply - Google Patents
Transducer power supply Download PDFInfo
- Publication number
- EP0927982B2 EP0927982B2 EP97122991A EP97122991A EP0927982B2 EP 0927982 B2 EP0927982 B2 EP 0927982B2 EP 97122991 A EP97122991 A EP 97122991A EP 97122991 A EP97122991 A EP 97122991A EP 0927982 B2 EP0927982 B2 EP 0927982B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- transmitter
- power supply
- direct current
- circuit
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004804 winding Methods 0.000 claims description 12
- 238000002955 isolation Methods 0.000 claims description 11
- 231100001261 hazardous Toxicity 0.000 claims description 8
- 238000011156 evaluation Methods 0.000 claims description 7
- 230000003044 adaptive effect Effects 0.000 claims 4
- 230000001681 protective effect Effects 0.000 description 14
- 238000004891 communication Methods 0.000 description 9
- 239000004020 conductor Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C19/00—Electric signal transmission systems
- G08C19/02—Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage
Definitions
- the invention relates to a transmitter power supply for supplying a transmitter with electrical energy from a DC voltage source via a two-wire connection, is transmitted in the opposite direction of the measured value detected by the transmitter by a variable between two limits direct current, wherein the galvanic isolation in the connection between the Transmitter and the DC voltage source, a transformer is inserted, the primary winding is connected via a chopper to the DC voltage source and to the secondary winding of a rectifier circuit is connected, which generated at its output terminals by rectification of the transferred via the transformer, chopped current generated direct current with the by the transmitter certain size supplies.
- Such a transducer feeder is for example from the US-A-3,764,880 known.
- a transmitter power supply of this type is intended to provide a arranged in a hazardous zone passive transducer via a two-wire connection with electrical energy and at the same time to allow the transmission of the measurement signal supplied by the passive transducer in the form of a variable between two limits current signal in the opposite direction.
- the current signal varies between 4 mA and 20 mA.
- a passive transmitter does not contain its own electrical power source, but draws the energy required for its operation via the two-wire connection from a remote DC voltage source, and forms the measurement signal by extracting from the DC voltage source, in addition to the supply current, a supplemental current so dimensioned in that the total current drawn from the DC voltage source corresponds to the current signal to be transmitted, which lies between the two limit values of, for example, 4 and 20 mA.
- This current signal can also be superimposed on communication signals in the form of pulse-shaped changes, whereby digital data can be transmitted in both directions.
- a galvanic isolation between the voltage source and the transmitter by a transformer is possible by the chopped from the DC voltage source removed total current on the principle of a DC-DC converter on the primary side of the transformer and rectified on the secondary side of the transformer.
- Such galvanic isolation is a particularly advantageous protective measure for transducers which are arranged in potentially explosive atmospheres.
- the galvanic isolation by means of the transformer of a DC-DC converter allows not only the transmission of the DC supply current and the measured value representing DC signal, but also the bidirectional transmission of communication signals in the form of the total current superimposed pulse-shaped changes, provided that the chopper frequency is much higher than the frequency the communication signals.
- An active transmitter differs from a passive transmitter in that it is equipped with its own electrical power supply and generates the measurement signal in the form of varying between two limits DC signal from its own power supply and outputs at its outputs. It is not possible to transmit the DC signal supplied by the active transducer in the direction opposite to the transmission direction of the DC-DC converter.
- the object of the invention is to provide a transmitter power supply of the type described, which can be operated while maintaining the galvanic separation caused by the protective measure either with a passive transmitter or with an active transmitter.
- the matching circuit inserted between the active transmitter and the rectifier circuit causes the primary-side DC voltage source to be loaded via the rectifier circuit and the transformer in the same manner as by a passive transmitter with a DC current corresponding to the measurement signal to be transmitted. Therefore, it can not be seen from the primary side whether an active or a passive measuring transducer is connected on the secondary side.
- the current drawn via the rectifier circuit and the transformer from the primary-side DC voltage source also contains the supply current required for the operation of the matching circuit.
- the total current can be superimposed in the same way as when loaded by a passive transmitter communication signals in the form of pulse-shaped changes that are transmitted bidirectionally via the transformer.
- the protective measure for potentially explosive areas caused by the galvanic isolation remains fully intact regardless of whether an active or a passive transmitter is connected.
- Fig. 1 In the drawing, the circuit components shown on the right of the broken line AA form a prior art transducer feeder 10 for supplying a passive transducer 11 with electrical energy from a DC power source 12 via the two conductors 13, 14 of a two-wire connection across the opposite direction transmitted by the transducer 11 measured value signal is transmitted.
- the two-wire connection 13, 14 is shown interrupted to indicate that it may be of any length. It connects the passive transducer 11 with two terminals 15, 16 of the transducer power supply 10th
- the transmitter 11 includes a sensor for the physical quantity to be measured and an electronic circuit for converting the sensor signal into the measured value signal to be transmitted.
- a passive transmitter does not contain its own power source, but it draws the energy required for the operation of the electronic circuit via the two-wire connection 13, 14 from the DC voltage source 12 in the remote located transducer supply unit 10.
- the transmitter 11 forms the Measurement signal in that it adjusts the current drawn from the DC voltage source 12 so that the measured value is expressed by a lying between 4 mA and 20 mA direct current.
- the DC current is measured by an evaluation circuit 18 arranged at the location of the DC voltage source 12 and evaluated to determine the measured value of the physical variable detected by the measuring transducer 11.
- the transmitter 11 may be configured to superimpose digital communication signals in the form of pulsed changes on the current signal so that measurements and parameters may be digitally read and written. There is then the requirement to transmit such communication signals bidirectionally between the measuring transducer 11 and the evaluation circuit 18.
- a particularly effective protective measure for hazardous areas is a galvanic isolation between the transmitter 11 on the one hand and the DC voltage source 12 and the evaluation circuit 18 on the other.
- This in Fig. 1 shown transducer supply unit 10 is formed with such a galvanic isolation.
- the galvanic isolation is carried out at the transmitter supply unit 10 of Fig. 1 by a transformer 20 having a primary winding 21 and a secondary winding 22.
- the DC voltage source 12 is connected between a center tap 23 of the primary winding 21 and ground.
- Each of the two outer terminals 24 and 25 of the primary winding 21 is connected via a switch 26 and 27 to one terminal 28 of a resistor 29 whose other terminal is grounded.
- the two switches 26 and 27 are controlled by a clock 30 with a relatively high clock frequency of, for example, 200 kHz in push-pull, so that the switch 26 is opened when the switch 27 is closed, and vice versa.
- the current supplied by the DC voltage source 12 alternately flows in opposite directions through the one or the other half of the primary winding 21, but always in the same direction through the resistor 29.
- the DC voltage is chopped into a rectangular AC voltage, the is transferred to the secondary winding 22.
- a full-wave rectifier circuit 31 with four diodes 32 and a filter capacitor 33 is connected, which generates by rectifying the rectangular AC voltage, the DC operating voltage for the passive transducer 11.
- the rectifier circuit 31 includes a connected via a fuse 34 voltage limiter 35, which is shown as a Zener diode.
- Protective resistors 38 and 39 are inserted between the output terminals 36, 37 of the rectifier circuit 31 and the terminals 15, 16 of the transmitter power supply unit intended for connection of the passive transmitter 11.
- the protective resistors 38, 39 prevent the current in the hazardous area from rising above an allowable limit, and the voltage limiter 35, in conjunction with the fuse 34, limits the voltage in the circuit hazardous area to a permissible value.
- the passive transmitter 11 extracts from the rectifier circuit 31 a DC current I MP whose value is set in the range of 4 to 20 mA so as to represent the measured value of the physical quantity detected by the sensor.
- This direct current is supplied via the transformer 20 from the DC voltage source 12, so that at a transmission ratio of 1: 1 of the transformer 20, a DC current of the same magnitude flows through the resistor 29.
- the drop across the resistor 29 DC voltage is thus proportional to the set by the passive transducer 11 measuring current I MP . It is fed to the evaluation circuit 18 connected to the connection 28.
- the passive transducer If the measurement current I MP 11 communication signals are superimposed by the passive transducer in the form of pulse-shaped changes, these pulse-shaped changes are also transmitted via the transformer 20 so that they express themselves in pulse-shaped voltage changes in the voltage drop across the resistor 29. These voltage changes are also detected and evaluated by the evaluation circuit 18.
- the repetition frequency of the pulse-shaped changes is substantially less than the clock frequency of the clock 30.
- the evaluation circuit 18 preferably contains at the input a low-pass filter whose cut-off frequency is set so that the clock frequency of the clock 30 is suppressed, but the superimposed pulse-shaped communication signals are transmitted.
- Fig. 2 shows the schematic diagram of a transmitter power supply unit 40, which makes it possible, instead of the passive transducer 11 optionally connect an active transmitter 41.
- an active transmitter contains its own electrical power supply, and at the output it outputs a direct current supplied by this power supply whose size again corresponds in the range of 4 to 20 mA to the measured value of the physical quantity detected by the sensor. It is immediately apparent that it would not be possible to simply replace the active transducer 41 in place of the passive transducer 11 with the terminals 15, 16 of the circuitry of FIG Fig. 1 because the DC current supplied by the active transducer 41 could not be transmitted to the primary side of the transformer 20 via the rectifier circuit 31 and the transformer 20.
- the transmitter supply unit 40 therefore has two further terminals 42 and 43, to which the active transmitter 41 is connected via the two conductors 44 and 45 of a two-wire connection.
- the switch 50 in the in Fig. 2 shown position it connects the terminal 36 of the rectifier circuit 31 via a connecting conductor 51, a separating capacitor 52, a protective resistor 53 and a diode 54 to the terminal 42.
- the terminal 37 of the rectifier circuit 31 is permanently connected via a connecting conductor 55 and a protective resistor 56 connected to terminal 43.
- the active transducer 41 includes its own electrical power supply and outputs at the output a direct current I MA whose magnitude in the range of 4 to 20 mA corresponds to the measured value of the physical quantity sensed by the sensor.
- the matching circuit 60 includes a resistor 61 connected to the terminals 42 and 43 through the diode 54, a control circuit 62 whose input terminals are connected to the terminals of the resistor 61, and a controllable current source 63 connected between the connecting conductors 51 and 55, the control input thereof the output of the control circuit 62 is connected.
- the controllable current source 63 bridges the two output terminals 36 and 37 of the rectifier circuit 31, when the switch 50, the in Fig. 2 shown position corresponding to the connection of the active transmitter 41.
- the control circuit 62 receives at the input a DC voltage which corresponds to the voltage drop across the resistor 61 caused by the current I MA , and it is designed so that its output signal, the controllable current source 63 so adjusted that taken from the rectifier circuit 31 current I MS of the active transducer I MA is proportional to a predetermined constant factor.
- this factor has the value 1, so that the current I MS is equal to the current I MA .
- the current I MS taken from the rectifier circuit 31 gives the same effect as the current determined in the other position of the changeover switch 50 by the passive transmitter 11 I MP : It is mirrored on the primary side of the transformer 20 and causes a proportional voltage drop across the resistor 29. This voltage drop is thus proportional to the measuring current I MA delivered by the active measuring transducer 41.
- Fig. 3 shows the circuit diagram of an embodiment of the controllable matching circuit 60 of Fig. 2 ,
- the circuit components corresponding to those of Fig. 2 are identical with the same reference numerals as in Fig. 2 designated.
- the controllable current source 63 is formed by a field effect transistor 70 which is connected in series with a resistor 71 between the connecting conductors 51 and 55.
- the control circuit 62 includes an operational amplifier 72 whose power supply terminals are connected to the connecting conductors 51 and 55, so that the operational amplifier 72 is powered by the rectifier circuit 31 when the switch 50 is in the position corresponding to the terminal of the active transmitter 41st equivalent.
- the inverting input of the operational amplifier 72 is connected to the connection conductor 55 via a resistor 73.
- a resistor 74 is inserted between the terminals of the controllable current source 63, the operational amplifier 72 and the resistor 73 on the one hand and the output terminal 37 of the rectifier circuit 31 on the other hand, via which thus both the current determined by the controllable current source 63 and the supply current of the operational amplifier 72 flows.
- the non-inverting input of the operational amplifier 72 is connected to the tap of a voltage divider of two resistors 75 and 76 which are connected in series between the connected via the diode 54 to the terminal 42 of the terminal 61 and the terminal 37 of the rectifier circuit 31.
- the output of the operational amplifier 72 is connected to the gate terminal of the field effect transistor 70.
- the diode 54 is poled so that it flows in the forward direction through the resistor 61 supplied by the active transducer 41 current I MA , but prevents a flow of current from the transducer supply unit 40 to the active transmitter 41.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Description
Die Erfindung betrifft ein Meßumformer-Speisegerät zur Versorgung eines Meßumformers mit elektrischer Energie von einer Gleichspannungsquelle über eine Zweidrahtverbindung, über die in der Gegenrichtung der vom Meßumformer erfaßte Meßwert durch einen zwischen zwei Grenzwerten veränderlichen Gleichstrom übertragen wird, wobei zur galvanischen Trennung in die Verbindung zwischen dem Meßumformer und der Gleichspannungsquelle ein Übertrager eingefügt ist, dessen Primärwicklung über einen Zerhacker an die Gleichspannungsquelle angeschlossen ist und an dessen Sekundärwicklung eine Gleichrichterschaltung angeschlossen ist, die an ihren Ausgangsanschlüssen einen durch Gleichrichtung des über den Übertrager übertragenen, zerhackten Stroms erzeugten Gleichstrom mit der durch den Meßumformer bestimmten Größe liefert.The invention relates to a transmitter power supply for supplying a transmitter with electrical energy from a DC voltage source via a two-wire connection, is transmitted in the opposite direction of the measured value detected by the transmitter by a variable between two limits direct current, wherein the galvanic isolation in the connection between the Transmitter and the DC voltage source, a transformer is inserted, the primary winding is connected via a chopper to the DC voltage source and to the secondary winding of a rectifier circuit is connected, which generated at its output terminals by rectification of the transferred via the transformer, chopped current generated direct current with the by the transmitter certain size supplies.
Ein solches Meßumformer-Speisegerät ist beispielsweise aus der
Aus der
Ein Meßumformer-Speisegerät dieser Art ist dazu bestimmt, einen in einer explosionsgefährdeten Zone angeordneten passiven Meßumformer über eine Zweidrahtverbindung mit elektrischer Energie zu versorgen und zugleich die Übertragung des vom passiven Meßumformer gelieferten Meßsignals in Form eines zwischen zwei Grenzwerten veränderlichen Stromsignals in der Gegenrichtung zu ermöglichen. Einer üblichen Norm entsprechend ist das Stromsignal zwischen 4 mA und 20 mA veränderlich. Ein passiver Meßumformer enthält keine eigene elektrische Spannungsquelle, sondern er bezieht die für seinen Betrieb erforderliche Energie über die Zweidrahtverbindung von einer entfernt angeordneten Gleichspannungsquelle, und er bildet das Meßsignal dadurch, daß er der Gleichspannungsquelle zusätzlich zu dem Versorgungsstrom einen Ergänzungsstrom entnimmt, der so bemessen ist, daß der der Gleichspannungsquelle entnommene Gesamtstrom dem zu übertragenden Stromsignal entspricht, das zwischen den beiden Grenzwerten von beispielsweise 4 und 20 mA liegt. Diesem Stromsignal können außerdem noch Kommunikationssignale in Form von impulsförmigen Änderungen überlagert werden, wodurch digitale Daten in beiden Richtungen übertragen werden können. Da der Gesamtstrom nur in einer Richtung, nämlich von der Spannungsquelle zum Meßumformer übertragen wird, ist eine galvanische Trennung zwischen der Spannungsquelle und dem Meßumformer durch einen Übertrager möglich, indem der aus der Gleichspannungsquelle entnommene Gesamtstrom nach dem Prinzip eines Gleichspannungswandlers auf der Primärseite des Übertragers zerhackt und auf der Sekundärseite des Übertragers gleichgerichtet wird. Eine solche galvanische Trennung ist eine besonders vorteilhafte Schutzmaßnahme für Meßumformer, die in explosionsgefährdeten Zonen angeordnet sind. Die galvanische Trennung mittels des Übertragers eines Gleichspannungswandlers ermöglicht nicht nur die Übertragung des Versorgungsgleichstroms und des den Meßwert darstellenden Gleichstromsignals, sondern auch die bidirektionale Übertragung von Kommunikationssignalen in Form von dem Gesamtstrom überlagerten impulsförmigen Änderungen unter der Voraussetzung, daß die Zerhackerfrequenz wesentlich höher ist als die Frequenz der Kommunikationssignale.A transmitter power supply of this type is intended to provide a arranged in a hazardous zone passive transducer via a two-wire connection with electrical energy and at the same time to allow the transmission of the measurement signal supplied by the passive transducer in the form of a variable between two limits current signal in the opposite direction. According to a standard, the current signal varies between 4 mA and 20 mA. A passive transmitter does not contain its own electrical power source, but draws the energy required for its operation via the two-wire connection from a remote DC voltage source, and forms the measurement signal by extracting from the DC voltage source, in addition to the supply current, a supplemental current so dimensioned in that the total current drawn from the DC voltage source corresponds to the current signal to be transmitted, which lies between the two limit values of, for example, 4 and 20 mA. This current signal can also be superimposed on communication signals in the form of pulse-shaped changes, whereby digital data can be transmitted in both directions. Since the total current is transmitted in one direction, namely from the voltage source to the transmitter, a galvanic isolation between the voltage source and the transmitter by a transformer is possible by the chopped from the DC voltage source removed total current on the principle of a DC-DC converter on the primary side of the transformer and rectified on the secondary side of the transformer. Such galvanic isolation is a particularly advantageous protective measure for transducers which are arranged in potentially explosive atmospheres. The galvanic isolation by means of the transformer of a DC-DC converter allows not only the transmission of the DC supply current and the measured value representing DC signal, but also the bidirectional transmission of communication signals in the form of the total current superimposed pulse-shaped changes, provided that the chopper frequency is much higher than the frequency the communication signals.
Bei einem Meßumformer-Speisegerät der vorstehend geschilderten Art besteht jedoch das Problem, daß es nicht möglich ist, anstelle des passiven Meßumformers einen aktiven Meßumformer anzuschließen. Ein aktiver Meßumformer unterscheidet sich von einem passiven Meßumformer dadurch, daß er mit einer eigenen elektrischen Energieversorgung ausgestattet ist und das Meßsignal in Form des zwischen zwei Grenzwerten veränderlichen Gleichstromsignals aus dieser eigenen Energieversorgung erzeugt und an seinen Ausgängen abgibt. Es ist nicht möglich, das vom aktiven Meßumformer gelieferte Gleichstromsignal in der der Übertragungsrichtung des Gleichspannungswandlers entgegengesetzten Richtung zu übertragen.However, in a transmitter power supply of the kind described above, there is the problem that it is not possible to connect an active transmitter instead of the passive transmitter. An active transmitter differs from a passive transmitter in that it is equipped with its own electrical power supply and generates the measurement signal in the form of varying between two limits DC signal from its own power supply and outputs at its outputs. It is not possible to transmit the DC signal supplied by the active transducer in the direction opposite to the transmission direction of the DC-DC converter.
Aufgabe der Erfindung ist die Schaffung eines Meßumformer-Speisegeräts der eingangs angegebenen Art, das unter Aufrechterhaltung der durch die galvanische Trennung bewirkten Schutzmaßnahme wahlweise mit einem passiven Meßumformer oder mit einem aktiven Meßumformer betrieben werden kann.The object of the invention is to provide a transmitter power supply of the type described, which can be operated while maintaining the galvanic separation caused by the protective measure either with a passive transmitter or with an active transmitter.
Nach der Erfindung wird diese Aufgabe durch die Merkmale des Ansprüchs 1 gelöst.According to the invention, this object is achieved by the features of Ansprüchs 1.
Bei dem erfindungsgemäßen Meßumformer-Speisegerät bewirkt die zwischen dem aktiven Meßumformer und der Gleichrichterschaltung eingefügte Anpassungsschaltung, daß die primärseitig angeordnete Gleichspannungsquelle über die Gleichrichterschaltung und den Übertrager in gleicher Weise wie durch einen passiven Meßumformer mit einem Gleichstrom belastet wird, der dem zu übertragenden Meßsignal entspricht. Von der Primärseite her gesehen ist daher nicht erkennbar, ob sekundärseitig ein aktiver oder ein passiver Meßumformer angeschlossen ist. Der über die Gleichrichterschaltung und den Übertrager aus der primärseitigen Gleichspannungsquelle entnommene Strom enthält auch den für den Betrieb der Anpassungsschaltung erforderlichen Versorgungsstrom. Dem Gesamtstrom können in gleicher Weise wie bei Belastung durch einen passiven Meßumformer Kommunikationssignale in Form von impulsförmigen Änderungen überlagert werden, die bidirektional über den Übertrager übertragen werden. Die durch die galvanische Trennung bewirkte Schutzmaßnahme für explosionsgefährdete Zonen bleibt unabhängig davon, ob ein aktiver oder ein passiver Meßumformer angeschlossen ist, voll erhalten.In the transmitter-feeder device according to the invention, the matching circuit inserted between the active transmitter and the rectifier circuit causes the primary-side DC voltage source to be loaded via the rectifier circuit and the transformer in the same manner as by a passive transmitter with a DC current corresponding to the measurement signal to be transmitted. Therefore, it can not be seen from the primary side whether an active or a passive measuring transducer is connected on the secondary side. The current drawn via the rectifier circuit and the transformer from the primary-side DC voltage source also contains the supply current required for the operation of the matching circuit. The total current can be superimposed in the same way as when loaded by a passive transmitter communication signals in the form of pulse-shaped changes that are transmitted bidirectionally via the transformer. The protective measure for potentially explosive areas caused by the galvanic isolation remains fully intact regardless of whether an active or a passive transmitter is connected.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung eines Ausführungsbeispiels anhand der Zeichnungen. In den Zeichnungen zeigen:
- Fig. 1
- das Schaltbild eines Meßumformer-Speisegeräts bekannter Art zur Versorgung eines passiven Meßumformers mit elektrischer Energie und zur Übertragung des Meßsignals über eine Zweidrahtverbindung,
- Fig. 2
- die Abänderung des Meßumformer-Speisegeräts von
Fig. 1 zum wahlweisen Anschluß eines aktiven Meßumformers anstelle eines passiven Meßumformers und - Fig. 3
- das Meßumformer-Speisegerät von
Fig. 2 mit dem Schaltbild einer Ausführungsform der Anpassungsschaltung.
- Fig. 1
- the diagram of a transducer power supply of known type for supplying a passive transducer with electrical energy and for transmitting the measuring signal via a two-wire connection,
- Fig. 2
- the modification of the transmitter power supply of
Fig. 1 for selectively connecting an active transmitter instead of a passive transmitter and - Fig. 3
- the transmitter supply unit of
Fig. 2 with the diagram of an embodiment of the matching circuit.
In
Der Meßumformer 11 enthält einen Sensor für die zu messende physikalische Größe und eine elektronische Schaltung zur Umwandlung des Sensorsignals in das zu übertragende Meßwertsignal. Ein passiver Meßumformer enthält keine eigene Energiequelle, sondern er bezieht die für den Betrieb der elektronischen Schaltung erforderliche Energie über die Zweidrahtverbindung 13, 14 von der Gleichspannungsquelle 12 in dem an entfernter Stelle angeordneten Meßumformer-Speisegerät 10. Einem üblichen Standard entsprechend bildet der Meßumformer 11 das Meßwertsignal dadurch, daß er den aus der Gleichspannungsquelle 12 entnommenen Strom so einstellt, daß der Meßwert durch einen zwischen 4 mA und 20 mA liegenden Gleichstrom ausgedrückt ist. Der Gleichstrom wird durch eine am Ort der Gleichspannungsquelle 12 angeordnete Auswerteschaltung 18 gemessen und zur Ermittlung des Meßwertes der vom Meßumformer 11 erfaßten physikalischen Größe ausgewertet. Zusätzlich kann der Meßumformer 11 so ausgebildet sein, daß er dem Stromsignal digitale Kommunikationssignale in Form von impulsförmigen Veränderungen überlagert, so daß Meßwerte und Parameter digital gelesen und geschrieben werden können. Es besteht dann die Forderung, solche Kommunikationssignale bidirektional zwischen dem Meßumformer 11 und der Auswerteschaltung 18 zu übertragen.The
Wenn der passive Meßumformer 11 in einer explosionsgefährdeten Zone angeordnet ist, müssen zusätzliche Sicherheitsvorkehrungen getroffen werden. Eine besonders wirksame Schutzmaßnahme für explosionsgefährdete Zonen ist eine galvanische Trennung zwischen dem Meßumformer 11 einerseits und der Gleichspannungsquelle 12 und der Auswerteschaltung 18 andererseits. Das in
Die galvanische Trennung erfolgt bei dem Meßumformer-Speisegerät 10 von
Als weitere Schutzmaßnahme für die Verwendung des passiven Meßumformers 11 in einer explosionsgefährdeten Zone enthält die Gleichrichterschaltung 31 einen über eine Sicherung 34 angeschlossenen Spannungsbegrenzer 35, der als Zenerdiode dargestellt ist. Zwischen die Ausgangsanschlüsse 36, 37 der Gleichrichterschaltung 31 und die für den Anschluß des passiven Meßumformers 11 bestimmten Klemmen 15, 16 des Meßumformer-Speisegeräts sind Schutzwiderstände 38 bzw. 39 eingefügt. Die Schutzwiderstände 38, 39 verhindern ein Ansteigen des Stroms in der explosionsgefährdeten Zone über einen zulässigen Grenzwert, und der Spannungsbegrenzer 35 begrenzt in Verbindung mit der Sicherung 34 die Spannung in der explosionsgefährdeten Zone auf einen zulässigen Wert.As a further protective measure for the use of the
Der passive Meßumformer 11 entnimmt der Gleichrichterschaltung 31 einen Gleichstrom IMP, dessen Wert im Bereich von 4 bis 20 mA so eingestellt ist, daß er den Meßwert der vom Sensor erfaßten physikalischen Größe darstellt. Dieser Gleichstrom wird über den Übertrager 20 von der Gleichspannungsquelle 12 geliefert, so daß bei einem Übersetzungsverhältnis 1:1 des Übertragers 20 ein Gleichstrom gleicher Größe über den Widerstand 29 fließt. Die am Widerstand 29 abfallende Gleichspannung ist somit dem vom passiven Meßumformer 11 eingestellten Meßstrom IMP proportional. Sie wird der an den Anschluß 28 angeschlossenen Auswerteschaltung 18 zugeführt.The
Wenn dem Meßstrom IMP durch den passiven Meßumformer 11 Kommunikationssignale in Form von impulsförmigen Änderungen überlagert sind, werden diese impulsförmigen Änderungen ebenfalls über den Übertrager 20 übertragen, so daß sie sich in impulsförmigen Spannungsänderungen in der am Widerstand 29 abfallenden Spannung äußern. Diese Spannungsänderungen werden von der Auswerteschaltung 18 gleichfalls erfaßt und ausgewertet. Die Folgefrequenz der impulsförmigen Änderungen ist wesentlich geringer als die Taktfrequenz des Taktgebers 30. Die Auswerteschaltung 18 enthält vorzugsweise am Eingang ein Tiefpaßfilter, dessen Grenzfrequenz so eingestellt ist, daß die Taktfrequenz des Taktgebers 30 unterdrückt wird, jedoch die überlagerten impulsförmigen Kommunikationssignale übertragen werden.If the measurement current I MP 11 communication signals are superimposed by the passive transducer in the form of pulse-shaped changes, these pulse-shaped changes are also transmitted via the
Zur Vereinfachung sind in
Wenn dagegen der Umschalter 50 in die in
Bezeichnet man die Widerstandswerte der Widerstände 61, 74, 75 und 76 mit R61, R74, R75 bzw. R76, so besteht der folgende Zusammenhang zwischen dem über den Widerstand 61 fließenden Strom IMA und dem über den Widerstand 74 zum Eingangsanschluß 37 der Gleichrichterschaltung 31 fließenden Strom IMS:
Somit ist der Strom IMS zu dem Strom IMA mit einem durch die Widerstände bestimmten konstanten Faktor proportional. Dieser konstante Faktor kann durch geeignete Bemessung der Widerstände gleich 1 gemacht werden, so daß dann der Strom IMS gleich dem Strom IMA ist. Dies gilt beispielsweise für die folgenden Widerstandswerte:
- R61 = 250 Ω
- R74 = 50 Ω
- R75 = 100 kΩ
- R76 = 20 kΩ
- R 61 = 250 Ω
- R 74 = 50 Ω
- R 75 = 100 kΩ
- R 76 = 20 kΩ
Aus den
Die Diode 54 ist so gepolt, daß sie den vom aktiven Meßumformer 41 gelieferten Strom IMA in der Durchlaßrichtung über den Widerstand 61 fließen läßt, aber einen Stromfluß vom Meßumformer-Speisegerät 40 zum aktiven Meßumformer 41 verhindert. Durch die bereits in der Schaltung von
Claims (1)
- A unit for determining a measured value that represents a physical variable, said unit comprising a transmitter power supply unit (40), through which a direct current (IMS) flows, which is suitable for providing electrical energy to a transmitter - particularly one arranged in a hazardous zone - via a two-wire connection, and further comprising a transmitter (41) coupled to the transmitter power supply unit (40), whereby:- the transmitter (41) is an active transmitter which is equipped with its own power supply system and delivers an output direct current (IMA) that represents the measured value- an adaptive circuit (60) is provided to connect the active transmitter (41) to the transmitter power supply unit (40), said circuit being connected to the transmitter (41) and the transmitter power supply unit (40) in such a way that both the output direct current (IMA) and the direct current (IMS) flow through the circuit; and said circuit using the output current (IMA) to set the direct current (IMS) flowing through the transmitter power supply unit (40) such that this direct current (IMS) is proportional to the output direct current (IMA) of the active transmitter (41), characterized in that:- a DC voltage generating the direct current (IMS) is supplied by a DC voltage source (12), and a DC voltage converter (20, 26, 27, 30, 31) is integrated in the connection between the transmitter (41) and the DC voltage source (12) for the purpose of galvanic isolation. Said converter exhibits a transformer, a chopper, which is connected to a primary winding of the transformer and chops the DC voltage, and a rectifier circuit connected to a secondary winding of the transformer, characterized in that the adaptive circuit (60) is integrated between the active transmitter (41) and the rectifier circuit (31) and in that direct current (IMS) flows through the DC voltage converter at a secondary side. The adaptive circuit (60) is arranged in the transmitter power supply unit (40) and the transmitter power supply unit (40) comprises a changeover switch (50) which allows the direct current (IMS) to either flow through a two-wire connection connected to the transmitter power supply unit (40) or through the adaptive circuit (60).- a DC voltage, which drops over a resistor and is proportional to the direct current (IMS), is supplied to an evaluation circuit (18) to determine the measured value.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE59710058T DE59710058D1 (en) | 1997-12-30 | 1997-12-30 | Transmitter power supply |
EP97122991A EP0927982B2 (en) | 1997-12-30 | 1997-12-30 | Transducer power supply |
US09/217,241 US6133822A (en) | 1997-12-30 | 1998-12-21 | Transducer supply |
CA002257585A CA2257585C (en) | 1997-12-30 | 1998-12-29 | Transducer supply |
JP11000089A JP2999469B2 (en) | 1997-12-30 | 1999-01-04 | Measurement converter power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97122991A EP0927982B2 (en) | 1997-12-30 | 1997-12-30 | Transducer power supply |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0927982A1 EP0927982A1 (en) | 1999-07-07 |
EP0927982B1 EP0927982B1 (en) | 2003-05-07 |
EP0927982B2 true EP0927982B2 (en) | 2011-11-23 |
Family
ID=8227901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97122991A Expired - Lifetime EP0927982B2 (en) | 1997-12-30 | 1997-12-30 | Transducer power supply |
Country Status (5)
Country | Link |
---|---|
US (1) | US6133822A (en) |
EP (1) | EP0927982B2 (en) |
JP (1) | JP2999469B2 (en) |
CA (1) | CA2257585C (en) |
DE (1) | DE59710058D1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10034684A1 (en) * | 2000-07-17 | 2002-01-31 | Endress Hauser Gmbh Co | Measuring device for measuring a process variable |
DE10048599C1 (en) | 2000-09-30 | 2002-04-18 | Bosch Gmbh Robert | Device for the electrical power supply of detectors, control and signaling devices |
DE10152653B4 (en) * | 2001-10-16 | 2005-06-02 | Pepperl + Fuchs Gmbh | Device for intrinsically safe redundant power supply |
FR2863124B1 (en) * | 2003-11-27 | 2006-05-05 | Giat Ind Sa | LOGIC LINK FOR PROCESS UNITS |
US7152781B2 (en) * | 2003-12-01 | 2006-12-26 | Advanced Technology Materials, Inc. | Manufacturing system with intrinsically safe electric information storage |
US7830155B2 (en) * | 2005-10-05 | 2010-11-09 | Chrysler Group Llc | Two-wire active sensor interface circuit |
DE102005055546A1 (en) * | 2005-11-18 | 2007-05-24 | Endress + Hauser Wetzer Gmbh + Co Kg | Device for transmitting a current and / or a signal |
DE102005062422A1 (en) * | 2005-12-27 | 2007-07-05 | Vega Grieshaber Kg | Circuit arrangement for field device, has short-circuit current limiting unit that is arranged outside of useful signal path, where circuit arrangement is designed to transmit useful signal from input to output along useful signal path |
DE102006051900A1 (en) | 2006-10-31 | 2008-05-08 | Endress + Hauser Gmbh + Co. Kg | Device for determining and / or monitoring at least one process variable |
DE102007060555A1 (en) | 2007-12-13 | 2009-06-18 | Endress + Hauser Wetzer Gmbh + Co Kg | Device for transmitting electrical energy and information |
DE102013103454A1 (en) | 2013-04-08 | 2014-10-09 | Endress + Hauser Gmbh + Co. Kg | Transmitter supply unit, system for use in automation technology, and method for operating such a system |
DE102018120878A1 (en) * | 2018-08-27 | 2020-02-27 | Endress+Hauser Conducta Gmbh+Co. Kg | Sensor and sensor arrangement |
DE102018126808A1 (en) * | 2018-10-26 | 2020-04-30 | Krohne Messtechnik Gmbh | Field measuring device |
DE102021127430A1 (en) | 2021-10-21 | 2023-04-27 | Endress+Hauser SE+Co. KG | Intrinsically safe field device for automation technology |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2321900B2 (en) † | 1972-05-08 | 1977-02-17 | Rosemount Inc., Eden Prairie, Minn. (V-StA.) | TWO-WIRE MEASURING ARRANGEMENT |
DE3207785C2 (en) † | 1982-03-04 | 1988-11-10 | Hartmann & Braun Ag, 6000 Frankfurt, De |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3757195A (en) * | 1972-08-11 | 1973-09-04 | Honeywell Inc | Isolated two wire signal transmitter |
US4292633A (en) * | 1978-11-24 | 1981-09-29 | Robertshaw Controls Company | Two-wire isolated signal transmitter |
DE3139963A1 (en) * | 1980-11-27 | 1982-06-24 | Hartmann & Braun Ag, 6000 Frankfurt | Circuit arrangement for electrically isolating analog direct-current signals |
US5148144A (en) * | 1991-03-28 | 1992-09-15 | Echelon Systems Corporation | Data communication network providing power and message information |
US5539375A (en) * | 1991-09-07 | 1996-07-23 | Phoenix Petroleum Services Ltd. | Apparatus for transmitting instrumentation signals over power conductors |
EP0744724B1 (en) * | 1995-05-24 | 2001-08-08 | Endress + Hauser Gmbh + Co. | Device for power supply by wire of a signal transmitter by the signal receiver |
-
1997
- 1997-12-30 EP EP97122991A patent/EP0927982B2/en not_active Expired - Lifetime
- 1997-12-30 DE DE59710058T patent/DE59710058D1/en not_active Expired - Lifetime
-
1998
- 1998-12-21 US US09/217,241 patent/US6133822A/en not_active Expired - Fee Related
- 1998-12-29 CA CA002257585A patent/CA2257585C/en not_active Expired - Fee Related
-
1999
- 1999-01-04 JP JP11000089A patent/JP2999469B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2321900B2 (en) † | 1972-05-08 | 1977-02-17 | Rosemount Inc., Eden Prairie, Minn. (V-StA.) | TWO-WIRE MEASURING ARRANGEMENT |
DE3207785C2 (en) † | 1982-03-04 | 1988-11-10 | Hartmann & Braun Ag, 6000 Frankfurt, De |
Also Published As
Publication number | Publication date |
---|---|
DE59710058D1 (en) | 2003-06-12 |
US6133822A (en) | 2000-10-17 |
CA2257585C (en) | 2001-09-25 |
EP0927982B1 (en) | 2003-05-07 |
EP0927982A1 (en) | 1999-07-07 |
JP2999469B2 (en) | 2000-01-17 |
CA2257585A1 (en) | 1999-06-30 |
JPH11288494A (en) | 1999-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0927982B2 (en) | Transducer power supply | |
DE2822484C3 (en) | Equipment for electrical power measurement and monitoring | |
EP0744724B1 (en) | Device for power supply by wire of a signal transmitter by the signal receiver | |
DE3828272A1 (en) | ARRANGEMENT FOR TRANSMITTING DATA AND A SUPPLY VOLTAGE THROUGH A BUS LINE | |
DE3850239T2 (en) | DEVICE FOR TRANSMITTING DIFFERENTIAL DIGITAL SIGNALS WITH INTRINSICALLY SAFE SEPARATION. | |
DE2701184A1 (en) | CIRCUIT ARRANGEMENT FOR TRANSMISSION OF MEASURED VALUE SIGNALS | |
EP1664804B1 (en) | Method and device for measuring voltage | |
DE69203446T2 (en) | METHOD AND DEVICE FOR DETERMINATING GROUPS. | |
EP0771492B1 (en) | Servo-amplifier for controlling a high-ohmic low-voltage source | |
EP0555526B1 (en) | Assembly for floating potential capacitance measurement, in particular for capacitive filling level measurement | |
EP0725995B1 (en) | Remote power supply unit | |
DE2940524C2 (en) | Insulation resistance tester | |
EP0856160B1 (en) | Arrangement for controlling a load connected to the secondary side of a transformer | |
DE2555221C2 (en) | Procedure for the detection of residual currents of any kind | |
DE3207785C2 (en) | ||
EP3544166A1 (en) | Auxiliary supply for a power supply | |
DE3139963C2 (en) | ||
EP3380852B1 (en) | Inductive current transformer | |
EP1074079B1 (en) | Power circuit-breaker | |
EP2665195B1 (en) | Device for providing an intrinsically safe supply voltage and for transmitting communication signals | |
DE3619505A1 (en) | SYNCHRO POWER AMPLIFIER AND CONTROL CIRCUIT FOR AUTOMATICALLY TUNING AN INDUCTIVE LOAD | |
EP0477660B1 (en) | Circuit for receiving information carried by power lines | |
DE2631498C3 (en) | Device for generating the ignition pulses for a converter | |
EP0258214A1 (en) | Device to control electrical consumers in powered vehicles. | |
DE3633325C2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19991223 |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20010906 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ENDRESS + HAUSER GMBH + CO.KG. |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59710058 Country of ref document: DE Date of ref document: 20030612 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ET | Fr: translation filed | ||
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: IFM ELECTRONIC GMBH Effective date: 20040206 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PLAQ | Examination of admissibility of opposition: information related to despatch of communication + time limit deleted |
Free format text: ORIGINAL CODE: EPIDOSDOPE2 |
|
PLAR | Examination of admissibility of opposition: information related to receipt of reply deleted |
Free format text: ORIGINAL CODE: EPIDOSDOPE4 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: IFM ELECTRONIC GMBH Effective date: 20040206 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ENDRESS + HAUSER (DEUTSCHLAND) HOLDING GMBH Owner name: ENDRESS + HAUSER GMBH + CO. KG |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ENDRESS+HAUSER (DEUTSCHLAND) AG + CO. KG Owner name: ENDRESS + HAUSER GMBH + CO. KG |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20071221 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20071218 Year of fee payment: 11 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: IFM ELECTRONIC GMBH Effective date: 20040206 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20081230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081230 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110104 Year of fee payment: 14 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20111123 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 59710058 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 59710058 Country of ref document: DE Effective date: 20111123 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120102 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20121220 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081230 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59710058 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59710058 Country of ref document: DE Effective date: 20140701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140701 |