EP0924470B1 - Premix combustor for a gas turbine - Google Patents
Premix combustor for a gas turbine Download PDFInfo
- Publication number
- EP0924470B1 EP0924470B1 EP98123199A EP98123199A EP0924470B1 EP 0924470 B1 EP0924470 B1 EP 0924470B1 EP 98123199 A EP98123199 A EP 98123199A EP 98123199 A EP98123199 A EP 98123199A EP 0924470 B1 EP0924470 B1 EP 0924470B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustor
- mixing
- zone
- pilot
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
- F23R3/343—Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
Definitions
- the invention relates to a premixing combustion chamber for a gas turbine, comprising a main stage with at least one premixing chamber and at least one for Part of the combustion chamber, which is designed to be rotationally symmetrical with respect to its longitudinal axis, with an i Main combustion zone and a downstream post-combustion zone, the at least one premixing chamber generating tangential swirl into the combustion chamber opens in the area of the main combustion zone; and a pilot stage with a pilot injector.
- Premix combustion chambers are low-pollution gas turbine combustion chambers.
- gas turbines can be stationary, e.g. as generator drives in power plants, as well as in Aircraft engines are used.
- nitrogen oxide emissions from stationary gas turbines There are maximum limits in numerous industrialized countries for nitrogen oxide emissions from stationary gas turbines.
- There Reduction also comes with corresponding recommendations for aircraft engines the stickodix formation in the combustion chambers as part of the lowering of the Pollutant emissions are of great importance.
- fat-lean burn is currently used in the combustion with a first rich level and a second lean level with excess air he follows.
- the hot gases from the pilot zone become the lean Main zone mixed in, the stabilizing effect strongly of the existing n-den Flow field depends and larger in different operating conditions Can be subject to fluctuations.
- the flow from the main in the post-combustion zone is redirected by 90 °, which leads to an increased pressure loss leads.
- the object of the invention is to provide a premixing combustor described genus to create, in which the stabilizing effect of pilot combustion is improved.
- the solution to this problem is characterized in that the Main combustion zone in the combustion chamber essentially coaxial or parallel runs or is arranged to the afterburning zone, i.e. the flow path in runs essentially straight and without significant deflection, and the pilot stage the end of the combustion chamber remote from the afterburning zone is arranged.
- premix combustion chamber The advantage of this premix combustion chamber is that the flow is within the combustion chamber from the main combustion zone to the afterburning zone is deflected by 90 ° and the associated pressure loss is eliminated.
- the pilot stage arranged directly on the combustion chamber has a direct one Connection to the main combustion or recirculation zone, creating the stabilizing Effect of pilot combustion is significantly improved.
- Premix combustors can be used in stationary gas turbines as well as in aircraft engines deploy.
- the main combustion zone widens forming area of the combustion chamber in the flow direction, from the Main combustion zone runs towards the post-combustion zone, conical on. Through the opening angle of the cone, the recirculation zone and thus control flame stability. While there is an additional one at smaller opening angles Pre-evaporation results in the case of larger opening angles Promotes combustion stability.
- the pilot stage at the end of the combustion chamber with a smaller radius is preferred arranged at the front and coaxial to it.
- pilot stage may be one between the pilot injection device and the combustion chamber arranged pilot combustion chamber.
- the premix combustion chamber 1 shows an exemplary embodiment of a premix combustion chamber, designated as a whole by 1 for a gas turbine.
- the premix combustion chamber 1 essentially comprises a main stage 2 with a premixing chamber 6, a main combustion zone 3 and a post-combustion zone 5 and a pilot stage 4.
- the premixing chamber 6 becomes the fuel together with part of the compressor air brought in.
- the fuel is atomized and evaporated in the premixing chamber 6 and mixed with the air as homogeneously as possible.
- the premixing chamber 6 is formed as a rectilinear rectangular channel, so that within the premixing chamber 6 a swirl-free flow with a relatively uniform velocity profile is produced.
- the premixing chamber 6 can depending on the machine design also have other suitable cross-sectional shapes, such as e.g. oval or circular.
- the cross-sectional shape does not necessarily have to be constant over the length of the premixing chamber 6.
- the fuel-air mixture flows at an outlet end 8 of the premixing chamber 6 into the combustion chamber 9, which is designed as a truncated cone, in the region of the Main combustion zone 3 lying part and a cylindrical, in the area of Afterburning zone 5 includes lying part 12.
- the flow is included the greatest possible eccentricity to a longitudinal or central axis M of the rotationally symmetrical Combustion chamber 9 introduced so that the flow of the Fuel / air mixture is impressed a peripheral speed.
- Premixing chamber 6 is also designed with the lowest possible height H.
- the combustion chamber 9 has a plurality of for cooling Air inlet openings.
- pilot stage 4 At an end 10 of the combustion chamber 9 remote from the afterburning zone 5 the pilot stage 4 arranged.
- pilot level is 4 thus at the front end 10 with the smallest radius as a truncated cone trained part of the combustion chamber 9 arranged.
- the pilot stage 4 includes one Pilot injector 11, with the fuel in the main combustion zone 3 for Stabilization of the combustion can be introduced in particular in the partial load range can.
- the hot gases from pilot stage 4 flow directly into the core of the recirculation zone the lean main level 2, resulting in improved stability of the Combustion leads. Both in the main and in the pilot level 2 or 4 gaseous and liquid fuels are used.
- Fig. 2 shows another embodiment of the premix combustion chamber 1, the Modification is in the area of pilot level 4.
- the pilot stage 4 additionally to the pilot injection device 11, a pilot combustion chamber 13 in which the Fuel is first mixed with air in a diffusion combustion and only then is then introduced into the front of the combustion chamber 9.
- Fig. 3 shows an arrangement in which a plurality of premixing combustion chambers 1 with an annular combustion chamber 14 are combined.
- the individual premixing combustion chambers comprise 1 a premixing chamber 6, which is eccentrically into a truncated cone trained part of the combustion chamber 9 opens a main stage 2, and an afterburning zone arranged essentially coaxially to the main stage 2 5, causing the flow between the main combustion zone 3 and the post-combustion zone 5 does not have to be deflected and therefore the combustion chamber pressure drop is reduced.
- the combustion chamber 9 could also be cylindrical Have part 12 which is substantially coaxial to the longitudinal axis M of the combustion chamber 9 is arranged.
- the annular combustion chamber 14 When the annular combustion chamber 14 is installed in a gas turbine, it becomes with its central axis M arranged coaxially with it and from an upstream one Air supplied to the compressor on the injection side.
- the premix combustion chambers 1 are arranged equidistantly around the end circumference of the annular combustion chamber 14.
- the wall of the combustion chamber 9 is for cooling with air inlet openings Mistake.
- the main stage 2 and the pilot stage can 4 Depending on the load or flight phase, they can be operated separately or simultaneously.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Description
Die Erfindung betrifft eine Vormischbrennkammer für eine Gasturbine, umfassend eine Hauptstufe mit mindestens einer Vormischkammer und einer wenigstens zum Teil rotationssymmetrisch zu ihrer Längsachse ausgebildeten Brennkammer mit e i-ner Hauptverbrennungs- und einer stromabwärts gelegenen Nachverbrennungszone, wobei die mindestens eine Vormischkammer tangential drallerzeugend in die Brennkammer im Bereich der Hauptverbrennungszone mündet; und eine Pilotstufe mit einer Piloteinspritzvorrichtung.The invention relates to a premixing combustion chamber for a gas turbine, comprising a main stage with at least one premixing chamber and at least one for Part of the combustion chamber, which is designed to be rotationally symmetrical with respect to its longitudinal axis, with an i Main combustion zone and a downstream post-combustion zone, the at least one premixing chamber generating tangential swirl into the combustion chamber opens in the area of the main combustion zone; and a pilot stage with a pilot injector.
Vormischbrennkammern sind schadstoffarme Gasturbinenbrennkammern. Gasturbinen können sowohl stationär, z.B. als Generatorantriebe in Kraftwerken, als auch in Flugtriebwerken eingesetzt werden. In zahlreichen Industrieländern sind Höchstgrenzen für die Stickoxidemission stationärer Gasturbinen festgelegt worden. Da auch bei Flugantrieben entsprechende Empfehlungen existieren, kommt der Red u-zierung der Stickodixbildung in den Brennkammern im Rahmen der Senkung der Schadstoffemission eine große Bedeutung zu. Zur Stickoxidreduktion wird bei Flugtriebwerken derzeit die Fett-Mager-Verbrennung eingesetzt, bei der die Verbrennung mit einer ersten fetten Stufe und einer zweiten mageren Stufe unter Luftüberschuß erfolgt.Premix combustion chambers are low-pollution gas turbine combustion chambers. gas turbines can be stationary, e.g. as generator drives in power plants, as well as in Aircraft engines are used. There are maximum limits in numerous industrialized countries for nitrogen oxide emissions from stationary gas turbines. There Reduction also comes with corresponding recommendations for aircraft engines the stickodix formation in the combustion chambers as part of the lowering of the Pollutant emissions are of great importance. For jet oxide reduction in aircraft engines fat-lean burn is currently used in the combustion with a first rich level and a second lean level with excess air he follows.
Mit der bei stationären Gasturbinen angewendeten, vorgemischten Magerverbrennung lassen sich im Vergleich dazu noch größere Reduktionen erzielen. Da die Stickoxidbildung u.a. mit der höchsten Temperatur in der Flamme steigt, wurden Verfahren entwickelt, die höchste Flammentemperatur abzusenken. Man unterscheidet dabei zwischen nassen und trockenen Verfahren. Bei den bisher überwi e-gend eingesetzten, nassen Verfahren werden Wasser oder Wasserdampf getrennt oder mit dem Brennstoff vorgemischt in die Verbrennungszone eingebracht. Dabei ist nachteilig, daß aufbereitetes Wasser erforderlich ist, dessen Verbrauch zudem hoch ist. Darüber hinaus sinkt bei den nassen Verfahren der Anlagenwirkungsgrad.With the premixed lean combustion used in stationary gas turbines in comparison, even larger reductions can be achieved. Since the Nitrogen oxide formation etc. with the highest temperature in the flame rises Process developed to lower the highest flame temperature. One differentiates doing this between wet and dry processes. Most of the previous ones The wet process used separates water or water vapor or premixed with the fuel into the combustion zone. there is disadvantageous that treated water is required, its consumption also is high. In addition, the plant efficiency drops with the wet processes.
Aufgrund dieser Nachteile sind zunehmend trockene Verfahren erwünscht, bei denen die Luftüberschußzahl in der Verbrennungszone soweit wie möglich erhöht und Luft und Brennstoff ganz oder teilweise vorgemischt werden. Um den gesetzlichen Vor-schriften und Empfehlungen zu genügen, müssen Luft und Brennstoff vor dem Ver-brennungsraum möglichst homogen gemischt werden. Allein auf diese Weise können die Spitzentemperaturen in der Flamme verringert werden. Dazu wurden Vormischbrennkammern entwickelt, bei denen es zur Erzielung eines hohen Homogenitätsgrads einer bestimmten Länge der Vormischkammer oder einer Mindestverweilzeit in der Vormischkammer bedarf. Dabei besteht jedoch die Gefahr, daß sich das Brennstoff/Luft-Gemisch in der Vormischkammer entzündet. Da in diesem Fall der Vermischungsprozeß nicht abgeschlossen ist, entstehen lokal infolge von Inhomogenitäten hohe Temperaturen, die zur erhöhten Stickoxidbildung führen. Des weiteren besteht die Gefahr eines Flammenrückschlags aus der Verbrennungszone in die Vormischkammer. Zu dessen Vermeidung werden bei herkömmlichen Vormischbrennkammern am Ende der Vormischkammer Schaufelgitter od. dgl. angebracht, um das Gemisch zu beschleunigen und eine Drallbildung zu erzeugen. Tritt ein Rückzünden gleichwohl auf, führt dieses zur Beschädigung oder Zerstörung von Brennkammerteilen, wie z.B. der Schaufelgitter.Because of these disadvantages, dry processes are increasingly desired in which the excess air number in the combustion zone increases as much as possible and air and all or part of the fuel is premixed. To the legal regulations and recommendations must meet air and fuel in front of the combustion chamber are mixed as homogeneously as possible. That way alone the peak temperatures in the flame are reduced. For this purpose premix combustion chambers developed, in order to achieve a high degree of homogeneity a certain length of the premixing chamber or a minimum residence time in the premixing chamber. However, there is a risk that the Fuel / air mixture ignited in the premixing chamber. Because in this case the Mixing process is not complete, arise locally due to inhomogeneities high temperatures, which lead to increased nitrogen oxide formation. Furthermore there is a risk of flashback from the combustion zone into the Premix. In order to avoid this, conventional premixing combustion chambers at the end of the premixing chamber, a scoop grid or the like is attached, to accelerate the mixture and create a swirl. Backfire occurs nevertheless leads to damage or destruction of combustion chamber parts, such as. the shovel grille.
Bei einer bekannten Brennkammeranordnung gemäß DE-PS 43 18 405 wird mittels vorgemischter Magerverbrennung eine Senkung der Stickodixbildung ohne Gefahr der Selbstzündung in einer Vormischstrecke ermöglicht, indem der Brennstoff in eine im wesentlichen gerade ausgebildete Vormischkammer eingespritzt wird, die tangential in eine im wesentlichen rotationssymmetrisch ausgebildete Verbrennungskammer mündet, wodurch beim Einströmen des Gemisches eine Drallbildung erzielt wird. Da die Drallbildung nicht mittels zusätzlicher Bauteile, wie Schaufelgitter, e r-zeugt wird, scheidet die Gefahr der Bauteilbeschädigung bei einem eventuell auftretenden Flammenrückschlag aus. Eine ausreichende Verbrennungsstabilität wird mi t-tels einer unterstützenden Pilotverbrennung gewährleistet, die in einer separaten Verbrennungszone erfolgt. Die Heißgase aus der Pilotzone werden in die magere Hauptzone eingemischt, wobei die stabilisierende Wirkung stark von dem existiere n-den Strömungsfeld abhängt und bei unterschiedlichen Betriebszuständen größeren Schwankungen unterworfen sein kann. Zudem wird die Strömung von der Haupt- in die Nachverbrennungszone um 90° umgelenkt, was zu einem erhöhten Druckverlust führt. In a known combustion chamber arrangement according to DE-PS 43 18 405 is by means of premixed lean burn a reduction in stickodix formation without danger The auto-ignition in a premixing section is made possible by the fuel in a is injected essentially straight pre-mixing chamber, the tangential into an essentially rotationally symmetrical combustion chamber opens, whereby a swirl formation occurs when the mixture flows in becomes. Because the swirl is not generated by means of additional components, such as a vane grille there is no risk of damage to the component if it occurs Flashback. Adequate combustion stability is ensured assisting pilot combustion, which is carried out in a separate Combustion zone takes place. The hot gases from the pilot zone become the lean Main zone mixed in, the stabilizing effect strongly of the existing n-den Flow field depends and larger in different operating conditions Can be subject to fluctuations. In addition, the flow from the main in the post-combustion zone is redirected by 90 °, which leads to an increased pressure loss leads.
Die Aufgabe der Erfindung besteht darin, eine Vormischbrennkammer der eingangs beschriebenen Gattung zu schaffen, bei der die stabilisierende Wirkung der Pilotverbrennung verbessert wird.The object of the invention is to provide a premixing combustor described genus to create, in which the stabilizing effect of pilot combustion is improved.
Die Lösung dieser Aufgabe ist erfindungsgemäß dadurch gekennzeichnet, daß die Hauptverbrennungszone in der Brennkammer im wesentlichen koaxial bzw. parallel zur Nachverbrennungszone verläuft bzw. angeordnet ist, d.h. der Strömungsweg im wesentlichen gerade und ohne erhebliche Umlenkung verläuft, und die Pilotstufe an dem der Nachverbrennungszone entfernten Ende der Brennkammer angeordnet ist.The solution to this problem is characterized in that the Main combustion zone in the combustion chamber essentially coaxial or parallel runs or is arranged to the afterburning zone, i.e. the flow path in runs essentially straight and without significant deflection, and the pilot stage the end of the combustion chamber remote from the afterburning zone is arranged.
Der Vorteil dieser Vormischbrennkammer besteht darin, daß die Strömung innerhalb der Brennkammer von der Hauptverbrennungszone zur Nachverbrennungszone nicht um 90° umgelenkt wird und der damit verbundene Druckverlust entfällt. Durch die unmittelbar an der Brennkammer angeordnete Pilotstufe besitzt diese eine direkte Verbindung zur Hauptverbrennungs- bzw. Rezirkulationszone, wodurch die stabilisierende Wirkung der Pilotverbrennung deutlich verbessert wird. Die erfindungsgemäße Vormischbrennkammer läßt sich sowohl in stationären Gasturbinen als auch in Flug-triebwerken einsetzen.The advantage of this premix combustion chamber is that the flow is within the combustion chamber from the main combustion zone to the afterburning zone is deflected by 90 ° and the associated pressure loss is eliminated. Through the The pilot stage arranged directly on the combustion chamber has a direct one Connection to the main combustion or recirculation zone, creating the stabilizing Effect of pilot combustion is significantly improved. The invention Premix combustors can be used in stationary gas turbines as well as in aircraft engines deploy.
In einer bevorzugten Ausgestaltung der Erfindung weitet sich der die Hauptverbrennungszone bildende Bereich der Brennkammer in Strömungsrichtung, die von der Hauptverbrennungszone in Richtung auf die Nachverbrennungszone verläuft, konisch auf. Durch den Öffnungswinkel des Konus läßt sich die Rezirkulationszone und damit die Flammenstabilität steuern. Während sich bei kleineren Öffnungswinkeln ein zu-sätzlicher Vorverdampfungsbereich ergibt, wird bei größeren Öffnungswinkeln die Stabilität der Verbrennung gefördert.In a preferred embodiment of the invention, the main combustion zone widens forming area of the combustion chamber in the flow direction, from the Main combustion zone runs towards the post-combustion zone, conical on. Through the opening angle of the cone, the recirculation zone and thus control flame stability. While there is an additional one at smaller opening angles Pre-evaporation results in the case of larger opening angles Promotes combustion stability.
Bevorzugt ist die Pilotstufe an dem Ende der Brennkammer mit kleinerem Radius stirnseitig angeordnet und verläuft koaxial dazu.The pilot stage at the end of the combustion chamber with a smaller radius is preferred arranged at the front and coaxial to it.
Es kann zweckmäßig sein, daß die Pilotstufe eine zwischen der Piloteinspritzvorrichtung und der Brennkammer angeordnete Pilotbrennkammer aufweist. It may be appropriate for the pilot stage to be one between the pilot injection device and the combustion chamber arranged pilot combustion chamber.
Im folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf eine Zeichnung näher erläutert: Es zeigt:
- Fig. 1
- in perspektivischer Darstellung eine schematische Ansicht eines Ausführungsbeispiels der erfindungsgemäßen Vormischbrennkammer, die auf die wesentlichen Bestandteile zur Erläuterung der Anordnung beschränkt ist,
- Fig. 2
- eine mit Fig. 1 vergleichbare Ansicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen Vormischbrennkammer und
- Fig. 3
- in perspektivischer Darstellung eine geschnittene Teilansicht einer Ringbrennkammeranordnung.
- Fig. 1
- a perspective view of a schematic view of an embodiment of the premixing combustion chamber according to the invention, which is limited to the essential components for explaining the arrangement,
- Fig. 2
- a view comparable to FIG. 1 of a further embodiment of the premix combustion chamber according to the invention and
- Fig. 3
- a perspective partial sectional view of an annular combustion chamber arrangement.
Fig. 1 zeigt ein Ausführungsbeispiel einer im ganzen mit 1 bezeichneten Vormischbrennkammer
für eine Gasturbine. Die Vormischbrennkammer 1 umfaßt im wesen t-lichen
eine Hauptstufe 2 mit einer Vormischkammer 6, einer Hauptverbrennungszone
3 und einer Nachverbrennungszone 5 sowie eine Pilotstufe 4. An einem Ende 7
der Vormischkammer 6 wird der Brennstoff zusammen mit einem Teil der Verdichterluft
eingebracht. Der Brennstoff wird in der Vormischkammer 6 zerstäubt, verdampft
und mit der Luft möglichst homogen vermischt. Die Vormischkammer 6 ist
als geradliniger Rechteckkanal ausgebildet, so daß innerhalb der Vormischkammer 6
eine drallfreie Strömung mit einem verhältnismäßig gleichmäßigen Geschwindi g-keitsprofil
erzeugt wird. Dieses führt die zu einer hohen Gemischhomogenität zwi-schen
dem Brennstoff und der Luft, wodurch Temperaturspitzen mit einer verstärk-ten
thermischen Stickoxidbildung vermieden werden. Die Vormischkammer 6 kann
je nach Maschinendesign auch andere geeignete Querschnittsformen aufweisen, wie
z.B. oval oder auch kreisrund. Auch muß die Querschnittsform nicht zwingend konstant
über die Länge der Vormischkammer 6 sein.1 shows an exemplary embodiment of a premix combustion chamber, designated as a whole by 1
for a gas turbine. The
An einem Austrittsende 8 der Vormischkammer 6 strömt das Brennstoff-Luftgemisch
in die Brennkammer 9, die einen als Kegelstumpf ausgebildeten, im Bereich der
Hauptverbrennunszone 3 liegenden Teil und einen zylindrischen, im Bereich der
Nachverbrennungszone 5 liegenden Teil 12 umfaßt. Die Strömung wird dabei mit
einer möglichst großen Exzentrizität zu einer Längs- bzw. Mittelachse M der rotationssymmetrischen
Brennkammer 9 eingebracht, so daß in dieser der Strömung des
Brennstoff/Luft-Gemisches eine Umfangsgeschwindigkeit aufgeprägt wird. Zur Erzielung
einer größtmöglichen Exzentrizität ist die im Querschnitt rechteckförmige
Vormischkammer 6 zudem mit einer möglichst geringen Höhe H ausgebildet. Infolge
der Drallbildung ergibt sich eine ausgeprägte, aus dem kegelstumpfförmig ausgebildeten
Teil der Brennkammer 9 hinausreichende Rezirkulation des Brennstoff-Luftgemisches,
wodurch diese in die Hauptverbrennungszone 3 bzw. den konisch
ausgebildeten Teil der Brennkammer 9 zurückströmt und die Verbrennung stabili-siert.
Erst im Anschluß gelangt die Strömung in die im wesentlichen parallel bzw.
koaxial zur Hauptverbrennungszone 3 und insbesondere zur Mittelachse M der zum
Teil kegelstumpfförmigen Brennkammer 9 verlaufende, stromabwärtige Nachverbrennungszone
5. Der Strömungsweg für das Brennstoff-Luft-Gemisch ist somit im
wesentlichen gerade. Die Brennkammer 9 weist zur Kühlung eine Vielzahl von
Lufteintrittsöffnungen auf.The fuel-air mixture flows at an
An einem zur Nachverbrennungszone 5 entfernten Ende 10 der Brennkammer 9 ist
die Pilotstufe 4 angeordnet. in der vorliegenden Ausgestaltung ist die Pilotstufe 4
mithin an dem stirnseitigen Ende 10 mit dem kleinsten Radius des als Kegelstumpf
ausgebildeten Teils der Brennkammer 9 angeordnet. Die Pilotstufe 4 umfaßt eine
Piloteinspritzvorrichtung 11, mit der Brennstoff in die Hauptverbrennungszone 3 zur
Stabilisierung der Verbrennung insbesondere im Teillastbereich eingebracht werden
kann. Die Heißgase aus der Pilotstufe 4 strömen unmittelbar in den Kern der Rezirkulatioszone
der mageren Hauptstufe 2, was zu einer verbesserten Stabilität der
Verbrennung führt. Sowohl in der Haupt- als auch in der Pilotstufe 2 bzw. 4 können
gasförmige und flüssige Brennstoffe eingesetzt werden.At an
Fig. 2 zeigt ein anderes Ausführungsbeispiel der Vormischbrennkammer 1, dessen
Modifikation im Bereich der Pilotstufe 4 liegt. In Fig. 2 weist die Pilotstufe 4 zusätzlich
zur Piloteinspritzvorrichtung 11 eine Pilotbrennkammer 13 auf, in welcher der
Brennstoff zunächst in einer Diffusionsverbrennung mit Luft gemischt wird und erst
dann stirnseitig in die Brennkammer 9 eingebracht wird.Fig. 2 shows another embodiment of the
Fig. 3 zeigt eine Anordnung, bei der eine Vielzahl von Vormischbrennkammern 1 mit
einer Ringbrennkammer 14 kombiniert sind. Auch hier umfassen die einzelnen Vormischbrennkammern
1 eine Vormischkammer 6, die exzentrisch in einen als Kegel-stumpf
ausgebildeten Teil der Brennkammer 9 einer Hauptstufe 2 mündet, sowie
eine im wesentlichen koaxial zur Hauptstufe 2 angeordnete Nachverbrennungszone
5, wodurch die Strömung zwischen der Hauptverbrennungszone 3 und der Nachverbrennungszone
5 nicht umgelenkt werden muß und mithin der Brennkammerdruckverlust
reduziert wird. Zwischen dem konusförmigen Teil der Brennkammer 9 und
der Ringbrennkammer 14 könnte die Brennkammer 9 auch hier einen zylindrischen
Teil 12 aufweisen, der im wesentlichen koaxial zur Längsachse M der Brennkammer
9 angeordnet ist. Beim Einbau der Ringbrennkammer 14 in eine Gasturbine wird diese
mit ihrer Mittelachse M koaxial dazu angeordnet und von einem stromaufwärtigen
Verdichter einspritzseitig mit Luft beaufschlagt. Die Vormischbrennkammern 1 sind
äquidistant um den stirnseitigen Umfang der Ringbrennkammer 14 angeordnet.
Auch hier ist die Wandung der Brennkammer 9 zur Kühlung mit Lufteintrittsöffnungen
versehen.Fig. 3 shows an arrangement in which a plurality of
Beim Betrieb der Vormischbrennkammer 1 können die Hauptstufe 2 und die Pilotstufe
4 je nach Last bzw. Flugphase wahlweise separat oder gleichzeitig betrieben wer-den.When operating the
Claims (10)
- Pre-mixing combustor for a gas turbine, comprising a main stage with at least one pre-mixing chamber and a combustor designed to be at least partially dynamically balanced relative to its longitudinal axis and consisting of a main combustion zone and a downstream reheat zone, the at least one pre-mixing chamber terminating in the combustor while generating tangential spin, and further comprising a pilot stage with a pilot injection device, characterised in that the main combustion zone (3) in the combustor (9) extends essentially coaxial with the reheat zone (5) and in that the pilot stage (4) is located at that end (10) of the combustor (9) which is remote from the reheat zone (5).
- Pre-mixing combustor according to claim 1, characterised in that the at least one pre-mixing chamber (6) is designed as a rectangular duct.
- Pre-mixing combustor according to claim 1 or 2, characterised in that the at least one pre-mixing chamber (6) has a low height (H) relative to its length and width.
- Pre-mixing combustor according to one or more of the preceding claims, characterised in that the exit end (8) of the at least one pre-mixing chamber (6) is so arranged relative to the combustor (9) that the flow entering the combustor (9) has a maximum eccentricity relative to the longitudinal axis (M) of the combustor (9).
- Pre-mixing combustor according to one or more of the preceding claims, characterised in that two or four pre-mixing chambers (6) terminate in pairs at the combustor (9) in at least approximately diametrically opposite positions while generating spin in the same direction.
- Pre-mixing combustor according to one or more of the preceding claims, characterised in that the area of the combustor (9) which forms the main combustion zone (3) conically expands in the direction of flow.
- Pre-mixing combustor according to claim 6, characterised in that the pilot stage (4) at the end (10) of the combustor (9) is located at its end face and coaxial thereto with a small radius.
- Pre-mixing combustor according to one or more of the preceding claims, characterised in that the pilot stage (4) comprises a pilot combustor (12) located between the pilot injection device (11) and the combustor (9).
- Pre-mixing combustor arrangement according to one or more of the preceding claims, characterised in that the area of the combustor (9) forming the reheat zone (5) is designed as an annular combustion chamber (14), to the end face of which a plurality of combustors (9) including the main combustion zone (3) as well a pre-mixing chambers (6) and pilot stages (4) is connected with equal spacing.
- Pre-mixing combustor arrangement according to claim 9, characterised in that each combustor (9) comprises a conical part essentially forming the main combustion zone (3) and a downstream cylindrical part (12) coaxial with its longitudinal axis (M) and terminating in the annular combustion chamber (14).
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19756663 | 1997-12-19 | ||
DE1997156663 DE19756663B4 (en) | 1997-12-19 | 1997-12-19 | Premix combustion chamber for a gas turbine |
DE19810648 | 1998-03-12 | ||
DE1998110648 DE19810648A1 (en) | 1998-03-12 | 1998-03-12 | Premix combustion chamber for gas turbine |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0924470A2 EP0924470A2 (en) | 1999-06-23 |
EP0924470A3 EP0924470A3 (en) | 2001-03-14 |
EP0924470B1 true EP0924470B1 (en) | 2003-06-18 |
Family
ID=26042638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98123199A Expired - Lifetime EP0924470B1 (en) | 1997-12-19 | 1998-12-05 | Premix combustor for a gas turbine |
Country Status (4)
Country | Link |
---|---|
US (1) | US6202420B1 (en) |
EP (1) | EP0924470B1 (en) |
JP (1) | JPH11248159A (en) |
DE (1) | DE59808754D1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100443806C (en) * | 2006-05-16 | 2008-12-17 | 北京航空航天大学 | Tangential standing vortex burning chamber |
EP2299178B1 (en) | 2009-09-17 | 2015-11-04 | Alstom Technology Ltd | A method and gas turbine combustion system for safely mixing H2-rich fuels with air |
CN102032597B (en) * | 2010-11-29 | 2012-07-04 | 北京航空航天大学 | Premixing pre-vaporization combustion chamber for main combustible stage of discrete pipe |
US8978388B2 (en) | 2011-06-03 | 2015-03-17 | General Electric Company | Load member for transition duct in turbine system |
US8650852B2 (en) | 2011-07-05 | 2014-02-18 | General Electric Company | Support assembly for transition duct in turbine system |
US8448450B2 (en) | 2011-07-05 | 2013-05-28 | General Electric Company | Support assembly for transition duct in turbine system |
US9328623B2 (en) * | 2011-10-05 | 2016-05-03 | General Electric Company | Turbine system |
US8974179B2 (en) | 2011-11-09 | 2015-03-10 | General Electric Company | Convolution seal for transition duct in turbine system |
US8701415B2 (en) | 2011-11-09 | 2014-04-22 | General Electric Company | Flexible metallic seal for transition duct in turbine system |
US8459041B2 (en) | 2011-11-09 | 2013-06-11 | General Electric Company | Leaf seal for transition duct in turbine system |
CN102393028B (en) * | 2011-12-09 | 2013-08-28 | 中国船舶重工集团公司第七�三研究所 | Dry-type low-emission combustion chamber of natural gas fuel turbine |
US9038394B2 (en) | 2012-04-30 | 2015-05-26 | General Electric Company | Convolution seal for transition duct in turbine system |
US9133722B2 (en) | 2012-04-30 | 2015-09-15 | General Electric Company | Transition duct with late injection in turbine system |
US8707673B1 (en) | 2013-01-04 | 2014-04-29 | General Electric Company | Articulated transition duct in turbomachine |
US9080447B2 (en) | 2013-03-21 | 2015-07-14 | General Electric Company | Transition duct with divided upstream and downstream portions |
CN103266922B (en) * | 2013-06-15 | 2014-11-12 | 厦门大学 | Turbine stator blade with interstage combustor |
US9458732B2 (en) | 2013-10-25 | 2016-10-04 | General Electric Company | Transition duct assembly with modified trailing edge in turbine system |
US10260752B2 (en) | 2016-03-24 | 2019-04-16 | General Electric Company | Transition duct assembly with late injection features |
US10260360B2 (en) | 2016-03-24 | 2019-04-16 | General Electric Company | Transition duct assembly |
US10260424B2 (en) | 2016-03-24 | 2019-04-16 | General Electric Company | Transition duct assembly with late injection features |
US10227883B2 (en) | 2016-03-24 | 2019-03-12 | General Electric Company | Transition duct assembly |
US10145251B2 (en) | 2016-03-24 | 2018-12-04 | General Electric Company | Transition duct assembly |
EP3755946A1 (en) | 2018-02-23 | 2020-12-30 | Fulton Group N.A., Inc. | Inward-firing premix fuel combustion burner |
CN109113895B (en) * | 2018-09-11 | 2019-08-27 | 中国人民解放军国防科技大学 | Flame stabilizing device of ramjet engine |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2552492A (en) * | 1948-06-07 | 1951-05-08 | Power Jets Res & Dev Ltd | Air ducting arrangement for combustion chambers |
US3872664A (en) * | 1973-10-15 | 1975-03-25 | United Aircraft Corp | Swirl combustor with vortex burning and mixing |
US3958416A (en) | 1974-12-12 | 1976-05-25 | General Motors Corporation | Combustion apparatus |
US4204402A (en) * | 1976-05-07 | 1980-05-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Reduction of nitric oxide emissions from a combustor |
US4498288A (en) * | 1978-10-13 | 1985-02-12 | General Electric Company | Fuel injection staged sectoral combustor for burning low-BTU fuel gas |
DE2944863A1 (en) * | 1979-11-07 | 1981-05-27 | Daimler-Benz Ag, 7000 Stuttgart | Gas-turbine combustion chamber - has tangential inlet for fine granular fuel and air near end wall |
CH672366A5 (en) * | 1986-12-09 | 1989-11-15 | Bbc Brown Boveri & Cie | |
JPH01114623A (en) * | 1987-10-27 | 1989-05-08 | Toshiba Corp | Gas turbine combustor |
GB9023004D0 (en) | 1990-10-23 | 1990-12-05 | Rolls Royce Plc | A gas turbine engine combustion chamber and a method of operating a gas turbine engine combustion chamber |
EP0626543A1 (en) | 1993-05-24 | 1994-11-30 | Westinghouse Electric Corporation | Low emission, fixed geometry gas turbine combustor |
DE4318405C2 (en) | 1993-06-03 | 1995-11-02 | Mtu Muenchen Gmbh | Combustion chamber arrangement for a gas turbine |
JP2950720B2 (en) * | 1994-02-24 | 1999-09-20 | 株式会社東芝 | Gas turbine combustion device and combustion control method therefor |
US5687571A (en) * | 1995-02-20 | 1997-11-18 | Asea Brown Boveri Ag | Combustion chamber with two-stage combustion |
EP0870990B1 (en) * | 1997-03-20 | 2003-05-07 | ALSTOM (Switzerland) Ltd | Gas turbine with toroidal combustor |
-
1998
- 1998-12-05 DE DE59808754T patent/DE59808754D1/en not_active Expired - Fee Related
- 1998-12-05 EP EP98123199A patent/EP0924470B1/en not_active Expired - Lifetime
- 1998-12-15 US US09/211,837 patent/US6202420B1/en not_active Expired - Fee Related
- 1998-12-18 JP JP10361483A patent/JPH11248159A/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
US6202420B1 (en) | 2001-03-20 |
JPH11248159A (en) | 1999-09-14 |
EP0924470A3 (en) | 2001-03-14 |
DE59808754D1 (en) | 2003-07-24 |
EP0924470A2 (en) | 1999-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0924470B1 (en) | Premix combustor for a gas turbine | |
DE69632111T2 (en) | Premix burner for a gas turbine combustion chamber with low pollutant emission | |
DE60028910T2 (en) | Method and device for reducing emissions in a combustion chamber | |
DE60128513T2 (en) | Method and device for reducing emissions in a combustion chamber with a vortex mixing device | |
DE69203729T2 (en) | GAS BURNER WITH LOW NOX CONTENT. | |
DE60007946T2 (en) | A combustion chamber | |
DE69513542T2 (en) | Fuel nozzle | |
DE69205855T2 (en) | Air / fuel mixer for a gas turbine combustor. | |
EP0029619B1 (en) | Gas-turbine combustor with premixing-prevaporizing elements | |
DE19615910B4 (en) | burner arrangement | |
DE69822984T2 (en) | Fuel line | |
DE69220091T2 (en) | PRE-MIXING GAS NOZZLE | |
DE69834621T2 (en) | Gas turbine burners with low NOx emissions | |
EP2116766B1 (en) | Burner with fuel lance | |
DE69412484T2 (en) | COMBUSTION CHAMBER OF A GAS TURBINE ENGINE | |
DE60310170T2 (en) | Fuel injection device | |
DE2845619C2 (en) | Combustion chamber for a gas turbine engine | |
EP2156095B1 (en) | Swirling-free stabilising of the flame of a premix burner | |
DE69617290T2 (en) | Combustion device for gas turbine engine | |
DE69525920T2 (en) | Fuel injection device for turbine operated with gaseous or liquid fuel | |
DE69111614T2 (en) | GAS TURBINE COMBUSTION CHAMBER AND THEIR OPERATION. | |
EP0576697B1 (en) | Combustor chamber for a gas turbine | |
DE69428549T2 (en) | GAS TURBINE CHAMBER WITH LOW POLLUTANT EMISSION | |
CH701539A2 (en) | Apparatus for fuel injection in a turbine. | |
DE2460740A1 (en) | COMBUSTION CHAMBER FOR GAS TURBINE ENGINES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7F 23R 3/28 A, 7F 23R 3/42 B |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MTU AERO ENGINES GMBH |
|
17P | Request for examination filed |
Effective date: 20010706 |
|
AKX | Designation fees paid |
Free format text: DE FR GB |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59808754 Country of ref document: DE Date of ref document: 20030724 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20031021 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040319 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20061218 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20061221 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20061212 Year of fee payment: 9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20071205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080701 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20081020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |