[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0992666B1 - Cylinder-selective regulation of the air/fuel ratio - Google Patents

Cylinder-selective regulation of the air/fuel ratio Download PDF

Info

Publication number
EP0992666B1
EP0992666B1 EP99117175A EP99117175A EP0992666B1 EP 0992666 B1 EP0992666 B1 EP 0992666B1 EP 99117175 A EP99117175 A EP 99117175A EP 99117175 A EP99117175 A EP 99117175A EP 0992666 B1 EP0992666 B1 EP 0992666B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
fuel
air
fuel ratio
selective control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99117175A
Other languages
German (de)
French (fr)
Other versions
EP0992666A2 (en
EP0992666A3 (en
Inventor
Georg Meder
Florian Albrecht
Franz Kofler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP0992666A2 publication Critical patent/EP0992666A2/en
Publication of EP0992666A3 publication Critical patent/EP0992666A3/en
Application granted granted Critical
Publication of EP0992666B1 publication Critical patent/EP0992666B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1474Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method by detecting the commutation time of the sensor

Definitions

  • the invention relates to a cylinder-selective control of the air-fuel ratio in a multi-cylinder internal combustion engine and to an apparatus for carrying out such a cylinder-selective control according to the preambles of claims 1 and 7, respectively.
  • the lambda probe is usually installed as a sensor in the exhaust stream in front of the catalyst and that after a merger of the exhaust pipes of the individual cylinders.
  • the lambda probe delivers an averaged value over the individual cylinders.
  • Mixture variations between the individual cylinders are usually not balanced and cause emission degradation for two reasons.
  • the control frequency of the lambda control becomes due to mixture differences shortened. This falsifies the mean lambda set via control parameters.
  • the individual cylinders usually flow to different areas of the catalyst. Due to the mixture differences, these areas do not work in the optimal lambda range.
  • the object of the invention is to provide a simple cylinder-selective control of the air-fuel ratio in a multi-cylinder internal combustion engine of the type mentioned, which is functionally reliable over a long period of operation and their development and hedging costs less. Furthermore, pay attention to a cost-effective system.
  • the operating cycle synchronous voltage fluctuations are in the form of Jump probes selected lambda probes evaluated and assigned to the individual cylinders.
  • the voltage deviation of the lambda probe voltage signal of a cylinder in relation to the voltage signals of the - related to the firing order - adjacent cylinder is formed.
  • the differential value is then used to correct the injection.
  • a correction value for the injection quantity is taken from a characteristic curve or a characteristic diagram.
  • two correction values for the injection quantity are calculated per cylinder, for example a term for long-term and a term for short-term deviations (for example tank venting).
  • the long-term term can form an adaptation value for the cylinder mixture adaptation upon fulfillment of predetermined conditions for a lambda adaptation and be stored non-volatile after engine shutdowns in the holding phase of the control unit.
  • the present invention has the advantage that it can be assumed that a long service life with high control accuracy. Furthermore, jump probes are significantly cheaper than broadband lambda probes, so that generally lower development and production costs are to be expected.
  • a device for carrying out the cylinder-selective control according to the invention is shown.
  • an engine 10 has a plurality of cylinders.
  • the engine 10 has four cylinders.
  • the engine 10 is supplied via an inlet tract 12 with air, wherein the amount of air is determined by an air flow meter 16. A corresponding signal is output to a control unit 24.
  • the exhaust gases of the engine are discharged via an exhaust tract 14 to the environment.
  • a catalyst 18 is provided for the conversion of pollutants into non-toxic substances.
  • a lambda probe 30 is arranged, which is designed as a jump probe.
  • the lambda probe emits a voltage signal corresponding to the exhaust gas composition to the control unit 24.
  • the probe voltage is around 100 mV.
  • the probe voltage changes almost abruptly and reaches values of 800 mV and above for a rich mixture ( ⁇ ⁇ 1).
  • the present Invention is based on the fact that the jump manifests itself in a rapid increase in voltage, but not in a pure Rechteckspung characterizing. Moreover, it is known that jump probes are very reliable and inexpensive.
  • control unit 24 also receives temperature values T of the coolant, rotational speed values n via the rotational speed of the engine and an operating voltage U B.
  • crankshaft sensor 32 is used in the present signal, whose signals are also delivered to the control unit 24.
  • the control unit 24 calculates an injection time t i for each cylinder on the basis of the available information and forwards it to injection valves 20.
  • the injection valves 20 supply the fuel received from a fuel supply 22 via lines 26 corresponding to the injection time t i to the cylinders operating in the engine 10.
  • the controller 24 first calculates an injection time for each cylinder based on the data available to it, such as temperature T, speed n, and air quantity signals, and generates a basic injection time ti_zyl_z, where the letter z designates a particular cylinder. At this Grundeinspritzzeit then a cylinder-specific mixture adjustment is calculated and that from the difference of two - based on the firing order - adjacent cylinder.
  • Fig. 2 a probe voltage signal ULS_1_z over time S is shown. In the course of the voltage, the probe voltage is indicated for different cylinders z.
  • ULS_1_diff_1 ULS_ 1 _ 3 + ULS_ 1 _ 2 / 2 - ULS_ 1 _ 1.
  • ULS_1_z is the probe voltage on the zth cylinder. Accordingly, the differences ULS_1_diff_z are calculated for the other cylinders.
  • an injection correction KF_ti_zyl_z is taken from a characteristic curve. With this correction injection time, the basic injection time ti_zyl_z is corrected.
  • an adaptation value of the cylinder mixture adaptation is formed and stored non-volatile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft eine zylinderselektive Regelung des Luft-Kraftstoff-Verhältnisses bei einem mehrzylindrigen Verbrennungsmotor sowie eine Vorrichtung zur Durchführung einer solchen zylinderselektiven Regelung gemäß den Oberbegriffen der Ansprüche 1 bzw. 7.The invention relates to a cylinder-selective control of the air-fuel ratio in a multi-cylinder internal combustion engine and to an apparatus for carrying out such a cylinder-selective control according to the preambles of claims 1 and 7, respectively.

Es ist bekannt, daß für eine hohe Konvertierungs- bzw. Umwandlungsrate der in den Abgasen vorhandenen Schadstoffe ein geregelter Katalysatorbetrieb erforderlich ist. Dabei wird die Abgaszusammensetzung durch eine Lambda-Sonde überwacht, und bei einer Abweichung von einem Luftverhältnis λ = 1 wird die Luft-Kraftstoff-Zusammensetzung korrigiert.It is known that controlled catalyst operation is required for a high rate of conversion of the pollutants present in the exhaust gases. In this case, the exhaust gas composition is monitored by a lambda probe, and with a deviation from an air ratio λ = 1, the air-fuel composition is corrected.

Die Lambda-Sonde ist üblicherweise als Meßfühler im Abgasstrom vor dem Katalysator eingebaut und zwar nach einer Zusammenführung der Abgasrohre von den einzelnen Zylindern. Damit liefert die Lambda-Sonde einen gemittelten Wert über die einzelnen Zylinder. Gemischschwankungen zwischen den einzelnen Zylindern werden in der Regel aber nicht ausgeglichen und verursachen aus zwei Gründen eine Emissionsverschlechterung. Zum einen wird die Regelfrequenz der Lambdaregelung durch Gemischunterschiede verkürzt. Dadurch wird das über Regelparameter eingestellte mittlere Lambda verfälscht. Zum anderen strömen die einzelnen Zylinder in der Regel verschiedene Bereiche des Katalysators an. Durch die Gemischunterschiede arbeiten diese Bereiche nicht im optimalen Lambdabereich.The lambda probe is usually installed as a sensor in the exhaust stream in front of the catalyst and that after a merger of the exhaust pipes of the individual cylinders. Thus, the lambda probe delivers an averaged value over the individual cylinders. Mixture variations between the individual cylinders are usually not balanced and cause emission degradation for two reasons. On the one hand, the control frequency of the lambda control becomes due to mixture differences shortened. This falsifies the mean lambda set via control parameters. On the other hand, the individual cylinders usually flow to different areas of the catalyst. Due to the mixture differences, these areas do not work in the optimal lambda range.

In der EP 0 670 419 A1 und der EP 0 670 420 A1 sind Systeme zum Abschätzen der Luft-Kraftstoff-Verhältnisse in den einzelnen Zylindern eines mehrzylindrigen Verbrennungsmotors beschrieben. Mit diesem System soll den Gemischschwankungen zwischen den einzelnen Zylindern Rechnung getragen werden. Dabei wird ein mathematisches Modell entwickelt, um das Systemverhalten in Abhängigkeit eines Ausgabesignals eines Breitband-Luft-Kraftstoff-Sensors zu beschreiben. Eine Beobachtung der Entwicklung des Zustands des mathematischen Modells gibt einen Aufschluß über das Luft-Kraftstoff-Verhältnis in den einzelnen Zylindern, woraufhin eine entsprechende Kraftstoff-Luft-Verhältnisänderung für jeden Zylinder veranlaßt werden kann.In the EP 0 670 419 A1 and the EP 0 670 420 A1 For example, systems for estimating the air-fuel ratios in the individual cylinders of a multi-cylinder internal combustion engine are described. With this system, the mixture fluctuations between the individual cylinders should be taken into account. A mathematical model is developed to describe the system behavior as a function of an output signal of a broadband air-fuel sensor. An observation of the evolution of the state of the mathematical model gives an indication of the air-fuel ratio in the individual cylinders, whereupon a corresponding fuel-air ratio change can be made for each cylinder.

Das oben beschriebene Verfahren ist jedoch relativ rechenaufwendig und stützt sich auf die Signale von Breitband-Lambdasonden.However, the method described above is relatively computationally intensive and relies on the signals from broadband lambda probes.

Ferner ist aus der EP 0 408 206 A2 ein gattungsbildendes Verfahren und eine gattungsgemäße Vorrichtung zur Korrektur des Luft/Kraftstoffverhältnisses für einzelne Zylinder einer Brennkraftmaschine bekannt.Furthermore, from the EP 0 408 206 A2 a generic method and a generic device for correcting the air / fuel ratio for individual cylinders of an internal combustion engine known.

Aufgabe der Erfindung ist es, eine einfache zylinderselektive Regelung des Luft-Kraftstoff-Verhältnisses bei einem mehrzylindrigen Verbrennungsmotor der eingangs genannten Art anzugeben, das über eine lange Betriebsdauer funktionssicher ist und deren Entwicklungs- und Absicherungsaufwand geringer ausfällt. Ferner ist auf ein kostengünstiges System zu achten.The object of the invention is to provide a simple cylinder-selective control of the air-fuel ratio in a multi-cylinder internal combustion engine of the type mentioned, which is functionally reliable over a long period of operation and their development and hedging costs less. Furthermore, pay attention to a cost-effective system.

Diese Aufgabe wird durch die in den Ansprüchen 1 bzw. 7 genannten Merkmale verfahrens- bzw. vorrichtungstechnisch gelöst.This object is achieved by the features mentioned in claims 1 and 7 procedural or device technology.

Um die Gemischschwankungen zwischen den Zylindern zu minimieren, werden die arbeitsspielsynchronen Spannungsschwankungen der in Form von Sprungsonden gewählten Lambda-Sonden ausgewertet und den einzelnen Zylindern zugeordnet. Insbesondere wird die Spannungsabweichung des Lambda-Sonden-Spannungssignals eines Zylinders in Relation zu den Spannungssignalen der - bezogen auf die Zündfolge - benachbarten Zylinder gebildet. Mit dem Differenzwert wird dann eine Korrektur der Einspritzung vorgenommen.In order to minimize the mixture variations between the cylinders, the operating cycle synchronous voltage fluctuations are in the form of Jump probes selected lambda probes evaluated and assigned to the individual cylinders. In particular, the voltage deviation of the lambda probe voltage signal of a cylinder in relation to the voltage signals of the - related to the firing order - adjacent cylinder is formed. The differential value is then used to correct the injection.

Gemäß einer vorzugsweisen Ausführungsform der Erfindung wird ein Korrekturwert für die Einspritzmenge aus einer Kennlinie oder einem Kennfeld entnommen.According to a preferred embodiment of the invention, a correction value for the injection quantity is taken from a characteristic curve or a characteristic diagram.

Um die Rechenbelastung zu reduzieren, könnte die zylinderindividuelle Gemischanpassung oberhalb einer festen Grenzzahl abgeschaltet werden.In order to reduce the computational load, the cylinder-specific mixture adaptation above a fixed limit number could be switched off.

Vorzugsweise werden pro Zylinder zwei Korrektur-Werte für die Einspritzmenge berechnet, beispielsweise ein Term für langfristige und ein Term für kurzfristige Abweichungen (z.B. Tankentlüftung).Preferably, two correction values for the injection quantity are calculated per cylinder, for example a term for long-term and a term for short-term deviations (for example tank venting).

Der langfristige Term kann bei Erfüllung vorgegebener Bedingungen zu einer Lambda-Adaption einen Adaptionswert für die Zylindergemischanpassung bilden und nach Motorabstellen in der Haltephase des Steuergeräts nicht-flüchtig gespeichert werden.The long-term term can form an adaptation value for the cylinder mixture adaptation upon fulfillment of predetermined conditions for a lambda adaptation and be stored non-volatile after engine shutdowns in the holding phase of the control unit.

Insgesamt bringt die vorliegende Erfindung den Vorteil, daß von einer langen Betriebsdauer mit hoher Regelgenauigkeit ausgegangen werden kann. Ferner sind Sprungsonden deutlich kostengünstiger als Breitband-Lambda-Sonden, so daß allgemein mit geringeren Entwicklungs- und Herstellungskosten zu rechnen ist.Overall, the present invention has the advantage that it can be assumed that a long service life with high control accuracy. Furthermore, jump probes are significantly cheaper than broadband lambda probes, so that generally lower development and production costs are to be expected.

Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels und mit Bezug auf die beiliegenden Zeichnungen näher erläutert. Die Zeichnungen zeigen in

Fig. 1
einen schematischen Aufbau einer Vorrichtung zur Durchführung der erfindungsgemäßen zylinderselektiven Regelung und
Fig. 2
ein Zeitspannungsdiagramm bei einer Lambda-Sprungsonde.
The invention will be explained in more detail with reference to an embodiment and with reference to the accompanying drawings. The drawings show in
Fig. 1
a schematic structure of an apparatus for carrying out the inventive cylinder-selective control and
Fig. 2
a time-voltage diagram in a lambda jump probe.

In Fig. 1 ist eine Vorrichtung zur Durchführung der erfindungsgemäßen zylinderselektiven Regelung dargestellt. Dabei weist ein Motor 10 eine Mehrzahl von Zylindern auf. Im vorliegenden Fall besitzt der Motor 10 vier Zylinder.In Fig. 1 a device for carrying out the cylinder-selective control according to the invention is shown. In this case, an engine 10 has a plurality of cylinders. In the present case, the engine 10 has four cylinders.

Der Motor 10 wird über einen Einlaßtrakt 12 mit Luft versorgt, wobei die Luftmenge von einem Luftmengenmesser 16 bestimmt wird. Ein entsprechendes Signal wird an ein Steuergerät 24 abgegeben.The engine 10 is supplied via an inlet tract 12 with air, wherein the amount of air is determined by an air flow meter 16. A corresponding signal is output to a control unit 24.

Die Abgase des Motors werden über einen Abgastrakt 14 an die Umgebung abgeführt.The exhaust gases of the engine are discharged via an exhaust tract 14 to the environment.

Im Abgastrakt ist ein Katalysator 18 zur Umwandlung der Schadstoffe in ungiftige Stoffe vorgesehen. Zwischen dem Motor 10 und dem Katalysator 18 ist eine Lambda-Sonde 30 angeordnet, die als Sprungsonde ausgebildet ist. Die Lambda-Sonde gibt ein der Abgaszusammensetzung entsprechendes Spannungssignal an das Steuergerät 24 ab. Bei einem mageren Gemisch (λ > 1) beträgt die Sondenspannung beispielsweise um 100 mV. Im Bereich λ = 1 ändert sich die Sondenspannung fast sprunghaft und erreicht bei fettem Gemisch (λ < 1) Werte von 800 mV und darüber. Gerade die starke Änderung der Sondenspannung im Bereich λ = 1 ermöglicht es, bereits geringe Abweichungen vom optimalen Luft-Kraftstoffverhältnis zu erkennen. Die vorliegende Erfindung basiert darauf, daß sich der Sprung zwar in einem schnellen Spannungsanstieg, jedoch nicht in einer reinen Rechteckspungcharakteristik manifestiert. Im übrigen ist es bekannt, daß Sprungsonden sehr zuverlässig und kostengünstig sind.In the exhaust system, a catalyst 18 is provided for the conversion of pollutants into non-toxic substances. Between the engine 10 and the catalyst 18, a lambda probe 30 is arranged, which is designed as a jump probe. The lambda probe emits a voltage signal corresponding to the exhaust gas composition to the control unit 24. For example, for a lean mixture (λ> 1), the probe voltage is around 100 mV. In the range λ = 1, the probe voltage changes almost abruptly and reaches values of 800 mV and above for a rich mixture (λ <1). Especially the strong change of the probe voltage in the range λ = 1 makes it possible to detect even small deviations from the optimal air-fuel ratio. The present Invention is based on the fact that the jump manifests itself in a rapid increase in voltage, but not in a pure Rechteckspungcharakteristik. Moreover, it is known that jump probes are very reliable and inexpensive.

Das Steuergerät 24 erhält im vorliegenden Fall überdies Temperaturwerte T des Kühlmittels, Drehzahlwerte n über die Drehzahl des Motors sowie eine Betriebsspannung UB.In the present case, the control unit 24 also receives temperature values T of the coolant, rotational speed values n via the rotational speed of the engine and an operating voltage U B.

Da bei der vorliegenden Erfindung die Spannungsschwankungen der Lambda-Sonden ausgewertet und den einzelnen Zylindern zugewiesen werden, ist es notwendig, das gerade vorliegende Arbeitsspiel eines jeden Zylinders zu kennen. Dazu wird im vorliegenden Signal ein Kurbelwellensensor 32 verwendet, dessen Signale ebenfalls an das Steuergerät 24 abgegeben werden.Since in the present invention, the voltage fluctuations of the lambda probes are evaluated and assigned to the individual cylinders, it is necessary to know the currently available working cycle of each cylinder. For this purpose, a crankshaft sensor 32 is used in the present signal, whose signals are also delivered to the control unit 24.

Das Steuergerät 24 berechnet aufgrund der vorliegenden Informationen eine Einspritzzeit ti für jeden Zylinder und gibt diese an Einspritzventile 20 weiter. Die Einspritzventile 20 liefern den von einer Kraftstoffzufuhr 22 erhaltenen Kraftstoff über Leitungen 26 entsprechend der Einspritzzeit ti an die im Motor 10 arbeitenden Zylinder.The control unit 24 calculates an injection time t i for each cylinder on the basis of the available information and forwards it to injection valves 20. The injection valves 20 supply the fuel received from a fuel supply 22 via lines 26 corresponding to the injection time t i to the cylinders operating in the engine 10.

Das Steuergerät 24 berechnet zunächst eine Einspritzzeit für jeden Zylinder aufgrund der ihm vorliegenden Daten, wie Temperatur T, Drehzahl n und Luftmengensignale und erzeugt eine Grundeinspritzzeit ti_zyl_z, wobei der Buchstabe z einen bestimmten Zylinder bezeichnet. Zu dieser Grundeinspritzzeit wird sodann eine zylinderindividuelle Gemischanpassung berechnet und zwar aus der Differenz von zwei - bezogen auf die Zündfolge - benachbarten Zylinder.The controller 24 first calculates an injection time for each cylinder based on the data available to it, such as temperature T, speed n, and air quantity signals, and generates a basic injection time ti_zyl_z, where the letter z designates a particular cylinder. At this Grundeinspritzzeit then a cylinder-specific mixture adjustment is calculated and that from the difference of two - based on the firing order - adjacent cylinder.

Dies wird nachfolgend anhand Fig. 2 erläutert. In Fig. 2 ist ein Sondenspannungssignal ULS_1_z über die Zeit S dargestellt. Im Verlauf der Spannung ist die Sondenspannung für verschiedene Zylinder z angegeben.This will be explained below Fig. 2 explained. In Fig. 2 a probe voltage signal ULS_1_z over time S is shown. In the course of the voltage, the probe voltage is indicated for different cylinders z.

Die Spannungsabweichung eines Zylinders z errechnet sich nun aufgrund der Spannungswerte der bezogen auf die Zündfolge benachbarten Zylinder. Die Spannungsdifferenz für den ersten Zylinder (z=1) ULS_1_diff_1 berechnet sich wie folgt: ULS_ 1 _diff_ 1 = ULS_ 1 _ 3 + ULS_ 1 _ 2 / 2 - ULS_ 1 _ 1.

Figure imgb0001
The voltage deviation of a cylinder z is now calculated on the basis of the voltage values of the cylinders adjacent to the ignition sequence. The voltage difference for the first cylinder (z = 1) ULS_1_diff_1 is calculated as follows: ULS_ 1 _diff_ 1 = ULS_ 1 _ 3 + ULS_ 1 _ 2 / 2 - ULS_ 1 _ 1.
Figure imgb0001

Dabei ist ULS_1_z die Sondenspannung am z-ten Zylinder. Entsprechend berechnen sich die Differenzen ULS_1_diff_z bei den anderen Zylindern.Where ULS_1_z is the probe voltage on the zth cylinder. Accordingly, the differences ULS_1_diff_z are calculated for the other cylinders.

Entsprechend der ermittelten Spannungsabweichung wird aus einer Kennlinie eine Einspritzkorrektur KF_ti_zyl_z entnommen. Mit dieser Korrektureinspritzzeit wird die Grundeinspritzzeit ti_zyl_z korrigiert.In accordance with the determined voltage deviation, an injection correction KF_ti_zyl_z is taken from a characteristic curve. With this correction injection time, the basic injection time ti_zyl_z is corrected.

Sind die Bedingungen zu einer Lambda-Adaption erfüllt, wird ein Adaptionswert der Zylindergemischanpassung gebildet und nicht flüchtig gespeichert.If the conditions for a lambda adaptation are met, an adaptation value of the cylinder mixture adaptation is formed and stored non-volatile.

Insgesamt ist mit der vorliegenden Erfindung eine einfache und kostengünstige Möglichkeit einer zylinderselektiven Regelung gegeben.Overall, with the present invention, a simple and cost-effective way of a cylinder-selective control is given.

Claims (7)

  1. Cylinder-selective control of the air fuel ratio of a multi-cylinder internal combustion engine, wherein
    - a lambda probe (30) in an exhaust duct generates a voltage signal corresponding to an air-fuel ratio,
    - the voltage signal is supplied to a calculation unit (24) which determines the air-fuel ratio for each individual cylinder,
    - a fuel distribution unit determines an amount of injected fuel, at least in dependence on a basic fuel injection value and the measured air-fuel ratio of the individual cylinder,
    - a fuel supply unit (20) supplies the amount of injected fuel determined by the fuel distribution unit to the cylinders of the internal combustion engine (10), and
    - the calculation unit (24) determines the voltage signal in synchronism with the crank angle and allocates it to a particular cylinder,
    characterised in that
    - for each cylinder a voltage deviation is determined in relation to the voltage signals from the neighbouring cylinders, as regards the ignition sequence,and
    - the amount injected is corrected in dependence on the voltage deviation.
  2. Cylinder-selective control according to claim 1, characterised in that a corrected value for the amount injected is taken from a characteristic or a performance graph.
  3. Cylinder-selective control according to claim 1 or 2, characterised in that a jump or snap probe in the form of a lambda probe (30) is used.
  4. Cylinder-selective control according to any of the preceding claims, characterised in that above a given limiting speed of revolution, the correction is not made.
  5. Cylinder-selective control according to any of the preceding claims, characterised in that two corrected values for the amount injected are calculated for each cylinder.
  6. Cylinder-selective control according to any of the preceding claims, characterised in that the corrected value is stored in a non-volatile memory.
  7. A device for cylinder-selective control of the air-fuel ratio in a multi-cylinder internal combustion engine according to any of claims 1 to 6, wherein
    - a lambda probe (30) in the exhaust duct generates a voltage signal corresponding to an air-fuel ratio,
    - a determination unit (24) is supplied with the voltage signal in order to determine the air-fuel ratio for each individual cylinder, wherein the determination unit (24) is constructed in order to determine the voltage signal in synchronism with the crank angle and assign it to a particular cylinder,
    - a fuel distribution unit determines an amount of injected fuel at least in dependence on a basic fuel injection value and in dependence on the measured air-fuel ratio, and
    - a fuel supply unit (20) supplies the amount of fuel determined by the fuel distribution unit to the cylinders of the internal combustion engine (10),
    characterised in that
    - the determination unit (24) is designed to:
    - determine the voltage deviation for each cylinder in relation to the voltage signals of the neighbouring cylinders relative to the ignition sequence and
    - correct the amount injected in dependence on the voltage deviation.
EP99117175A 1998-10-08 1999-09-01 Cylinder-selective regulation of the air/fuel ratio Expired - Lifetime EP0992666B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19846393A DE19846393A1 (en) 1998-10-08 1998-10-08 Cylinder-selective control of the air-fuel ratio
DE19846393 1998-10-08

Publications (3)

Publication Number Publication Date
EP0992666A2 EP0992666A2 (en) 2000-04-12
EP0992666A3 EP0992666A3 (en) 2001-09-12
EP0992666B1 true EP0992666B1 (en) 2008-03-26

Family

ID=7883828

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99117175A Expired - Lifetime EP0992666B1 (en) 1998-10-08 1999-09-01 Cylinder-selective regulation of the air/fuel ratio

Country Status (5)

Country Link
US (1) US6276349B1 (en)
EP (1) EP0992666B1 (en)
JP (1) JP2000110630A (en)
DE (2) DE19846393A1 (en)
ES (1) ES2301224T3 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10029633A1 (en) * 2000-04-07 2001-10-11 Volkswagen Ag Multi-flow exhaust system of a multi-cylinder engine and method for controlling an air-fuel ratio
DE10062895A1 (en) * 2000-12-16 2002-06-27 Bosch Gmbh Robert Method and device for controlling an internal combustion engine
DE10133555A1 (en) 2001-07-11 2003-01-30 Bosch Gmbh Robert Process for cylinder-specific adjustment of the injection quantity in internal combustion engines
US7021287B2 (en) 2002-11-01 2006-04-04 Visteon Global Technologies, Inc. Closed-loop individual cylinder A/F ratio balancing
DE102004026176B3 (en) * 2004-05-28 2005-08-25 Siemens Ag Air fuel ratio recording method e.g. for individual cylinders of combustion engines, involves determining scanning crankshaft angle related to reference position of piston of respective cylinders and recording measuring signal
DE102006011723B3 (en) 2006-03-14 2007-08-23 Siemens Ag Controlling cylinder-selective, direct fuel injection into vehicle internal combustion engine, minimizes lambda discrepancy by adjusting incremental cylinder-selective injections
DE102006012656A1 (en) 2006-03-20 2007-09-27 Siemens Ag Method and device for operating an internal combustion engine
DE102007044937B4 (en) 2007-09-20 2010-03-25 Continental Automotive Gmbh Method and device for operating an internal combustion engine
DE102007045264B4 (en) * 2007-09-21 2012-10-04 Continental Automotive Gmbh Method and device for operating an internal combustion engine
DE102008058008B3 (en) * 2008-11-19 2010-02-18 Continental Automotive Gmbh Device for operating an internal combustion engine
DE102013220117B3 (en) * 2013-10-04 2014-07-17 Continental Automotive Gmbh Device for operating an internal combustion engine
DE102013017799A1 (en) 2013-10-25 2015-04-30 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Determining the effective air-fuel ratio of a supercharged internal combustion engine with purge air
GB2531298A (en) * 2014-10-15 2016-04-20 Gm Global Tech Operations Inc Determination of the effective fuel-air ratio of a supercharged internal combustion engine with scavenging air component

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122144A (en) * 1981-01-20 1982-07-29 Nissan Motor Co Ltd Air fuel ratio feedback control unit
JPS59155538A (en) * 1983-02-24 1984-09-04 Mazda Motor Corp Fuel injection apparatus for engine
JPS61118535A (en) * 1984-11-14 1986-06-05 Nippon Soken Inc Air-fuel ratio controller for internal-combustion engine
DE3633671A1 (en) * 1986-10-03 1988-04-14 Vdo Schindling Method of fuel injection
DE3839611A1 (en) * 1988-11-24 1990-05-31 Pierburg Gmbh Method for controlling the exhaust gas composition
US4962741A (en) * 1989-07-14 1990-10-16 Ford Motor Company Individual cylinder air/fuel ratio feedback control system
JP3162553B2 (en) * 1993-09-13 2001-05-08 本田技研工業株式会社 Air-fuel ratio feedback control device for internal combustion engine
EP0802316B1 (en) * 1994-02-04 2000-04-12 Honda Giken Kogyo Kabushiki Kaisha Air/fuel ratio estimation system for internal combustion engine
US5566071A (en) * 1994-02-04 1996-10-15 Honda Giken Kogyo Kabushiki Kaisha Air/fuel ratio estimation system for internal combustion engine
US5623913A (en) * 1995-02-27 1997-04-29 Honda Giken Kogyo Kabushiki Kaisha Fuel injection control apparatus
JPH0949451A (en) * 1995-08-08 1997-02-18 Hitachi Ltd Engine control device
US5651353A (en) * 1996-05-03 1997-07-29 General Motors Corporation Internal combustion engine control

Also Published As

Publication number Publication date
ES2301224T3 (en) 2008-06-16
EP0992666A2 (en) 2000-04-12
DE59914705D1 (en) 2008-05-08
JP2000110630A (en) 2000-04-18
EP0992666A3 (en) 2001-09-12
DE19846393A1 (en) 2000-04-13
US6276349B1 (en) 2001-08-21

Similar Documents

Publication Publication Date Title
DE19953601C2 (en) Method for checking an exhaust gas catalytic converter of an internal combustion engine
DE69708171T2 (en) Air / fuel ratio control device for an internal combustion engine
DE60003105T2 (en) Device for exhaust emission control of an internal combustion engine
EP0992666B1 (en) Cylinder-selective regulation of the air/fuel ratio
DE69634580T2 (en) Detection device of catalyst deterioration of an internal combustion engine
DE602004002423T2 (en) Fault diagnosis system of a device for increasing the exhaust pressure
DE19612212B4 (en) Diagnostic device for an air / fuel ratio sensor
DE19752965C2 (en) Method for monitoring the exhaust gas purification system of a spark ignition internal combustion engine
DE102008001569A1 (en) Method and device for adapting a dynamic model of an exhaust gas probe
DE4414727B4 (en) Control method and control unit for multi-cylinder internal combustion engines
WO2004059152A1 (en) Method and device for diagnosing the dynamic characteristics of a lambda probe, used for the lambda regulation of individual cylinders
DE19536577C2 (en) Method for checking the functionality of an exhaust gas probe heating device
DE19831748B4 (en) Method and device for controlling an internal combustion engine
DE69128398T2 (en) Method and device for monitoring the deterioration of the exhaust gas cleaner of an internal combustion engine
DE102009045376A1 (en) Method and device for diagnosing the dynamics of an exhaust gas sensor
EP1204817B1 (en) Method for monitoring a secondary air system associated with the exhaust system of a vehicle
DE4435196C1 (en) Burner system efficiency checking method for vehicle exhaust catalytic converter warm=up
DE3429525A1 (en) METHOD FOR CYLINDER GROUP-SPECIFIC CONTROL OF A MULTI-CYLINDER COMBUSTION ENGINE AND DEVICE FOR CARRYING OUT THE METHOD
WO1991012422A1 (en) Process for associating combustion defects with a cylinder in an internal combustion engine
DE102011087310B3 (en) Method for operating linear lambda probe in exhaust gas duct of internal combustion engine in car, involves determining offset error of measurement signal from difference signal between pump voltage signal and Nernst voltage signal
EP1143131B1 (en) Multiple exhaust gas system and method to regulate an air/fuel ratio of a multi-cylinder internal combustion engine
DE10257059B4 (en) Method and device for diagnosing catalyst units
DE10057013B4 (en) Air / fuel ratio control system for an internal combustion engine
DE102006043679B4 (en) Method for single-cylinder control in an internal combustion engine
DE10048926B4 (en) Method, computer program and control and / or regulating device for operating an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 02D 41/36 A, 7F 02D 41/14 B, 7F 02D 41/26 B, 7F 02D 41/30 B, 7F 02D 41/34 B

17P Request for examination filed

Effective date: 20020222

AKX Designation fees paid

Free format text: DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20041112

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080407

REF Corresponds to:

Ref document number: 59914705

Country of ref document: DE

Date of ref document: 20080508

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2301224

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120927

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120926

Year of fee payment: 14

Ref country code: ES

Payment date: 20120814

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121012

Year of fee payment: 14

Ref country code: DE

Payment date: 20121030

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130911

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59914705

Country of ref document: DE

Effective date: 20140401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130901

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902