[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0995877B1 - Apparatus and method for information transmission by electromagnetic waves - Google Patents

Apparatus and method for information transmission by electromagnetic waves Download PDF

Info

Publication number
EP0995877B1
EP0995877B1 EP99402571A EP99402571A EP0995877B1 EP 0995877 B1 EP0995877 B1 EP 0995877B1 EP 99402571 A EP99402571 A EP 99402571A EP 99402571 A EP99402571 A EP 99402571A EP 0995877 B1 EP0995877 B1 EP 0995877B1
Authority
EP
European Patent Office
Prior art keywords
metal tubes
tubes
transmitter
receiver
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99402571A
Other languages
German (de)
French (fr)
Other versions
EP0995877A1 (en
Inventor
Louis Soulier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geoservices Equipements SAS
Original Assignee
Geoservices SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geoservices SA filed Critical Geoservices SA
Publication of EP0995877A1 publication Critical patent/EP0995877A1/en
Application granted granted Critical
Publication of EP0995877B1 publication Critical patent/EP0995877B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency

Definitions

  • the invention lies in the field of transmissions of information from a drilled hole in the ground to the surface. More particularly, the invention relates to an optimized method of transmission of information between the bottom of a well drilled and the surface, the well being either already drilled and production course, being in the course of drilling.
  • the present invention relates to a method transmission of information from a well drilled to through layers of geological formation and cuvelé at least partly by metal tubes, the method comprises placing in said well a information transmitter / receiver operating by the medium of guided electromagnetic waves created by the injection of an electrical signal by a connected dipole conductively to the metal tubes used for guiding waves emitted.
  • a information transmitter / receiver operating by the medium of guided electromagnetic waves created by the injection of an electrical signal by a connected dipole conductively to the metal tubes used for guiding waves emitted.
  • Insulation can be done by place tubes previously coated with a layer of insulating material.
  • This near transmitter / receiver can be arranged of the lower end of a column of tubes of production to transmit substantive measures or orders to background equipment.
  • the invention also relates to a system of transmission of information from a well drilled in layers of geological formation and cuvelé at least partly by metal tubes, the system comprising in said well a transmitter / receiver of information operating by the means of waves guided electromagnetic waves created by the injection of a electrical signal by a dipole conductively connected to metal tubes for guiding the emitted waves.
  • at least some metal tubes arranged at the right of low resistivity layers include means of electrical insulation with said formation.
  • Insulated tubes may be coated with layer of insulating material.
  • Insulating layer may not cover entirely the entire length of the tube.
  • the isolation means can understand an insulating material that fills the space ring between the tubes and the conductive formation, the material being the result of the hardening of a liquid composition.
  • the transmitter / receiver can be incorporated into the end of a column of production tubes.
  • the transmitter / receiver can also be incorporated into the end of a drill string.
  • the system according to the invention can be applied to an offshore drilling rig with wellhead underwater.
  • a control line kills can be externally isolated electrically from the bottom of the sea to the surface
  • Zone 2 generally comprises at least one layer forming reservoir containing effluents to be produced.
  • the layers of land 3 which are between layer 2 and the surface, attenuate electromagnetic waves in such a way that it is impossible to use the method of transmission by electromagnetic waves known.
  • the layers 3a and 3b have resistivities much lower than 20 ⁇ .m, for example of the order of a few ⁇ .m, or even less than 1 ⁇ .m.
  • zone 3c at a resistivity greater than 20 ⁇ .m, for example a layer of salt, a layer frequently encountered in drilling.
  • Df ⁇ F log 2 (1 + S / B) with ⁇ F useful modulation bandwidth, S signal and B the noise in the useful band.
  • the transmission is carried out by the issuer referenced E in FIGS. 1, 2 and 3.
  • the emitter E modulates a very low frequency wave, said frequency being chosen low enough so that the propagation is possible.
  • the means transmitters use frequency waves included between 1 Hz and 10 Hz.
  • This wave, called frequency carrier is in an exemplary embodiment, modulated according to the information to be transmitted, by phase 0- ⁇ at a rate compatible with the frequency carrier.
  • Other types of modulation can be used without departing from the scope of this invention.
  • the modulation rate is of the order of bit / second, but it can be adapted according to transmission needs. In the case of orders from bottom devices such as valves, we will be able to use length codes adapted to the probability maximum error accepted.
  • the coding may as appropriate whether or not associated with detector codes and error correctors, such as redundancy codes cyclic.
  • the wave emitted by the transmitter E is received in surface by the receiver R which one of the poles is connected at the wellhead and the other pole planted in the ground at a sufficient distance from the wellhead.
  • E and R can become alternately transmitters and receiver.
  • transmission / reception E can be advantageously arranged according to the described technology in US-A-5394141, incorporated herein by reference.
  • a first column of tubes 4 (surface column) is placed in well 1 and usually cemented all the way up into the surface formation 3a.
  • Wellhead 5 installed on the surface column can receive the top end of the other columns, techniques or production, as well as safety valves.
  • a second column 6 went down into the drilled hole 7 to from the hoof of the surface column 4 and up the tank cover 2.
  • the annular space between the hole 7 and the casing tube column 6 is usually filled with cement at least up to the hoof from the previous column, in this example the hoof of the surface column 4.
  • a column of tubes of production 8 (tubing), whose role is to the effluent to the surface, passes through a packer 9 which seals the reservoir zone relative to the annular space around the tubing 8.
  • the P1 and P2 poles of the dipole can be constituted by the contact provided by the packer 9 with the metal column 6 and the contact provided by a blade centraliser 10 placed higher in the column 8.
  • the upper contact is directly made by the contact of the tubing with the column 6, considering the annular space generally low and well geometry.
  • a insulating connector 11, located to the right of the transmitter, can be used in the casing column 6 to separate the lower contact P1 of the upper contact P2. But this insulating connection is not necessary if one uses the so-called "long dipole" constitution for the antenna transmission or reception. In this case, it is necessary ensure that the P2 pole is sufficiently far from the pole P1 and that there can be no other contact between column 6 and tubings 8 on the length between the poles.
  • the performance is improved of the emitter E by electrically insulating the column 6 of the highly conductive geological formation 3b.
  • This insulation is represented by the frame referenced 12.
  • zone 3c which is known to have sufficient resistivity to not provide a penalizing attenuation, for example greater than about 20 ⁇ .m, so does not need to be electrically isolated.
  • the lands 3a surface are not favorable to a good transmission.
  • the surface column 4 will be, depending information flow requirements, also isolated from training 3a (represented by the referenced frame 13).
  • the necessary electrical insulation is all relative since resistivity fields greater than 20 ⁇ .m are sufficiently "insulating".
  • insulation has no need to be continuous all the way up from the thickness of the conductive layer.
  • the tubes, casing or tubing according to the name known in the profession and standardized by the API (American Petroleum Institute) include at both ends a male thread and a sleeve, screwed onto the body of the tube or integral, with female thread corresponding so as to be able to assemble them these tubes to form a column.
  • the insulating layer will be deposited only on the body of the tube, between the male thread (which obviously can not be covered) and the sleeve. In indeed, the layer near the threads would be destroyed by the jaws of the screwing means, and may even be would be embarrassing for the suspension of the column or clinging of the jaws.
  • the insulating layer can be an epoxy coating loaded with ceramic, by example of the type of coating used as protection anticorrosion on marine structures, pipelines, the drill rods.
  • Figure 2 illustrates the case of the system of transmission according to the invention while drilling a well 20 by means of a drill string 21 equipped a drilling tool 22 at its end.
  • a emitter / receiver E is generally located in the lower part to transmit for example parameters of drilling, trajectories, radiation gamma, temperature, pressure, etc.
  • Well 1 is here cuvelé surface by a column 23 and a column Intermediate 24.
  • Zone 25 has low resistivity which mitigates too strongly the transmission by EM between E and R.
  • the elements of insulated tubes at 26 for column 23 and at 27 for the 24 will be filled with cement insulating.
  • the attenuation created by the weak resistivity of zone 25 will be very substantially decreased, increasing the capacity or speed of transmission of E.
  • the antenna is made by the part of the trim between the insulating junction of the emitter E and the tool 22 drilling. Note that in this case the signal emitted by the transmitter E will be attenuated from E to isolated or pseudo-isolated zone 27, then zone 26 to the surface receiver R.
  • a mathematical model of propagation taking into account characteristics electric casings and formations, allows to predetermine the minimum lengths of isolation zones 26 and 27 in order to guarantee the transmission.
  • Figure 3 shows an alternative layout of the emitter E in the drill string 21 and a example of application of the invention in the case of offshore drilling with a subsea wellhead.
  • the receiver R is located at the bottom of the sea with one of its reception poles connected to the underwater wellhead and the other constituted by a piece of metal, by example an anchor 37, placed a few dozen meters from the wellhead.
  • Communication between the surface and the bottom of the sea is done either by acoustic transmitter, or by electric conductor installed along the casing.
  • Soils 30 close to the bottom of water are generally geologically "young" and generally low resistivity.
  • the column of surface 31 is therefore advantageously isolated, according to the invention, on the height corresponding to the 30.
  • the transmitter E is here at the end of a given length of cable 32 to create a "long dipole".
  • the cable is fixed by a support 33 to inside of rods and is electrically connected to the transmitter located at a distant part of the rods 21.
  • the wellhead 29 is connected to the floating support of drilling by a set called “marine riser”.
  • high pressure line 36 (kill-line or choke-line) runs substantially parallel to the riser of the head of floating support well.
  • FIG. 4 shows in section a tube element 40 that can be used to caster a drilled hole in a zone of too low resistivity.
  • a tube body steel 41 is obtained by hot rolling. We factory at both ends a male thread 42 and 43.
  • a sleeve 44 having female threads 45 is screwed on one end. Insulating coating (as defined above) is filed on the central zone 48. Zones 46 and 47 may be left raw so that the jaws of the robots screws have direct contact with the steel of the tube, the same with respect to the corners of the table suspension of the casing column.
  • the present invention therefore has all the advantages of transmission by electromagnetic waves and more, allows an increase in performance that this in wells equipped for production or in drilling course. It also allows you to use more largely the EM transmission, especially in the case deep offshore.
  • the tubes thus coated are also more effectively protected cathodically since the current to inject for cathodic protection will be decreased and otherwise it will only go to places not which therefore require a potential electrical protection against electro-corrosion.
  • the coating can also promote cement adhesion on the tubes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Earth Drilling (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

L'invention se situe dans le domaine des transmissions d'informations depuis un trou foré dans le sol jusqu'à la surface. Plus particulièrement, l'invention concerne une méthode optimisée de transmission d'informations entre le fond d'un puits foré et la surface, le puits étant soit déjà foré et en cours de production, soit en cours de forage.The invention lies in the field of transmissions of information from a drilled hole in the ground to the surface. More particularly, the invention relates to an optimized method of transmission of information between the bottom of a well drilled and the surface, the well being either already drilled and production course, being in the course of drilling.

On connaít différents systèmes de transmission d'informations entre le fond d'un puits et la surface, par exemple par ondes de pression ("Mud pulse") dans un fluide en circulation dans le puits. Mais on sait que ce type de transmission a notamment pour inconvénients de ne pas correctement fonctionner, si ce n'est pas du tout, dans un fluide compressible, tel du gaz ou des liquides chargés en gaz, ou lorsqu'il y a une obstruction dans le canal de circulation qui perturbe l'écoulement, par exemple un moteur de fond, une vanne ou une duse. Par ailleurs, ce système est bien entendu inopérant en cours de production et de manoeuvre de garniture de forage.We know different transmission systems information between the bottom of a well and the surface, for example by pressure waves ("Mud pulse") in a circulating fluid in the well. But we know that this type of transmission has particular disadvantages to not function properly, if it is not everything in a compressible fluid, such as gas or liquids charged with gas, or where there is a obstruction in the traffic channel that disturbs the flow, for example a bottom motor, a valve or a trick. Moreover, this system is of course inoperative during production and maneuvering drill string.

On connaít également le système de transmission par ondes électromagnétiques guidées par les colonnes métalliques de tubes mis en place dans le puits. Ce système de transmission est notamment décrit dans le document FR 2681461 de la demanderesse, cité ici en référence. Les performances de la transmission électromagnétique (EM) sont dépendantes de la résistivité moyenne des formations géologiques environnantes au puits. Si la résistivité de certaines couches est trop faible, comme c'est le cas dans certains terrains sédimentaires tertiaires péri continentaux tels que, ceux de la Mer du Nord, ou du Golfe du Mexique, l'atténuation peut devenir trop importante le long du puits, ce qui exclu pratiquement l'utilisation d'un tel dispositif dans la majorité des puits offshore sauf à réduire drastiquement le débit d'informations que l'on transmet.We also know the transmission system by electromagnetic waves guided by the columns Metallic tubes set up in the well. This transmission system is described in particular in the document FR 2681461 of the applicant, quoted here in reference. The performance of the transmission electromagnetic energy (EM) are dependent on average resistivity of geological formations surrounding at the well. If the resistivity of some layers is too weak, as is the case in some Tertiary tertiary sedimentary such as those of the North Sea, Gulf of Mexico, mitigation can become too along the well, which virtually excludes the use of such a device in the majority of offshore wells unless drastically reducing flow information that is transmitted.

Ainsi, la présente invention concerne une méthode de transmission d'informations depuis un puits foré à travers des couches de formation géologique et cuvelé au moins en partie par des tubes métalliques, la méthode comprend la mise en place dans ledit puits d'un émetteur/récepteur d'informations fonctionnant par le moyen d'ondes électromagnétiques guidées créées par l'injection d'un signal électrique par un dipôle relié conductivement aux tubes métalliques servant au guidage des ondes émises. Selon la méthode, on identifie l'atténuation de la transmission par certaines couches de formation ayant une faible résistivité, on isole électriquement au moins partiellement les tubes métalliques disposés au droit desdites couches de faible résistivité.Thus, the present invention relates to a method transmission of information from a well drilled to through layers of geological formation and cuvelé at least partly by metal tubes, the method comprises placing in said well a information transmitter / receiver operating by the medium of guided electromagnetic waves created by the injection of an electrical signal by a connected dipole conductively to the metal tubes used for guiding waves emitted. According to the method, we identify mitigation of transmission by some layers with low resistivity, one isolates electrically at least partially the tubes arranged in line with the said layers of low resistivity.

On peut déterminer à l'aide d'un modèle mathématique la longueur minimale à isoler compte tenu des caractéristiques minimales de ladite transmission électromagnétique, notamment la distance de transmission et/ou le débit d'informations.We can determine using a model mathematical the minimal length to isolate considering minimum characteristics of said transmission electromagnetic, including the distance of transmission and / or information rate.

On peut effectuer l'isolation par la mise en place de tubes préalablement revêtus d'une couche de matière isolante. Insulation can be done by place tubes previously coated with a layer of insulating material.

Dans une variante, on peut effectuer l'isolation par la mise en place d'un matériau isolant du type ciment au droit desdites certaines formations dans l'espace annulaire entre les tubes et les formations.In a variant, it is possible to carry out the isolation by placing an insulating material of the type cement to the right of said certain formations in the annular space between the tubes and formations.

On peut disposer ledit émetteur/récepteur proche de l'extrémité inférieure d'une colonne de tubes de production pour transmettre des mesures de fond ou des commandes à des équipements de fond.This near transmitter / receiver can be arranged of the lower end of a column of tubes of production to transmit substantive measures or orders to background equipment.

On peut aussi disposer ledit émetteur/récepteur proche de l'extrémité inférieure d'une garniture de forage pour transmettre des paramètres de fond ou de forage, ou des mesures de localisation.It is also possible to have said transmitter / receiver near the bottom end of a pad of drilling to transmit background or drilling, or location measurements.

L'invention concerne également un système de transmission d'informations depuis un puits foré dans des couches de formation géologique et cuvelé au moins en partie par des tubes métalliques, le système comprenant dans ledit puits un émetteur/récepteur d'informations fonctionnant par le moyen d'ondes électromagnétiques guidées créées par l'injection d'un signal électrique par un dipôle lié conductivement aux tubes métalliques servant au guidage des ondes émises. Dans le système, au moins certains tubes métalliques disposés au droit des couches de faible résistivité comportent des moyens d'isolation électrique avec ladite formation.The invention also relates to a system of transmission of information from a well drilled in layers of geological formation and cuvelé at least partly by metal tubes, the system comprising in said well a transmitter / receiver of information operating by the means of waves guided electromagnetic waves created by the injection of a electrical signal by a dipole conductively connected to metal tubes for guiding the emitted waves. In the system, at least some metal tubes arranged at the right of low resistivity layers include means of electrical insulation with said formation.

Les tubes isolés peuvent être revêtus d'une couche de matière isolante.Insulated tubes may be coated with layer of insulating material.

La couche isolante peut ne pas recouvrir entièrement toute la longueur du tube.Insulating layer may not cover entirely the entire length of the tube.

Dans le système, les moyens d'isolation peuvent comprendre un matériau isolant qui remplit l'espace annulaire entre les tubes et la formation conductrice, le matériau étant le résultat du durcissement d'une composition liquide.In the system, the isolation means can understand an insulating material that fills the space ring between the tubes and the conductive formation, the material being the result of the hardening of a liquid composition.

L'émetteur/récepteur peut être incorporé à l'extrémité d'une colonne de tubes de production.The transmitter / receiver can be incorporated into the end of a column of production tubes.

L'émetteur/récepteur peut aussi être incorporé à l'extrémité d'une garniture de forage.The transmitter / receiver can also be incorporated into the end of a drill string.

Le système selon l'invention peut être appliqué à une installation de forage en mer avec tête de puits sous-marine.The system according to the invention can be applied to an offshore drilling rig with wellhead underwater.

Dans cette application, une conduite de contrôle de venues (kill-line) peut être extérieurement isolée électriquement du fond de la mer à la surfaceIn this application, a control line kills (kill-line) can be externally isolated electrically from the bottom of the sea to the surface

La présente invention sera mieux comprise et ses avantages apparaítront plus clairement à la lecture des exemples suivants, nullement limitatifs, illustrés par les figures annexées parmi lesquelles:

  • La figure 1 représente schématiquement une mise en oeuvre de l'invention pour un puits en production.
  • La figure 2 illustre un autre mode de mise en oeuvre de l'invention dans le cas de l'opération de forage d'un puits.
  • La figure 3 illustre une variante en forage.
  • La figure 4 montre en coupe l'exemple d'un élément de tube de cuvelage revêtu extérieurement d'un isolant électrique.
  • La figure 5 représente un exemple d'atténuation du signal en fonction de la profondeur du forage et de la résistivité des formations traversées.
The present invention will be better understood and its advantages will appear more clearly on reading the following examples, which are in no way limiting, illustrated by the appended figures in which:
  • Figure 1 shows schematically an implementation of the invention for a well in production.
  • FIG. 2 illustrates another embodiment of the invention in the case of the drilling operation of a well.
  • Figure 3 illustrates a variant in drilling.
  • Figure 4 shows in section the example of a casing tube element coated externally with an electrical insulator.
  • FIG. 5 represents an example of attenuation of the signal as a function of the depth of the drilling and the resistivity of the formations traversed.

Sur la figure 1, on a représenté un puits 1 déjà foré jusqu'à atteindre une zone géologique 2. La zone 2 comporte généralement au moins une couche formant réservoir contenant des effluents à produire. Dans le cas présent, les couches de terrains 3, qui sont comprises entre la couche 2 et la surface, atténuent les ondes électromagnétiques de telle façon qu'il est impossible d'utiliser efficacement la méthode de transmission par ondes électromagnétiques connue. Par des mesures de logging, on a pu mesurer que les couches 3a et 3b ont des résistivités très inférieures à 20 Ω.m, par exemple de l'ordre de quelques Ω.m, ou même inférieures à 1 Ω.m. Par contre la zone 3c, à une résistivité supérieure à 20 Ω.m, par exemple une couche de sel, couche que l'on rencontre fréquemment en forage. Avant de forer un puits, dans lequel on aura à appliquer la technique objet de cette invention, il est presque toujours possible d'obtenir un log (enregistrement en fonction de la profondeur) de résistivité par exemple en l'extrapolant à partir des profils sismiques et des logs de puits forés dans cette zone. La courbe a de la figure 5 montre un exemple de cette courbe. Ce log nous permet alors ,à partir d'un modèle mathématique de propagation des ondes électromagnétiques le long des tiges de forage et des cuvelages du puits considéré, de calculer l'atténuation du signal électromagnétique entre le point d'émission E et le point de réception R. Le modèle utilisé sera par exemple du type décrit dans l'article SPE Drilling Engineering, June 1987, P.Degauque et R.Grudzinski. A partir de ce calcul on prédétermine, avant forage, le niveau de signal qu'on recevra, ou que l'on devrait recevoir, en surface tout au long de la descente de l'émetteur. La courbe b de la figure 5 montre un exemple de ce signal. Le signal obtenu lors du forage du puits sera enregistré et comparé en temps réel avec le signal calculé à partir du log prévisionnel permettant ainsi d'ajuster la position réelle des différentes couches géologiques et la valeur réelle de leur résistivité .Ceci n'est possible que grâce à la connaissance du courant émis par l'émetteur, ce qui est le cas pour l'émetteur considéré.In FIG. 1, there is shown a well 1 already drilled to a geological zone 2. Zone 2 generally comprises at least one layer forming reservoir containing effluents to be produced. In the case, the layers of land 3, which are between layer 2 and the surface, attenuate electromagnetic waves in such a way that it is impossible to use the method of transmission by electromagnetic waves known. Through logging measures, it was possible to measure that the layers 3a and 3b have resistivities much lower than 20 Ω.m, for example of the order of a few Ω.m, or even less than 1 Ω.m. On the other hand, zone 3c, at a resistivity greater than 20 Ω.m, for example a layer of salt, a layer frequently encountered in drilling. Before drilling a well, in which we will have to apply the technique object of this invention it is almost always possible to get a log (recording according to the depth) of resistivity for example by extrapolating it from the seismic profiles and well logs drilled in this zoned. Curve a of Figure 5 shows an example of this curve. This log then allows us, from a mathematical model of wave propagation electromagnetic waves along the drill rods and well casing, to calculate the attenuation the electromagnetic signal between the emission point E and the receiving point R. The model used will be example of the type described in the SPE Drilling article Engineering, June 1987, P.Degauque and R.Grudzinski. AT from this calculation it is predefined, before drilling, the signal level that we will receive, or that we should receive, surface all along the descent of the transmitter. The curve b of FIG. example of this signal. The signal obtained during drilling of the well will be recorded and compared in real time with the signal calculated from the forecast log allowing to adjust the actual position of different geological layers and the actual value of their resistivity. This is only possible thanks to the knowledge of the current emitted by the issuer, which is the case for the issuer concerned.

Connaissant l'atténuation maximale acceptable entre l'émetteur E et le récepteur R pour Le débit d'informations souhaité, on pourra déterminer avec précision la longueur du casing à recouvrir en choisissant d'isoler d'abord les zones à faible résistivité telles que celles comprises entre 500 et 1000 m sur la figure 5.Knowing maximum acceptable attenuation between transmitter E and receiver R for flow desired information, it will be possible to determine the length of the casing to be covered choosing to isolate low areas first resistivity such as those between 500 and 1000 m in Figure 5.

Sur la figure 5, à partir des courbes a et b définies plus haut, on représente deux autres courbes c et d:

  • la courbe c représente le signal obtenu tout au long du puits dans le cas où on isole électriquement de manière parfaite l'extérieur du casing des formations environnantes sur l'intervalle 500 m à 1000 m. On constate que la réduction d'atténuation est de l'ordre de 35 dB selon les paramètres de propagation considérés (fréquence porteuse de 5Hz dans ce cas);
  • la courbe d représente le signal obtenu tout au long du puits dans le cas où on isole uniquement le corps des casings. Ceci revient à considérer, pour le modèle de propagation que nous avons, une isolation parfaite du casing sur 27 m, puis une conduction électrique sur 0,5 mètre. On constate alors que le gain total en atténuation est de l'ordre de 24 dB.
In FIG. 5, from the curves a and b defined above, two other curves c and d are represented:
  • curve c represents the signal obtained throughout the well in the case where the outer casing of the surrounding formations is isolated in a perfect manner over the interval 500 m to 1000 m. It can be seen that the attenuation reduction is of the order of 35 dB according to the propagation parameters considered (carrier frequency of 5 Hz in this case);
  • the curve d represents the signal obtained throughout the well in the case where only the casings body is isolated. This amounts to considering, for the model of propagation that we have, a perfect insulation of the casing on 27 m, then an electrical conduction on 0,5 meter. It can be seen that the total attenuation gain is of the order of 24 dB.

Grâce à cette méthode et connaissant le débit d'informations à obtenir, il sera toujours possible techniquement de déterminer et d'installer le cuvelage nécessaire à la transmission souhaitée.Thanks to this method and knowing the flow information to obtain, it will always be possible technically to determine and install the casing necessary for the desired transmission.

Il est à noter que cela ne changerait pas la méthode si le signal électromagnétique était relayé par un émetteur/récepteur situé entre l'émetteur de fond de puits et la surface et en particulier si ce dernier était situé dans la zone non cuvelée du puits.It should be noted that this would not change the method if the electromagnetic signal was relayed by a transmitter / receiver located between the base transmitter of well and the surface and especially if the latter was located in the uncapped area of the well.

On rappelle que le débit d'information Df est calculé par la formule suivante: Df = ΔF log2 (1 + S/B) avec ΔF largeur de bande utile de modulation, S signal et B le bruit dans la bande utile.It is recalled that the information rate Df is calculated by the following formula: Df = ΔF log 2 (1 + S / B) with ΔF useful modulation bandwidth, S signal and B the noise in the useful band.

La transmission est effectuée par l'émetteur référencé E dans les figures 1, 2 et 3. L'émetteur E module une onde de très basse fréquence, ladite fréquence étant choisie assez basse pour que la propagation soit possible. De préférence, les moyens d'émission utilisent des ondes de fréquence comprise entre 1 Hz et 10 Hz. Cette onde, dite fréquence porteuse, est dans un exemple de réalisation, modulée en fonction des informations à transmettre, par saut de phase 0-π à un rythme compatible avec la fréquence porteuse. D'autres types de modulation peuvent être utilisés, sans sortir du cadre de la présente invention. Le débit de modulation est de l'ordre du bit/seconde, mais il peut être adapté en fonction des besoins de transmission. Dans le cas de commandes de dispositifs de fond tels que des vannes, on pourra utiliser des codes de longueur adaptée à la probabilité maximale d'erreur acceptée. Le codage peut selon le cas être associé ou non à des codes détecteurs et correcteurs d'erreurs, tels que des codes à redondance cyclique.The transmission is carried out by the issuer referenced E in FIGS. 1, 2 and 3. The emitter E modulates a very low frequency wave, said frequency being chosen low enough so that the propagation is possible. Preferably, the means transmitters use frequency waves included between 1 Hz and 10 Hz. This wave, called frequency carrier, is in an exemplary embodiment, modulated according to the information to be transmitted, by phase 0-π at a rate compatible with the frequency carrier. Other types of modulation can be used without departing from the scope of this invention. The modulation rate is of the order of bit / second, but it can be adapted according to transmission needs. In the case of orders from bottom devices such as valves, we will be able to use length codes adapted to the probability maximum error accepted. The coding may as appropriate whether or not associated with detector codes and error correctors, such as redundancy codes cyclic.

L'onde émise par l'émetteur E est reçue en surface par le récepteur R dont un des pôles est relié à la tête de puits et l'autre pôle planté dans le sol à une distance suffisante de la tête de puits. Dans la pratique, E et R peuvent devenir tour à tour émetteur et récepteur. Les moyens électroniquesThe wave emitted by the transmitter E is received in surface by the receiver R which one of the poles is connected at the wellhead and the other pole planted in the ground at a sufficient distance from the wellhead. In the practice, E and R can become alternately transmitters and receiver. Electronic means

d'émission/réception E peuvent être avantageusement agencés selon la technologie décrite dans le document US-A-5394141, cité ici en référence. On peut également se référer à la publication SPE/IADC 25686 présentée par Louis Soulier et Michel Lemaitre à la SPE/IADC Drilling Conference tenue à Amsterdam les 23-25 Février 1993.transmission / reception E can be advantageously arranged according to the described technology in US-A-5394141, incorporated herein by reference. We can also refer to the publication SPE / IADC 25686 presented by Louis Soulier and Michel Lemaitre to the SPE / IADC Drilling Conference held in Amsterdam February 23-25, 1993.

Sur la figure 1, une première colonne de tubes 4 (colonne de surface) est placée dans le puits 1 et généralement cimentée sur toute sa hauteur dans la formation de surface 3a. Une tête de puits 5 installée sur la colonne de surface permet de recevoir l'extrémité supérieure des autres colonnes, techniques ou de production, ainsi que les vannes de sécurité. Une deuxième colonne 6 est descendue dans le trou foré 7 à partir du sabot de la colonne de surface 4 et jusqu'à la couverture du réservoir 2. L'espace annulaire entre le trou 7 et la colonne de tubes casing 6 est généralement rempli de ciment au moins jusqu'au sabot de la colonne précédente, dans cet exemple le sabot de la colonne de surface 4. Un colonne de tubes de production 8 (tubing), dont le rôle est de remonter l'effluent jusqu'à la surface, passe à travers un packer 9 qui assure l'étanchéité de la zone réservoir par rapport à l'espace annulaire autour du tubing 8. Dans la partie inférieure de la colonne de tubing, est installé un émetteur/récepteur de type E. Pour la transmission EM, les pôles P1 et P2 du dipôle peuvent être constitués par le contact procuré par le packer 9 avec la colonne métallique 6 et le contact procuré par un centreur à lames 10 placé plus haut dans la colonne de tubing 8. Dans certains cas, le contact supérieur est directement fait par le contact du tubing avec la colonne 6, compte tenu de l'espace annulaire généralement faible et de la géométrie du puits. Un raccord isolant 11, situé au droit de l'émetteur, peut être utilisé dans la colonne de casing 6 pour séparer le contact inférieur P1 du contact supérieur P2. Mais ce raccord isolant n'est pas nécessaire si l'on utilise la constitution dite "long dipôle" pour l'antenne d'émission ou de réception. Dans ce cas, il faut veiller à ce que le pôle P2 soit suffisamment loin du pôle P1 et qu'il ne puisse pas y avoir d'autre contact entre la colonne 6 et les tubings 8 sur la longueur entre les pôles.In FIG. 1, a first column of tubes 4 (surface column) is placed in well 1 and usually cemented all the way up into the surface formation 3a. Wellhead 5 installed on the surface column can receive the top end of the other columns, techniques or production, as well as safety valves. A second column 6 went down into the drilled hole 7 to from the hoof of the surface column 4 and up the tank cover 2. The annular space between the hole 7 and the casing tube column 6 is usually filled with cement at least up to the hoof from the previous column, in this example the hoof of the surface column 4. A column of tubes of production 8 (tubing), whose role is to the effluent to the surface, passes through a packer 9 which seals the reservoir zone relative to the annular space around the tubing 8. In the lower part of the tubing column, is installed an E-type transmitter / receiver. EM transmission, the P1 and P2 poles of the dipole can be constituted by the contact provided by the packer 9 with the metal column 6 and the contact provided by a blade centraliser 10 placed higher in the column 8. In some cases, the upper contact is directly made by the contact of the tubing with the column 6, considering the annular space generally low and well geometry. A insulating connector 11, located to the right of the transmitter, can be used in the casing column 6 to separate the lower contact P1 of the upper contact P2. But this insulating connection is not necessary if one uses the so-called "long dipole" constitution for the antenna transmission or reception. In this case, it is necessary ensure that the P2 pole is sufficiently far from the pole P1 and that there can be no other contact between column 6 and tubings 8 on the length between the poles.

Selon l'invention, on améliore les performances de l'émetteur E en isolant électriquement la colonne 6 de la formation géologique très conductrice 3b. Cette isolation est représentée par la trame référencée 12. Il est important de noter que la zone 3c, que l'on connaít comme ayant une résistivité suffisante pour ne pas procurer une atténuation pénalisante, par exemple supérieure à environ 20 Ω.m, n'a donc pas besoin d'être isolée électriquement. Dans cet exemple, les terrains de surface 3a ne sont pas favorables à une bonne transmission. La colonne de surface 4 sera, en fonction des besoins de débit d'information, également isolée de la formation 3a (représenté par la trame référencée 13).According to the invention, the performance is improved of the emitter E by electrically insulating the column 6 of the highly conductive geological formation 3b. This insulation is represented by the frame referenced 12. It is important to note that zone 3c, which is known to have sufficient resistivity to not provide a penalizing attenuation, for example greater than about 20 Ω.m, so does not need to be electrically isolated. In this example, the lands 3a surface are not favorable to a good transmission. The surface column 4 will be, depending information flow requirements, also isolated from training 3a (represented by the referenced frame 13).

Dans la présente invention, on peut réaliser ladite isolation des colonnes de tubes avec les terrains en recouvrant la paroi extérieure des tubes par une couche de matière isolante, ou presque isolante. En effet, on a vu que selon l'invention l'isolation électrique nécessaire est toute relative puisque des terrains de résistivité supérieure à 20 Ω.m sont suffisamment "isolants". De plus, l'isolation n'a pas besoin d'être continue sur toute la hauteur de l'épaisseur de la couche conductrice. Les tubes, casing ou tubing selon la dénomination connue dans la profession et normalisée par l'API (American Petroleum Institute) comprennent à leurs deux extrémités un filetage mâle et un manchon, vissé sur le corps du tube ou intégral, comportant le filetage femelle correspondant de façon à pouvoir assembler entre eux ces tubes afin de constituer une colonne. De préférence, la couche isolante ne sera déposée que sur le corps du tube, entre le filetage mâle (qui évidemment ne peut être recouvert) et le manchon. En effet, la couche près des filetages serait détruite par les mâchoires des moyens de vissage, et peut être même serait gênante pour la suspension de la colonne ou l'accrochage des mâchoires. La couche isolante peut être un revêtement époxy chargé de céramique, par exemple du type de revêtement utilisé comme protection anticorrosion sur les structures maritimes, les pipeline, les tiges de forage. Il pourrait s'agir également d'une couche de céramique déposée par plasma, de goudron, de préférence combiné avec du polyuréthanne, des bandes en matière plastique, telle du polyéthylène, PVC, un mélange de résine et de sable projeté sur le tube, un enrobage de fibres de verre imprégnées et bobinées autour du corps du tube. Tous les revêtements suffisamment isolant selon les besoins de la présente application, c'est à dire conduisant à une résistance électrique de fuite très supérieure à la résistance caractéristique de la ligne de propagation, peuvent convenir sans sortir du cadre de la présente invention. Dans la pratique, cette résistance caractéristique étant de l'ordre de quelques milliohms, il suffira d'avoir une résistance radiale d'isolement de l'ordre d'un ohm par segment de casing pour obtenir une bonne efficacité du dispositif.In the present invention, it is possible to realize said insulation of the columns of tubes with the lands by covering the outer wall of the tubes by a layer of insulating material, or almost insulating. Indeed, we have seen that according to the invention the necessary electrical insulation is all relative since resistivity fields greater than 20 Ω.m are sufficiently "insulating". In addition, insulation has no need to be continuous all the way up from the thickness of the conductive layer. The tubes, casing or tubing according to the name known in the profession and standardized by the API (American Petroleum Institute) include at both ends a male thread and a sleeve, screwed onto the body of the tube or integral, with female thread corresponding so as to be able to assemble them these tubes to form a column. Of preferably, the insulating layer will be deposited only on the body of the tube, between the male thread (which obviously can not be covered) and the sleeve. In indeed, the layer near the threads would be destroyed by the jaws of the screwing means, and may even be would be embarrassing for the suspension of the column or clinging of the jaws. The insulating layer can be an epoxy coating loaded with ceramic, by example of the type of coating used as protection anticorrosion on marine structures, pipelines, the drill rods. It could also be of a ceramic layer deposited by plasma, tar, preferably combined with polyurethane, plastic strips, such as polyethylene, PVC, a mixture of resin and sand projected onto the tube, a coating of impregnated glass fibers and wound around the body of the tube. All coatings sufficiently insulating according to the needs of this application, ie leading to a resistance Electric leakage far superior to the resistance characteristic of the propagation line, can be suitable without departing from the scope of the present invention. In practice, this characteristic resistance being of the order of a few milliohms, it will suffice to have a radial isolation resistance of the order of one ohm per casing segment to get a good effectiveness of the device.

Selon l'invention, on peut aussi réaliser l'isolation électrique des colonnes de tubes en utilisant un matériau isolant pour la cimentation des zones fortement conductrices, par exemple les annulaires 3a et 3b. On connaít dans la profession la méthode de circulation pour mettre en place un laitier de ciment de formulation déterminée au droit d'une zone géologique donnée. On utilisera donc cette technique conventionnelle pour placer du matériau isolant ou plutôt d'amélioration de la conductivité par rapport au terrain de résistivité basse.According to the invention, it is also possible to realize electrical insulation of the columns of tubes using an insulating material for the cementing of strongly conductive areas, for example rings 3a and 3b. We know in the profession the circulation method to set up a slag of formulation cement determined at the level of a zone geological data. We will use this technique conventional way to place insulating material or rather to improve the conductivity compared to the low resistivity ground.

La figure 2 illustre le cas du système de transmission selon l'invention en cours de forage d'un puits 20 à l'aide d'une garniture de forage 21 équipée d'un outil de forage 22 à son extrémité. Un émetteur/récepteur E est disposé généralement dans la partie inférieure pour transmettre par exemple des paramètres de forage, de trajectométrie, de rayonnement gamma, de température, de pression, etc. Le puits 1 est ici cuvelé en surface par une colonne 23 et une colonne intermédiaire 24. La zone 25 a une résistivité faible qui atténue trop fortement la transmission par EM entre E et R. Selon l'invention, on disposera des éléments de tubes isolés en 26 pour la colonne 23 et en 27 pour la colonne 24. Dans une variante, l'annulaire entre la colonne 23 et la formation et l'annulaire entre la colonne 24 et la formation seront remplis de ciment isolant. Ainsi, l'atténuation crée par la faible résistivité de la zone 25 sera très sensiblement diminuée, augmentant d'autant la capacité ou la rapidité de la transmission de E. Dans ce système, l'antenne est réalisée par la partie de la garniture comprise entre la jonction isolante de l'émetteur E et l'outil 22 de forage. On notera que dans ce cas le signal émis par l'émetteur E sera atténué de E jusqu'à la zone isolée ou pseudo-isolée 27, puis de la zone 26 jusqu'au récepteur R de surface. Un modèle mathématique de propagation prenant en compte les caractéristiques électriques des différents casings et des formations, permet de prédéterminer les longueurs minimales des zones d'isolement 26 et 27 afin de pouvoir garantir la transmission.Figure 2 illustrates the case of the system of transmission according to the invention while drilling a well 20 by means of a drill string 21 equipped a drilling tool 22 at its end. A emitter / receiver E is generally located in the lower part to transmit for example parameters of drilling, trajectories, radiation gamma, temperature, pressure, etc. Well 1 is here cuvelé surface by a column 23 and a column Intermediate 24. Zone 25 has low resistivity which mitigates too strongly the transmission by EM between E and R. According to the invention, the elements of insulated tubes at 26 for column 23 and at 27 for the 24. In a variant, the ring finger between the column 23 and the formation and the ring finger between the column 24 and the training will be filled with cement insulating. Thus, the attenuation created by the weak resistivity of zone 25 will be very substantially decreased, increasing the capacity or speed of transmission of E. In this system, the antenna is made by the part of the trim between the insulating junction of the emitter E and the tool 22 drilling. Note that in this case the signal emitted by the transmitter E will be attenuated from E to isolated or pseudo-isolated zone 27, then zone 26 to the surface receiver R. A mathematical model of propagation taking into account characteristics electric casings and formations, allows to predetermine the minimum lengths of isolation zones 26 and 27 in order to guarantee the transmission.

Il faut noter que la partie des tubes de la colonne 24 incluse dans la colonne 23 ne nécessite pas d'isolation.It should be noted that the part of the tubes of the column 24 included in column 23 does not require insulation.

La figure 3 montre une variante de disposition de l'émetteur E dans la garniture de forage 21 et un exemple d'application de l'invention dans le cas des forages offshore avec une tête de puits 29 sous-marine. Conventionnellement, dans le cas de forage ou d'exploitation avec tête de puits sous-marine, le récepteur R est situé au fond de la mer avec l'un de ses pôles de réception relié à la tête de puits sous-marine et l'autre constitué par une pièce de métal, par exemple une ancre 37, placée à quelques dizaines de mètres de la tête de puits. La communication entre la surface et le fond de la mer se fait soit par transmetteur acoustique, soit par conducteur électrique installé le long du casing. Les sols 30 proches du fond de l'eau sont généralement géologiquement "jeunes" et généralement de faible résistivité. La colonne de surface 31 est donc avantageusement isolée, selon l'invention, sur la hauteur correspondante à la formation 30. L'émetteur E est ici disposé au bout d'une longueur déterminée de câble 32 pour créer un "long dipôle". Le câble est fixé par un support 33 à l'intérieur de tiges et est relié électriquement à l'émetteur situé à une partie éloignée des tiges 21. La tête de puits 29 est reliée au support flottant de forage par un ensemble dit "marine riser" 35. Une conduite haute pression 36 (kill-line ou choke-line) longe sensiblement parallèlement le riser de la tête de puits au support flottant. On peut avantageusement isoler électriquement la conduite 36 pour coupler l'antenne de fond 37 avec la surface et ainsi obtenir la réception en surface, c'est à dire sur le support flottant où se termine la ligne 36.Figure 3 shows an alternative layout of the emitter E in the drill string 21 and a example of application of the invention in the case of offshore drilling with a subsea wellhead. Conventionally, in the case of drilling or operating with underwater wellhead, the receiver R is located at the bottom of the sea with one of its reception poles connected to the underwater wellhead and the other constituted by a piece of metal, by example an anchor 37, placed a few dozen meters from the wellhead. Communication between the surface and the bottom of the sea is done either by acoustic transmitter, or by electric conductor installed along the casing. Soils 30 close to the bottom of water are generally geologically "young" and generally low resistivity. The column of surface 31 is therefore advantageously isolated, according to the invention, on the height corresponding to the 30. The transmitter E is here at the end of a given length of cable 32 to create a "long dipole". The cable is fixed by a support 33 to inside of rods and is electrically connected to the transmitter located at a distant part of the rods 21. The wellhead 29 is connected to the floating support of drilling by a set called "marine riser". high pressure line 36 (kill-line or choke-line) runs substantially parallel to the riser of the head of floating support well. We can advantageously electrically isolating the pipe 36 to couple the bottom antenna 37 with the surface and so get surface reception, ie on the support floating where line 36 ends.

Il est clair que la disposition "long dipôle" décrite sur la figure 3 s'applique dans toutes les autres configurations de forage et non pas uniquement dans le cas offshore. Dans le cas d'opérations où l'on utilise de la boue aérée par du gaz, ou même de la mousse, la transmission EM est la seule transmission possible et a des performances accrues grâce au perfectionnement selon l'invention.It is clear that the provision "long dipole" described in Figure 3 applies in all other drilling configurations and not just in the offshore case. In the case of operations where uses aerated mud with gas, or even foam, the EM transmission is the only transmission possible and has increased performance thanks to improvement according to the invention.

La figure 4 montre en coupe un élément de tube 40 que l'on peut utiliser pour cuveler un trou foré dans une zone de trop faible résistivité. Un corps de tube en acier 41 est obtenu par laminage à chaud. On usine aux deux extrémités un filetage mâle 42 et 43. Un manchon 44 comportant des filetages femelles 45 est vissé sur l'une des extrémités. Le revêtement isolant (selon la définition donnée plus haut) est déposé sur la zone centrale 48. Les zones 46 et 47 peuvent être laissées brutes de façon que les mâchoires des robots de vissage aient directement un contact avec l'acier du tube, de même en ce qui concerne les coins de la table de suspension de la colonne de cuvelage.FIG. 4 shows in section a tube element 40 that can be used to caster a drilled hole in a zone of too low resistivity. A tube body steel 41 is obtained by hot rolling. We factory at both ends a male thread 42 and 43. A sleeve 44 having female threads 45 is screwed on one end. Insulating coating (as defined above) is filed on the central zone 48. Zones 46 and 47 may be left raw so that the jaws of the robots screws have direct contact with the steel of the tube, the same with respect to the corners of the table suspension of the casing column.

Il est clair qu'il est tout à fait possible d'isoler entièrement la surface extérieure du tube de cuvelage, avant vissage ou après vissage, cependant cette opération se heurte à de nombreuses difficultés opératoires. Pratiquement et économiquement ce n'est pas souhaitable. C'est pourquoi, la présente invention qui ne nécessite pas d'isolement parfait est particulièrement avantageuse.It is clear that it is quite possible to completely isolate the outer surface of the tube casing, before screwing or after screwing, however this operation faces many difficulties operating. Practically and economically this is not desirable. This is why the present invention that does not require perfect isolation is particularly advantageous.

La présente invention a donc tous les avantages de la transmission par ondes électromagnétiques et de plus, permet un accroissement des performances que ce soit dans des puits équipés pour la production ou en cours de forage. Elle permet également d'utiliser plus largement la transmission EM, notamment dans le cas d'offshore profond. The present invention therefore has all the advantages of transmission by electromagnetic waves and more, allows an increase in performance that this in wells equipped for production or in drilling course. It also allows you to use more largely the EM transmission, especially in the case deep offshore.

Les tubes ainsi revêtus sont aussi plus efficacement protégés cathodiquement puisque le courant à injecter pour la protection cathodique sera diminué et par ailleurs il ne passera qu'aux endroits non revêtus qui de ce fait nécessitent un potentiel électrique de protection contre l'électro-corrosion. Le revêtement peut aussi favoriser l'adhérence du ciment sur les tubes.The tubes thus coated are also more effectively protected cathodically since the current to inject for cathodic protection will be decreased and otherwise it will only go to places not which therefore require a potential electrical protection against electro-corrosion. The coating can also promote cement adhesion on the tubes.

Claims (16)

  1. Method of transmitting information from a well drilled through geological formation layers and at least partly lined with metal tubes (6), said method comprising placing in said well an information transmitter/receiver (E) operating by means of guided electromagnetic waves created by injecting an electrical signal through a dipole (P1, P2) conductively connected to the metal tubes (6) serving to guide the waves emitted, characterised in that:
    the attenuation of the transmission through certain formation layers (3a, 3b) with low resistivity is identified;
    the metal tubes (6) disposed level with said layers of low resistivity are at least partly insulated electrically.
  2. Method according to claim 1, wherein the minimum length to be isolated, taking into account the minimum characteristics of said electromagnetic transmission, notably the transmission distance and/or the information flow rate, are determined using a mathematical model.
  3. Method according to one of claims 1 or 2, wherein the insulation is provided by putting into place metal tubes (6) which have previously been coated with a layer of insulating material (12, 13).
  4. Method according to one of claims 1 or 2, wherein the insulation is provided by putting into place a cement-type insulating material level with said certain formations (3a, 3b) in the annular space between the metal tubes (6) and the formations.
  5. Method according to one of the preceding claims, wherein the transmitter/receiver (E) is placed close to the lower end of a column of metal production tubes (8) for transmitting measurements from the bottom or commands to equipment at the bottom.
  6. Method according to one of claims 1 to 4, wherein the transmitter/receiver (E) is placed close to the lower end of a drill string (21) for transmitting the bottom parameters or drilling parameters, or location measurements.
  7. Method according to any one of the preceding claims, wherein the metal tubes (6) comprise two ends, a male screw thread (42, 43) at both ends and a sleeve (44) screwed onto the tube (6) or integral therewith, comprising the corresponding female screw thread (45) so as to fit the tubes together, and the metal tubes (6) located level with the layers (3a, 3b) of low resistivity are electrically insulated only at their central zone (48) situated between their ends.
  8. Information transmission system comprising a well drilled into geological formation layers and at least partly lined with metal tubes (6), said system comprising in said well an information transmitter/receiver (E) operating by means of guided electromagnetic waves created by injecting an electrical signal through a dipole (P1, P2) conductively connected to the metal tubes (6) serving to guide the waves emitted, characterised in that at least some metal tubes (6) located level with the layers (3a, 3b) of low resistivity comprise means of electrical insulation (12, 13) with said formation.
  9. System according to claim 8, wherein said insulated metal tubes are coated with a layer of insulating material (12, 13).
  10. System according to claim 9, wherein said insulating layer (12, 13) does not totally cover the length of the metal tubes.
  11. System according to claim 8, wherein said insulating means (12, 13) comprise an insulating material which fills the annular space between said metal tubes (23) and the conductive formation, said material being the result of the hardening of a liquid composition.
  12. System according to one of claims 8 to 11, wherein said transmitter/receiver is incorporated at the end of a column of metal production tubes (8).
  13. System according to one of claims 8 to 11, wherein said transmitter/receiver (E) is incorporated at the end of a drill string (21).
  14. System according to any one of claims 8 to 13, wherein the metal tubes (6) comprise two ends, a male thread (42, 43) at these two ends and a sleeve screwed to the tube (6) or integral therewith, comprising the corresponding female thread, so as to fit the tubes together, and the electrical insulating means (12, 13) comprise an insulating layer which is deposited only on the central zone (48) of said metal tubes (6) located level with the layers (3a, 3b) of low resistivity.
  15. Offshore drilling installation with a subsea wellhead (29), comprising an information transmitting system according to any one of claims 8 to 14.
  16. Installation according to claim 15, wherein a line for controlling kicks (kill-line)(36) is electrically insulated on the outside from the bottom of the sea to the surface.
EP99402571A 1998-10-23 1999-10-19 Apparatus and method for information transmission by electromagnetic waves Expired - Lifetime EP0995877B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9813304 1998-10-23
FR9813304A FR2785017B1 (en) 1998-10-23 1998-10-23 ELECTROMAGNETIC WAVE INFORMATION TRANSMISSION METHOD AND SYSTEM

Publications (2)

Publication Number Publication Date
EP0995877A1 EP0995877A1 (en) 2000-04-26
EP0995877B1 true EP0995877B1 (en) 2003-05-07

Family

ID=9531909

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99402571A Expired - Lifetime EP0995877B1 (en) 1998-10-23 1999-10-19 Apparatus and method for information transmission by electromagnetic waves

Country Status (10)

Country Link
US (1) US6628206B1 (en)
EP (1) EP0995877B1 (en)
CN (1) CN1154251C (en)
BR (1) BR9905102B1 (en)
CA (1) CA2286435C (en)
DE (1) DE69907597T2 (en)
ES (1) ES2198865T3 (en)
FR (1) FR2785017B1 (en)
NO (1) NO315247B1 (en)
RU (1) RU2206739C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7249636B2 (en) 2004-12-09 2007-07-31 Schlumberger Technology Corporation System and method for communicating along a wellbore

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071837B2 (en) 1999-07-07 2006-07-04 Expro North Sea Limited Data transmission in pipeline systems
US7123162B2 (en) * 2001-04-23 2006-10-17 Schlumberger Technology Corporation Subsea communication system and technique
FR2854425B1 (en) * 2003-04-30 2005-07-29 Gaz De France METHOD AND DEVICE FOR TRANSMITTING INFORMATION BETWEEN A SALINE CAVITY AND THE SOIL SURFACE
US7170423B2 (en) * 2003-08-27 2007-01-30 Weatherford Canada Partnership Electromagnetic MWD telemetry system incorporating a current sensing transformer
US7145473B2 (en) * 2003-08-27 2006-12-05 Precision Drilling Technology Services Group Inc. Electromagnetic borehole telemetry system incorporating a conductive borehole tubular
US7080699B2 (en) * 2004-01-29 2006-07-25 Schlumberger Technology Corporation Wellbore communication system
GB2437877B (en) * 2005-01-31 2010-01-13 Baker Hughes Inc Telemetry system with an insulating connector
US7609169B2 (en) * 2006-08-31 2009-10-27 Precision Energy Services, Inc. Electromagnetic telemetry apparatus and methods for minimizing cyclical or synchronous noise
ATE513231T1 (en) 2007-01-26 2011-07-15 Prad Res & Dev Nv BOREHOLE TELEMETRY SYSTEM
CN101072050B (en) * 2007-06-19 2010-08-25 北京意科通信技术有限责任公司 System for data transmission via metal pipeline
WO2009012328A1 (en) * 2007-07-16 2009-01-22 Earth To Air Systems, Llc Direct exchange system design improvements
TW200930963A (en) * 2008-01-02 2009-07-16 Rui-Zhao Chen Combination refrigerator
CN101824983A (en) * 2010-05-06 2010-09-08 煤炭科学研究总院西安研究院 Signal transmission device
BR112012029591B1 (en) * 2010-05-21 2021-09-14 Halliburton Energy Services Inc METHOD FOR PROVIDING A VARIATION SYSTEM IN A DRILLING COLUMN, VARIATION SYSTEM AND METHOD FOR DRILLING A WELL
IT1403940B1 (en) * 2011-02-16 2013-11-08 Eni Spa SYSTEM FOR DETECTION OF GEOLOGICAL FORMATIONS
CN104884736A (en) * 2012-12-07 2015-09-02 哈利伯顿能源服务公司 Drilling parallel wells for SAGD and relief
WO2014105051A1 (en) * 2012-12-28 2014-07-03 Halliburton Energy Services Inc. Downhole electromagnetic telemetry system utilizing electrically insulating material and related methods
US9303507B2 (en) 2013-01-31 2016-04-05 Saudi Arabian Oil Company Down hole wireless data and power transmission system
CN106285660B (en) * 2016-08-23 2020-03-10 中国石油天然气股份有限公司 Method and device for identifying low-resistance oil layer of multilayer sandstone oil reservoir
RU2745858C1 (en) * 2020-06-03 2021-04-02 Общество с ограниченной ответственностью "Научно-технологический центр Геомеханика" Method for monitoring well bottom parameters and device for carrying out said method
CN113236236A (en) * 2021-06-21 2021-08-10 哈尔滨工程大学 Signal transmission device using oil well pipeline as channel
CN115875018B (en) * 2022-11-08 2024-06-11 东营高慧石油技术有限公司 Device and method for installing resistivity measurement while drilling receiver

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967201A (en) * 1974-01-25 1976-06-29 Develco, Inc. Wireless subterranean signaling method
US4001774A (en) * 1975-01-08 1977-01-04 Exxon Production Research Company Method of transmitting signals from a drill bit to the surface
FR2562601B2 (en) * 1983-05-06 1988-05-27 Geoservices DEVICE FOR TRANSMITTING SIGNALS OF A TRANSMITTER LOCATED AT LARGE DEPTH
US4793409A (en) * 1987-06-18 1988-12-27 Ors Development Corporation Method and apparatus for forming an insulated oil well casing
FR2681461B1 (en) 1991-09-12 1993-11-19 Geoservices METHOD AND ARRANGEMENT FOR THE TRANSMISSION OF INFORMATION, PARAMETERS AND DATA TO AN ELECTRO-MAGNETIC RECEIVING OR CONTROL MEMBER ASSOCIATED WITH A LONG LENGTH SUBTERRANEAN PIPING.
EP0737322A4 (en) * 1993-06-04 1997-03-19 Gas Res Inst Inc Method and apparatus for communicating signals from encased borehole
FR2750450B1 (en) * 1996-07-01 1998-08-07 Geoservices ELECTROMAGNETIC WAVE INFORMATION TRANSMISSION DEVICE AND METHOD
US5883516A (en) * 1996-07-31 1999-03-16 Scientific Drilling International Apparatus and method for electric field telemetry employing component upper and lower housings in a well pipestring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7249636B2 (en) 2004-12-09 2007-07-31 Schlumberger Technology Corporation System and method for communicating along a wellbore

Also Published As

Publication number Publication date
CN1251480A (en) 2000-04-26
CA2286435C (en) 2006-03-14
US6628206B1 (en) 2003-09-30
BR9905102A (en) 2000-10-03
ES2198865T3 (en) 2004-02-01
CN1154251C (en) 2004-06-16
CA2286435A1 (en) 2000-04-23
RU2206739C2 (en) 2003-06-20
EP0995877A1 (en) 2000-04-26
FR2785017A1 (en) 2000-04-28
BR9905102B1 (en) 2010-08-24
DE69907597D1 (en) 2003-06-12
NO995019L (en) 2000-04-25
DE69907597T2 (en) 2004-03-18
FR2785017B1 (en) 2000-12-22
NO995019D0 (en) 1999-10-14
NO315247B1 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
EP0995877B1 (en) Apparatus and method for information transmission by electromagnetic waves
CA2209423C (en) Apparatus and method for transmitting information using electromagnetic waves
FR2681461A1 (en) METHOD AND ARRANGEMENT FOR THE TRANSMISSION OF INFORMATION, PARAMETERS AND DATA TO AN ELECTRO-MAGNETIC RECEIVING OR CONTROL MEMBER ASSOCIATED WITH A LONG LENGTH SUBTERRANEAN PIPING.
US8711045B2 (en) Downhole telemetry system
AU2003279893B2 (en) Fiber optic amplifier for oilfield applications
US20130063276A1 (en) Downhole telemetry signalling apparatus
EP1570157B1 (en) Data transmission device
RU2612952C2 (en) Electromagnetic borehole telemetry system using electrically insulating material and related methods
FR2613842A1 (en) METHOD AND APPARATUS FOR DETERMINING THE POSITION OF AN INTERFACE OF DIELECTRICALLY DIFFERENT MATERIALS, PARTICULARLY IN A PETROLEUM FORMATION
US6208265B1 (en) Electromagnetic signal pickup apparatus and method for use of same
CA2261196C (en) Method and device for permanent monitoring of an underground formation
EP1225301A1 (en) Hollow drill pipe for transmitting information
EP1194678B1 (en) Data transmission in pipeline systems
EP1473256B1 (en) Method and apparatus for data transmission between surface and an underground salt cavity
FR3040068A1 (en) TOROIDAL SYSTEM AND METHOD FOR COMMUNICATING IN A WELL BOTTOM ENVIRONMENT
FR2617901A1 (en) Process for drilling with electromagnetic transmission of information from the bottom of the shaft
MXPA99009682A (en) Apparatus and method for information transmission by electromagnetic waves
WO2006008361A1 (en) Train of rods for the high-speed transmission of information in a wellbore
FR3126139A1 (en) Data acquisition and communication device between columns of oil or gas wells
GB2589815A (en) Telemetry safety & life of well monitoring system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001020

AKX Designation fees paid

Free format text: DE ES GB IT NL

17Q First examination report despatched

Effective date: 20020514

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69907597

Country of ref document: DE

Date of ref document: 20030612

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2198865

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040210

NLS Nl: assignments of ep-patents

Owner name: GEOSERVICES EQUIPEMENTS SAS

Effective date: 20080821

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090115 AND 20090121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181025

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181024

Year of fee payment: 20

Ref country code: GB

Payment date: 20181031

Year of fee payment: 20

Ref country code: ES

Payment date: 20181127

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181228

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69907597

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20191018

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191018

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191020