EP0900351B1 - Fuel injection method for a stepped gas turbine combustion chamber - Google Patents
Fuel injection method for a stepped gas turbine combustion chamber Download PDFInfo
- Publication number
- EP0900351B1 EP0900351B1 EP19970923092 EP97923092A EP0900351B1 EP 0900351 B1 EP0900351 B1 EP 0900351B1 EP 19970923092 EP19970923092 EP 19970923092 EP 97923092 A EP97923092 A EP 97923092A EP 0900351 B1 EP0900351 B1 EP 0900351B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- fuel injection
- combustion chamber
- accordance
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C15/00—Apparatus in which combustion takes place in pulses influenced by acoustic resonance in a gas mass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2205/00—Pulsating combustion
- F23C2205/10—Pulsating combustion with pulsating fuel supply
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/86493—Multi-way valve unit
- Y10T137/86549—Selective reciprocation or rotation
Definitions
- the invention relates to a method for fuel injection in a staged Gas turbine combustor with separate fuel injectors for each level, with at least one level for certain operating conditions can be switched off by interrupting the fuel supply. Furthermore, the Invention a fuel injection device for performing the invention Fuel injection process. To the known state of the Technology is only referred to WO 95/17632 by way of example.
- Gas turbine combustion chambers in particular ring combustion chambers from Gas turbines with staged combustion or staged fuel injection work are becoming increasingly important.
- a pilot combustion chamber and a main combustion chamber are provided, which each form a so-called level.
- the Pilot combustion chamber has one or more pilot burners as the first stage, which in the preferred application of an annular combustion chamber from an annular arranged fuel injection nozzles exist, also has the second Stage, namely the main combustion chamber, several main burners, too in the form of a plurality of injection nozzles, preferably arranged in a ring again.
- FIG. 2 A schematic diagram for such a stepped gas turbine combustion chamber shows the attached Fig. 2.
- These two walls 20, 21 are still of envelope walls 20a, 21a which ultimately also surround the combustion chamber inlet 22a on the left and define the combustion chamber outlet 22b on the right-hand side.
- pilot burners 26a At lower gas turbine load points, only the pilot burners 26a are operated, which means that the injectors of the main burners 26b are not supplied with fuel.
- the main burners 26b are operated in addition to the pilot burners 26a, so that their injection nozzles are then supplied with fuel.
- the pilot combustion chamber 25a which is also operated solely for starting the gas turbine and for starting up in idle mode, is usually operated in the entire operating map of the gas turbine, in particular flight gas turbine, in order to create an ignition source for the main burners 26b, which are only switched on as required .
- staged combustion is to minimize pollutant emissions, especially NO x . This is achieved in that the respective burner size can be better adapted to the respective power requirement.
- the combustion temperature should be as low as possible, which can be achieved by targeted air supply (admixing air 28) into the combustion zone.
- the respective stages namely the pilot burners 26a and the main burners 26b, are designed for special air-fuel ratios. At low load points of the gas turbine, in which only relatively little fuel is burned overall, the air-fuel ratio coming to the main burners 26b would be too high to be able to support a sensible combustion at all. The main burners 26b are therefore only switched on at higher load points of the gas turbine.
- FIG. 3 According to which strategy the individual burners, namely the pilot burners 26a as well as the main burners 26b are supplied with fuel, is shown in FIG. 3 shown.
- the total fuel flow is on the abscissa of this diagram plotted for the two burners, on the ordinate the percentage Share of the pilot burner 26a or the main burner 26b in this Sum fuel flow.
- the corresponding characteristic of the pilot burner 26a is designated by the letter A, that of the main burner 26b with the letter B. It can be seen that with initially only a small total fuel flow, d. H. in the left section of this diagram only the pilot burners 26a are operated so that their share in the total fuel flow Is 100%. With increasing total fuel flow the main burners 26b are now switched on, specifically at the switch-on point Z.
- At least the stage that can be switched off ie. H. prefers the Main combustion chamber 25b explained above, with pulsed fuel injection operable.
- the fuel will thus introduced into the combustion chamber virtually clocked, the pulsation frequency are in the range between a single Hz to a few 100 Hz can.
- This pulsed injection at least theoretically, has one as well pulsed combustion.
- combustion pulse is a favorable fuel-air ratio adjustable. Because not at least with low fuel quantities more continuously, but only occasionally fuel is injected, can thus when setting favorable fuel-air ratios overall significantly less fuel is injected than with a conventional one continuous injection is possible.
- connection point Z also no instabilities To be feared, so that on the one hand a smooth transition when switching on the second stage can be achieved and on the other hand actually for each operating point or thrust value a defined amount of fuel in the combustion chamber is introduced regardless of whether it is an increase in thrust or a thrust redemption.
- the pulsation frequency which should preferably be variable, in a variety set a favorable combustion from operating points can, preferably above the characteristic frequencies of possible combustion chamber vibrations, so that no negative Effects on combustion efficiency or on thrust as well as the generation of noise. Rather, it is always a combustion achievable with a low degree of efficiency, since for every combustion or injection pulse a favorable fuel-air ratio is present. While in the usual continuous fuel injection today the minimum value of the Fuel throughput due to the instability of the combustion lean fuel-air mixture is determined in an inventive pulsed fuel injection for each fuel pulse a larger one Air-fuel ratio realizable, so that through targeted selection of Pulsation frequency even with a significantly lower total fuel supply still a stable combustion or a series of stable combustion impulses is achievable.
- the pulsation frequency of the discontinuous Fuel injection can be varied in a certain period of time amount of fuel injected to the respective operating point of the To be able to adapt the gas turbine. But it is also desirable to work with everyone Injection pulse, the amount of fuel that can be introduced can vary there are several options for this. For one, at a constant Fuel quantity per unit of time the injection duration can be changed to others can be introduced with a constant injection duration Amount of fuel to be changed. Of course it is also possible to combine these two strategies, as well as additionally the pulsation frequency can be adjusted so that overall by the many possible variations for each operating point of the gas turbine optimal fuel injection can be selected in each case. Be there pointed out that in high-load operating points of course from pulsed injection to continuous fuel injection can be switched.
- pulsed fuel injection is also to be had pointed out.
- the pulsation frequency namely the usual combustion frequencies are controlled in such a way that the so-called "combustion hum" that occurs when the combustion is unstable Low fuel flow can occur from the characteristic frequencies resulting from possible combustion chamber vibrations, minimized can be.
- the first stage or pilot combustion chamber which is usually not in certain Operating states is switched off with a continuous fuel injection can or should work, especially one safe ignition of the fuel-air mixture in the second stage or Main combustion chamber to ensure.
- An advantageous fuel injection device for performing such pulsed fuel injection can be done from an electromagnetic and / or hydraulically operated fuel injector, the The time and duration of the opening can be specifically adjusted.
- Such fuel injectors are known from reciprocating internal combustion engines. Such fuel injectors can now be modified accordingly used to either direct the fuel into the combustion chamber to inject a gas turbine or they can be an essentially common one Be upstream fuel injector.
- Pulsation control valve which is a conventional in the Combustion chamber opening fuel injector is connected upstream.
- this injection nozzle can have a metering valve be connected upstream, it being particularly advantageous for the pulsation control valve and to combine the dosing valve in one component, which is referred to below as "pulse dosing device”.
- FIG. 1 A preferred embodiment for such a pulse meter is in Fig. 1 shown in a principle section and is explained in more detail below.
- Reference number 1 denotes a cylinder of the pulse dispenser described, within which a control piston 2 is rotatable about the cylinder axis 3 and is arranged displaceably in the direction of the cylinder axis 3.
- a cylinder wall opening 4 leads into the interior of the cylinder 1 Fuel can be introduced according to arrow 18a, via a further control window 5 designated breakthrough in the cylinder wall is fuel from the cylinder interior Removable according to arrow 18b.
- the cylinder wall opening 4 and the control window 5 are one with the fuel supply system switchable stage of a stepped gas turbine combustion chamber connected, the fuel discharged via the control window 5 (arrow 18b) to the Fuel injection nozzles led to this switchable combustion chamber stage becomes.
- the control piston 2 is hollow at least in sections, so that there is a piston interior 6, which is only shown in broken lines, in which as can be seen, fuel that flows in accordance with arrow 18a over the wall opening 4 in flowed into the interior of the cylinder 1, can reach. So this piston interior 6, which is designed here in the form of two bores, with is connected to the gas turbine fuel supply system. At the At least one control slot 7 is provided on the outer wall of the control piston 2. the one with the piston interior 6 or with the corresponding bores communicates. This allows fuel to flow through the wall opening 4 is brought out, ultimately exit through the control slot 7.
- the amount of fuel discharged via the control window 5 can be also by the frequency of rotation of the control piston 2 or control slot 7 are influenced. However, with regard to certain boundary conditions a certain rotation frequency is desired, so this is a preferred setting the amount of fuel delivered per fuel pulse is possible that the control piston 2 along the cylinder axis 3 in or against the direction of the arrow 14 is moved. This allows the effective length I of the control slot 7, via which this comes to cover with the control window 5, to be changed. With a larger value of length I becomes a larger one Amount of fuel discharged through the control window 5, with a smaller one Length I a smaller amount of fuel.
- the control piston 2 can be set in rotation about the cylinder axis 3 from the gearbox of the gas turbine, but also, for example, from an electric motor, of which only the output pinion 8 is shown, with which a gear 9 meshes, which via a stub shaft 10 with a so-called.
- Guide extension 11 of the control piston 2 is connected. This leadership process 11 is also guided within the cylinder 1 and has one Front side 12 'on which a hydraulic medium with constant pressure above this guide extension 11 via a control opening 13 'in reaches the interior of the cylinder 1, acts.
- a comparable one Control opening 13 is located below the control piston 2 in the cylinder 1, see above that also act on this lower end face 12, a hydraulic medium can.
- this can be as well as a variety of details, particularly constructive Kind of quite different from this shown embodiment be designed without leaving the content of the claims.
- Essential is rather that in general at least the stage that can be switched off tiered gas turbine combustor with pulsed fuel injection is operable.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Kraftstoff-Einspritzung in eine gestufte Gasturbinen-Brennkammer mit separaten Kraftstoff-Einspritzdüsen für jede Stufe, wobei zumindest eine Stufe für bestimmte Betriebszustände durch Unterbrechung der Kraftstoffzufuhr abschaltbar ist. Ferner betrifft die Erfindung eine Kraftstoffeinspritzvorrichtung zur Durchführung des erfindungsgemäßen Kraftstoff-Einspritzverfahrens. Zum bekannten Stand der Technik wird lediglich beispielshalber auf die WO 95/17632 verwiesen.The invention relates to a method for fuel injection in a staged Gas turbine combustor with separate fuel injectors for each level, with at least one level for certain operating conditions can be switched off by interrupting the fuel supply. Furthermore, the Invention a fuel injection device for performing the invention Fuel injection process. To the known state of the Technology is only referred to WO 95/17632 by way of example.
Im Dokument US-A-3 688 495 wird ein getaktetes Brennstoffventil für eine Gasturbine beschrieben.Document US-A-3 688 495 describes a timed fuel valve for a gas turbine.
Gasturbinen-Brennkammern, insbesondere Ring-Brennkammern von Gasturbinen, die mit gestufter Verbrennung bzw. gestufter Kraftstoff-Einspritzung arbeiten, gewinnen zunehmend an Bedeutung. Üblicherweise ist eine Pilot-Brennkammer sowie eine Haupt-Brennkammer vorgesehen, die jeweils eine sog. Stufe bilden. Selbstverständlich können neben diesen beiden Stufen noch weitere Abstufungen bzw. Stufen vorgesehen sein. Die Pilot-Brennkammer besitzt als erste Stufe einen oder mehrere Pilot-Brenner, die im bevorzugten Anwendungsfall einer Ring-Brennkammer aus ringförmig angeordneten Kraftstoff-Einspritzdüsen bestehen, ebenso besitzt die zweite Stufe, nämlich die Haupt-Brennkammer, mehrere Haupt-Brenner, ebenfalls in Form mehrerer vorzugsweise wieder ringförmig angeordneter Einspritzdüsen.Gas turbine combustion chambers, in particular ring combustion chambers from Gas turbines with staged combustion or staged fuel injection work are becoming increasingly important. Usually is a pilot combustion chamber and a main combustion chamber are provided, which each form a so-called level. Of course, in addition to these two Levels still further gradations or levels may be provided. The Pilot combustion chamber has one or more pilot burners as the first stage, which in the preferred application of an annular combustion chamber from an annular arranged fuel injection nozzles exist, also has the second Stage, namely the main combustion chamber, several main burners, too in the form of a plurality of injection nozzles, preferably arranged in a ring again.
Eine Prinzipdarstellung für eine derartige gestufte Gasturbinen-Brennkammer
zeigt die beigefügte Fig. 2. Hier ist die Brennkammer-Außenwand mit
der Bezugsziffer 20 und die Brennkammer-Innenwand mit der Bezugsziffer
21 bezeichnet. Diese beiden Wände 20, 21 sind noch von Hüllwänden 20a,
21a umgeben, welche letztlich auch linksseitig den Brennkammer-Eintritt 22a
und rechtsseitig den Brennkammer-Austritt 22b definieren. Ferner ist die
Mittellinie 23 dieser als Ring-Brennkammer ausgebildeten Gasturbinen-Brennkammer
dargestellt.A schematic diagram for such a stepped gas turbine combustion chamber
shows the attached Fig. 2. Here is the combustion chamber outer wall with
the
Innerhalb der linken Hälfte dieser Brennkammer ist eine Trennwandstruktur
24 vorgesehen. Zwischen dieser Trennwandstruktur 24 sowie der Mittelachse
23 liegt die sog. Pilot-Brennkammer 25a, während sich unterhalb
dieser Trennwandstruktur 24 die sog. Haupt-Brennkammer 25b befindet. Der
Pilot-Brennkammer 25a sind Pilot-Brenner 26a zugeordnet, während für die
Haupt-Brennkammer 25b Haupt-Brenner 26b vorgesehen sind. Über diese
Brenner 26a, 26b wird Kraftstoff bzw. ein Kraftstoff-Luft-Gemisch in die
Brennkammern eingeführt, während ein Hauptluftstrom 27 über den Brennkammer-Eintritt
22a in die einzelnen Brennkammern 25a, 25b gelangt. Ferner
kann Zumischluft 28 über Durchbrüche in der Außenwand 20, in der
Innenwand 21, sowie in der Trennwandstruktur 24 in die einzelnen Brennkammern
25a, 25b eintreten. Das in der Pilot-Brennkammer 25a bzw. in der
Haupt-Brennkammer 25b sowie in der Zusammenführung dieser beiden
Brennkammern verbrannte Kraftstoff-Luft-Gemisch wird schließlich über den
Brennkammer-Austritt 22b abgeführt. There is a partition structure within the left half of this
In niedrigeren Lastpunkten der Gasturbine werden lediglich die Pilot-Brenner
26a betrieben, was bedeutet, daß die Einspritzdüsen der Haupt-Brenner 26b
nicht mit Kraftstoff versorgt werden. In höheren Lastpunkten der Gasturbine
werden zusätzlich zu den Pilot-Brennern 26a die Haupt-Brenner 26b betrieben,
so daß deren Einspritzdüsen dann mit Kraftstoff versorgt werden. Üblicherweise
wird die Pilot-Brennkammer 25a, die auch zum Starten der
Gasturbine und zum Hochfahren in den Leerlauf alleinig betrieben wird, im
gesamten Betriebskennfeld der Gasturbine, insbesondere Flug-Gasturbine
betrieben, um eine Zündquelle für die nur bedarfsweise zugeschalteten
Haupt-Brenner 26b zu schaffen. Der Zweck der gestuften Verbrennung liegt
in der Minimierung von Schadstoffemissionen, insbesondere von NOx. Erreicht
wird dies dadurch, daß die jeweilige Brennergröße besser an den jeweiligen
Leistungsbedarf angepaßt werden kann. So sollte zur NOx-Reduzierung
die Verbrennungstemperatur möglichst gering sein, was durch gezielte
Luftzufuhr (Zumischluft 28) in die Verbrennungszone erreichbar ist. Dabei
sind die jeweiligen Stufen, nämlich die Pilot-Brenner 26a bzw. die Haupt-Brenner
26b auf spezielle Luft-Kraftstoff-Verhältnisse hin ausgelegt. Bei
niedrigen Lastpunkten der Gasturbine, in denen insgesamt nur relativ wenig
Kraftstoff verbrannt wird, wäre das den Haupt-Brennern 26b zukommende
Luft-Kraftstoff-Verhältnis zu groß, um überhaupt eine sinnvolle Verbrennung
unterstützen zu können. Daher werden die Haupt-Brenner 26b erst in höheren
Lastpunkten der Gasturbine zugeschaltet.At lower gas turbine load points, only the
Nach welcher Strategie die einzelnen Brenner, nämlich die Pilot-Brenner 26a
sowie die Haupt-Brenner 26b hierbei mit Kraftstoff versorgt werden, ist in Fig.
3 dargestellt. Auf der Abszisse dieses Diagrammes ist der Summen-Kraftstoff-Fluß
für die beiden Brenner aufgetragen, auf der Ordinate der prozentuale
Anteil der Pilot-Brenner 26a bzw. der Haupt-Brenner 26b an diesem
Summen-Kraftstoff-Fluß. Die entsprechende Kennlinie des Pilot-Brenners
26a ist mit dem Buchstaben A bezeichnet, diejenige der Haupt-Brenner 26b
mit dem Buchstaben B. Man erkennt, daß bei zunächst nur geringem Summen-Kraftstoff-Fluß,
d. h. im linken Teilbereich dieses Diagrammes lediglich
die Pilot-Brenner 26a betrieben werden, so daß deren Anteil am Summen-Kraftstoff-Fluß
100 % beträgt. Bei zunehmendem Summen-Kraftstoff-Fluß
werden nun die Haupt-Brenner 26b zugeschaltet, und zwar im Zuschaltpunkt
Z. Hierbei soll jedoch kein schlagartiger Leistungszuwachs erfolgen. Erwünscht
ist vielmehr ein sanfter Leistungszuwachs, so daß mit einer zunächst
relativ geringen Versorgung der Haupt-Brenner 26b gleichzeitig die
Pilot-Brenner 26a mit einer geringeren Kraftstoffmenge versorgt werden.
Dieser Zuschaltpunkt Z ist hinsichtlich seiner Auslegung daher äußerst kritisch,
da sowohl in den Pilot-Brennern 26a, als auch in den Haupt-Brennern
26b stets ein geeignetes Kraftstoff-Luftverhältnis vorliegen muß. Die gleichen
Überlegungen gelten dabei auch bezüglich einer Leistungsrücknahme der
Gasturbine, wenn also die zunächst betriebenen Haupt-Brenner 26b wieder
abgeschaltet werden. Um Instabilitäten in der direkten Umgebung dieses
Zuschaltpunktes Z zu vermeiden, wird in der eingangs genannten WO
95/17632 hierfür eine Steuerung vorgeschlagen, die eine Hysterese enthält.
Bei zunehmendem Schub werden die Haupt-Brenner erst bei einem höheren
Gesamt-Kraftstoffdurchsatz zugeschaltet, als sie bei abnehmendem Schub
abgeschaltet werden.According to which strategy the individual burners, namely the
Da es jedoch erwünscht ist, in einem definierten Lastpunkt bzw. Schubzustand
der Gasturbine stets auch einen definierten Kraftstoffdurchsatz zu haben
- d. h. unabhängig davon, ob es sich um eine Schubzunahme oder um
eine Schubrücknahme handelt -, hat sich die Erfindung die Aufgabe gestellt,
eine andere Lösung für die oben geschilderte Problematik im Zusammenhang
mit dem Zuschalten einer zweiten Stufe zu einer ersten Stufe aufzuzeigen.
Gelöst wird diese Aufgabe dadurch, daß zumindest die abschaltbare Stufe
mit gepulster Kraftstoff-Einspritzung betreibbar ist. Geeignete Kraftstoffeinspritzvorrichtungen
zur Durchführung dieses erfindungsgemäßen Kraftstoff-Einspritzverfahrens
sind in den Ansprüchen 5 und 6 beschrieben, während
die weiteren Unteransprüche vorteilhafte Aus- und Weiterbildungen zum Inhalt
haben.However, since it is desirable to always have a defined fuel throughput in a defined load point or overrun condition of the gas turbine - ie regardless of whether it is an increase in overrun or a decrease in overrun - the invention has the task of another To show the solution to the problem described above in connection with the connection of a second stage to a first stage.
This object is achieved in that at least the stage which can be switched off can be operated with pulsed fuel injection. Suitable fuel injection devices for carrying out this fuel injection method according to the invention are described in
Erfindungsgemäß ist zumindest die abschaltbare Stufe, d. h. bevorzugt die
oben erläuterte Haupt-Brennkammer 25b, mit gepulster Kraftstoff-Einspritzung
betreibbar. Dies bedeutet, daß dann keine kontinuierliche, sondern
eine diskontinuierliche Kraftstoff-Einspritzung erfolgt. Der Kraftstoff wird
somit quasi getaktet in die Brennkammer eingeführt, wobei die Pulsationsfrequenz
im Bereich zwischen einzigen Hz bis zu einigen 100 Hz liegen
kann. Diese gepulste Einspritzung hat zumindest theoretisch eine ebenso
gepulste Verbrennung zur Folge. Für jeden Einspritzimpuls bzw. für jeden
sog. Verbrennungs-Impuls ist dabei ein günstiges Kraftstoff-Luft-Verhältnis
einstellbar. Dadurch, daß zumindest bei niedrigen Kraftstoffmengen nicht
mehr kontinuierlich, sondern nurmehr zeitweise Kraftstoff eingespritzt wird,
kann somit bei Einstellung günstiger Kraftstoff-Luft-Verhältnisse insgesamt
deutlich weniger Kraftstoff eingespritzt werden, als dies bei einer herkömmlichen
kontinuierlichen Einspritzung möglich ist. Insbesondere sind aufgrund
der gepulsten Einspritzung im sog. Zuschaltpunkt Z auch keine Instabilitäten
zu befürchten, so daß zum einen ein weicher Übergang beim Zuschalten der
zweiten Stufe erzielbar ist und zum anderen tatsächlich für jeden Betriebspunkt
bzw. Schubwert eine definierte Kraftstoffmenge in die Brennkammer
eingeführt wird, unabhängig davon, ob es sich nun um eine Schubzunahme
oder um eine Schubrücknahme handelt. According to the invention, at least the stage that can be switched off, ie. H. prefers the
Die Pulsationsfrequenz, die bevorzugt variierbar sein soll, um in einer Vielzahl von Betriebspunkten eine jeweils günstige Verbrennung einstellen zu können, kann bevorzugt oberhalb der charakteristischen Frequenzen von möglichen Brennkammer-Schwingungen liegen, so daß keine negativen Auswirkungen auf den Verbrennungswirkungsgrad bzw. auf den Schub sowie die Lärmerzeugung zu befürchten sind. Vielmehr ist stets eine Verbrennung mit einem günstigen Wirkungsgrad erreichbar, da für jeden Verbrennungs- bzw. Einspritzimpuls ein günstiges Kraftstoff-Luft-Verhältnis vorliegt. Während bei der heute üblichen kontinuierlichen Kraftstoff-Einspritzung in die (abschaltbare) Hauptbrennkammer der Minimalwert des Kraftstoffdurchsatzes durch die Instabilität der Verbrennung durch ein zu mageres Kraftstoff-Luft-Gemisch bestimmt ist, ist bei einer erfindungsgemäßen gepulsten Kraftstoff-Einspritzung für jeden Kraftstoffimpuls ein größeres Kraftstoff-Luft-Verhältnis realisierbar, so daß durch gezielte Auswahl der Pulsationsfrequenz auch bei deutlich geringerer Kraftstoff-Summenzufuhr noch eine stabile Verbrennung bzw. eine Reihe von stabilen Verbrennungs-Impulsen erzielbar ist.The pulsation frequency, which should preferably be variable, in a variety set a favorable combustion from operating points can, preferably above the characteristic frequencies of possible combustion chamber vibrations, so that no negative Effects on combustion efficiency or on thrust as well as the generation of noise. Rather, it is always a combustion achievable with a low degree of efficiency, since for every combustion or injection pulse a favorable fuel-air ratio is present. While in the usual continuous fuel injection today the minimum value of the Fuel throughput due to the instability of the combustion lean fuel-air mixture is determined in an inventive pulsed fuel injection for each fuel pulse a larger one Air-fuel ratio realizable, so that through targeted selection of Pulsation frequency even with a significantly lower total fuel supply still a stable combustion or a series of stable combustion impulses is achievable.
Wie bereits erläutert, kann die Pulsationsfrequenz der diskontinuierlichen Kraftstoff-Einspritzung variiert werden, um die in einer gewissen Zeitspanne eingespritzte Kraftstoff-Summenmenge an den jeweiligen Betriebspunkt der Gasturbine anpassen zu können. Es ist aber auch erwünscht, die mit jedem Einspritz-Impuls einbringbare Kraftstoffmenge variieren zu können, wobei hierfür mehrere Möglichkeiten existieren. Zum einen kann bei einer konstanten Kraftstoffmenge je Zeiteinheit die Einspritzdauer geändert werden, zum anderen kann bei einer konstanten Einspritzdauer die hierbei eingebrachte Kraftstoffmenge verändert werden. Selbstverständlich ist es auch möglich, diese beiden Strategien miteinander zu kombinieren, ebenfalls wie zusätzlich die Pulsationsfrequenz angepaßt werden kann, so daß insgesamt durch die vielen Variationsmöglichkeiten für jeden Betriebspunkt der Gasturbine die jeweils optimale Kraftstoff-Einspritzung gewählt werden kann. Dabei sei darauf hingewiesen, daß in Hochlast-Betriebspunkten selbstverständlich von der gepulsten Einspritzung auf eine kontinuierliche Kraftstoff-Einspritzung umgeschaltet werden kann.As already explained, the pulsation frequency of the discontinuous Fuel injection can be varied in a certain period of time amount of fuel injected to the respective operating point of the To be able to adapt the gas turbine. But it is also desirable to work with everyone Injection pulse, the amount of fuel that can be introduced can vary there are several options for this. For one, at a constant Fuel quantity per unit of time the injection duration can be changed to others can be introduced with a constant injection duration Amount of fuel to be changed. Of course it is also possible to combine these two strategies, as well as additionally the pulsation frequency can be adjusted so that overall by the many possible variations for each operating point of the gas turbine optimal fuel injection can be selected in each case. Be there pointed out that in high-load operating points of course from pulsed injection to continuous fuel injection can be switched.
Ferner sei noch auf einen weiteren Vorteil der gepulsten Kraftstoff-Einspritzung hingewiesen. Durch gezielte Auswahl der Pulsationsfrequenz können nämlich die üblichen Verbrennungsfrequenzen derart gesteuert werden, daß das sog. "Verbrennungs-Brummen", das bei instabiler Verbrennung bei geringem Kraftstoffdurchsatz auftreten kann aus den charakteristischen Frequenzen von möglichen Brennkammer-Schwingungen resultiert, minimiert werden kann. Im übrigen sei noch darauf hingewiesen, daß bevorzugt die erste Stufe oder Pilotbrennkammer, welche üblicherweise nicht in bestimmten Betriebszuständen abgeschaltet wird, mit einer kontinuierlichen Kraftstoff-Einspritzung arbeiten kann bzw. sollte, insbesondere auch um eine sichere Zündung des Brennstoff-Luft-Gemisches in der zweiten Stufe oder Hauptbrennkammer zu gewährleisten.Another advantage of pulsed fuel injection is also to be had pointed out. By specifically selecting the pulsation frequency namely the usual combustion frequencies are controlled in such a way that the so-called "combustion hum" that occurs when the combustion is unstable Low fuel flow can occur from the characteristic frequencies resulting from possible combustion chamber vibrations, minimized can be. Furthermore, it should be pointed out that the first stage or pilot combustion chamber, which is usually not in certain Operating states is switched off with a continuous fuel injection can or should work, especially one safe ignition of the fuel-air mixture in the second stage or Main combustion chamber to ensure.
Eine vorteilhafte Kraftstoffeinspritzvorrichtung zur Durchführung einer derartigen gepulsten Kraftstoff-Einspritzung kann aus einem elektromagnetisch und/oder hydraulisch betätigten Kraftstoff-Einspritzventil bestehen, dessen Öffnungszeitpunkt und Öffnungsdauer gezielt einstellbar ist. Derartige Kraftstoff-Einspritzventile sind von Hubkolben-Brennkraftmaschinen her bekannt. Entsprechend abgewandelt können derartige Kraftstoff-Einspritzventile nun dazu verwendet werden, entweder direkt den Kraftstoff in die Brennkammer einer Gasturbine einzuspritzen oder sie können einer im wesentlichen üblichen Kraftstoff-Einspritzdüse vorgeschaltet sein. An advantageous fuel injection device for performing such pulsed fuel injection can be done from an electromagnetic and / or hydraulically operated fuel injector, the The time and duration of the opening can be specifically adjusted. Such fuel injectors are known from reciprocating internal combustion engines. Such fuel injectors can now be modified accordingly used to either direct the fuel into the combustion chamber to inject a gas turbine or they can be an essentially common one Be upstream fuel injector.
Eine weitere Kraftstoff-Einspritzvorrichtung zur Durchführung einer erfindungsgemäßen gepulsten Kraftstoff-Einspritzung kann aus einem geeigneten Pulsations-Steuerventil bestehen, das einer an sich üblichen, in der Brennkammer mündenden Kraftstoff-Einspritzdüse vorgeschaltet ist. Zusätzlich zum Pulsations-Steuerventil kann dieser Einspritzdüse ein Dosierventil vorgeschaltet sein, wobei es besonders vorteilhaft ist, das Pulsations-Steuerventil sowie das Dosierventil in einem Bauelement zusammenzufassen, welches im folgenden als "Puls-Dosierer" bezeichnet wird.Another fuel injection device for carrying out an inventive pulsed fuel injection can be made from a suitable Pulsation control valve exist, which is a conventional in the Combustion chamber opening fuel injector is connected upstream. In addition to the pulsation control valve, this injection nozzle can have a metering valve be connected upstream, it being particularly advantageous for the pulsation control valve and to combine the dosing valve in one component, which is referred to below as "pulse dosing device".
Ein bevorzugtes Ausführungsbeispiel für einen derartigen Puls-Dosierer ist in Fig. 1 in einem Prinzipschnitt dargestellt und wird im folgenden näher erläutert.A preferred embodiment for such a pulse meter is in Fig. 1 shown in a principle section and is explained in more detail below.
Mit der Bezugsziffer 1 ist ein Zylinder des beschriebenen Puls-Dosierers bezeichnet,
innerhalb dessen ein Steuerkolben 2 um die Zylinderachse 3 verdrehbar
sowie in Richtung der Zylinderachse 3 verschiebbar angeordnet ist.
Über einen Zylinder-Wanddurchbruch 4 ist in den Innenraum des Zylinders 1
Kraftstoff gemäß Pfeil 18a einleitbar, über einen weiteren als Steuerfenster 5
bezeichneten Durchbruch in der Zylinderwand ist Kraftstoff aus dem Zylinder-Innenraum
gemäß Pfeil 18b abführbar. Der Zylinder-Wanddurchbruch 4
sowie das Steuerfenster 5 sind mit dem Kraftstoff-Versorgungssystem einer
abschaltbaren Stufe einer gestuften Gasturbinen-Brennkammer verbunden,
wobei der über das Steuerfenster 5 abgeführte Kraftstoff (Pfeil 18b) zu den
Kraftstoff-Einspritzdüsen dieser abschaltbaren Brennkammer-Stufe hingeführt
wird.Reference number 1 denotes a cylinder of the pulse dispenser described,
within which a
Der Steuerkolben 2 ist zumindest abschnittsweise hohl ausgebildet, so daß
ein lediglich gestrichelt dargestellter Kolben-Innenraum 6 vorliegt, in welchen
wie ersichtlich Kraftstoff, der gemäß Pfeil 18a über den Wanddurchbruch 4 in
das Innere des Zylinders 1 einströmte, gelangen kann. Somit ist dieser Kolben-Innenraum
6, der hier in Form zweier Bohrungen ausgebildet ist, mit
dem Kraftstoffversorgungssystem der Gasturbine verbunden ist. An der
Außenwand des Steuerkolbens 2 ist zumindest ein Steuerschlitz 7 vorgesehen,
der mit dem Kolben-Innenraum 6 bzw. mit den entsprechenden Bohrungen
in Verbindung steht. Somit kann Kraftstoff, der über den Wanddurchbruch
4 herangeführt wird, letztlich über den Steuerschlitz 7 austreten.The
Etwa in Höhe des Steuerschlitzes 7 befindet sich in der Wand des Zylinders
1 das bereits erläuterte Steuerfenster 5. Wird nun der Steuerkolben 2 um die
Zylinderachse 3 kontinuierlich gedreht, so wird über das Steuerfenster 5
Kraftstoff, der über den Wanddurchbruch 4 herangeführt wurde, gepulst abgeführt.
Jedesmal, wenn der Steuerschlitz 7 bei Rotation des Steuerkolbens
2 mit dem Steuerfenster 5 zur Deckung kommt, kann nämlich eine Kraftstoffteilmenge
gemäß Pfeil 18b durch das Steuerfenster 5 austreten und letztlich
zur Kraftstoff-Einspritzdüse der Brennkammer-Stufe gelangen. Sobald jedoch
der rotierende Steuerschlitz 7 das Steuerfenster 5 passiert hat, wird
dieser Kraftstoff-Fluß wieder unterbrochen. Allein durch Rotation des
Steuerkolbens 2 im Zylinder 1 ist somit eine gepulste Kraftstoff-Einspritzung
in eine Gasturbinen-Brennkammer-Stufe erzielbar. Dabei ist die Pulsationsfrequenz
durch die Drehgeschwindigkeit des Steuerkolbens 2 im Zylinder 1
vorgegeben, so daß mit gezielter Auswahl der Drehgeschwindigkeit eine
bestimmte Pulsationsfrequenz einstellbar ist.Approximately at the level of the control slot 7 is in the wall of the cylinder
1 the
Die Menge des über das Steuerfenster 5 abgeführten Kraftstoffes kann zwar
auch durch die Rotationsfrequenz des Steuerkolbens 2 bzw. Steuerschlitzes
7 beeinflußt werden. Ist jedoch im Hinblick auf gewisse Randbedingungen
eine gewisse Rotationsfrequenz erwünscht, so ist eine bevorzugte Einstellung
der je Kraftstoff-Impuls abgegebenen Kraftstoffmenge dadurch möglich,
daß der Steuerkolben 2 längs der Zylinderachse 3 in bzw. gegen Pfeilrichtung
14 verschoben wird. Hierdurch kann die wirksame Länge I des Steuerschlitzes
7, über welche dieser mit dem Steuerfenster 5 zur Deckung kommt,
verändert werden. Bei einem größeren Wert der Länge I wird eine größere
Menge Kraftstoff über das Steuerfenster 5 abgeführt, bei einer kleineren
Länge I eine geringere Kraftstoffmenge.The amount of fuel discharged via the
In Rotation um die Zylinderachse 3 versetzt werden kann der Steuerkolben 2
von der gearbox der Gasturbine, aber auch beispielsweise von einem Elektromotor,
von dem lediglich das Abtriebsritzel 8 dargestellt ist, mit welchem
ein Getrieberad 9 kämmt, das über einen Achsstummel 10 mit einem sog.
Führungsfortsatz 11 des Steuerkolbens 2 verbunden ist. Dieser Führungsfortsatz
11 ist ebenfalls innerhalb des Zylinders 1 geführt und weist eine
Stirnseite 12' auf, auf die mit konstantem Druck ein Hydraulikmedium, welches
oberhalb dieses Führungsfortsatzes 11 über eine Steueröffnung 13' in
den Innenraum des Zylinders 1 gelangt, einwirkt. Eine vergleichbare
Steueröffnung 13 findet sich unterhalb des Steuerkolbens 2 im Zylinder 1, so
daß auch auf diese untere Stirnseite 12 ein Hydraulikmedium einwirken
kann. Wird nun der Hydraulikdruck in der Steueröffnung 13 gegenüber
demjenigen in der Steueröffnung 13' erhöht, so wird der Steuerkolben 2
gemäß Pfeilrichtung 14 nach oben verschoben. Eine Erniedrigung des
Druckes in der Steueröffnung 13 gegenüber demjenigen in der Steueröffnung
13' hingegen bewirkt eine Verschiebung des Steuerkolbens gegen
Pfeilrichtung 14 nach unten. Diese beschriebene Verschiebebewegung in
bzw. gegen Pfeilrichtung 14 kann im übrigen auch das Getrieberad 9 bezüglich
des Abtriebsritzels 8 durchführen, da letzteres deutlich breiter ausgebildet
ist, als das Getrieberad 9. The
Vorgesehen ist ferner ein über eine Stellstange 15a sowie über einen Federteller
15b auf den Steuerkolben 2 einwirkendes Federelement 16, wobei zusätzlich
eine Einstellschraube 17 vorgesehen ist, die ebenfalls auf den Federteller
15b einwirken kann, derart, daß er maximale Kraftstoffdurchfluß
über den Steuerschlitz 7 sowie das Steuerfenster 5 eingestellt werden kann.
Jedoch kann dies sowie eine Vielzahl von Details, insbesondere konstruktiver
Art durchaus abweichend von diesem gezeigten Ausführungsbeispiel
gestaltet sein, ohne den Inhalt der Patentansprüche zu verlassen. Wesentlich
ist vielmehr, daß ganz allgemein zumindest die abschaltbare Stufe einer
gestuften Gasturbinen-Brennkammer mit gepulster Kraftstoff-Einspritzung
betreibbar ist.Also provided is an adjusting
Claims (9)
- Method for fuel injection into a staged gas-turbine combustion chamber with separate fuel injectors for each stage, where at least one is deactivatable for certain operating conditions by interruption of the fuel supply, characterized in that at least the deactivatable stage is operable with pulsed fuel injection.
- Method in accordance with Claim 1, characterized in that the pulsation frequency of the discontinuous fuel injection is variable.
- Method in accordance with Claim 1 or 2, characterized in that the fuel quantity deliverable with each injection pulse is variable.
- Method in accordance with one of the preceding claims, characterized in that a switch-over can be made from discontinuous, pulsed fuel injection to continuous fuel injection.
- Fuel injection device for implementation of the method in accordance with one of the Claims 1 to 4, characterized in that an electromagnetically and/or hydraulically operated fuel injector is used whose opening time and opening duration can be positively set.
- Fuel injection device for implementation of the method in accordance with one of the Claims 1 to 4, characterized in that a pulsation control valve and/or a metering valve is arranged upstream of the fuel injector extending into the combustion chamber.
- Fuel injection device in accordance with Claim 6, characterized in that the pulsation control valve and the metering valve are combined into one unit referred to as pulsing-metering unit.
- Fuel injection device in accordance with Claim 7, characterized in that the pulsing-metering unit features a control piston (2) which is rotatable in a cylinder (1) and which is movable in the direction of the cylinder axis (3), with the outer wall of the control piston (2) featuring a control slit (7) connecting to the piston interior (6) and with the piston interior (6) connecting to the fuel supply system of the combustion chamber, said control slit (7) being settable coincidentally with a control window (5) in the cylinder (1) which also connects to the fuel supply system.
- Fuel injection device in accordance with Claim 8 characterized by at least one of the following features:the rotation of the control piston (2) is effected by an electric motor or by the gearbox of the gas turbine,the control piston (2) is positioned in the direction of the cylinder axis (3) by hydraulic pressure applied to a least one of its faces (12, 12').
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19620874 | 1996-05-23 | ||
DE1996120874 DE19620874A1 (en) | 1996-05-23 | 1996-05-23 | Fuel injection for a staged gas turbine combustor |
PCT/EP1997/002511 WO1997044622A1 (en) | 1996-05-23 | 1997-05-15 | Fuel injection method for a stepped gas turbine combustion chamber |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0900351A1 EP0900351A1 (en) | 1999-03-10 |
EP0900351B1 true EP0900351B1 (en) | 2001-11-21 |
Family
ID=7795168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19970923092 Expired - Lifetime EP0900351B1 (en) | 1996-05-23 | 1997-05-15 | Fuel injection method for a stepped gas turbine combustion chamber |
Country Status (5)
Country | Link |
---|---|
US (1) | US6381947B2 (en) |
EP (1) | EP0900351B1 (en) |
DE (2) | DE19620874A1 (en) |
ES (1) | ES2165057T3 (en) |
WO (1) | WO1997044622A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2345441A1 (en) * | 1998-10-27 | 2000-05-04 | Affymetrix, Inc. | Complexity management and analysis of genomic dna |
SE522267C2 (en) * | 2000-04-28 | 2004-01-27 | Turbec Ab | Fuel injection for a gas turbine |
US6543232B1 (en) * | 2001-09-27 | 2003-04-08 | United Technologies Corporation | Valve assembly for use in a gas fuel nozzle |
CA2483347C (en) * | 2002-04-23 | 2012-08-28 | The Lubrizol Corporation | Method of operating internal combustion engine by introducing antioxidant into combustion chamber |
DE10247955A1 (en) | 2002-10-12 | 2004-05-13 | Alstom (Switzerland) Ltd. | Burner for gas turbine has at least one resonance tube with one end open and other closed |
US6996991B2 (en) * | 2003-08-15 | 2006-02-14 | Siemens Westinghouse Power Corporation | Fuel injection system for a turbine engine |
US7303388B2 (en) * | 2004-07-01 | 2007-12-04 | Air Products And Chemicals, Inc. | Staged combustion system with ignition-assisted fuel lances |
US7752850B2 (en) * | 2005-07-01 | 2010-07-13 | Siemens Energy, Inc. | Controlled pilot oxidizer for a gas turbine combustor |
GB0515034D0 (en) | 2005-07-21 | 2005-08-31 | Rolls Royce Plc | Method and system for operating a multi-stage combustor |
US7640725B2 (en) * | 2006-01-12 | 2010-01-05 | Siemens Energy, Inc. | Pilot fuel flow tuning for gas turbine combustors |
US7950215B2 (en) * | 2007-11-20 | 2011-05-31 | Siemens Energy, Inc. | Sequential combustion firing system for a fuel system of a gas turbine engine |
DE102008053755A1 (en) | 2008-10-28 | 2010-04-29 | Pfeifer, Uwe, Dr. | Arrangement for extension of stability range of pilot flame system and/or pilot burner system in e.g. aircraft, has burner systems with burners distributed radially at periphery of chamber or over cross-section area of chamber |
US8650880B1 (en) * | 2009-02-13 | 2014-02-18 | Jansen's Aircraft Systems Controls, Inc. | Active combustion control for turbine engine |
US9938906B2 (en) * | 2015-06-01 | 2018-04-10 | Solar Turbines Incorporated | Combustion stability logic during off-load transients |
US11156164B2 (en) | 2019-05-21 | 2021-10-26 | General Electric Company | System and method for high frequency accoustic dampers with caps |
US11174792B2 (en) | 2019-05-21 | 2021-11-16 | General Electric Company | System and method for high frequency acoustic dampers with baffles |
US11346281B2 (en) * | 2020-08-21 | 2022-05-31 | Woodward, Inc. | Dual schedule flow divider valve, system, and method for use therein |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2980090A (en) * | 1956-02-24 | 1961-04-18 | Bendix Corp | Fuel injection system |
US3002349A (en) * | 1956-07-26 | 1961-10-03 | Bendix Corp | Fuel control apparatus for an internal combustion engine |
DE1890295U (en) * | 1961-07-26 | 1964-04-02 | Alois Steimer | STOCK FOR INTERMITTING FUEL INJECTION. |
US3756763A (en) * | 1969-10-27 | 1973-09-04 | Pulsepower Systems | Pulsed high pressure liquid propellant combustion powered gas generators |
US3688495A (en) * | 1970-04-17 | 1972-09-05 | Adolf Fehler | Control system for metering the fuel flow in gas turbine engines |
US4194358A (en) * | 1977-12-15 | 1980-03-25 | General Electric Company | Double annular combustor configuration |
DE4000446A1 (en) * | 1990-01-09 | 1991-07-11 | Siemens Ag | FITTING FOR CONNECTING AT LEAST ONE HYBRID BURNER WITH DEVICES FOR DELIVERING A FLUIDIC FUEL |
GB9013154D0 (en) * | 1990-06-13 | 1990-08-01 | Chato John D | Improvements in pulsating combustors |
GB9118790D0 (en) * | 1991-09-03 | 1991-10-16 | British Ceramic Service Co Ltd | Improvements in or relating to flame safeguard devices |
US5349811A (en) * | 1992-12-16 | 1994-09-27 | Avco Corporation | Pulsed fuel injection system for reducing NOx emissions |
DE4329955C2 (en) * | 1993-09-04 | 1997-01-16 | Danfoss As | Pump arrangement for an oil burner and method for capacity control of this oil burner |
US5402634A (en) * | 1993-10-22 | 1995-04-04 | United Technologies Corporation | Fuel supply system for a staged combustor |
US5465570A (en) | 1993-12-22 | 1995-11-14 | United Technologies Corporation | Fuel control system for a staged combustor |
US5456594A (en) * | 1994-03-14 | 1995-10-10 | The Boc Group, Inc. | Pulsating combustion method and apparatus |
-
1996
- 1996-05-23 DE DE1996120874 patent/DE19620874A1/en not_active Withdrawn
-
1997
- 1997-05-15 ES ES97923092T patent/ES2165057T3/en not_active Expired - Lifetime
- 1997-05-15 DE DE59706046T patent/DE59706046D1/en not_active Expired - Fee Related
- 1997-05-15 WO PCT/EP1997/002511 patent/WO1997044622A1/en active IP Right Grant
- 1997-05-15 EP EP19970923092 patent/EP0900351B1/en not_active Expired - Lifetime
-
2001
- 2001-05-10 US US09/851,947 patent/US6381947B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US6381947B2 (en) | 2002-05-07 |
ES2165057T3 (en) | 2002-03-01 |
DE19620874A1 (en) | 1997-11-27 |
US20010027639A1 (en) | 2001-10-11 |
DE59706046D1 (en) | 2002-02-21 |
WO1997044622A1 (en) | 1997-11-27 |
EP0900351A1 (en) | 1999-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0900351B1 (en) | Fuel injection method for a stepped gas turbine combustion chamber | |
DE102005054442B4 (en) | Combustion chamber for a gas turbine | |
DE2338673C2 (en) | Afterburner arrangement for a gas turbine jet engine | |
DE69506142T2 (en) | Improved combustion plant with low pollutant emissions for gas turbines | |
DE69719591T2 (en) | How a catalytic combustion chamber works | |
DE69719588T2 (en) | Fuel supply system for a gas turbine | |
DE10044624B4 (en) | Coaxial injection nozzle | |
EP1180211B1 (en) | Method for injecting fuel and injection valve for carrying out said method | |
DE102007004864A1 (en) | Combustion chamber of a gas turbine and combustion control method for a gas turbine | |
DE2927781A1 (en) | CONTROL DEVICE FOR THE GAME BETWEEN A ROTOR AND ITS COATING | |
CH701827A2 (en) | Combustion chamber with combustion dynamics control multiple fuel nozzles. | |
CH650836A5 (en) | FUEL INJECTION METHOD FOR DIRECTLY INJECTING, SELF-IGNITIONING AND FOREIGN-IGNITION ENGINES. | |
DE60132922T2 (en) | METHOD AND DEVICE FOR SUPPLYING A COMBUSTION CHAMBER WITH FUEL | |
EP2071156B1 (en) | Fuel distribution system for a gas turbine with multistage burner arrangement | |
EP3431743B1 (en) | Method and apparatus for operating a gas engine at low power operation | |
DE60005580T2 (en) | Gas turbine engine | |
DE3430143C2 (en) | ||
DE10239397A1 (en) | Operating process for a combustion engine especially for a motor vehicle switching between gaseous and fuel injection finds operational parameters to avoid torque changes | |
DE19712806A1 (en) | Fuel injector | |
EP1055061B1 (en) | Method of producing a mixture in the combustion chamber of an internal combustion engine | |
EP0166995B1 (en) | Fuel injection pump for internal-combustion engines | |
EP1716327B1 (en) | Conveyor device | |
DE19754353C2 (en) | gas engine | |
WO2002052201A1 (en) | Burner comprising a graduated fuel injection | |
EP3054216A1 (en) | Control method for the startup function of a heating device which uses fuel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980929 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROLLS-ROYCE DEUTSCHLAND GMBH |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20010130 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REF | Corresponds to: |
Ref document number: 59706046 Country of ref document: DE Date of ref document: 20020221 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2165057 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020320 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20080512 Year of fee payment: 12 Ref country code: DE Payment date: 20080425 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20080421 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080414 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080425 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090515 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091201 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090516 |