EP0905447B1 - Vaporising device for liquid fuels - Google Patents
Vaporising device for liquid fuels Download PDFInfo
- Publication number
- EP0905447B1 EP0905447B1 EP98117444A EP98117444A EP0905447B1 EP 0905447 B1 EP0905447 B1 EP 0905447B1 EP 98117444 A EP98117444 A EP 98117444A EP 98117444 A EP98117444 A EP 98117444A EP 0905447 B1 EP0905447 B1 EP 0905447B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- capillary tube
- tube
- heating
- fuel
- inside diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K5/00—Feeding or distributing other fuel to combustion apparatus
- F23K5/02—Liquid fuel
- F23K5/14—Details thereof
- F23K5/22—Vaporising devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/36—Details, e.g. burner cooling means, noise reduction means
- F23D11/40—Mixing tubes or chambers; Burner heads
- F23D11/408—Flow influencing devices in the air tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/36—Details, e.g. burner cooling means, noise reduction means
- F23D11/44—Preheating devices; Vaporising devices
- F23D11/441—Vaporising devices incorporated with burners
- F23D11/448—Vaporising devices incorporated with burners heated by electrical means
Definitions
- the invention relates to a device for vaporizing liquid fuels according to the preamble of claim 1.
- the residue-free evaporation of liquid hydrocarbon fuels such as. Heating oil and diesel fuel in the Gram range represents a previously unsatisfactorily solved technical problem.
- the evaporation of such fuels runs in a temperature range of 160 to 380 ° C, what a complete evaporation temperatures of the heat transfer surfaces of more than 200 to 450 ° C is required.
- whisker threads e.g. H. Schladitz "Fuel Processing and Environmental Protection” in “Oil and gas firing", 1973, Issue 3, page 164 to 168.
- the whisker mesh forms a structure with a high Porosity and thus a large pore volume and a large one Heat transfer surface.
- the metallic whisker threads can be used directly as electrical resistance heating become.
- the flow through the fine-pored structure leads to Connection with the relatively large volume to long dwell times of fuel, which in turn is the deposit of higher-boiling or solid components and cracked macromolecules in the porous whisker skeleton.
- DE-A-3 403 471 and DE-A-3 516 410 an evaporator known in the liquid fuel through an indirectly heated capillary tube in which the fuel is either is preheated or partially evaporated.
- the invention has for its object a device for To provide vaporization of liquid fuels the most residue-free evaporation smaller and smallest quantities of liquid fuels in the gram range allows.
- the main idea of the invention is the liquid Vaporizing fuel in a heatable capillary tube where the inside diameter of the capillary tube as possible is kept small. To the necessary heat transfer area to get the length of the capillary tube accordingly large size. To despite the great length of the capillary tube produce an evaporator with small dimensions To be able to, the capillary tube is preferably in turns arranged to a large length of the capillary tube in one to accommodate small volumes.
- the heating of the capillary tube can either be done directly by the capillary tube itself is used as a heating conductor, or indirectly by using the Capillary tube is in contact with a heating cartridge.
- the capillary tube has an inner diameter from about 0.3 to 2.0 mm, preferably from 0.5 to 1.3 mm.
- the ratio of the length of the capillary tube to its inside diameter is in the range of about 500 to 3000, preferably from 900 to 2300. Given this dimensioning the residence times of the fuel in the capillary tube are in the millisecond range.
- the low-boiling fractions evaporate first and form an axial steam flow in the capillary. Die Abursiedenden Fractions are thereby against the wall of the Capillary tube pushed so that they are heated more intensely. The entrainment of the high-boiling fractions at speeds up to 160 m / s prevent deposits of residual fractions.
- the capillary tube has an overheating length, in which also the required minimum system pressure from about 1 to 2 bar.
- the capillary tube evaporator according to the invention can in all Use cases are used in which one if possible residue-free evaporation of hydrocarbon mixtures is sought.
- the device can be used as a heating oil evaporator for aerosol formation with the combustion air in Premix burners are used.
- the capillary tube evaporator can be used for firing larger outputs can be used as pilot and pilot burners. Finally it can also be used as a preheater for heating oil Installation in pressure atomizer nozzle shafts.
- Fig. 1 shows a capillary tube as it is according to the invention for the Device for vaporizing hydrocarbon fuels, such as heating oil and diesel oil in a mass flow range of 0.1 up to 4.0 kg / h, preferably from 0.2 to 2.4 kg / h becomes.
- hydrocarbon fuels such as heating oil and diesel oil in a mass flow range of 0.1 up to 4.0 kg / h, preferably from 0.2 to 2.4 kg / h becomes.
- the capillary tube 10 has an inner diameter d that between 0.3 and 2.0 mm, preferably between 0.5 and 1.3 mm lies.
- the ratio of the wall thickness of the capillary tube 10 to the inside diameter is 0.2 to 0.5.
- the length L of the Capillary tube 10 is 500 to 3000 times the inner diameter d, preferably 900 to 2300 times.
- the wall of the capillary tube 10 is described in later Way heated.
- the liquid fuel Mf is in the capillary 10 initiated, flows through the capillary tube 10 and emerges from the capillary tube 10 as vapor MD.
- a first length section L1 on the entry side the liquid fuel supplied through the heated wall of the Capillary tube 10 heated to its boiling point.
- the fuel evaporates starting with the low boiling fractions.
- the last outlet-side length section L3 is the liquid one Fuel evaporates completely and is additionally overheated.
- the heating of the wall of the capillary tube 10 leads to a temporally fluctuating heat generation over the length the capillary tube 10.
- the temperature of the supplied liquid fuel This results in a axial position of the evaporation zone L2 which fluctuates over time.
- the the superheating zone L3 downstream of the evaporation zone L2 ensures that despite the fluctuations in the evaporation zone L2 the fuel reliably exits the capillary tube 10 is completely evaporated.
- the Overheating zone L3 ensures that the fuel vapor with stable flow and the required minimum system pressure from the capillary tube 10 exits from 1 to 2 bar.
- Figures 2 and 3 show a first embodiment of the device.
- the capillary tube 10 is helical bent into a spiral.
- the exit end the capillary tube 10 is bent so that it is in the The central axis of the spiral runs.
- the entry end of the Capillary tube 10 is also in the central axis of the coil bent.
- a transition tube piece closes at the inlet end 12, which serves to cross-section the Fuel supply line to the small cross section of the capillary tube 10 to reduce.
- the transition pipe section 12 goes on the entry side into a threaded sleeve 14, which with a Collar 16 and one on the external thread of the threaded sleeve 14 seated lock nut 18 for screwing the device in the bulkhead of a burner is used.
- FIG. 3 shows how the capillary tube 10 shown in FIG. 2 is installed in a complete evaporator.
- the coiled capillary tube 10 inserted into a protective sleeve 20, whose inner wall is insulated by an insulating sleeve 22.
- an insulating insert 24 used, the axis of the outlet side End of the capillary tube 10 is penetrated.
- the transition pipe piece 12 with the subsequent threaded sleeve 14 is centered held in an insulating body 26. Is on the entry side the protective sleeve 20 between the collar 16 and the lock nut 18th fixed on the threaded sleeve 14.
- the connector connection contact 28 is with a electrical guided axially parallel in the insulating body 26 Conductor 32 connected.
- This conductor 32 carries out axially parallel the coil of the capillary tube 10 and is with its front End set in the insulating insert 24.
- the front end of the Conductor 32 is directly behind the insulating insert 24 a terminal 34 electrically conductive with the outlet end of the capillary tube 10 connected.
- the second connector connector 30 leads radially through the insulating body 26 and contacts the transition tube piece in an electrically conductive manner 12th
- Capillary tube 10 can be connected to a power supply.
- the connector connector 28 the phase and to the connector terminal contact 30 the Ground of a low-voltage network of up to 42 V.
- the capillary tube 10 consists of a Heating conductor metal, e.g. made of a chrome-nickel steel.
- the capillary tube 10 is executed by the capillary tube 10 flowing current directly heated.
- FIG 4 shows the installation of the device of Figures 2 and 3 into a burner tube.
- the device is with its protective sleeve 20 coaxially inserted into the hub of an air nozzle 36, and by means of a clamping ring 38 set in the air nozzle 36.
- the Air nozzle 36 also has a hub coaxially surrounding the hub Swirl body 40.
- the air nozzle 36 is centered in one Schott 42 used, which in turn in a burner stem 44 sits and closes this except for the air nozzle 36.
- the burner main pipe 44 is connected to a burner blower socket 46 scheduled.
- a flame tube 48 is attached, which for generation an injector effect lateral recirculation openings having.
- a flame monitoring probe is also in the bulkhead 42 50 and a pair of ignition electrodes 52 are used.
- the structure of the burner tube is apart from the evaporator device known per se.
- FIG. 5 shows a modification of the installation situation in FIG. 4, in which the evaporator device is axially downstream extends beyond the air nozzle 36, with the air nozzle 36 axially a catch tube 54 is placed.
- the combustion air is Air nozzle 36 conical and by means of the swirl body 40 with swirl acted upon in the emerging from the capillary tube 10
- Fuel steam jet initiated to intensive mixing of combustion air and fuel vapor.
- the swirl is over combustion air supplied to the air nozzle 36 in the trap 54 steered so that it swirls over the widening downstream Catch pipe 54 emerges and with the fuel vapor mixed forms an expanding flame cone.
- Figures 6 and 7 show a modification of the first embodiment the device, the connection and installation of the helically bent capillary tube 10 are modified.
- the helically curved capillary tube sits 10 in an electrically conductive protective sleeve 56.
- Die Protective sleeve 56 is at its downstream end through a electrically conductive cap 58 completed, the centric Exit end of the capillary tube 10 receives, fixed and contacted electrically conductive. That on the entry side Transition tube piece 12 adjoining the end of the capillary tube 10 is inserted into an insulating bush 60.
- the insulating bush 60 with the transition pipe piece 12 is with the threaded sleeve 14th screwed.
- the threaded sleeve 14 has a connecting nipple 62 on which a union nut 64 with a conical clamping ring 66 is screwed on.
- An electric one Terminal contact 68 insulates the protective sleeve 56 and is conductive with the transition pipe section 12 and thus the Capillary tube 10 in connection.
- the connection contact 68 serves to connect the phase of the power supply while the Protective sleeve 56 establishes the ground connection.
- FIG. 8 shows a second embodiment of the capillary tube 10.
- the capillary tube 10 is not in the form of a Spiral but bent in the form of a spiral.
- the transition pipe piece 12 to supply the liquid fuel is there arranged at the outer end of the spiral, while the outlet end is arranged in the middle.
- FIG. 9 shows a third embodiment of the capillary tube 10.
- the capillary tube 10 is in several hairpin bends bent so that going back and forth parallel sections of the capillary tube 10 result.
- the hairpin bends can be bent so tight that you Radius of curvature R only three times the inner diameter d of the capillary tube is 10.
- FIG. 10 shows a fourth embodiment of the capillary tube 10, which differs in the electrical contact.
- the casing tube 70 has only one small outer diameter of e.g. 2 to 3 mm and is from the capillary tube 10 separated by insulation 72 which e.g. is designed as a thin film or varnish.
- insulation 72 which e.g. is designed as a thin film or varnish.
- the jacket tube 70 conductively connected to the capillary tube 10.
- An insulating plug 74 is provided at the end, one Connection contact 76 of the jacket tube 70 against the transition tube piece 12 electrically isolated, which is the second electrical Has contact.
- the capillary tube 10 with the jacket tube 70 can be bent and installed in any shape without that additional measures for electrical contacting and Power supply to the exit end of the capillary tube 10 are necessary.
- the capillary tube 10 is designed as a heating conductor and heated directly 11 shows an embodiment in which the capillary tube 10 is indirectly heated.
- the material of the capillary tube 10 can therefore regardless of its electrical conductivity to get voted.
- the capillary tube 10 is helical on the outer surface of a cylindrical heat-conducting Sleeve 78 wrapped.
- a heating cartridge 80 with the electrical line connections 82 and 84 used.
- the heating cartridge 80 is heated via the thermally conductive sleeve 78, the capillary tube 10 indirectly.
- the heating cartridge 80 can in a manner known per se for high voltage or low voltage.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Spray-Type Burners (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Feeding And Controlling Fuel (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung zum Verdampfen von
flüssigen Brennstoffen gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a device for vaporizing
liquid fuels according to the preamble of
Die rückstandslose Verdampfung von flüssigen Kohlenwasserstoff-Brennstoffen, wie z.B. Heizöl und Dieselkraftstoff im Gramm-Bereich stellt ein bisher nicht zufriedenstellend gelöstes technisches Problem dar. Die Verdampfung solcher Brennstoffe verläuft in einem Temperaturbereich von 160 bis 380° C, was für eine vollständige Verdampfung Temperaturen der Wärmeübertragungsflächen von mehr als 200 bis 450° C erfordert. Um bei den Verdampfern die Wandtemperatur niedrig zu halten, werden geringe Temperaturdifferenzen verwendet und die Wärmeübertrager werden großflächig und/oder großvolumig ausgebildet.The residue-free evaporation of liquid hydrocarbon fuels, such as. Heating oil and diesel fuel in the Gram range represents a previously unsatisfactorily solved technical problem. The evaporation of such fuels runs in a temperature range of 160 to 380 ° C, what a complete evaporation temperatures of the heat transfer surfaces of more than 200 to 450 ° C is required. Around keeping the wall temperature at the evaporators low, small temperature differences are used and the heat exchangers are formed over a large area and / or with a large volume.
Die thermische Belastung von Heiz- und Dieselöl führt bei längeren Einwirkungszeiten zu Polymerisationen und Verklumpungen der Makromoleküle, die sich auf den Wärmeübertragungsflächen absetzen. Am Ende der Siedezone lagern sich zusätzlich die nichtverdampften Restfraktionen ab. Diese Ablagerungen können eine Wärmeisolation bewirken, die eine weitere Temperaturerhöhung zur Folge hat. Dadurch treten Verkokungen auf und ein verstärktes Ablagern der Verklumpungen, was zur Verstopfung der Strömungskanäle führen kann.The thermal load on heating and diesel oil leads to longer exposure times to polymerizations and clumping of the macromolecules that are on the heat transfer surfaces drop. At the end of the boiling zone, there is additional storage the non-evaporated residual fractions. These deposits can cause thermal insulation, which further increases the temperature has the consequence. This causes coking and an increased deposition of the clumps, which leads to constipation the flow channels can lead.
Großvolumige Verdampfer finden als sogenannte Schalenbrenner in Ölöfen der Haustechnik Verwendung. Hier erfolgt die Verdampfung an der freien Oberfläche der flüssigen Brennstoff-Phase. Die entstehenden Ablagerungen setzen sich am Boden ab und werden periodisch entsorgt.Large-volume evaporators can be found as so-called cup burners used in domestic ovens. Evaporation takes place here on the free surface of the liquid fuel phase. The resulting deposits settle on the floor and are disposed of periodically.
Aus der DE 32 43 395 A1 ist eine Vorrichtung der eingangs genannten Gattung bekannt. Der Brennstoff wird in einem Rohr verdampft, welches direkt oder indirekt elektrisch beheizt wird. Das Rohr ist großvolumig mit einem relativ großen Innendurchmesser ausgebildet. Es sind Wandtemperaturen von mehr als 1000°C vorgesehen, dementsprechend werden über die Rohrwandung sehr hohe Wärmestromdichten übertragen. Aufgrund der relativ langen Verweilzeit des Brennstoffes in dem Rohr und aufgrund der hohen Wandtemperaturen treten Ablagerungen an der Rohrwand auf. Das als Verdampfungskammer dienende Rohr weist starke Querschnittsänderungen auf, die ungünstige Strömungsverhältnisse mit toten Winkeln verursachen, was weiter die Bildung von Ablagerungen begünstigt. Es ist daher vorgesehen, das Rohr periodisch in einer Reinigungsphase stark aufzuheizen, um die Ablagerungen zu Asche zu verbrennen und dann aus dem Rohr in den Brennraum auszublasen.DE 32 43 395 A1 describes a device at the beginning known genus known. The fuel is in a pipe evaporates, which is directly or indirectly electrically heated becomes. The tube is large in volume with a relatively large inner diameter educated. There are wall temperatures of more than Provided 1000 ° C, accordingly, over the pipe wall transmit very high heat flux densities. Due to the relatively long residence time of the fuel in the pipe and due to the high wall temperatures, deposits appear on the Pipe wall on. The tube serving as the evaporation chamber has strong cross-sectional changes, the unfavorable flow conditions with blind spots cause what the Formation of deposits favors. It is therefore envisaged heating up the pipe periodically during a cleaning phase, to burn the deposits to ashes and then out blow out the pipe into the combustion chamber.
Weiter ist es bekannt, Verdampfer mit einer großen Wärmeübertragungsfläche und kleinen Abmessungen dadurch zu bilden, daß der Brennstoff durch ein Geflecht von Whisker-Fäden geführt wird (z.B. H. Schladitz "Brennstoffaufbereitung und Umweltschutz" in "Öl- und Gasfeuerung", 1973, Heft 3, Seite 164 bis 168). Das Whisker-Geflecht bildet eine Struktur mit hoher Porosität und somit einem großen Porenvolumen und einer großen Wärmeübertragungs-Oberfläche. Die metallischen Whisker-Fäden können direkt als elektrische Widerstandsheizung verwendet werden. Das Durchströmen der feinporigen Struktur führt in Verbindung mit dem relativ großen Volumen zu langen Verweilzeiten des Brennstoffes, was wiederum die Ablagerung von höhersiedenden oder festen Bestandteilen und vercrackten Makromolekülen in dem porösen Whiskerskelett zur Folge hat.It is also known to use evaporators with a large heat transfer area and small dimensions in that the fuel passed through a network of whisker threads (e.g. H. Schladitz "Fuel Processing and Environmental Protection" in "Oil and gas firing", 1973, Issue 3, page 164 to 168). The whisker mesh forms a structure with a high Porosity and thus a large pore volume and a large one Heat transfer surface. The metallic whisker threads can be used directly as electrical resistance heating become. The flow through the fine-pored structure leads to Connection with the relatively large volume to long dwell times of fuel, which in turn is the deposit of higher-boiling or solid components and cracked macromolecules in the porous whisker skeleton.
Darüber hinaus ist aus DE-A-3 403 471 und DE-A-3 516 410 ein Verdampfer bekannt, in dem flüssiger Brennstoff durch ein indirekt beheiztes Kapillarrohr geführt wird, in dem der Brennstoff entweder vorgewärmt oder teilweise verdampft wird.Furthermore, from DE-A-3 403 471 and DE-A-3 516 410 an evaporator known in the liquid fuel through an indirectly heated capillary tube in which the fuel is either is preheated or partially evaporated.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zum Verdampfen von flüssigen Brennstoffen zur Verfügung zu stellen, die eine möglichst rückstandslose Verdampfung kleiner und kleinster Mengen von flüssigen Brennstoffen im Gramm-Bereich ermöglicht.The invention has for its object a device for To provide vaporization of liquid fuels the most residue-free evaporation smaller and smallest quantities of liquid fuels in the gram range allows.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung
mit den Merkmalen des Anspruchs 1.According to the invention, this object is achieved by a device
with the features of
Vorteilhafte Ausführungen und Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.Advantageous embodiments and developments of the invention are specified in the subclaims.
Der wesentliche Gedanke der Erfindung besteht darin, den flüssigen Brennstoff in einem beheizbaren Kapillarrohr zu verdampfen, wobei der Innendurchmesser des Kapillarrohres möglichst klein gehalten wird. Um die notwendige Wärmeübertragungsfläche zu erhalten, wird die Länge des Kapillarrohres entsprechend groß dimensioniert. Um trotz der großen Länge des Kapillarrohres einen Verdampfer mit geringen Bauabmessungen herstellen zu können, wird das Kapillarrohr vorzugsweise in Windungen angeordnet, um eine große Länge des Kapillarrohres in einem kleinen Volumen unterzubringen. Die Beheizung des Kapillarrohres kann entweder direkt erfolgen, indem das Kapillarrohr selbst als Heizleiter verwendet wird, oder indirekt, indem das Kapillarrohr mit einer Heizpatrone in Berührung steht.The main idea of the invention is the liquid Vaporizing fuel in a heatable capillary tube where the inside diameter of the capillary tube as possible is kept small. To the necessary heat transfer area to get the length of the capillary tube accordingly large size. To despite the great length of the capillary tube produce an evaporator with small dimensions To be able to, the capillary tube is preferably in turns arranged to a large length of the capillary tube in one to accommodate small volumes. The heating of the capillary tube can either be done directly by the capillary tube itself is used as a heating conductor, or indirectly by using the Capillary tube is in contact with a heating cartridge.
Die Verringerung des Innendurchmessers des Rohres, durch welches der Brennstoff zur Verdampfung durchgeleitet wird, zu einem Kapillarrohr führt überraschenderweise nicht zu einem schnellen Zusetzen und Verstopfen des Kapillarrohres, wie dies nach dem Stand der Technik zu erwarten gewesen wäre. Es hat sich vielmehr gezeigt, daß eine weitgehend rückstandslose Verdampfung erreicht werden kann und auch über längere Betriebsdauern keine Ablagerungen auftreten, die den engen Querschnitt des Kapillarrohres zusetzen. Es wird angenommen, daß dies darauf beruht, daß durch die Verengung des Innendurchmessers die Durchlaufzeiten wesentlich verkürzt werden, wobei außerdem das lange Kapillarrohr keinerlei Querschnittssprünge aufweist, welche zu Strömungsablösungen und Strömungsschatten führen könnten. Die große Länge und der kleine Querschnitt des Kapillarrohres sowie periodisch geringe Änderungen der Heizleistung und des Massenstromes führen zu zeitlichen Schwankungen der Verteilung der Wärmestromdichte über die Länge des Kapillarrohres, was wiederum zur Folge hat, daß die kritische Zone, in welcher die flüssige Phase des Brennstoffs in die Dampfphase übergeht zeitlich stromauf und stromab in dem Kapillarrohr wandert. Ablagerungen in einem bestimmten Längenbereich werden dadurch vermieden.The reduction in the inside diameter of the pipe through which the fuel is passed through for evaporation a capillary tube surprisingly does not lead to one rapid clogging and clogging of the capillary tube like this would have been expected according to the prior art. It has rather, it was shown that a largely residue-free Evaporation can be achieved and also over long periods of operation No deposits occur that are the narrow cross section of the capillary tube. It is believed that this is due to the fact that by narrowing the inside diameter throughput times are significantly reduced, whereby in addition, the long capillary tube has no cross-sectional jumps which leads to flow separation and flow shadows could lead. The large length and small cross section of the Capillary tube and periodically small changes in Heating power and the mass flow lead to temporal Fluctuations in the distribution of heat flux density over the Length of the capillary tube, which in turn means that the critical zone in which the liquid phase of the fuel the vapor phase transitions upstream and downstream migrates to the capillary tube. Deposits in a particular This avoids length ranges.
Erfindungsgemäß weist das Kapillarrohr einen Innendurchmesser von etwa 0,3 bis 2,0 mm, vorzugsweise von 0,5 bis 1,3 mm auf. Das Verhältnis der Länge des Kapillarrohres zu seinem Innendurchmesser liegt im Bereich von etwa 500 bis 3000, vorzugsweise von 900 bis 2300. Bei dieser Dimensionierung ergeben sich Verweilzeiten des Brennstoffes in dem Kapillarrohr, die im Bereich von Millisekunden liegen.According to the invention, the capillary tube has an inner diameter from about 0.3 to 2.0 mm, preferably from 0.5 to 1.3 mm. The ratio of the length of the capillary tube to its inside diameter is in the range of about 500 to 3000, preferably from 900 to 2300. Given this dimensioning the residence times of the fuel in the capillary tube are in the millisecond range.
In der Zone, in welcher die flüssige Phase in die Dampfphase übergeht, verdampfen zunächst die niedrigsiedenden Fraktionen und bilden eine achsnahe Dampfströmung in der Kapillare. Diehöhersiedenden Fraktionen werden dadurch gegen die Wand des Kapillarrohres gedrängt, so daß diese verstärkt erhitzt werden. Die Mitnahme der hochsiedenden Fraktionen bei Geschwindigkeiten bis zu 160 m/s verhindern Ablagerungen von Restfraktionen. Im Hinblick auf die Schwankung der Verdampfungszone und zur Sicherstellung der Strömungsstabilität ist am Austrittsende des Kapillarrohres eine Überhitzungs-Länge vorgesehen, in der außerdem auch der erforderliche Mindest-System-Druck von ca. 1 bis 2 bar erzeugt wird.In the zone where the liquid phase is in the vapor phase passes over, the low-boiling fractions evaporate first and form an axial steam flow in the capillary. Diehöhersiedenden Fractions are thereby against the wall of the Capillary tube pushed so that they are heated more intensely. The entrainment of the high-boiling fractions at speeds up to 160 m / s prevent deposits of residual fractions. With regard to the fluctuation of the evaporation zone and to ensure flow stability is at the outlet end the capillary tube has an overheating length, in which also the required minimum system pressure from about 1 to 2 bar.
Der erfindungsgemäße Kapillarrohr-Verdampfer kann in allen Anwendungsfällen eingesetzt werden, in welchen eine möglichst rückstandslose Verdampfung von Kohlenwasserstoff-Gemischen angestrebt wird. Beispielsweise kann die Vorrichtung als Heizölverdampfer zur Aerosolbildung mit der Verbrennungsluft in Vorgemisch-Brennern eingesetzt werden. Ebenso ist ein Einsatz als Heizölverdampfer zur Brennstoff-Luft-Gemischbildung in Brennerköpfen mit und ohne Injektor oder in Kombination mit Luftdüsen mit integrierter Drallerzeugung möglich. Da der Verdampfer insbesondere in einem Massenstrom-Bereich von 0,1 bis 4,0 kg/h wirksam arbeitet, eignet er sich insbesondere für den Einsatz in Feuerungen mit einer Wärmeleistung unter 10 kW. Bei Feuerungen größerer Leistungen kann der Kapillarrohr-Verdampfer als Zünd- und Pilotbrenner eingesetzt werden. Schließlich ist auch ein Einsatz möglich als Heizölvorwärmer zum Einbau in Druckzerstäuber-Düsenschäften.The capillary tube evaporator according to the invention can in all Use cases are used in which one if possible residue-free evaporation of hydrocarbon mixtures is sought. For example, the device can be used as a heating oil evaporator for aerosol formation with the combustion air in Premix burners are used. There is also a stake as a heating oil evaporator for fuel-air mixture formation in Burner heads with and without injector or in combination with Air nozzles with integrated swirl generation possible. Since the Evaporators in particular in a mass flow range of 0.1 works effectively up to 4.0 kg / h, it is particularly suitable for use in furnaces with a heat output below 10 kW. The capillary tube evaporator can be used for firing larger outputs can be used as pilot and pilot burners. Finally it can also be used as a preheater for heating oil Installation in pressure atomizer nozzle shafts.
Im folgenden wird die Erfindung anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
- Fig. 1
- schematisch ein Kapillarrohr, wie es erfindungsgemäß verwendet wird,
- Fig. 2
- das Kapillarrohr in einer ersten Ausführung,
- Fig. 3
- die komplette Vorrichtung in der ersten Ausführung,
- Fig. 4
- die Vorrichtung in der ersten Ausführung in einen Brenner eingebaut,
- Fig. 5
- die Vorrichtung in der ersten Ausführung in einer modifizierten Einbausituation,
- Fig. 6
- eine Abwandlung der ersten Ausführung der Vorrichtung,
- Fig. 7
- eine vergrößerte Detaildarstellung der Fig. 6,
- Fig. 8
- eine zweite Ausführung des Kapillarrohres,
- Fig. 9
- eine dritte Ausführung des Kapillarrohres,
- Fig. 10
- eine vierte Ausführung des Kapillarrohres und
- Fig. 11
- eine fünfte Ausführung des Kapillarrohres.
- Fig. 1
- schematically a capillary tube, as used according to the invention,
- Fig. 2
- the capillary tube in a first embodiment,
- Fig. 3
- the complete device in the first version,
- Fig. 4
- the device in the first embodiment installed in a burner,
- Fig. 5
- the device in the first embodiment in a modified installation situation,
- Fig. 6
- a modification of the first embodiment of the device,
- Fig. 7
- 6 shows an enlarged detailed illustration of FIG. 6,
- Fig. 8
- a second embodiment of the capillary tube,
- Fig. 9
- a third embodiment of the capillary tube,
- Fig. 10
- a fourth version of the capillary tube and
- Fig. 11
- a fifth version of the capillary tube.
Fig. 1 zeigt ein Kapillarrohr, wie es erfindungsgemäß für die Vorrichtung zum Verdampfen von Kohlenwasserstoff-Brennstoffen, wie Heizöl und Dieselöl in einem Massenstrom-Bereich von 0,1 bis 4,0 kg/h, vorzugsweise von 0,2 bis 2,4 kg/h verwendet wird. Fig. 1 shows a capillary tube as it is according to the invention for the Device for vaporizing hydrocarbon fuels, such as heating oil and diesel oil in a mass flow range of 0.1 up to 4.0 kg / h, preferably from 0.2 to 2.4 kg / h becomes.
Das Kapillarrohr 10 weist einen Innendurchmesser d auf, der
zwischen 0,3 und 2,0 mm vorzugsweise zwischen 0,5 und 1,3 mm
liegt. Das Verhältnis von Wandstärke des Kapillarrohres 10 zu
dessen Innendurchmesser beträgt 0,2 bis 0,5. Die Länge L des
Kapillarrohres 10 beträgt das 500- bis 3000-fache des Innendurchmessers
d, vorzugsweise das 900- bis 2300-fache.The
Die Wandung des Kapillarrohres 10 wird in später beschriebener
Weise beheizt. Der flüssige Brennstoff Mf wird in das Kapillarrohr
10 eingeleitet, durchströmt das Kapillarrohr 10 und
tritt als Dampf MD aus dem Kapillarrohr 10 aus.The wall of the
In einem ersten eintrittsseitigen Längenabschnitt L1 wird der
zugeführte flüssige Brennstoff durch die beheizte Wand des
Kapillarrohres 10 bis zu seinem Siedepunkt aufgeheizt. In
einem anschließenden Längenabschnitt L 2 verdampft der Brennstoff
beginnend mit den niedrigsiedenden Fraktionen. In einem
letzten austrittsseitigen Längenabschnitt L3 ist der flüssige
Brennstoff vollständig verdampft und wird zusätzlich überhitzt.
Die Beheizung der Wandung des Kapillarrohres 10 führt
zu einer zeitlich schwankenden Wärmeerzeugung über die Länge
des Kapillarrohres 10. Außerdem schwankt die Temperatur des
zugeführten flüssigen Brennstoffs. Dadurch ergibt sich eine
zeitlich schankende axiale Lage der Verdampfungszone L2. Die
der Verdampfungszone L2 nachgeschaltete Überhitzungszone L3
stellt sicher, daß trotz der Schwankungen der Verdampfungszone
L2 der Brennstoff beim Austritt aus dem Kapillarrohr 10 zuverlässig
vollständig verdampft ist. Außerdem wird durch die
Überhitzungszone L3 gewährleistet, daß der Brennstoffdampf mit
stabiler Strömung und dem erforderlichen Mindest-System-Druck
von 1 bis 2 bar aus dem Kapillarrohr 10 austritt.In a first length section L1 on the entry side, the
liquid fuel supplied through the heated wall of the
Die Figuren 2 und 3 zeigen eine erste Ausführung der Vorrichtung.Figures 2 and 3 show a first embodiment of the device.
Um das lange Kapillarrohr 10 platzsparend in einem Brenner
unterbringen zu können, ist das Kapillarrohr 10 schraubenlinienförmig
zu einer Wendel gebogen. Das austrittseitige Ende
des Kapillarrohres 10 ist dabei so gebogen, daß es in der
Mittelachse der Wendel verläuft. Das eintrittseitige Ende des
Kapillarrohres 10 ist ebenfalls in die Mittelachse der Wendel
gebogen. An das eintrittseitige Ende schließt sich ein Übergangsrohrstück
12 an, welches dazu dient, den Querschnitt der
Brennstoffzuführleitung auf den kleinen Querschnitt des Kapillarrohres
10 zu reduzieren. Das Übergangsrohrstück 12 geht
eintrittsseitig in eine Gewindemuffe 14 über, die mit einem
Bund 16 und einer auf dem Außengewinde der Gewindemuffe 14
sitzenden Gegenmutter 18 zum Einschrauben der Vorrichtung in
das Schott eines Brenners dient.Space-saving around the
Figur 3 zeigt, wie das in Figur 2 dargestellte Kapillarrohr 10
in einen kompletten Verdampfer eingebaut wird. Hierzu wird das
gewendelte Kapillarrohr 10 in eine Schutzhülse 20 eingesetzt,
deren Innenwandung durch eine Isolierhülse 22 isoliert ist. In
das austrittsseitige Ende der Schutzhülse 20 ist ein Isoliereinsatz
24 eingesetzt, der achsmittig von dem austrittsseitigen
Ende des Kapillarrohres 10 durchsetzt wird. Das Übergangsrohrstück
12 mit der anschließenden Gewindemuffe 14 wird zentriert
in einem Isolierkörper 26 gehalten. Eintrittsseitig ist
die Schutzhülse 20 zwischen dem Bund 16 und der Gegenmutter 18
auf der Gewindemuffe 14 festgelegt. In den Isolierkörper 26
sind radial Steckverbinder-Anschlußkontakte 28 und 30 eingesetzt.
Der Steckverbinder-Anschlußkontakt 28 ist mit einem
achsparallel in den Isolierkörper 26 geführten elektrischen
Leiter 32 verbunden. Dieser Leiter 32 führt achsparallel durch
die Wendel des Kapillarrohres 10 und ist mit seinem vorderen
Ende in dem Isoliereinsatz 24 festgelegt. Das vordere Ende des
Leiters 32 ist unmittelbar hinter dem Isoliereinsatz 24 mittels
einer Anschlußklemme 34 elektrisch leitend mit dem Austrittsende
des Kapillarrohres 10 verbunden. Der zweite Steckverbinder-Anschlußkontakt
30 führt radial durch den Isolierkörper
26 und kontaktiert elektrisch leitend das Übergangsrohrstück
12.FIG. 3 shows how the
Über die Steckverbinder-Anschlußkontakte 28 und 30 kann das
Kapillarrohr 10 an eine Stromversorgung angeschlossen werden. About the
Beispielsweise wird an den Steckverbinder-Anschlußkontakt 28
die Phase und an den Steckverbinder-Anschlußkontakt 30 die
Masse eines Niederspannungsnetzes von bis zu 42 V angelegt.For example, the
Das Kapillarrohr 10 besteht in dieser Ausführung aus einem
Heizleiter-Metall, z.B. aus einem Chrom-Nickel-Stahl. In dieser
Ausführung wird das Kapillarrohr 10 durch den das Kapillarrohr
10 durchfließenden Strom direkt beheizt.In this embodiment, the
Figur 4 zeigt den Einbau der Vorrichtung der Figuren 2 und 3
in ein Brennerrohr. Die Vorrichtung ist mit ihrer Schutzhülse
20 koaxial in die Nabe einer Luftdüse 36 eingesetzt, und mittels
eines Klemmringes 38 in der Luftdüse 36 festgelegt. Die
Luftdüse 36 weist außerdem einen die Nabe koaxial umschließenden
Drallkörper 40 auf. Die Luftdüse 36 ist zentrisch in ein
Schott 42 eingesetzt, welches wiederum in einem Brenner-Stammrohr
44 sitzt und dieses bis auf die Luftdüse 36 verschließt.
Das Brenner-Stammrohr 44 ist an einen Brenner-Gebläsestutzen
46 angesetzt. An das stromabliegende Ende des Brenner-Stammrohres
44 ist ein Flammrohr 48 angesetzt, welches zur Erzeugung
einer Injektor-Wirkung seitliche Rezirkulationsöffnungen
aufweist. In das Schott 42 sind außerdem eine Flammen-Überwachungssonde
50 und ein Zündelektrodenpaar 52 eingesetzt. Von
der Verdampfer-Vorrichtung abgesehen ist der Aufbau des Brennerrohres
an sich bekannt.Figure 4 shows the installation of the device of Figures 2 and 3
into a burner tube. The device is with its
Figur 5 zeigt eine Abwandlung der Einbausituation der Figur 4,
in welcher die Verdampfer-Vorrichtung stromabgerichtet axial
über die Luftdüse 36 hinausragt, wobei auf die Luftdüse 36
axial ein Fangrohr 54 aufgesetzt ist.FIG. 5 shows a modification of the installation situation in FIG. 4,
in which the evaporator device is axially downstream
extends beyond the
In dem Aufbau der Figur 4 wird die Verbrennungsluft über die
Luftdüse 36 konisch und mittels des Drallkörpers 40 mit Drall
beaufschlagt in den aus dem Kapillarrohr 10 austretenden
Brennstoff-Dampfstrahl eingeleitet, um eine intensive Durchmischung
von Verbrennungsluft und Brennstoffdampf zu erzielen.
Im Ausführungsbeispiel der Figur 5 wird die drallbehaftet über
die Luftdüse 36 zugeführte Verbrennungsluft in dem Fangrohr 54
so gelenkt, daß sie drallbehaftet über das sich stromab erweiternde
Fangrohr 54 austritt und mit dem Brennstoffdampf
vermischt einen sich erweiternden Flammkegel bildet.In the structure of Figure 4, the combustion air is
Die Figuren 6 und 7 zeigen eine Abwandlung der ersten Ausführung
der Vorrichtung, wobei der Anschluß und Einbau des
wendelförmig gebogenen Kapillarrohres 10 modifiziert sind.Figures 6 and 7 show a modification of the first embodiment
the device, the connection and installation of the
helically bent
In dieser Ausführung sitzt das wendelförmig gebogene Kapillarrohr
10 in einer elektrisch leitenden Schutzhülse 56. Die
Schutzhülse 56 ist an ihrem stromabliegenden Ende durch eine
elektrisch leitende Kappe 58 abgeschlossen, die zentrisch das
Austrittsende des Kapillarrohres 10 aufnimmt, fixiert und
elektrisch leitend kontaktiert. Das an das eintrittsseitige
Ende des Kapillarrohres 10 anschließende Übergangsrohrstück 12
ist in eine Isolierbuchse 60 eingesetzt. Die Isolierbuchse 60
mit dem Übergangsrohrstück 12 ist mit der Gewindemuffe 14
verschraubt. Hierzu weist die Gewindemuffe 14 einen Anschlußnippel
62 auf, auf welchen eine Überwurfmutter 64 mit einem
konischen Klemmring 66 aufgeschraubt wird. Ein elektrischer
Anschlußkontakt 68 durchsetzt isoliert die Schutzhülse 56 und
steht leitend mit dem Übergangsrohrstück 12 und damit dem
Kapillarrohr 10 in Verbindung. Der Anschlußkontakt 68 dient
zum Anschließen der Phase der Stromversorgung, während die
Schutzhülse 56 die Masseverbindung herstellt.In this version, the helically curved capillary tube sits
10 in an electrically conductive protective sleeve 56. Die
Protective sleeve 56 is at its downstream end through a
electrically
Figur 8 zeigt eine zweite Ausführung des Kapillarrohres 10. In
dieser Ausführung ist das Kapillarrohr 10 nicht in Form einer
Wendel sondern in Form einer Spirale gebogen. Das Übergangsrohrstück
12 zum zuführen des flüssigen Brennstoffes ist dabei
am Außenende der Spirale angeordnet, während das Austrittsende
mittig angeordnet ist.FIG. 8 shows a second embodiment of the
Figur 9 zeigt eine dritte Ausführung des Kapillarrohres 10. In
dieser Ausführung ist das Kapillarrohr 10 in mehreren Haarnadelkrümmungen
gebogen, so daß sich vor- und zurücklaufende
parallele Abschnitte des Kapillarrohres 10 ergeben. Die Haarnadelkrümmungen
können dabei so eng gebogen werden, daß ihr
Krümmungsradius R nur das dreifache des Innendurchmessers d
des Kapillarrohres 10 beträgt.FIG. 9 shows a third embodiment of the
Figur 10 zeigt eine vierte Ausführung des Kapillarrohres 10,
die sich in der elektrischen Kontaktierung unterscheidet. Auf
das Kapillarrohr 10 ist koaxial ein elektrisch leitendes Mantelrohr
70 aufgeschoben. Das Mantelrohr 70 weist nur einen
geringen Außendurchmesser von z.B. 2 bis 3 mm auf und ist von
dem Kapillarrohr 10 durch eine Isolierung 72 getrennt, die
z.B. als Folie oder Lack mit geringer Stärke ausgebildet ist.
An dem Austrittsende des Kapillarrohres 10 ist das Mantelrohr
70 mit dem Kapillarrohr 10 leitend verbunden. Am eintrittsseitigen
Ende ist ein Isolierstopfen 74 vorgesehen, der einen
Anschlußkontakt 76 des Mantelrohres 70 gegen das Übergangsrohrstück
12 elektrisch isoliert, welches den zweiten elektrischen
Kontakt aufweist.FIG. 10 shows a fourth embodiment of the
In dieser Ausführung kann das Kapillarrohr 10 mit dem Mantelrohr
70 in beliebiger Form gebogen und eingebaut werden, ohne
daß zusätzliche Maßnahmen zur elektrischen Kontaktierung und
Stromzuführung zu dem austrittsseitigen Ende des Kapillarrohres
10 notwendig sind.In this embodiment, the
Während in den bisher beschriebenen Ausführungen das Kapillarrohr
10 als Heizleiter ausgebildet ist und direkt beheizt
wird, zeigt Figur 11 eine Ausführung, bei welcher das Kapillarrohr
10 indirekt beheizt wird. Das Material des Kapilarrohres
10 kann daher unabhängig von seinen elektrischen Leiteigenschaften
gewählt werden.While in the versions described so far the
In diesem Ausführungsbeispiel ist das Kapillarrohr 10 schraubenlinienförmig
auf die Mantelfläche einer zylindrischen wärmeleitenden
Hülse 78 gewickelt. In die Hülse 78 wird koaxial
eine Heizpatrone 80 mit den elektrischen Leitungsanschlüssen
82 und 84 eingesetzt. Die Heizpatrone 80 beheizt über die
wärmeleitende Hülse 78 das Kapillarrohr 10 indirekt. Die Heizpatrone
80 kann in an sich bekannter Weise für Hochspannung
oder Niederspannung ausgelegt sein. In this embodiment, the
- 1010
- Kapillarrohrcapillary
- 1212
- ÜbergangsrohrstückTransition piece of pipe
- 1414
- Gewindemuffethreaded socket
- 1616
- BundFederation
- 1818
- Gegenmutterlocknut
- 2020
- Schutzhülseprotective sleeve
- 2222
- Isolierhülseinsulating sleeve
- 2424
- Isoliereinsatzinsulating insert
- 2626
- Isolierkörperinsulator
- 2828
- Steckverbinder-Anschlußkontakt-PhaseConnector terminal contact phase
- 3030
- Steckverbinder-Anschlußkontakt-MasseConnector terminal contact mass
- 3232
- Leiterladder
- 3434
- Anschlußklemmeterminal
- 3636
- Luftdüseair nozzle
- 3838
- Klemmringclamping ring
- 4040
- Drallkörperswirler
- 4242
- Schottbulkhead
- 44'44 '
- Brenner-StammrohrBrenner stem pipe
- 4646
- Brenner-GebläsestutzenBurner blower port
- 4848
- Flammrohrflame tube
- 5050
- Flammen-ÜberwachungssondeFlame monitoring probe
- 5252
- Zündelektrodenignition electrodes
- 5454
- FangrohrFang tube
- 5656
- Schutzhülseprotective sleeve
- 5858
- Kappecap
- 6060
- Isolierbuchseinsulating bush
- 6262
- Anschlußnippelconnecting nipple
- 6464
- ÜberwurfmutterNut
- 6666
- Klemmringclamping ring
- 6868
- Anschlußkontaktconnection contact
- 7070
- Mantelrohrcasing pipe
- 7272
- Isolierunginsulation
- 7474
- Isolierstopfeninsulating seals
- 7676
- Anschlußkontaktconnection contact
- 7878
- Hülse shell
- 8080
- HeizpatroneCartridge Heater
- 8282
- AnschlußConnection
- 8484
- AnschlußConnection
- dd
- InnendurchmesserInner diameter
- LL
- Längelength
- L1L1
- AufheizlängeAufheizlänge
- L2L2
- VerdampfungslängeEvaporation length
- L3L3
- Überhitzungslängeoverheating length
Claims (20)
- Device for the vaporisation of liquid fuels with a tube, through which the fuel is fed and the walls of which can be electrically heated in order to feed the vaporisation heat to the fuel, characterised in that the tube is a capillary tube (10), the inside diameter (d) of which is 0.3 to 2.0 mm and the length (L) of which is 500 to 3000 times the inside diameter (d).
- Device according to Claim 1, characterised in that the inside diameter (d) of the capillary tube (10) is 0.5 to 1.3 mm.
- Device according to Claim 1 or 2, characterised in that the length (L) of the capillary tube (10) is 900 to 2300 times the inside diameter (d).
- Device according to one of the preceding claims, characterised in that the wall thickness of the capillary tube (10) is 0.2 to 0.5 times the inside diameter (d).
- Device according to one of the preceding claims, characterised in that the capillary tube (10) is designed as a heating conductor and an electrical current is fed through the capillary tube (10) for direct heating.
- Device according to Claim 5, characterised in that the capillary tube (10) is made of a CrNi steel.
- Device according to Claim 5 or 6, characterised in that a low voltage of less than about 50 V is applied to the ends of the capillary tube (10).
- Device according to one of Claims 5 to 7, characterised in that the outlet side end of the capillary tube (10) is connected to the voltage by means of a separate conductor (32).
- Device according to one of Claims 5 to 7, characterised in that the outlet side end of the capillary tube (10) is connected to ground potential by means of a protective sleeve (56, 58).
- Device according to one of Claims 5 to 7, characterised in that the capillary tube (10) is enclosed by an electrically conducting tubular jacket (70) and is insulated from the tubular jacket (70) by an insulator (72), in that the tubular jacket (70) is connected to this in an electrically conducting manner at the outlet side end of the capillary tube (10) and in that the tubular jacket (70) serves as the electrical connection of the outlet side end of the capillary tube (10).
- Device according to one of Claims 1 to 4, characterised in that the walls of the capillary tube (10) are heated indirectly by means of an electrical resistance heater.
- Device according to Claim 11, characterised in that the capillary tube (10) is in contact with the outside jacket surface of a heating cartridge (80) or with the outside surface of a heat-conducting sleeve (78), in which the heating cartridge (80) is placed.
- Device according to one of Claims 1 to 12, characterised in that the capillary tube (10) is bent as a screw-shaped helix.
- Device according to one of Claims 1 to 12, characterised in that the capillary tube (10) is bent as a spiral.
- Device according to one of Claims 1 to 12, characterised in that the capillary tube (10) is bent with hairpin bend curves in sections running in parallel to one another.
- Use of a device according to one of Claims 1 to 15 as a heating oil vaporiser for the formation of aerosols with the combustion air in pre-mix burners.
- Use of a device according to one of Claims 1 to 15 as a heating oil vaporiser for the formation of the fuel-air mixture in burner heads for heating capacities under 10 kW.
- Use of a device according to Claim 17 with an air nozzle (36), which has a device (40) for imposing turbulence on the combustion air.
- Use of a device according to one of Claims 1 to 15 as an ignition and pilot burner in furnaces of relatively large capacities or in multi-stage module burners.
- Use of a device according to one of Claims 1 to 15 as a heating oil pre-heater for installation in pressure spray nozzle shafts.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19743087A DE19743087A1 (en) | 1997-09-30 | 1997-09-30 | Device for vaporizing liquid fuels |
DE19743087 | 1997-09-30 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0905447A2 EP0905447A2 (en) | 1999-03-31 |
EP0905447A3 EP0905447A3 (en) | 1999-11-24 |
EP0905447B1 true EP0905447B1 (en) | 2002-11-27 |
Family
ID=7844071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98117444A Expired - Lifetime EP0905447B1 (en) | 1997-09-30 | 1998-09-15 | Vaporising device for liquid fuels |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0905447B1 (en) |
AT (1) | ATE228631T1 (en) |
DE (2) | DE19743087A1 (en) |
DK (1) | DK0905447T3 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7313916B2 (en) * | 2002-03-22 | 2008-01-01 | Philip Morris Usa Inc. | Method and apparatus for generating power by combustion of vaporized fuel |
JP4489600B2 (en) * | 2003-01-23 | 2010-06-23 | フィリップ・モリス・ユーエスエイ・インコーポレイテッド | Hybrid system for generating power |
US7177535B2 (en) | 2003-07-01 | 2007-02-13 | Philip Morris Usa Inc. | Apparatus for generating power and hybrid fuel vaporization system |
CA2530984C (en) * | 2003-07-01 | 2012-04-24 | Philip Morris U.S.A. Inc. | Apparatus for generating power and hybrid fuel vaporization system therefor |
US8502064B2 (en) | 2003-12-11 | 2013-08-06 | Philip Morris Usa Inc. | Hybrid system for generating power |
DE102004014441B4 (en) * | 2004-03-24 | 2007-09-13 | Webasto Ag | Fuel evaporator for a vehicle heater |
BRPI0511240A (en) * | 2004-05-19 | 2007-11-27 | Innovative Energy Inc | combustion method and apparatus |
DE102008046471B4 (en) * | 2008-09-09 | 2013-01-10 | VLM GmbH - Innovative Korrosionsprüftechnik, Labortechnik und Dienstleistungen | steam generator |
CN113925208B (en) * | 2021-11-25 | 2024-01-16 | 深圳市汉清达科技有限公司 | Heating device for electronic cigarette |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH630266A5 (en) * | 1980-02-19 | 1982-06-15 | Jakob Kamm | Evaporation appliance and use thereof |
DE3243395C2 (en) | 1982-11-24 | 1985-07-25 | Danfoss A/S, Nordborg | Evaporation burners for liquid fuel |
DE3403471A1 (en) * | 1984-02-01 | 1985-08-08 | BERU Ruprecht GmbH & Co KG, 7140 Ludwigsburg | Burner element for liquid fuels |
DE3516410A1 (en) * | 1985-05-07 | 1986-11-13 | BERU Ruprecht GmbH & Co KG, 7140 Ludwigsburg | Evaporator element |
-
1997
- 1997-09-30 DE DE19743087A patent/DE19743087A1/en not_active Ceased
-
1998
- 1998-09-15 DE DE59806423T patent/DE59806423D1/en not_active Expired - Fee Related
- 1998-09-15 AT AT98117444T patent/ATE228631T1/en not_active IP Right Cessation
- 1998-09-15 DK DK98117444T patent/DK0905447T3/en active
- 1998-09-15 EP EP98117444A patent/EP0905447B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0905447A3 (en) | 1999-11-24 |
ATE228631T1 (en) | 2002-12-15 |
EP0905447A2 (en) | 1999-03-31 |
DE19743087A1 (en) | 1999-05-27 |
DE59806423D1 (en) | 2003-01-09 |
DK0905447T3 (en) | 2003-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AT391543B (en) | METHOD FOR OPERATING AN EVAPORATION BURNER | |
EP0905447B1 (en) | Vaporising device for liquid fuels | |
CH628133A5 (en) | OIL BURNER WITH PRESSURE SPRAY NOZZLE FOR HEATING OIL. | |
EP0543323B1 (en) | Burner for industrial furnaces | |
EP0843083B1 (en) | Fuel preevaporator | |
DE19506950C2 (en) | Glow plug for diesel engines | |
DE3716411C2 (en) | ||
EP0309723B1 (en) | Ignition burner in a device for burning solid particles in the exhaust gas of internal combustion engines | |
DE3243397C2 (en) | Highly heatable fuel processing element for a burner, in particular an evaporation burner fed with liquid fuel, and method for its production | |
DE3243396C2 (en) | Evaporation burners for liquid fuel | |
DE10239414B4 (en) | Device for igniting an air-fuel mixture in an internal combustion engine | |
DE10239409B4 (en) | Device for igniting an air-fuel mixture in an internal combustion engine | |
DE2750080C2 (en) | ||
DE3309133A1 (en) | FLAME GLOW PEN CANDLE FOR PREHEATING THE INTAKE AIR OF COMBUSTION ENGINES | |
DE2846282C2 (en) | Oil preheating device for a pressure atomizer burner | |
WO2003026777A1 (en) | Device for secondary treatment of exhaust gases | |
DE3516410A1 (en) | Evaporator element | |
EP0495402B1 (en) | Oil preheating device for a burner of the pressure atomizing type | |
DE102004002246A1 (en) | Device for producing an air / hydrocarbon mixture | |
DE102004022302A1 (en) | Evaporator unit for supplying fuel-air-mixture to burner, has disk-shaped central section with channel and heat absorption surface and heat compensating unit arranged between surface and heater | |
DE102004055436B4 (en) | Device for preheating liquid fuel | |
DE10059846C2 (en) | Ignition element for igniting fuel in atomizer burners | |
WO1985005168A1 (en) | Combustion process with ionization monitoring | |
DE19903766C1 (en) | Burner with ignition spark source e.g. for heating device | |
DE3403471A1 (en) | Burner element for liquid fuels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 6F 23K 5/22 A, 6F 23K 5/20 B, 6F 23D 11/44 B, 6B 01D 1/00 B, 6F 23D 11/40 B |
|
AKX | Designation fees paid | ||
17P | Request for examination filed |
Effective date: 20000506 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT CH DE DK FR IT LI |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20020114 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE DK FR IT LI |
|
REF | Corresponds to: |
Ref document number: 228631 Country of ref document: AT Date of ref document: 20021215 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: R. A. EGLI & CO. PATENTANWAELTE |
|
REF | Corresponds to: |
Ref document number: 59806423 Country of ref document: DE Date of ref document: 20030109 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030828 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20040123 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040311 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20040312 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20040316 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040930 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050915 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060328 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070403 |