EP0987119A1 - Ink jet printing method - Google Patents
Ink jet printing method Download PDFInfo
- Publication number
- EP0987119A1 EP0987119A1 EP98203115A EP98203115A EP0987119A1 EP 0987119 A1 EP0987119 A1 EP 0987119A1 EP 98203115 A EP98203115 A EP 98203115A EP 98203115 A EP98203115 A EP 98203115A EP 0987119 A1 EP0987119 A1 EP 0987119A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ink
- ink jet
- receiver
- transparent
- black
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000007641 inkjet printing Methods 0.000 title claims abstract description 22
- 239000002245 particle Substances 0.000 claims abstract description 26
- 229920000642 polymer Polymers 0.000 claims abstract description 19
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 16
- 239000007788 liquid Substances 0.000 claims abstract description 15
- 229920000159 gelatin Polymers 0.000 claims abstract description 8
- 235000019322 gelatine Nutrition 0.000 claims abstract description 8
- 108010010803 Gelatin Proteins 0.000 claims abstract description 7
- 239000008273 gelatin Substances 0.000 claims abstract description 7
- 235000011852 gelatine desserts Nutrition 0.000 claims abstract description 7
- 230000000007 visual effect Effects 0.000 claims abstract description 6
- 230000005540 biological transmission Effects 0.000 claims abstract description 5
- 238000012360 testing method Methods 0.000 claims abstract description 5
- 239000000976 ink Substances 0.000 claims description 112
- 239000000203 mixture Substances 0.000 claims description 19
- 239000006229 carbon black Substances 0.000 claims description 7
- 150000002148 esters Chemical class 0.000 claims description 6
- 229920002472 Starch Polymers 0.000 claims description 5
- 239000008107 starch Substances 0.000 claims description 5
- 235000019698 starch Nutrition 0.000 claims description 5
- 125000001165 hydrophobic group Chemical group 0.000 claims description 3
- 239000001060 yellow colorant Substances 0.000 claims description 2
- 125000004185 ester group Chemical group 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 12
- 239000011230 binding agent Substances 0.000 abstract description 10
- 239000000049 pigment Substances 0.000 description 58
- 239000010410 layer Substances 0.000 description 50
- -1 silver halide Chemical class 0.000 description 26
- 238000007639 printing Methods 0.000 description 25
- 239000002253 acid Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 229920001577 copolymer Chemical compound 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 12
- 239000003086 colorant Substances 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 239000003906 humectant Substances 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000000975 dye Substances 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 229920000881 Modified starch Polymers 0.000 description 5
- 239000004368 Modified starch Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 5
- 239000012943 hotmelt Substances 0.000 description 5
- 239000006224 matting agent Substances 0.000 description 5
- 235000019426 modified starch Nutrition 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 4
- 235000019241 carbon black Nutrition 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000004848 polyfunctional curative Substances 0.000 description 4
- 229920000056 polyoxyethylene ether Polymers 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 3
- 230000009102 absorption Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 229940051841 polyoxyethylene ether Drugs 0.000 description 3
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 229940117958 vinyl acetate Drugs 0.000 description 3
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- YQEMORVAKMFKLG-UHFFFAOYSA-N 2-stearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- YJVBLROMQZEFPA-UHFFFAOYSA-L acid red 26 Chemical compound [Na+].[Na+].CC1=CC(C)=CC=C1N=NC1=C(O)C(S([O-])(=O)=O)=CC2=CC(S([O-])(=O)=O)=CC=C12 YJVBLROMQZEFPA-UHFFFAOYSA-L 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 235000009508 confectionery Nutrition 0.000 description 2
- 238000002059 diagnostic imaging Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229940110337 pigment blue 1 Drugs 0.000 description 2
- 229940099800 pigment red 48 Drugs 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- SSTHBHCRNGPPAI-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-n,n-bis(2-hydroxyethyl)octane-1-sulfonamide Chemical compound OCCN(CCO)S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SSTHBHCRNGPPAI-UHFFFAOYSA-N 0.000 description 1
- NSAFUDAPGVUPIP-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-n-(2-hydroxyethyl)-n-propyloctane-1-sulfonamide Chemical compound CCCN(CCO)S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F NSAFUDAPGVUPIP-UHFFFAOYSA-N 0.000 description 1
- JIHQDMXYYFUGFV-UHFFFAOYSA-N 1,3,5-triazine Chemical class C1=NC=NC=N1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 description 1
- VZXTWGWHSMCWGA-UHFFFAOYSA-N 1,3,5-triazine-2,4-diamine Chemical compound NC1=NC=NC(N)=N1 VZXTWGWHSMCWGA-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- FKOKUHFZNIUSLW-UHFFFAOYSA-N 2-Hydroxypropyl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(C)O FKOKUHFZNIUSLW-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- PSJBSUHYCGQTHZ-UHFFFAOYSA-N 3-Methoxy-1,2-propanediol Chemical compound COCC(O)CO PSJBSUHYCGQTHZ-UHFFFAOYSA-N 0.000 description 1
- SSZWWUDQMAHNAQ-UHFFFAOYSA-N 3-chloropropane-1,2-diol Chemical compound OCC(O)CCl SSZWWUDQMAHNAQ-UHFFFAOYSA-N 0.000 description 1
- SOFRHZUTPGJWAM-UHFFFAOYSA-N 3-hydroxy-4-[(2-methoxy-5-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound COc1ccc(cc1N=Nc1c(O)c(cc2ccccc12)C(=O)Nc1cccc(c1)[N+]([O-])=O)[N+]([O-])=O SOFRHZUTPGJWAM-UHFFFAOYSA-N 0.000 description 1
- 238000010146 3D printing Methods 0.000 description 1
- FWTBRYBHCBCJEQ-UHFFFAOYSA-N 4-[(4-phenyldiazenylnaphthalen-1-yl)diazenyl]phenol Chemical compound C1=CC(O)=CC=C1N=NC(C1=CC=CC=C11)=CC=C1N=NC1=CC=CC=C1 FWTBRYBHCBCJEQ-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 241001479434 Agfa Species 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- WJMKFGVAGCRGTM-UHFFFAOYSA-N C[C-](N1)[NH+](C)CC1=O Chemical compound C[C-](N1)[NH+](C)CC1=O WJMKFGVAGCRGTM-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000272194 Ciconiiformes Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 229920002085 Dialdehyde starch Polymers 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 235000014755 Eruca sativa Nutrition 0.000 description 1
- 244000024675 Eruca sativa Species 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical group COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- PCSMJKASWLYICJ-UHFFFAOYSA-N Succinic aldehyde Chemical compound O=CCCC=O PCSMJKASWLYICJ-UHFFFAOYSA-N 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- QHWKHLYUUZGSCW-UHFFFAOYSA-N Tetrabromophthalic anhydride Chemical compound BrC1=C(Br)C(Br)=C2C(=O)OC(=O)C2=C1Br QHWKHLYUUZGSCW-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- WLKAMFOFXYCYDK-UHFFFAOYSA-N [5-amino-4-[[3-[(2-amino-4-azaniumyl-5-methylphenyl)diazenyl]-4-methylphenyl]diazenyl]-2-methylphenyl]azanium;dichloride Chemical compound [Cl-].[Cl-].CC1=CC=C(N=NC=2C(=CC([NH3+])=C(C)C=2)N)C=C1N=NC1=CC(C)=C([NH3+])C=C1N WLKAMFOFXYCYDK-UHFFFAOYSA-N 0.000 description 1
- DZHMRSPXDUUJER-UHFFFAOYSA-N [amino(hydroxy)methylidene]azanium;dihydrogen phosphate Chemical compound NC(N)=O.OP(O)(O)=O DZHMRSPXDUUJER-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- PZZYQPZGQPZBDN-UHFFFAOYSA-N aluminium silicate Chemical compound O=[Al]O[Si](=O)O[Al]=O PZZYQPZGQPZBDN-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- VBICKXHEKHSIBG-UHFFFAOYSA-N beta-monoglyceryl stearate Natural products CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000002508 contact lithography Methods 0.000 description 1
- GBTNCRZBGFMBGM-UHFFFAOYSA-N copper 2-ethyl-N-(2-ethylhexyl)hexan-1-amine (10Z,29Z)-2,11,20,29,38,40-hexaza-37,39-diazanidanonacyclo[28.6.1.13,10.112,19.121,28.04,9.013,18.022,27.031,36]tetraconta-1,3(40),4(9),5,7,10,12,14,16,19,21(38),22,24,26,29,31,33,35-octadecaene-6,15-disulfonic acid Chemical compound [Cu++].CCCCC(CC)CNCC(CC)CCCC.CCCCC(CC)CNCC(CC)CCCC.OS(=O)(=O)C1=CC2=C3N=C(\N=C4/[N-]C([N-]C5=N\C(=N/C6=N/C(=N\3)/c3ccc(cc63)S(O)(=O)=O)c3ccccc53)c3ccccc43)C2C=C1 GBTNCRZBGFMBGM-UHFFFAOYSA-N 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000004891 diazines Chemical class 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- OOYIOIOOWUGAHD-UHFFFAOYSA-L disodium;2',4',5',7'-tetrabromo-4,5,6,7-tetrachloro-3-oxospiro[2-benzofuran-1,9'-xanthene]-3',6'-diolate Chemical compound [Na+].[Na+].O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(Br)=C([O-])C(Br)=C1OC1=C(Br)C([O-])=C(Br)C=C21 OOYIOIOOWUGAHD-UHFFFAOYSA-L 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical class C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- VYXSBFYARXAAKO-UHFFFAOYSA-N ethyl 2-[3-(ethylamino)-6-ethylimino-2,7-dimethylxanthen-9-yl]benzoate;hydron;chloride Chemical compound [Cl-].C1=2C=C(C)C(NCC)=CC=2OC2=CC(=[NH+]CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical class C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 235000010187 litholrubine BK Nutrition 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 235000019988 mead Nutrition 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 239000011049 pearl Substances 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920000120 polyethyl acrylate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 229920006316 polyvinylpyrrolidine Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 229940093625 propylene glycol monostearate Drugs 0.000 description 1
- UGZVCHWAXABBHR-UHFFFAOYSA-O pyridin-1-ium-1-carboxamide Chemical class NC(=O)[N+]1=CC=CC=C1 UGZVCHWAXABBHR-UHFFFAOYSA-O 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- AQRYNYUOKMNDDV-UHFFFAOYSA-M silver behenate Chemical compound [Ag+].CCCCCCCCCCCCCCCCCCCCCC([O-])=O AQRYNYUOKMNDDV-UHFFFAOYSA-M 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- AUHHYELHRWCWEZ-UHFFFAOYSA-N tetrachlorophthalic anhydride Chemical compound ClC1=C(Cl)C(Cl)=C2C(=O)OC(=O)C2=C1Cl AUHHYELHRWCWEZ-UHFFFAOYSA-N 0.000 description 1
- NQRYJNQNLNOLGT-UHFFFAOYSA-N tetrahydropyridine hydrochloride Natural products C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/502—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
- B41M5/508—Supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/502—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
- B41M5/504—Backcoats
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5236—Macromolecular coatings characterised by the use of natural gums, of proteins, e.g. gelatins, or of macromolecular carbohydrates, e.g. cellulose
Definitions
- the present invention relates to an ink jet method with improved tonal range and high obtainable maximal density.
- the method is useful for the rendering of medical diagnostic information.
- ink jet printing has become a popular technique because of its simplicity, convenience and low cost. Especially in those instances where a limited edition of the printed matter is needed ink jet printing has become a technology of choice.
- a recent survey on progress and trends in ink jet printing technology is given by Hue P. Le in Journal of Imaging Science and Technology Vol. 42 (1), Jan/Febr 1998.
- ink jet printing tiny drops of ink fluid are projected directly onto an ink receptor surface without physical contact between the printing device and the receptor.
- the printing device stores the printing data electronically and controls a mechanism for ejecting the drops image-wise.
- Early patents on ink jet printers include US 3,739,393, US 3,805,273 and US 3,891,121.
- the jetting of the ink droplets can be performed in several different ways.
- Dr. Sweet of Stanford University demonstrated that by applying a pressure wave pattern to an ink stream which is jetted continuously through a small nozzle.
- This ink stream could be broken in droplets which are uniform in size and spacing.
- the droplet stream is image-wise divided into droplets that are electrostatically charged and deflected, and into droplets that remain uncharged and continue their way undeflected. This process is known as continuous ink jet printing.
- the uncharged undeflected droplet stream forms the image while the charged deflected stream is recollected.
- the charged deflected stream forms the image and the uncharged undeflected jet is recollected.
- the ink droplets can be created “on demand” (“DOD” or “drop on demand” method) whereby the printing device ejects the droplets only when they are used in imaging on a receiver thereby avoiding the complexity of drop charging and deflection hardware.
- DOD on demand
- the ink droplet can be formed by means of a piezoelectric transducer (so-called “piezo method”), or by means of discrete thermal pushes (so-called “bubble jet” method, or “thermal jet” method). Zoltan, Kyser and Sears are the pioneers of the first method.
- ink drops are ejected by a pressure wave created by the mechanical motion of a piezoelectric ceramic.
- Endo and Hara of Canon Co. invented a drop-on-demand ink jet method wherein ink drops were ejected from a nozzle by the growth and collapse of a water vapor bubble on the top surface of a small heater located near the nozzle.
- Canon called the technology the bubble jet.
- Hewlett-Packard developed a similar ink jet technology, commercialized in 1984 in the Thinkjet printer. They named the technology thermal ink jet.
- Ink jet printing technologies are used in a wide range of applications such as desktop publishing at home or at office, industrial printing of packings, e.g. with barcodes, printing of cables, prints from photographs generated from an electronic camera, outdoor advertisement, textile printing; three-dimensional printing, etc..
- An emerging market is surely ink jet printing of electronically stored medical information.
- Key players are the companies Scitex/Iris and Sterling Diagnostics.
- Misubishi Plastics recently announced the development of a film that can be imaged with ink jet to print medical images ( Japan Chemical Week, (4/9/98, p. 1). Hitherto images comprising medical information were conventionally produced by classical photographic techniques. The most commonly used is silver halide technology.
- thermographic or photothermographic technologies such as Imation Dryview films and Agfa Drystar. These technologies however need expensive apparatuses based on laser or thermal head imaging.
- Ink jet could be an inexpensive and ecologically acceptable alternative to the systems mentioned above provided it would be capable of producing continuous tone images with a sufficient number, preferably at least 100, of grey levels, high maximal transmission density, low noise level, and neutral grey tone.
- grey-scale printing can be performed by the Hertz method by controlling the number of droplets deposited in each pixel.
- a sufficient number of grey levels can also be obtained by combining droplets of different inks having the same colorant but in different concentrations.
- the principle was already disclosed in US 3,404,221, priority US 22.10.1965.
- specific embodiments of the method of combinations of several inks of different densities are disclosed e.g. in DE 3415778, DE 3415775, US 4,533,923, US 4,695,846, US 4,714,964, US 4,686,538, US 4,952,942, US 4,860,026, EP 388978, EP 606022, US 5,606,351, US 5,625,397, and EP 750995.
- grey scale images can be produced by modulation of the ink droplet size as explained in the article "Photo-realistic ink jet printing through dynamic spot size control", by D. Wallace et al., presented at IS & T's Eleventh International Congress on Advances in Non-Impact Printing, Oct. 29-Nov. 3, 1995, Hilton Head, South Carolina. Furtheron combinations of these different methods can be used.
- Hot melt inks however have several disadvantages over the liquid inks. Before printing the inks must be brought in a molten state which takes start-up time and requires a more complex and expensive printer. The produced images look and feel greasy and have a low scratch resistance so that the image can be damaged when handled uncarefully.
- the objects of the present invention are realized by providing a method comprising ink-jetting combinations of at least one liquid black pigmented ink and at least one liquid grey ink to a receiver material comprising an ink receiving layer, a transparent support and a backing layer, said ink receiving layer comprising at least one N-containing polymer, and being substantially free of particles having an average size larger than 1 ⁇ m.
- the N-containing polymer present as binder in the ink receiving layer is preferably gelatin.
- the receiver material exhibits a haze value between 10 and 20%, determined according to standard test ASTM D 1003, due to the presence of a spacing agent in the backing layer.
- the receiving layer of the receiver material of the present invention may consist of just one single layer or can be coated as a multiple layer pack, e.g. a double layer.
- the receiving layer or layer pack comprises as main ingredients a binder which is a N-containing polymer.
- a binder which is a N-containing polymer.
- the most preferred binder is gelatin.
- the advantages of gelatin are the facts that it forms a clear coating, is readily cross-linked in an easily controllable manner, and is highly absorptive of water-based liquid inks thereby providing rapid drying characteristics.
- Other N-containing binders can be chosen from a large variety of chemical compounds including e.g.
- polyvinyl pyrrolidone PVP
- polyacrylamide polyacrylamide/ acrylic acid, poly(2-acrylamido-2-methyl propane sulphonic acid), poly(diethylene triamine-co-adipic acid), polyvinyl pyridine, polyvinyl imidazole, quaternized polyimidazoline, polyethylene imine epichlorohydrine modified, ethoxylated polyethylene imine, poly(N,N,-dimethyl-3,5-dimethylene piperidinium chloride, polyurethene, melanin resins, urea resins, nitrile rubbers, albumin.
- PVP polyvinyl pyrrolidone
- polyacrylamide polyacrylamide/ acrylic acid
- poly(diethylene triamine-co-adipic acid) polyvinyl pyridine
- polyvinyl imidazole polyvinyl imidazole
- quaternized polyimidazoline
- N-containing polymer More than one N-containing polymer can be present in the receiving layer.
- gelatin is mixed with polyvinyl pyrrolidone (PVP).
- a non-N-containing binder may also be present in the receiving layer, e.g. cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose; starch, dextran; polyvinyl alcohol, polyvinyl acetate, polyvinyl acetal, polyalkyleneoxides, film-forming latices such as copoly(styrene-butadiene), carboxylated polymers, polyacrylates, etc.
- cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose
- starch dextran
- polyvinyl alcohol polyvinyl acetate, polyvinyl acetal, polyalkyleneoxides, film-forming latices such as copoly(styrene-butadiene), carboxylated polymers, polyacrylates, etc.
- the receiving layer can further contain fillers, pigments, whitening agents and porous particulate material for as far as these compounds have an average particle size smaller the 1 ⁇ m.
- fillers, pigments, whitening agents and porous particulate material for as far as these compounds have an average particle size smaller the 1 ⁇ m.
- organic materials include e.g., silica, talc, clay, koalin, diatomaceous earth, calcium carbonate, magnesium carbonate, aluminium hydroxide, aluminium oxide, boehmite and pseudo-boehmite, titanium oxide, zinc oxide, barium sulfate, calcium sulfate, zinc sulfide, satin white, aluminium silicate, calcium silicate, lithopone, etc.
- Organic materials include e.g.
- polystyrene polymethacrylate, polymethylmethacrylate, elastomers, ethylene-vinylacetate copolymers, polyesters, polyester-copolymers, polyacrylates polyvinylethers, polyamides, polyolefines, polysilicones, guanamine resins, polytetrafluoroethylenes, elastomeric styrene-butadiene rubber (SBR), elastomeric butadiene-acrylonitrile rubber, urea resins, urea-formalin resins, etc.
- SBR elastomeric styrene-butadiene rubber
- Pigments and particles have also been described in patent applications DE 2,925,769, GB 2,050,866, US 4,474,850, US 4,547,405, US 4,578,285, WO 88 06532, US 4,849,286, EP 339 604, EP 400 681, EP 407 881, EP 411 638 and US 5,045,864.
- mordanting agents which by fixing the colorant of the jetted ink composition strongly improve the waterfastness of the finished image.
- mordant are usually (co)polymers containing cationic functions such as quaternary ammonium groups, fosfonium, sulfonium, and guadinium groups.
- Examples of such disclosures include US 4,371,582, US 4,575,465, US 4,649,064, GB 2210071, EP 423829, DE 3109931, US 4,585,724, EP 295338, EP 306564, US 5,314,747, EP 609930, WO 94/20304, WO 94/20305, WO 94/20306, EP 615853, EP 615884, EP 618214, Also inorganic mordants have been described e.g. in US 5,560,996, EP 704316, EP 754560.
- the ink receiving layer according to this invention may be cross-linked to provide such desired features as water-fastness and non-blocking characteristics.
- the cross-linking is also useful in providing abrasion resistance and resistance to the formation of fingerprints on the element as a result of handling.
- cross-linking agents also known as hardening agents that can be used individually or in combination and in free or in blocked form.
- Useful hardeners include formaldehyde and free dialdehydes, such as succinaldehyde and glutaraldehyde, blocked dialdehydes, active esters, sulfonate esters, active halogen compounds, s-triazines and diazines, epoxides, active olefins having two or more active bonds, active olefins, carbodiimides, isoxazolium salts unsubsituted in the 3-position, esters of 2-alkoxy-N-carboxy-dihydro-quinoline, N-carbamoyl and N-carbamoylpyridinium salts, hardeners of mixed function, such as halogen-substituted aldehyde acids (e.g. mucochloric and mucobromic acids), onium substituted acroleins and vinyl sulfones and polymeric hardeners, such as dialdehyde starches and copoly
- the ink-receiving layer of the present invention can also comprise a plasticizer such as ethylene glycol, dietylene glycol, propylene glycol, polyethylene glycol, glycerol monomethylether, glycerol monochlorohydrin, ethylene carbonate, propylene carbonate, tetrachlorophthalic anhydride, tetrabromophthalicanhydride, urea phosphate, triphenylphosphate, glycerolmonostearate, propylene glycol monostearate, tetramethylene sulfone, N-methyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, and polymer latices with low Tg value such as polyethylacrylate, polymethylacrylate, etc.
- a plasticizer such as ethylene glycol, dietylene glycol, propylene glycol, polyethylene glycol, glycerol monomethylether, glycerol monochlorohydrin, ethylene
- Surfactants may be incorporated in the ink-receptive layer of the present invention. They can be any of the cationic, anionic, amphoteric, and nonionic ones as described in JP-A 62-280068 (1987).
- the surfactants are N-alkylamino acid salts, alkylether carboxylic acid salts, acylated peptides, alkylsulfonic acid salts, alkylbenzene and alkylnaphthalene sulfonic acid salts, sulfosuccinic acid salts, olefin sulfonic acid salts, N-acylsulfonic acid salts, sulfonated oils, alkylsulfonic acid salts, alkylether sulfonic acid salts, alkylallylethersulfonic acid salts, alkylamidesulfonic acid salts, alkylphosphoric acid salts, alkyletherphosphoric acid salts, alkylallyletherphospho
- the image-receiving layers of the present invention may additionally comprise additives which are well known in the art, such as UV-absorbers, e.g. as disclosed in e.g. US 4,926,190, antistatic agents, and others.
- additives which are well known in the art, such as UV-absorbers, e.g. as disclosed in e.g. US 4,926,190, antistatic agents, and others.
- Useful transparent organic resin supports include e.g. cellulose nitrate film, cellulose acetate film, polyvinylacetal film, polystyrene film, polyethylene terephthalate film, polycarbonate film, polyvinylchloride film or poly- ⁇ -olefin films such as polyethylene or polypropylene film.
- the thickness of such organic resin film is preferably comprised between 0.05 and 0.35 mm.
- the support is a polyethylene terephthalate film provided with at least one subbing layer. This subbing layer can be applied before or after stretching of the polyester film support.
- the polyester film support is preferably biaxially stretched at an elevated temperature of e.g.
- the stretching may be accomplished in two stages, transversal and longitudinal in either order or simultaneously.
- the subbing layer when present, is preferably applied by aqueous coating between the longitudinal and transversal stretch, in a thickness of 0.1 to 5 mm.
- This subbing layer preferably contains a homopolymer or copolymer of a monomer comprising covalently bound chlorine. Examples of said homopolymers or copolymers suitable for use in the subbing layer are e.g.
- polyvinyl chloride polyvinylidene chloride, a copolymer of vinylidene chloride, an acrylic ester and itaconic acid, a copolymer of vinyl chloride and vinylidene chloride, a copolymer of vinyl chloride and vinyl acetate, a copolymer of butylacrylate, vinyl acetate and vinyl chloride or vinylidene chloride, a copolymer of vinyl chloride, vinylidene chloride and itaconic acid, a copolymer of vinyl chloride, vinyl acetate and vinyl alcohol etc.
- Polymers that are water dispersable are preferred since they allow aqueous coating of the subbing layer which is ecologically advantageous.
- a second subbing layer may be present which is usually more hydrophilic and contains e.g. gelatin and an adhesion promoting polymer.
- the polyester support can be blue coloured as it is also often the case with silver halide medical imaging films.
- the support may be a mono-component layer or can consist of blend, or of a laminate of different materials manufactured by means of coextrusion.
- the receiving element exhibits a haze value between 10 and 20 % which is desirable for the visual interpretation of the final continuous tone image, particlarly when this image is the reproduction of medical diagnostic information.
- the haze value is determined according to standard test ASTM D 1003. This is preferably realized by the incorporation of a spacing agent in the backing layer.
- spacing agent should be interpreted in its broad sense and as being equivalent to "matting agent” and “roughening agent”. The presence of the spacing agent improves the transport in the printer, avoides the sticking of sheets to each other, and prevents the rubbing-off of the ink jet image or the transfer of a previously printed image.
- matting particles present in the backing layer is not limited to a specific chemical type but can be chosen from a wide variety of chemical classes and commercial products as revealed in scientific and patent literature from the ink jet field itself or from other imaging technologies such as silver halide photography.
- Useful roughening agents include following :
- a preferred type of matting agent is a hydrophobic modified starch.
- An example of such a modified starch is commercialized under the trade name "DRY FLO” by Roquette National Chimie. It is a starch ester containing hydrophobic groups. Its average particle diameter (median) according to volume is comprised between 13 and 20 ⁇ m.
- the backing layer may further contain essentially the same ingredients as the receiving layer.
- Ink compositions for ink jet typically include following ingredients : dyes or pigments, water and/or organic solvents, humectants such as glycols, detergents , thickeners. polymeric binders, preservatives, etc.. It will be readily understood that the optimal composition of such an ink is dependent on the ink jetting method used and on the nature of the substrate to be printed.
- the ink compositions can be roughly divided in :
- ink compositions require a receiving medium that is more or less absorptive.
- a receiving medium that is more or less absorptive.
- hot melt inks or radiation-curable inks will be better suited.
- liquid inks preferably water-based inks are used.
- Hot melt inks are explicitly excluded.
- water-based inks typically contain about 75-90 weight % of water.
- humectant or mixtures of humectants which usually are (poly)alcohols.
- Suitable humectants include glycols such as diethyleneglycol, glycerine and polyethyleneglycol, N-methyl-pyrrolidone, 2-pyrrolidone, N-methyl-2 -pyrrolidone, isopropanol, and 1,2-dimethyl-2-imidazolidone.
- humectants such as N-methyl-pyrrolidone and 2-pyrrolidone have been found to improve the solubility of the colorant in the ink and thus serve the dual role as humectant and as cosolvent. Typically these humectants are present in a concentration ranging from 5 to 15 %.
- water and humectant water-based ink compositions may contain in minor amounts further ingredients such as surfactants, biocides, buffering agents, chelating agents and defoaming agents.
- one of the ink compositions used in the process of the present invention is a concentrated black pigmented ink.
- the black pigment is carbon black in a concentration of at least 2 %, preferably about 5 %.
- Multiple types of inks containing carbon black are commercially available. Examples of useful carbon blacks include Regal 400R, Mogul L, Elftex 320 from Cabot Co., or Cardon Black IW18, Special Black 250, Special Black 350, Special Black 550, Printex 25, Printex 35, Printex 55, Printex 150T from Degussa Co., and Pigment Black 7.
- a grey ink is defined as an ink capable of producing a lower density than the black ink under identical printing conditions.
- the grey ink(s) can be simply (a) dilution(s) of the concentrated black ink.
- the ratios of the concentrations of the different inks must be chosen so that in combination with the print method used a linear tone rendering can be obtained over the whole printable density range.
- the linearisation of the visual perception curve must be taken into account.
- the ratios chosen are also function of the maximal number of overlapping droplets per dot. Furtheron, the screening algorithm may play a role in the choice of the optimal ratios.
- the diluted grey inks can be compositions containing a mixture of a cyan colorant, a magenta colorant and a yellow colorant in such a ratio that again a grey ink is obtained.
- this is not the preferred option since it is difficult with a mixture of colorants to obtain a neutral hue over the whole tonal range due to their spectral side absorptions.
- the colorants can be pigments or dyes.
- Suitable pigments include, for instance, C. I. Pigment Yellow 17, C. I. Pigment Blue 27, C. I. Pigment Red 49:2, C. I. Pigment Red 81:1, C. I. Pigment Red 81:3, C. I. Pigment Red 81:x, C. I. Pigment Yellow 83, C. I. Pigment Red 57:1, C. I. Pigment Red 49:1, C. I. Pigment Violet 23, C. I. Pigment Green 7, C. I. Pigment Blue 61, C. I. Pigment Red 48:1, C. I. Pigment Red 52:1, C. I. Pigment Violet 1, C. I. Pigment White 6, C. I. Pigment Blue 15, C. I. Pigment Yellow 12, C. I. Pigment Blue 56, C. I.
- Pigment Orange 5 C. I. Pigment Black 7, C. I. Pigment Yellow 14, C. I. Pigment Red 48:2, C. I. Pigment Blue 15:3, C. I. Pigment Yellow 1, C. I. Pigment Yellow 3, C. I. Pigment Yellow 13, C. I. Pigment Orange 16, C. I. Pigment Yellow 55, C. I. Pigment Red 41, C. I. Pigment Orange 34, C. I. Pigment Blue 62, C. I. Pigment Red 22, C. I. Pigment Red 170, C. I. Pigment Red 88, C. I. Pigment Yellow 151, C. I. Pigment Red 184, C. I. Pigment Blue 1:2, C. I. Pigment Red 3, C. I. Pigment Blue 15:1, C. I.
- Pigment Red 23 C. I. Pigment Red 112, C. I. Pigment Yellow 126, C. I. Pigment Red 169, C. I. Pigment Orange 13, C. I. Pigment Red 1-10, 12, C.I. Pigment Blue 1:X, C.I. Pigment Yellow 42, C.I. Pigment Red 101, C.I. Pigment Brown 6, C. I. Pigment Brown 7, C. I. Pigment Brown 7:X, C. I. Pigment Black 11, C. I. Pigment Metal 1, or C. I. Pigment Metal 2.
- the pigment may be chosen from those disclosed in Industrial Organic Pigments, Production, Properties, Applications, second edition, W. Herbst, K. Hunger ; VCH, 1997. Additional examples of suitable pigments are disclosed in, for example, US 5,389,133 and US 5,713,988.
- the pigment particles should be sufficiently small to permit free flow of the ink through the ink jet printing device, especially at the ejecting nozzles that usually have a diameter ranging from less than 10 microns to 50 microns.
- the pigment particle size also has an influence on the pigment dispersion stability, which is critical throughout the life of the ink. It is also desirable to use small particles for maximum color strength.
- the average particle diameter may be from about 0.005 ⁇ m to about 15 ⁇ m.
- the pigment particle size may range from about 0.005 to about 5 ⁇ m, more preferably from about 0.005 to about 1 ⁇ m, and most preferably from about 0.005 to about 0.3 ⁇ m. Pigment particle sizes outside these ranges may, of course, be used as long as the objectives of the present invention are achieved.
- Suitable dyes include e.g. Orasol Pink 5BLG, Blue 2GLN, Red G, Yellow 2GLN, Blue GN, Blue BLN, Brown CR, Neolan Blue, all available from Ciba-Geigy Co.; Morfast Blue 100, Red 101, Red 104, Yellow 102, all available from Morton Chemical Co, Ajax, Ontario; Bismark Brown R, available from Aldrich; Savinyl Yellow RLS, Red 3 GLS, Pink GBLS, all available from Sandoz Co.
- the grey scale reproduction method according to the present invention can make use of multiple dot printing onto one pixel, and/or of dot size modulation, as mentioned in the Background section. Also combinations of the foregoing methods can be used.
- This example shows that when jetting pigmented ink to a receiver used in accordance with the present invention visual densities higher than 3.0 can be reached.
- Layer 1 and 3 (table 1) were coated together using a slide hopper coater.
- the first layer had a wet coating thickness of 100 ⁇ m, the second 20 ⁇ m.
- the layers were dried at 50°C.
- Layer 1 and 2 were coated together using a slide hopper coater.
- the spacing agent DRY FLO being a modified starch was present in layer 2.
- the first layer had a wet coating thickness of 100 ⁇ m, the second 20 ⁇ m.
- the layers were dried at 50°C.
- Layer 4 was coated using a slide hopper coater. No N-containing polymer was present as binder ; instead of it a commercial polyvinyl alcohol type (Mowiol) was used. The layer had a wet coating thickness of 100 ⁇ m, and was dried at 50°C.
- No N-containing polymer was present as binder ; instead of it a commercial polyvinyl alcohol type (Mowiol) was used.
- the layer had a wet coating thickness of 100 ⁇ m, and was dried at 50°C.
- the different ink-jet receiving layers were coated on a subbed polyester substrate.
- Ink jet printing (full areas) was performed with following printers respectively : HP850 (pigmented black ink), Epson 800 (black mixture of dyes) and Canon 610 (black mixture of dyes) in a 50%RH room at ambient temperature.
- the optical density measured on a MacBeth TR924 (visual) was measured after 1 day of printing. visual density of the black ink measured using a Macbeth TR924 for different ink jet receiver layers on transparant PET 100 ⁇ .
- Receiver 1 from example 1 was printed with an HP890 printer by means of a combination of following inks :
- Digitally stored medical diagnostic information was loaded in from a medical scanner into a personal computer. Via Adobe Photoshop the continuous tone image information was splitted up by means of appropriate software into the three colour channels CMY whereby its channel was splitted up into 256 driving levels, according to following scheme :
- the image information was printed on invention receiver 1 of example 1.
- the following image characteristics were obtained :
Landscapes
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Ink Jet (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Abstract
Description
- different types of silica such as disclosed e.g. in US 3,084,131, US 4,892,591, US 4,902,568, EP 379964, EP 423829, US 5,165,973, EP 739747, EP 781666, EP 803374, EP 862510, Wo 97/20691
- starch or modified starch particles such as disclosed in EP 445327, EP 480362, EP 524635;
- the spherical polymeric beads disclosed in US 4,861,818 ;
- the alkali-soluble beads of US 4,906,560 and EP 0 584 407 ;
- the insoluble polymeric beads disclosed in EP 0 466 982 ;
- polymethylmethacrylate beads ;
- copolymers of methacrylic acid with methyl- or ethylmethacrylate ;
- TOSPEARL siloxane particles (e.g. types T105, T108, T103, T120), marketed by Toshiba Co ;
- SEAHOSTAR polysiloxane - silica particles (e.g. type KE-P50), marketed by Nippon Shokubai Co ;
- EPOSOAR MA particles;,these are polymethylmethacrylate (PMMMA) X-linked (e.g. MA 1002, MA 1004);
- SOKEN PEARL : spherical PMMMA micro powders (AS series :e.g. AS 15, 22, 30, 50, 65);
- ROPAQUE particles, being polymeric hollow spherical core/sheat beads, marketed by Robin and Haas Co, and described e.g. is US-P's 4,427,836, 4,468,498 and 4,469,825 ;
- ABD PULVER, marketed by BASF AG ;
- CHEMIPEARL, spherical poymeric particles, marketed by Misui Petrochemical Industries, Ltd.;
- particles coated with a water-repellent material such as disclosed in US 5,204,233;
- polymer particles having a reactive functional group capable of forming a covalent bond with a hardener or a binder, as disclosed in US 5,057,407;
- fluorine containing polymer pearls as described in EP 281928;
- polymer particles prepared by suspension polymerisation as described e.g. in US 5,342,733;
- particles containing two polymers prepared as described by the method of EP 399729;
- polystyrene beads prepared as disclosed in EP 341200;
- gelatin-grafted polymer matting agents according to EP 307855.
- JP-A 7-179025 : backing layer contains spherical particles having an average size of 5-15 µm, e.g. spherical polystyrene particles of 5 µm;
- US 5,190,805 and corresponding EP 533293, and US 5,206,071 and corresponding EP 545470 disclose specific receiver materials with a coarse matting agent in the backing layer.
- water based ; the drying mechanism involves absorption, penetration and evaporation;
- oil based ; the drying involves absorption and penetration;
- solvent based ; the drying mechanism involves evaporation;
- hot melt or phase change : the ink vehicle is liquid at the ejection temperature but solid at room temperature ; drying is replaced by solidification;
- radiation curable, e.g. UV-curable ; drying is replaced by polymerization.
layer compositions; the mixtures were diluted with water up to 1 liter | ||||
Product (concentration wt%) | layer 1 | layer 2 | layer 3 | layer 4 |
gelatine K16096 Koepf | 54g | 45g | 45g | / |
polyvinylpyrrolidone K90 (5%) BASF | 272 | 224ml | 224ml | / |
Akypo RO 90 (5%) Roland | / | 10ml | 10ml | 15ml |
Fluorad FX1005 (5%) 3M | / | 1ml | 1ml | / |
modified starch beads (15µ mean particle size) (20%) | / | 25ml | / | / |
Mowiol 10 74 (10%) Hoechst | / | / | / | 800ml |
visual density of the black ink measured using a Macbeth TR924 for different ink jet receiver layers on transparant PET 100µ. | |||
HP850C | Epson 800 | Canon 610 | |
Receiver 1 | 3.7 | 1.55 | 2.4 |
Comparison 1 | 2.7 | 1.55 | 2.4 |
Comparison 2 | 0.21 | 2 | 2.4 |
- The table shows that only the sample printed with the pigmented ink of HP850C gives an optical density (VIS) higher than 3. After printing with black dyes like with Epson 800 and Canon 610, the optical density is lower than 3.0
- The results also show that printing with a pigmented black ink (HP850C) on a ink jet receiver containing a spacing agent with a high average particle size results in a lwering of the ODVIS under 3.0.
- The results also show that printing with a pigmented black ink (HP850C) on a receiver containing a non-N-containing polymer as binder the ODVIS is is very low and no longer within the specification.
- cassette of the magenta channel : black concentrated ink;
- cassette of the yellow channel : 5x diluted grey ink;
- cassette of the cyan channel : 12x diluted grey ink.
Claims (14)
- A method for making by means of ink jet on a transparent receiver a continuous tone image with an obtainable maximal transmission density in the visual region greater than 3.0, by ink-jetting combinations of at least one liquid black pigmented ink and at least one liquid grey ink to a transparent receiver comprising an ink receiving layer, a transparent support and a backing layer, said ink receiving layer comprising at least one N-containing polymer and being substantially free of particles having an average particle size larger than 1 µm.
- A method according to claim 1 wherein said receiver exhibits a haze value between 10 and 20 %, determined according to standard test ASTM D 1003.
- A method according to claim 2 wherein said haze value between 10 and 20 % is due to the presence of a spacing agent in said backing layer.
- A method according to claim 3 wherein said spacing agent is a starch ester containing hydrophobic groups.
- A method according to any of claims 1 to 4 wherein said at least one N-containing polymer is gelatin.
- A method according to any of claims 1 to 5 wherein said liquid black pigmented ink contains carbon black.
- A method according to claim 6 wherein said carbon black is present in said ink in a concentration of at least 2 % by weight.
- A method according to any of claims 1 to 7 wherein said at least one grey ink is a pigmented ink containing carbon black in a lower concentration than in said pigmented black ink.
- A method according to any of claims 1 to 7 wherein said at least one liquid grey ink contains a mixture of one or more cyan, magenta, and yellow colorants.
- A method according to any of claims 1 to 9 wherein said at least one liquid black pigmented ink and said at least one liquid grey ink are aqueous inks.
- A transparent receiver for ink jet printing comprising (i) a receiving layer containing a N-containing polymer, (ii) a transparent support, and (iii) a backing layer, characterized in that said transparent receiver exhibits a haze value between 10 and 20 %, determined according to standard test ASTM 12 1003.
- A transparent receiver for ink jet printing according to claim 11 wherein said haze value between 10 and 20 % is due to the presence of a spacing agent in said backing layer.
- A transparent receiver for ink jet printing according to claim 12 wherein said spacing agent is an ester of starch comprising hydrophobic groups.
- Use of the method for making a continuous tone image according to any of claims 1 to 10 for the reproduction of medical diagnostic information.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98203115A EP0987119B1 (en) | 1998-09-14 | 1998-09-14 | Ink jet printing method |
DE69812615T DE69812615T2 (en) | 1998-09-14 | 1998-09-14 | Inkjet printing method |
US09/387,969 US6378974B1 (en) | 1998-09-14 | 1999-09-01 | Ink jet method with improved tonal range |
JP11255647A JP2000094664A (en) | 1998-09-14 | 1999-09-09 | Ink-jet method provided, with improved gradation range |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98203115A EP0987119B1 (en) | 1998-09-14 | 1998-09-14 | Ink jet printing method |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0987119A1 true EP0987119A1 (en) | 2000-03-22 |
EP0987119B1 EP0987119B1 (en) | 2003-03-26 |
Family
ID=8234128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98203115A Expired - Lifetime EP0987119B1 (en) | 1998-09-14 | 1998-09-14 | Ink jet printing method |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0987119B1 (en) |
JP (1) | JP2000094664A (en) |
DE (1) | DE69812615T2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1184184A1 (en) * | 2000-08-31 | 2002-03-06 | Canon Kabushiki Kaisha | Printing method and apparatus |
EP1364801A3 (en) * | 2002-05-21 | 2003-12-03 | FERRANIA S.p.A. | Ink-jet printing system |
EP1364802A3 (en) * | 2002-05-21 | 2003-12-03 | FERRANIA S.p.A. | Receiving sheet for ink-jet printing |
AU2002212857B2 (en) * | 2000-10-27 | 2006-03-16 | Lws 2007 Limited | Method and apparatus for generating an alert message |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0533293A1 (en) * | 1991-09-20 | 1993-03-24 | Arkwright Inc. | Annotatable ink jet recording media |
EP0600245A1 (en) * | 1992-11-09 | 1994-06-08 | Mitsubishi Paper Mills, Ltd. | Ink jet recording sheet and method for producing same |
EP0742107A2 (en) * | 1995-04-14 | 1996-11-13 | Seiko Epson Corporation | Ink jet recording medium |
US5635297A (en) * | 1992-12-10 | 1997-06-03 | Mitsubishi Paper Mills Limited | Ink jet recording sheet |
EP0791475A2 (en) * | 1996-02-26 | 1997-08-27 | Konica Corporation | Recording sheet for ink-jet recording |
-
1998
- 1998-09-14 DE DE69812615T patent/DE69812615T2/en not_active Expired - Lifetime
- 1998-09-14 EP EP98203115A patent/EP0987119B1/en not_active Expired - Lifetime
-
1999
- 1999-09-09 JP JP11255647A patent/JP2000094664A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0533293A1 (en) * | 1991-09-20 | 1993-03-24 | Arkwright Inc. | Annotatable ink jet recording media |
EP0600245A1 (en) * | 1992-11-09 | 1994-06-08 | Mitsubishi Paper Mills, Ltd. | Ink jet recording sheet and method for producing same |
US5635297A (en) * | 1992-12-10 | 1997-06-03 | Mitsubishi Paper Mills Limited | Ink jet recording sheet |
EP0742107A2 (en) * | 1995-04-14 | 1996-11-13 | Seiko Epson Corporation | Ink jet recording medium |
EP0791475A2 (en) * | 1996-02-26 | 1997-08-27 | Konica Corporation | Recording sheet for ink-jet recording |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1184184A1 (en) * | 2000-08-31 | 2002-03-06 | Canon Kabushiki Kaisha | Printing method and apparatus |
US6739772B2 (en) | 2000-08-31 | 2004-05-25 | Canon Kabushiki Kaisha | Printing method and apparatus |
AU2002212857B2 (en) * | 2000-10-27 | 2006-03-16 | Lws 2007 Limited | Method and apparatus for generating an alert message |
EP1364801A3 (en) * | 2002-05-21 | 2003-12-03 | FERRANIA S.p.A. | Ink-jet printing system |
EP1364802A3 (en) * | 2002-05-21 | 2003-12-03 | FERRANIA S.p.A. | Receiving sheet for ink-jet printing |
US6793333B2 (en) | 2002-05-21 | 2004-09-21 | Ferrania, S.P.A. | Ink receiving sheet |
US6796650B2 (en) | 2002-05-21 | 2004-09-28 | Ferrania, S.P.A. | Ink-jet printing system |
Also Published As
Publication number | Publication date |
---|---|
DE69812615T2 (en) | 2003-11-06 |
EP0987119B1 (en) | 2003-03-26 |
JP2000094664A (en) | 2000-04-04 |
DE69812615D1 (en) | 2003-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5418078A (en) | Ink receiving layers | |
JP3920412B2 (en) | Inkjet recording method | |
EP0992846B1 (en) | Use of an ink jet image as prepress intermediate | |
US6908648B2 (en) | Ink-jet recording sheet | |
US6378974B1 (en) | Ink jet method with improved tonal range | |
EP1899168B1 (en) | Method of ink-jet printing | |
US20030008113A1 (en) | Ink jet recording medium, its manufacturing method, ink jet image forming method and image formed thereby | |
EP0987119B1 (en) | Ink jet printing method | |
JP2002316476A (en) | Ink jet printing method | |
EP0594896B1 (en) | Ink-receptive layers | |
EP0609930B1 (en) | Ink-receiving layers | |
US6367922B2 (en) | Ink jet printing process | |
EP1010540B1 (en) | Ink jet printing process | |
US6460957B1 (en) | Use of an ink jet image as prepress intermediate | |
US6339442B1 (en) | Image forming apparatus and process | |
JP2003094792A (en) | Ink jet recording method | |
EP1226960B1 (en) | Ink jet printing method | |
JPH11221968A (en) | Coloring matter accepting element for heat-sensitive coloring matter transfer | |
US6619797B2 (en) | Ink jet printing method | |
EP0704314A1 (en) | Ink jet printing system | |
EP2328761B1 (en) | Fusible inkjet recording media | |
JP2003170651A (en) | Ink jet recording method | |
JP2002240414A (en) | Ink jet recording sheet and manufacturing method therefor | |
JP2003170655A (en) | Inkjet recording method and inkjet-recorded matter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20000922 |
|
AKX | Designation fees paid |
Free format text: BE DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20010601 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AGFA-GEVAERT |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030326 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69812615 Country of ref document: DE Date of ref document: 20030430 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20031230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: D3 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090821 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090824 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090825 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100914 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110531 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69812615 Country of ref document: DE Effective date: 20110401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |